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including the biogeochemical cycling of carbon, metals, metalloids, and 
radionuclides. The ability of Shewanella to deliver electrons extracellularly 
also renders this genus valuable for applications of contaminant 
remediation and energy generation in water treatment processes. Although 
the first Shewanella species was isolated and studied as a model metal-
reducing microorganism over thirty years ago, only recently has research 
focused on employing Shewanella to drive water treatment processes. This 
chapter examines current and prospective applications of Shewanella to 
water treatment issues, highlighting biochemical details associated with 
each technology. The technologies include the remediation of metal-
contaminated environments (Sections 1 and 2), the generation of 
electricity from wastewater streams (Section 3), the removal of hazardous 
contaminants under anaerobic conditions (Section 4), and precious metal 
recovery in combination with formation of novel biocatalysts (Section 5).  
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Anthropogenic activities have led to an increase of a wide range of organic and 

inorganic contaminants in aquatic environments. Biological water treatment relies on the 

activity of a wide variety of microorganisms to degrade the organic and inorganic 

compounds in waste waters. The genus Shewanella of the class Gammaproteobacteria 

represent a cosmopolitan group of facultatively anaerobic bacteria with high genetic 

diversity [1-3] and versatile respiratory [4-9] and central metabolic capabilities [4, 10]. 

Over 60 recognized species of Shewanella [9, 11, 12] have been isolated from aquatic 

and terrestrial environments over a wide range of salt concentrations, temperatures, and 

pressures [1, 8, 13, 14]. The distinctive trait of many Shewanella species is the ability to 

reductively transform a variety of extracellularly-localized organic and inorganic electron 

acceptors in both solid phase and water-soluble forms spanning a wide continuum of 

redox potentials [Fig. 1].  

Shewanella drives a variety of environmentally important processes [1-9], including 

the biogeochemical cycling of carbon, metals, metalloids, and radionuclides. The ability 

of Shewanella to deliver electrons extracellularly also renders this genus valuable for 

applications of contaminant remediation and energy generation in water treatment 

processes. Although the first Shewanella species was isolated and studied as a model 

metal-reducing microorganism over thirty years ago [15], only recently has research 

focused on employing Shewanella to drive water treatment processes. This chapter 

examines current and prospective applications of Shewanella to water treatment issues, 

highlighting biochemical details associated with each technology. The technologies 

include the remediation of metal-contaminated environments (Sections 1 and 2), the 

generation of electricity from wastewater streams (Section 3), the removal of hazardous 

contaminants under anaerobic conditions (Section 4), and precious metal recovery in 

combination with formation of novel biocatalysts (Section 5).  
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1. Extracellular electron transfer applied to water treatment technologies  
 

Biochemical pathway for extracellular electron transfer by Shewanella 

Heavy metals, metalloids and radionuclides may be toxic and accumulate in living 

organisms [16]. Many Shewanella transform a wide variety of metals, metalloids, and 

radionuclides including toxic uranium and technetium [17]. The ability of Shewanella to 

reductively transform a diverse array of toxic compounds often relies on extracellular 

electron transfer (EET).  EET is an anaerobic respiratory pathway to reduce electron 

acceptors unable to contact inner membrane (IM)-localized electron transport chains 

typical of aerobic respiration [18]. Transition metals such as Mn(IV) and Fe(III) oxides, for 

example, exist as sparingly soluble amorphous or crystalline (oxy)hydroxides at 

circumneutral pH and are unable to enter the cell to interact with IM-localized electron 

transport chains. To overcome this problem, Shewanella utilizes EET to transfer electrons 

from internal electron donors to external electron acceptors [19-21].  

The biochemical machinery that transfers electrons from the electron donor to the 

cell surface is composed of dehydrogenases located at the head end of the electron 

transport chain to oxidize electron donors, pump protons to the periplasmic space, and 

transfer electrons to menaquinone [Fig. 2]. Reduced menaquinone transfers electrons to 

tetraheme c-type cytochrome CymA, which in turn transfers electrons to periplasmic 

decaheme c-type cytochrome MtrA. The outer-membrane (OM) β-barrel protein MtrB 

facilitates interaction and electron transfer between MtrA and OM decaheme c-type 

cytochrome MtrC. The type II protein secretion system secretes MtrC through the OM 

secretin protein GspD, and MtrC associates with the outside face of the OM with the aid 

of lipid tails. The MtrCAB complex functions as an extracellular electron conduit that 
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transfers electrons to extracellular solid iron[III] oxides and other electron acceptors [22]. 

Several novel strategies facilitate transfer to external Fe(III) oxides, including (a) direct 

reduction of external Fe(III) oxides with cell-surface localized c-type cytochromes [6, 23, 

24]; (b) localization of c-type cytochromes along extracellular nanowires where they 

deliver electrons to external Fe(III) oxides; (c) delivery of electrons to external Fe(III) 

oxides via endogenous or exogenous electron shuttles [25-28] and (d) nonreductive 

dissolution of external Fe(III) oxides to form more readily reducible soluble organic-Fe(III) 

complexes [29-33].  

