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Whole-genome sequencing reveals that Shewanella haliotis Kim
et al. 2007 can be considered a later heterotypic synonym of
Shewanella algae Simidu et al. 1990
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Abstract

Previously, experimental DNA–DNA hybridization (DDH) between Shewanella haliotis JCM 14758T and Shewanella algae JCM

21037T had suggested that the two strains could be considered different species, despite minimal phenotypic differences.

The recent isolation of Shewanella sp. MN-01, with 99% 16S rRNA gene identity to S. algae and S. haliotis, revealed a

potential taxonomic problem between these two species. In this study, we reassessed the nomenclature of S. haliotis and

S. algae using available whole-genome sequences. The whole-genome sequence of S. haliotis JCM 14758T and ten S. algae

strains showed �97.7% average nucleotide identity and >78.9% digital DDH, clearly above the recommended species

thresholds. According to the rules of priority and in view of the results obtained, S. haliotis is to be considered a later

heterotypic synonym of S. algae. Because the whole-genome sequence of Shewanella sp. strain MN-01 shares >99% ANI

with S. algae JCM 14758T, it can be confidently identified as S. algae.

The genus Shewanella of the class Gammaproteobacteria is
an extensively studied cosmopolitan group of species [1–3]
with substantial genetic diversity [4–6] reflecting versatile
respiratory and central metabolic pathways [2, 7–11]. She-
wanella algae was described for the first time in 1985 [12]
with the type strain designated OK-1T, originally deposited
as strain IAM 14159T, and subsequently transferred to other
collections (JCM 21037T=ATCC 51192T=CCUG 39064T

=CECT 5071T=CIP 106454T=DSM 9167T=LMG 18393T

=NBRC 103173T=NCIMB 13178T).

S. algae is an emergent opportunistic human pathogen [11]
that also carries great biotechnological potential as the only
species in this genus that can carry out acetate-driven extra-
cellular electron transfer [13]. However, perhaps due to lack
of available sequences, S. algae taxonomy and phylogeny
have not been investigated in previous studies [4–6]. Experi-
mental DNA–DNA hybridization (DDH), a measure of
the percentage relatedness of DNA genomes, is the current
gold standard for species delineation, with a minimum
DNA relatedness cut-off value of 70% [14, 15]. Whole-
genome sequence-based in silico analyses, such as average
nucleotide identity (ANI) implementations [16–18] and dig-
ital DDH [19], are statistically valid alternatives to conven-
tional experimental DDH. For ANI, the recommended
species cut-off value is 95% [4], representing 70% DNA
relatedness [16], while digital DDH values are equivalent to

experimental DDH values. ANI and digital DDH yield more
reproducible and absolute results than experimental DDH
owing to the high accuracy of modern sequencing and
assembly methods, and are therefore increasingly used for
pragmatic microbial species delineation [19, 20].

To classify Shewanella sp. MN-01, we initially queried the
nearly full-length 16S rRNA gene sequence to the nr/nt
NCBI database. The Shewanella sp. MN-01 16S rRNA
sequence matched S. algae OK-1T and Shewanella haliotis
DW01T at 99% sequence identity, revealing a potential tax-
onomic problem in the presumptive identification of similar
strains based solely on the 16S rRNA gene. A 16S rRNA
phylogenetic reconstruction with S. algae species, S. haliotis
DW01T and closely-related strains Shewanella upenei
20-23RT [21], S. indica KJW27T [22] and S. chilikensis JC5T

[23] (Fig. 1) revealed a close phylogenetic association of
S. haliotis DW01T, Shewanella sp. MN-01 and S. upenei
20-23RT with S. algae strains (hereafter called the ‘S. algae’
clade; Fig. 1). In contrast, S. algae BrY grouped with S. ind-
ica KJW27T in a separate clade (hereafter called the ‘BrY
clade’, Fig. 1).