 

Reductive precipitation as an alternative radionuclide remediation strategy 

Subsurface contamination by the radionuclides uranium (U) and technetium (Tc) 

as byproducts of nuclear fuel processing is a global environmental problem. The mobility 

of radionuclides in groundwater largely depends on site-specific biogeochemical 

conditions. Under oxidizing conditions, both uranyl (U(VI)) and pertechnetate (Tc(VII)) 

form highly water soluble and mobile complexes with carbonate at pH >5. Under reducing 

conditions, U and Tc occur predominately as U(IV) and Tc(IV) oxides, respectively, which 

display much lower solubility and mobility than the oxidized forms [34]. Thus, dissimilatory 

metal- and radionuclide-reducing microorganisms may be employed in water treatment 

processes designed to selectively remove U- and Tc-contaminated plumes in subsurface 

aquifers [35, 36]. The Shewanella OM decaheme c-type cytochromes MtrC and OmcA 

(previously implicated in Mn(IV) and Fe(III) reduction) are also involved in electron 

transfer to U(VI) and Tc(VII). mtrC and omcA deletion mutants are severely impaired in 

U(VI) reduction activity and display decreased UO2 associated with the outer membrane 

[37]. In the environment, association of UO2 nanoparticles with biopolymers exerts a 
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strong influence on subsequent UO2 reactivity, including susceptibility to oxidation by 

O2 or NO3- and subsequent remobilization in U-contaminated soils and sediments [37]. 

The influence of U speciation on the kinetics and extent of microbial reductive 

precipitation of U(VI) may be modulated with multi-dentate organic acids. Strong 

complexing ligands such as citrate, NTA, and EDTA retard UO2 precipitation in U(VI) 

bioreduction experiments by forming aqueous U(IV) complexes. The reduction rates of 

complexed U(VI) decrease with increasing stability constant values of the U:ligand 

complexes [38]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. E’0 values of electron acceptors respired by Shewanella oneidensis span nearly 

the entire continuum of redox potentials encountered by bacteria in nature. 
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Figure 2. Working model of the S. oneidensis respiratory pathway for electron transfer to 

extracellular electron acceptors [22]. 

 

2. Anaerobic Reductive Biomethylation of Metals and Metalloids by Shewanella 

Anaerobic reductive biomethylation of metals and metalloids is regarded as an 

alternative bioremediation strategy. Microorganisms biomethylate metals and metalloids 

under both aerobic and anaerobic conditions [39-48] in a variety of environments, 

including metal waste deposits, sewage sludge, and alluvial soils [45, 47, 48]. The 

resulting methylated metal compounds differ in solubility, volatility, and toxicity [49-51]. 

For example, volatile methylated species such as (CH3)2Se and (CH3)2Se2 may efflux 
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from aqueous to gas phases [48, 52]. Biomethylation reactions involve the enzymatic 

transfer of methyl groups via multiple stepwise methylation reactions resulting in both 

partially methylated nonvolatile species as well as fully methylated volatile metal and 

metalloid compounds. Shewanella species produce methylated derivatives of arsenic 

(As), selenium (Se), tellurium (Te), and iodine (I) via reduction of arsenate, selenite, 

tellurate, and iodate to reduced forms that are subsequently methylated under anaerobic 

conditions [53-60]. 

Reductive methylation of arsenic by Shewanella  

Arsenic is introduced into the environment through the widespread use of 

organoarsenical herbicides and feed additives in agriculture.  Arsenic primarily occurs in 

four oxidation states, arsenate (As(V)), arsenite (As(III)), elemental As (As(0)), and 

arsenide (As(-III)). As(V) and As(III) are highly water soluble with As(V) found mainly in 

aerobic environments and As(III) more common in anaerobic environments, while As(0) 

is rarely detected. Shewanella sp. strain ANA-3 contains As(V) reductases involved in 

both respiratory (encoded by the arr genes) and detoxification (encoded by the ars genes) 

processes [58]. The two As(V) reductases of strain ANA-3 respond to different amounts 

and types of inorganic As, which allow Shewanella sp. ANA-3 to tolerate high (µM) As 

levels. In Shewanella sp. ANA-3, the ars system is expressed under both aerobic and 

anaerobic conditions. Shewanella encoding the ars detoxification system typically tolerate 

higher As concentrations than Shewanella species that do not contain Ars. This feature 

indicates that the ars detoxification system is required for As(V)-respiring bacterial activity 

in environments where As concentrations are high [61]. Arr is a periplasmic heterodimer 

composed of ArrA and ArrB subunits [62]. Arr is only expressed anaerobically and is 

repressed by oxygen and nitrate. Both the arr and ars systems are induced by As(III), but 
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the arr system is activated by As(III) concentrations 3 orders of magnitude lower than that 

required for the ars system (≤100 nM versus ≤100 μM, respectively). As(V), on the other 

hand, induces the arr (but not the ars) system at low μM concentrations. The ArsR family 

protein ArsR2 is most likely the major As(III)-dependent regulator of arr and ars operons 

in Shewanella strain ANA-3. However, anaerobic growth with As(V) as electron acceptor 

requires co-regulation with global regulators such as the cyclic AMP-catabolite repressor 

complex (cAMP-CRP), which facilitates cross-talk between central metabolism and As 

toxicity responses [63]. 

Microbial As methylation involves As(V) reduction followed by oxidative addition 

of a methyl group [64], generating a growing series of methylated arsenic species of 

general structure (CH3)nAsH3–n with methyl arsenite (MMA), dimethyl arsenate (DMA-V), 

dimethyl arsenite (DMA-III), and trimethyl arsine oxide (TMAO) (n=1, 2, 3, respectively) 

as the major volatile As compounds [65]. Methylation occurs via the activity of As(III) 

methyltransferases (ArsM), a highly conserved set of proteins with three strictly 

conserved cysteine residues required for catalytic function [66]. S. oneidensis MR-1 

transforms As through the partial methylation of inorganic arsenic species to less toxic 

methylated arsenic metabolites (e.g., DMA-III) by stepwise methylation with S-adenosyl 

methionine (SAM) as the methyl donor [60]. While the methyltransferases responsible for 

As biomethylation in Shewanella have yet to be identified, genomic analyses indicate 

potential pathways for As(III) methylation by a set of ArsM homologs (Fig. 1). 

Reductive methylation of selenium (Se) and tellurium (Te)  

Coal and phosphate mining are the main sources of Se- and Te-contaminated 

wastewaters. Se may enter the atmosphere via combustion of Se-bearing coals in power 

plants. Microbially-driven reductive methylation of Se and Te is widespread in aquatic and 
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terrestrial environments [47]. The most frequently produced methylated forms of Se and 

Te are volatile dimethyl selenide [(CH3)2Se; DMSe] and dimethyl telluride [(CH3)2Te; 

DMTe] (34-37). Bacterial thiopurine methyltransferase (bTPMT) is a methylating 

enzyme for transforming selenite and (methyl)selenocysteine to dimethylselenide 

(DMSe) and dimethyldiselenide (DMDSe), with analogous transformations to tellurite 

[67]. Methylated Se and Te derivatives are volatile and less toxic than inorganic forms 

while reduction of selenite or tellurite to amorphous elemental Se or Te results in Se 

and Te immobilization and detoxification [48, 67, 68]. Therefore, subsequent multiple 

methylation of reduced Se or Te may be catalyzed by unidentified thiopurine 

methyltransferases (bTPMT) encoded in the S. oneidensis genome (Fig. 3). 

Similar to U(VI) and Tc(VII) reductive precipitation reactions, the reductive 

precipitation of selenium and tellurium oxyanions may also be employed as Se and Te 

remediation technologies.  While only selenate (SeO42-) reduction supports anaerobic 

growth, selenite (SeO32-) reduction is more widespread than SeO42- reduction in the 

environment. SeO42- reduction to Se0 is a major sink for Se oxyanions in anoxic sediments 

[69, 70]. Shewanella species reduce SeO42- and tellurate (TeO42-) as well as SeO32- and 

tellurite (TeO32-) to Se0 and Te0 [59]. Recently, fumarate reductase (FccA) of S. 

oneidensis was identified as the terminal SeO32- reductase in the periplasm, which also 

involves CymA, a c-type cytochrome central to anaerobic respiration in Shewanella 

(see Section 1) [71]. Se and Te reduction form Se(0) and Te(0) precipitates. Localization 

of extracellular Se precipitates and intracellular Te precipitates suggests that SeO32- and 

TeO32- are reduced by separate electron transport pathways [57, 72].  
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Reductive methylation of iodine (I).  

Microbial iodate (IO3-) reduction is a major component of the biogeochemical 

cycling of iodine in marine and terrestrial environments [68, 73, 74] and the 

bioremediation of radioactive iodine in iodine-contaminated waters and sediments [75-

77]. Radioactive isotope 129I is produced during uranium and plutonium fission reactions 

with a half-life of 15.7 million years [77]. The iodine biogeochemical reaction network 

consists of a coupled abiotic (purely chemical) and biotic (enzymatic) reaction network 

[53]. In marine environments, for example, IO3- is reduced to I- by IO3--reducing 

microorganisms [53, 56]. I- is subsequently volatilized from marine surface waters by 

algae or bacteria by methylation to a variety of volatile organic iodine compounds, 

including methyl iodide (CH3I), iodomethane (CH2I2), iodoethane (C2H5I), and 

iodopropane (C3H7I) [53, 78]. The iodine biogeochemical cycle is completed by I- 

oxidation to IO3- as a step-wise via conversion of I- to iodine (I2) by I--oxidizing 

microorganisms [79, 80] and subsequent hydrolysis of I2 to HOI (+1 oxidation state), 

which subsequently disproportionates to IO3- to complete the iodine biogeochemical cycle 

[81, 82].  