When S. haliotis strain DW01T (=KCTC 12896T=JCM
14758T) was originally described [24], it was proposed as a
novel species based on 98.3% 16S rRNA gene sequence sim-
ilarity and 35.8% digital DDH with S. algae ATCC 51192T
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[24]. However, phenotypic differences between the two
strains were limited to carbohydrate assimilation (inability
of S. haliotis to assimilate mannose and fructose and
inability of S. algae to assimilate malate), and fatty acid
composition (undetectable C12 : 0 3-OH in S. algae and
undetectable C13 : 0 3-OH in S. haliotis). Because strains
from the same species may display phenotypic differences

reflecting distinct ecological niches [25], genomic identity
typically prevails as the deciding factor for nomenclature.
We used ANI and digital DDH to determine the taxonomic
position of available whole-genome sequences of eight
S. algae genomes from purified isolates, S. haliotis, and three
closely related strains (Table 1). For the type strain of
S. algae, we used the first publicly available genome, JCM

Shewanella algae C6G3

Shewanella MN-01

LN795823.1 Shewanella algae MARS 14

NR_117770.1 Shewanella haliotis DW01T

NR_028673.1 Shewanella algae OK-1T

NR_117771.1 Shewanella algae ATCC 51192T

NR_114236.1 Shewanella algae NBRC 103173T

NR 117272.1 Shewanella upenei 20-23RT

Shewanella algae JCM 21037T

Shewanella algae CSB04KR

NR 108899.1 Shewanella indica KJW27T

X81621.1 Shewanella algae BrY

Shewanella algae ACDC

NR_117772.1 Shewanella chilikensis JC5T

X82133.1 Shewanella putrefaciens ATCC 8071T

71

48

99

59

0.0050

S. algae

clade

BrY

clade

Fig. 1. Molecular phylogenetic analysis of 16S rRNA genes of S. algae and closely related strains. The evolutionary history was

inferred by using the maximum-likelihood method based on the Tamura–Nei model [32]. The tree with the highest log likelihood

(�2483.15) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial

tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise

distances estimated using the maximum composite likelihood approach, and then selecting the topology with superior log likelihood

value. The tree is drawn to scale, with branch lengths proportional to the number of substitutions per site. All positions containing

gaps and missing data were eliminated. There were a total of 1139 positions in the final dataset. Evolutionary analyses were con-

ducted in MEGA7 [33].

Table 1. S. algae genomes and their neighbours sequenced to date in the NCBI database (accessed March 2017)

Organism name Strain Source GenBank accession no. G+C (mol%) Original publication

Shewanella sp. MN-01 Sediment LIRM00000000 53.0 [13]

S. algae MARS 14 Homo sapiens CDQH00000000 52.9 [34]

S. algae YHL Homo sapiens LVDU00000000 53.0 NA

S. algae JCM 21037T Alga (Jania sp.) BALO00000000 53.0 [12, 26]

S. algae NBRC 103173T Alga (Jania sp.) BCZT00000000 53.1 [12, 26]

S. algae C6G3 Sediment JPMA00000000 53.1 [35, 36]

S. algae CSB04KR Sea cucumber (Apostichopus japonicus) MBFW00000000 53.1 [37]

Shewanella sp. 38A_GOM_205m Seawater 2546825529 (JGI-IMG) 53.1 NA

S. haliotis JCM 14758T Abalone (Haliotis discus) BALL00000000 52.9 [24]

S. algae BrY (ATCC 51181) Sediment MDKA00000000 52.4 [27]

S. algae ACDC Soil 2510461018 (JGI-IMG) 52.4 [38]

Shewanella sp. ECSMB14102* East China Sea JWGX00000000 52.2 [39]

*The 16S rRNA gene was missing from the genome assembly and therefore not included in phylogenetic analysis.

NA, Not available (unpublished).
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21037T [26]. Unfortunately, no genome sequences from
S. indica, S. upenei and S. chilikensis were available as of
November 2017.

S. algae strains JCM 21037T, NBRC 103173T, CSB04KR,
C3G6 and MARS14, Shewanella sp. MN-01, Shewanella
sp. 38A_GOM_205m and S. haliotis JCM 14758T

shared �97.7%ANI (Fig. 2a), �78.9%DDH (Fig. 3a)
and <0.2mol % G+C content variation (52.9–53.1%; Table 1,
Fig. 3b), suggesting that they all belong to the same species.
In agreement with 16S rRNA gene phylogeny (Fig. 1), a

whole-genome phylogeny grouped the strains into a mono-
phyletic clade (Fig. 2b). Based on these data, Shewanella sp.
MN-01 and Shewanella sp. 38A_GOM_205m can confi-
dently be classified as members of the species S. algae. In
contrast to previous results, our present in silico analyses
show that S. haliotis appears to fall within the species
S. algae.