The molecular mechanism of microbial IO3- reductive methylation is poorly 

understood. SAM-dependent methyl halide transferases derived from plants, algae, fungi 

and bacteria catalyze methylation of I- to methyl iodide (CH3I) [78, 83]. Reductive 

methylation of IO3- has been reported for S. putrefaciens strain MR-4 [56] and methylation 

of I- by S. putrefaciens IAM 12079 [78]. The majority of Shewanella strains reduce IO3- 

while S. putrefaciens 200, S. algae BrY and S. oneidensis display the highest IO3- 

reduction rates and extents of reaction [84]. IO3- reduction by S. oneidensis MR-1 involves 

metal reduction components MtrA and MtrB (but not MtrC), catabolite repressor protein 
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Crp, c-type cytochrome maturation protein CcmB, and the Type II protein secretin GspD. 

The S. oneidensis genome contains 14 putative SAM-dependent methyltransferases 

which are currently being examined for iodide methylation activity. A working model for 

iodine methylation based on the integration of phenotypic and genomic analysis of the S. 

oneidensis genome suggests that IO3- is reduced to I- by an extracellular IO3- reductase 

complex composed of MtrA, MtrB and an unidentified IO3- terminal reductase. The 

produced I- is subsequently converted to methyliodide (CH3I) by an unidentified iodide-

specific methylhalide transferase (IMHT)(Fig. 3). 

 
 

Figure 3. Reductive methylation pathways predicted from genomic analysis of the 

S. oneidensis genome. Top (orange box): Working model of reductive methylation of 

arsenate: periplasmic ArrAB reduces an extracellular As(V) to As(III) which is imported by 

Pit/Pst into the cytoplasm and cytoplasmic As(V) could be reduced to As(III) by ArsC. 
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Cytoplasmic As(III) is exported extracellularly by ArsAB or transformed to methylated 

arsenic compounds by sequential methylation of ArsM. Bottom (yellow box):  Working 

model of reductive methylation of selenite or tellurite: periplasmic FccA reduces selenite 

(SeO32-) to Se0, however, the tellurite reduction mechanism is unknown. Selenite(SeO32-) 

and tellurite(TeO32-) are imported by unknown permeases and then transformed to 

gaseous methylated forms, DMSe or DmTe by bTPMT. Right (green box) working model 

of reductive methylation of iodate: IO3- is reduced to I- by an extracellular IO3--reductase 

complex composed of MtrA, MtrB and an unidentified terminal IO3—reductase (IO3R). 

Subsequently, the reduced I- is converted to methyliodide (CH3I) by an unidentified iodide-

specific methylhalide transferase (IMHT) after cytoplasmic import of I-. Abbreviations: 

ArrAB (Arsenite respiratory reductase), GlpF (Glycerol transporter), Pit/Pst (Phosphate 

transporter), CymA (Tetraheme c-type cytochrome), ArsAB (Arsenite detoxification efflux 

pump), ArsC (Arsenate detoxification reductase), FccA (fumarate reductase), MtrA, MtrB , 

IO3R (Iodate reductase), IMHT (iodide-specific methylhalide transferase), bTPMT 

(bacterial thiopurine methyltransferase), DMSe (dimethylselenide), DMTe 

(dimethyltelluride), SAM (S-Adenosyl methionine), SAH (S-Adenosyl homocysteine). 

 

2. Shewanella-driven bioelectrochemical water treatment systems 

Bioelectrochemical systems such as microbial fuel cells (MFCs) consist of devices 

in which electroactive microbes (exoelectrogens) mediate electricity generation via EET 

from bacterial cells to an electrode and thus catalyze the transformation of chemical 

energy into electrical energy [85, 86].  MFCs generally contain a membrane that 

separates the anodic and cathodic compartments. The charge balance of the MFC 

system is compensated by ionic movement across an ionic membrane. MFCs utilize a 

variety of electron donors for electricity generation, including wastewater and 
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lignocellulosic waste. MFC technology is thus considered a seminal platform for coupling 

wastewater treatment to energy recovery from biodegradable compounds and 

sustainable remediation of contaminated water [87-89].  Low power density, however, is 

the current major obstacle for widespread application of MFC technology [90].  

Microbial EET drives bioelectrochemical technologies for contaminant remediation, 

renewable energy recovery, and biofuel production coupled to water treatment. A wide 

range of renewable organic substrates drive MFCs, including acetate, glucose, 

lignocellulosic biomass, synthetic wastewater, brewery starch, dyes and land field 

wastewater, thus MFCs can be used as a wastewater treatment technology to decrease 

biological oxygen demand coupled to electricity generation which offsets operating costs 

[91, 92]. A variety of Shewanella strains display EET activity and dominate microbial 

populations enriched on MFC electrodes exposed to wastewater [93]. A comparison of 

Shewanella strains under identical BES configurations produce current values ranging 

from 0.7-3 uA/cm2 with S. putrefaciens W3-18-1 generating the highest and S. loihica PV-

4 generating the lowest current values [94]. Shewanella also reductively precipitate highly 

toxic metals, while simultaneously generating electricity. For example, S. oneidensis-

driven MFCs with lactate as electron donor achieve a maximum current density of 32.5 

mA/m2 (1000 Ω external load) after receiving a 10 mg/L Cr(VI) addition to the cathode.  

Cathodic efficiency increased steadily over an 8-day operation period with successive 

Cr(VI) additions, thus demonstrating effective and continuous Cr(VI) reduction with 

associated current production [95]. In subsequent studies, Shewanella spp. W3-18-1, 

MR-4, and ANA-3 generated current during Cr(VI) reduction in BES, with values up to 5-

fold higher than that of S. oneidensis MR-1 [96]. S. oneidensis MR-1 also reduced azo 

dye acid orange 7 (AO7) in a biocathode with lactate as electron donor and a 
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decolorization efficiency of over 96% [97].   

Shewanella BES may also detect toxic compounds such as formaldehyde, in which 

current responses were detected over a concentration range from 0.01% to 0.10% in a 

single-chambered BES with 0 mV (versus saturated calomel electrode) applied on the 

anode [98] and fumarate. S. oneidensis–based fumarate-biosensing systems deliver a 

symmetric current peak directly proportional to increasing fumarate concentration in a 

linear rage between the values of 2 μM-10 mM [99]. S. oneidensis is also amenable to 

the development of genetically engineered biosensors such as arabinose- and arsenic-

inducible E. coli promoters that produce current in BES reactors in response to arsenic. 

By placing the metal reduction (Mtr) pathway of S. oneidensis MR-1 under the control of 

an arsenic-sensitive promoter, the genetically engineered strain produces increased 

current output in response to arsenic. The BES-based biosensor displays a detection limit 

of 40 μM As(III) with a linear range up to 100 μM As(III). The transcriptional circuit relies 

on the activation of a single promoter, thus modular sensing systems may be developed 

to detect other analytes by the exchange of a single genetic component [100]. Another 

example of genetically-engineered BES systems involves trimethylamine-N-oxide (TMAO) 

to control EET rates via mtrCAB. The torECAD and torF promoters respond to TMAO 

concentrations and expression levels of TMAO-induced S. oneidensis cells to 

control mtrCAB expression with TMAO to induce Fe(III) reduction and current production 

[101]. Thus, Shewanella-based BES may simultaneously treat, monitor, and modify 

treatment by controlling the expression of genes encoding specific Shewanella 

biochemical pathways. 

Mechanism of EET to MFC electrodes 

MFCs may be driven by facultatively anaerobic bacteria such as Shewanella [102].  
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Two major factors affecting MFC efficiency are microbial attachment to the electrode 

surface and efficient electron transfer from the cells to the electrodes. Shewanella 

structural pilin genes (mshA-D, encoding extracellular mannose-sensitive hemagglutinin) 

structural proteins, involved in surface attachment and biofilm formation are involved in 

MFC current generation [102][103]. In addition, disruption of the putative cell surface 

polysaccharide biosynthesis gene SO_3177 in S. oneidensis MR-1 enhances adhesion 

to electrodes and current generation [104]. Conductivity in MFC-powering electroactive 

bacteria is dependent on EET (see Section 1) [105], and Shewanella transfer electrons 

directly or indirectly to electrode surfaces in either mediator- or mediator-free 

configurations [86]. The Shewanella Mtr electron transport machinery is involved in EET 

to electrodes [106]. For example, decahemes MtrA and MtrC and beta-barrel OM porin 

MtrB and homologs MtrDEF are required for EET and current production [106, 107]. 

Shewanella genomes encode other accessory proteins that impact MFC efficiency [108, 

109]. In addition, different Shewanella strains contain different sets of EET genes that 

may impact MFC current production and coulombic efficiency [94]. Electron transfer to 

the electrode may be facilitated by mediators such as thionine, methyl viologen, methyl 

blue or humic acids [86]. Studies on the balance between the reduction of electrodes and 

competing acceptors are needed to determine the optimal combination of mediators. For 

example, the presence of O2, while initially competing for electrons at the expense of 

cathode reduction, are used for riboflavin synthesis, which subsequently functions as a 

redox shuttle that increases electrical output [110]. 