When originally isolated, S. algae strain BrY was not classi-
fied as an S. algae species [27], but in subsequent studies it
became known as S. algae BrY based solely on its 16S rRNA

Fig. 2. Taxonomic relationship of S. algae strains. (a) Pairwise comparison of ANI values among S. algae and S. haliotis public genomes

(Table 1) was obtained using a Web-based ANI calculator (http://enve-omics.ce.gatech.edu/g [40]). Standard deviation values are

shown in parentheses. The ANI values in this table suggest the distinction of two Shewanella species: shaded in orange are ANI val-

ues >95% corresponding to the same species of S. algae and shaded in blue are ANI values of >95% between each other, but <95%

with S. algae OK-1T. S. algae NBRC 103173T has an ANI of 99.6% with JCM 21037T and is therefore not shown in this matrix. (b) The

evolutionary history of S. algae and S. haliotis strains was inferred using the maximum-likelihood method by RAxML with refinement in

PATRIC [41].
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gene sequence similarity to other S. algae strains [28]. Using
whole-genome sequences, however, we found that strains in
the BrY clade [S. algae BrY (ATCC 51181), S. algae ACDC
and Shewanella sp. ESCMB14102] shared �99% ANI
and >92% DDH with one another (Figs 2a, 3a),
but �94%ANI, �58%DDH, and significantly lower
G+C contents (52.2–52.4%, �0.2% difference) than strains
in the S. algae clade (Table 1, Fig. 3b). In addition, Shewa-
nella sp. BrY produce a distinct O-lipopolysaccharide con-
taining malic acid, fucosamine and rhamnose as repetitive
monosaccharide residues, which has not been found in
other S. algae strains [29]. Collectively, this evidence sug-
gests that the BrY clade may represent a new species. S. ind-
ica genomes are needed to determine if the BrY clade and
S. indica are the same species. Until further studies are con-
ducted, strains BrY, ACDC and ESCMB1102 should be
regarded as Shewanella spp. A formal proposal for the
reclassification of Shewanella spp. BrY requires a thorough
characterization, and we are currently in the process of
performing a polyphasic analysis of both the strains with
the aim of producing a formal description of a new Shewa-
nella species at a later date.

Further genomic inspection revealed that urease genes are

encoded in strains of the BrY clade, and are absent from

strains of the S. algae clade. A urease test confirmed that

Shewanella spp. BrY and ACDC are both urease-positive,

unlike urease-negative S. algae strains [ATCC 51192T

[30], JCM 14758T [24] and MN-01 (this study)]. Based

on this phenotypic difference, we propose that the urease

test could be a simple method to quickly distinguish

S. algae from BrY strains when conducting phenotype-

based identifications.

Based on the data discussed above, and in accordance with
the rules of priority, we hereby propose S. haliotis as a later
heterotypic synonym of S. algae (Rule for Prokaryotic
Nomenclature 24b [31]), and emend the description of
S. algae.

EMENDED DESCRIPTION OF SHEWANELLA

ALGAE SIMIDU ET AL. 1990, EMEND. NOZUE

ET AL. 1992

The properties are as given in the previous species descrip-
tion [26, 30], with the following amendments. S. algae can-
not grow without NaCl. The genomic G+C content ranges
from 52.9 to 53.1%. S. algae shows positive reduction of
nitrate to nitrite [24], and reduction of solid iron (Fe(III))
oxides with lactate as electron donor, as well as positive
anaerobic oxidation of acetate with soluble manganese or
iron as electron acceptor [13]. Type strain is OK-1T (=JCM
21037T=ATCC 51192T=CCUG 39064T=CECT 5071T=CIP
106454T=DSM 9167T=LMG 18393T=NBRC 103173T

=NCIMB 13178T).
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