 

Factors affecting bioelectrical output in Shewanella BES 

The type of electron donors fed to MFC affects electrical performance, and thus a 
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fundamental mechanistic understanding of such effects is important to optimization of 

MFC performance. The effect of combined organic carbon compounds on the efficiency 

of contaminant degradation by Shewanella is of particular importance as wastewater 

composition is typically complex. For example, Shewanella readily oxidizes short and long 

chain carboxylic acids, including lactate or formate as electron donor. Formate and lactate, 

however, also act synergistically, and increase electrical output compared to formate or 

lactate as sole electron donor in Shewanella BES. During this synergy, lactate is 

metabolized as carbon source while formate is oxidized as electron donor [111]. The 

range and fate of organic substrates that Shewanella oxidizes to support current 

generation in MFCs is not well understood and a matter of ongoing research.  

 Shewanella form biofilms and produce electricity at circumneutral pH either as 

pure strains or as members of complex microbial consortia [86]. For example, S. 

oneidensis MR-1 clones overexpressing the c-di-GMP biosynthesis gene ydeH formed 

biofilms 3-fold thicker and generated electricity and current density 3-fold greater than 

wild-type S. oneidensis [112]. MFC driven by S. loihica PV-4 under aerobic or anaerobic 

conditions display different patterns of substrate utilization and biofilm formation. In turn, 

electrode composition also affects current output, possibly due to interactions with OM 

cytochrome lipoproteins. Surface wettability of electrodes, for example, alters EET activity 

of S. loihica PV-4. Current generated with superhydrophilic electrodes is substantially 

higher than normal hydrophilic and hydrophobic electrodes [113], while carbon-coated 

hematite electrodes are more efficient than bare carbon cloth electrodes for S. 

oneidensis-driven MFC, suggesting that semi-conductive properties of Fe(III) oxides play 

important roles for EET to electrode surfaces [114]. Increased electrical output is also 

achieved in higher ionic strength solutions, thus decreasing resistance and promoting 
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proton movement.  Results are variable, however, since higher concentration of 

Ca2+ ions in the BES anodic electrolyte decreased current output by 72%, while addition 

of Ca2+ in a graphite felt MFC with S. oneidensis increased the current density by 80% 

[102].  

Additional strategies to increase power density are based on isolation of 

synergistic microbial consortia. Shewanella EET is enhanced by co-culture with riboflavin-

producing Bacillus subtilis RH33 which increases power densities. While Shewanella or 

Bacillus alone produce 56.9 mW/m2 and 6.9 mW/m2, respectively, a co-culture with both 

strains can reach a maximum power density of 277.4 mW/m2 [115]. Addition of mM levels 

of EDTA also increased EET activity 75-fold in BES cells driven by S. loihica PV-4 [90].  

Electrode potentials also affect the physiological status of Shewanella. Mass 

spectrometric analysis of the S. oneidensis MR-1 proteome incubated in MFC at set 

anode potentials of + 0.71 V, + 0.21 V & − 0.19 V (versus SHE reference electrodes) 

displayed higher metabolic activity at higher electrode potentials, including a higher 

expression of riboflavin biosynthesis protein and EET and other energy-generating 

proteins [116]. At lower potentials (−0.19 V), cbb3-type cytochrome c oxidase (CcoO), c-

type cytochromes (SO3420 and CytB) and a number of chemotaxis and motility-related 

proteins were expressed at higher abundances, potentially indicating signs of oxidative 

stress at lower MFC potentials. 

 

Shewanella-driven Fenton reaction drives hazardous contaminant degradation 

Due to high oxidation potential, OH• radicals generated from Fenton chemistry can 

oxidatively degrade a wide variety of recalcitrant hazardous contaminants found in 
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sediments, groundwater, and wastewater, including landfill leachates, chlorinated 

aliphatics and aromatics [117-120]. Advanced chemical oxidation processes such as the 

chemical Fenton reaction are often used as treatment strategies in such contaminated 

environments [118, 121]. In the chemical Fenton reaction, Fe(II) reacts with hydrogen 

peroxide (H2O2) under acidic conditions to form Fe(III), hydroxyl ion (OH-), and OH• 

radicals (Eq. 1) [122]: 

Fe(II) + H2O2 → Fe(III) + OH- + OH• [1] 

In Fenton chemical treatments, however, the Fenton reagents Fe(II) and H2O2 must be 

continuously supplied to drive OH• radical production via the chemical Fenton reaction, 

thus limiting in situ applications and increasing costs. Irradiation with UV light to induce 

Fe(III) reduction and photolytic radical production in photo-Fenton systems are also 

limited by UV light penetration and H2O2 must still be continuously supplied to drive the 

Fenton degradation reaction [123]. 

The microbially-driven Fenton reaction, on the other hand, is an emerging 

treatment strategy that continuously regenerates H2O2 and Fe(II), thus alleviating the 

need for continual addition of the Fenton reagents H2O2 and Fe(II). The microbially-driven 

Fenton reaction is carried out by alternating aerobic and anaerobic phases of bioreactors 

amended with Fe(III) and the Fe(III)-reducing facultative anaerobe Shewanella: H2O2 is 

produced via microbial O2 respiration during the aerobic phase, while Fe(II) is produced 

via microbial Fe(III) reduction during the anaerobic phase (Fig. 4). In the transition 

between aerobic and anaerobic phases, the microbially-produced H2O2 and Fe(II) interact 

to produce OH• radicals that degrade a variety of contaminants, including 

pentachlorophenol (PCP), trichloroethylene (TCE), tetrachloroethylene (PCE), 1,4-
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dioxane, pyrene, and anthracene [123-125].  

 In the PCP case, the S. putrefaciens-driven Fenton reaction generates OH• 

radicals in batch reactors to degrade PCP, a previously deployed pesticide and wood 

preservative. Approximately 60% of the PCP was degraded over the course of the 

experiments, and tetrachlorohydroquinone and tetrachlorocatechol were produced as 

daughter products accounting for 87% of PCP loss [126]. The S. oneidensis-driven 

Fenton reaction also generates OH• radicals that degrade the chlorinated solvents TCE, 

PCE, and co-contaminant 1,4-dioxane. In bioreactors containing commingled 

contaminants, the ratio of the experimentally-derived rate of degradation of each 

contaminant was proportional to the corresponding OH• radical reaction rate constant, 

thus indicating that the Fenton reagents generated by S. oneidensis subsequently 

resulted in OH• radical production and contaminant degradation via fundamental Fenton 

reaction chemistry.   

A similar S. oneidensis-driven Fenton reaction system was also recently employed 

to degrade the recalcitrant oil spill components pyrene and anthracene [127, 128] and to 

produce alternative energy biofuels with lignocellulosic materials from woody plants as 

starting substrate. Lignocellulose is primarily composed of the carbohydrate polymers 

cellulose and hemicellulose (consisting of sugar monomers glucose and xylose, 

respectively) tightly bound to lignin in a crystalline form highly resistant to enzymatic 

degradation reactions. The S. oneidensis-driven Fenton reaction system, however, 

degraded cellulose and hemicellulose to shorter oligosaccharides and monosaccharides 

that were subsequently fermented to the bioplastic polyhydroxybutyrate [129, 130].  
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Figure 4. Microbially-driven Fenton reaction drives contaminant degradation in fed-

batch reactor systems consisting of 4 main phases. Phase 1. Batch reactor 

containing Fe(III) and S. oneidensis cells is incubated under anaerobic conditions to 

initiate microbial Fe(III) reduction to Fe(II).  Phase 2. Under aerobic conditions, S. 

oneidensis respires aerobically and reduces O2 to H2O2, which reacts with Fe(II) produced 

in Phase 1 to generate OH• radicals. Phase 3. The bioreactor is closed and contaminant 

(PCP, TCE, PCE, 1,4-dioxane, cellulose, hemicellulose, pyrene, or anthracene) is 

injected and degraded by the OH• radicals generated in Phase 2.  Phase 4. Fe(III) is 

regenerated via injection of compressed air and the 4-phase cycle is repeated. The 
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brown-colored bar in the upper left-hand corner indicates the relative reducing (brown-

colored, fully Fe(II)) and oxidizing (orange-colored, fully Fe(III)) conditions in the 

bioreactor.  

 
3. Application of Shewanella for resource recovery during water treatment: 

biogenic As and Se nanotubes 

Selenium substitutes for sulfur in biological systems and is thus toxic at elevated 

concentrations [131]. Se is widely used in many industrial processes and products such 

as electronics, glass manufacturing, pigments, stainless steel, metallurgical additives, 

photoelectric cells, and pesticides.  Se occurs predominately in four main oxidation 

states, selenate (Se(VI)), selenite (Se(IV)), elemental selenium (Se(0)), and selenide 

(Se(-II)). Soluble Se(VI) and Se(IV) are found in oxidizing environments, while insoluble 

Se(0) is more abundant in reducing environments. Chemical coprecipitation with Fe salts 

is often used to remove Se(VI) and Se(IV) from industrial wastewaters. However, this 

method generates Se sludge in a nonrecyclable form, which requires additional handling 

for disposal [132]. As occurs predominately in four main oxidation states (+5, +3, 0, and 

–3), with As(V) and As(III) the most common forms. Arsenic is a toxic heavy metal that 

occurs naturally in subsurface aquifers but its occurrence is magnified by anthropogenic 

emission as a byproduct of copper, lead, and zinc ore refining, and gold-producing 

industries [133], as well as in the pharmaceutical (pesticide), glass, timber, and leather 

industries [134]. 

The growing demand for electronic devices requires rare earth elements for 

materials fabrication, which leads to expansive volumes of toxic waste. While treatment 

is necessary to remove As and Se as a contaminant, recovery of As and Se as valuable 
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elements can partially offsets treatment costs.  Due to high aspect ratios and unique 

size-dependent properties, As and Se nanotubes are valuable biotechnological building 

blocks for fabricating a variety of nanoscale electronic, optical, optoelectronic, 

electrochemical, and electromechanical devices. Microbially-produced electronic 

biological materials (e-biologics) represent potential green solutions for materials 

fabrication [135] since microorganisms are inexpensive catalysts sourced waste streams 

can be harvested for precursor As and Se [136]. 

Arsenic nanotube production by Shewanella 

As(V) reduction is coupled to energy generation or As resistance via As(III) 

extracellular export and subsequent As detoxification. As(V)-respiring bacteria release 

As(III) from As(V)-containing minerals. Both respiratory As reductase (Arr) and resistance 

As reductase (Ars) are encoded in Shewanella genomes. The arr operon in Shewanella 

sp. strain ANA-3 lies immediately downstream of the ars operon and contains only two 

genes, arrA and arrB. ArrA contains motifs for binding an iron-sulfur cluster and 

molybdenum-containing pyranopterin cofactor. ArrB is predicted to contain three [4Fe-4S] 

and one [3Fe-4S] iron-sulfur clusters [137]. 

Shewanella sp. strain HN-41 produces an extracellular network of filamentous 

arsenic-sulfide (As-S) nanotubes under anaerobic conditions [138]. Shewanella As-S 

nanotubes (approximately 20 to 100 nm by 30 nm) form extracellular networks that upon 

aging continue to display electric conductivity, photoluminescence, photoactivity, and 

transistor-like properties [135]. Although not all Shewanella species produce As-S 

nanotubes, four Shewanella strains (Shewanella sp. strains HN-41, S. alga BrY, S. 

oneidensis MR-1 and S. putrefaciens CN-32) produce As-S nanotubes during incubation 

with lactate as carbon and energy source and As(V) and thiosulfate as electron acceptors 
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[139]. The main mineralogical components of the filamentous As-S nanotubes are 

comprised of a mixture of several As-S compounds. Biogenic As-S nanotubes consist 

primarily of amorphous As2S3 nanofibers with an indirect optical band gap of 2.37 eV but 

also contain crystalline As8S9-x minerals that were previously thought to form only at 

higher temperatures [140]. The ArrA and ArsC of Shewanella. sp. strain HN-41 and S. 

putrefaciens strain CN-32 display high amino acid sequence similarity to the 

corresponding proteins of Shewanella sp. strain ANA-3. In contrast, the S. 

oneidensis MR-1 genome harbors an ArsC (but not ArrA) homolog. Although the 

mechanism of (delayed) As-S nanotube formation by S. oneidensis MR-1 is not clearly 

understood, the (rapid) formation of As-S nanotubes by the other Shewanella strains may 

be due to the presence of two highly active ArrA and ArsC As(V) reductases [139]. 

Selenium nanotube production by Shewanella 

As described above, dissimilatory Se(VI) and Se(IV) reduction by Shewanella 

reductively precipitates Se(0) nanoparticles. Se(IV) reduction by Shewanella species has 

drawn interest for nanoparticle synthesis. Shewanella sp. HN-41 synthesizes 

amorphous Se nanoparticles from aqueous Se(IV) compounds under anaerobic 

conditions (36). S. putrefaciens 200 produces reactive amorphous Se nanospheres 

and reduces Hg(II) rapidly. Biogenic Hg(0) reduced from Hg(II) by S. putrefaciens 200 

was captured into extracellular amorphous Se nanospheres, resulting in the formation 

of stable HgSe nanoparticles. The new strategy lays the foundation for Hg removal 

strategies from aquatic environments without secondary pollution of Hg methylation or 

Hg(0) volatilization [141].  

Se(0) nanospheres formed by Se-respiring bacteria are composed of Se with 

approximately the same uniform diameter (0.2–0.3 μm). Se(0) nanospheres are produced 
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outside the cell envelope and eventually slough off the cell surface [137]. Chemical 

synthesis of Se(0) nanospheres does not achieve the compacted nanostructural 

arrangement of Se atoms that results from microbial Se(VI) or Se(IV) reduction by 

Shewanella species. In addition to the compacted nanostructural arrangement, the 

structural features of extracellular Se(0) nanospheres produced by Se-respiring 

Shewanella include stable and uniform monoclinic crystalline nanospheres [142].  

Shewanella-produced Se nanospheres, however, contain mixed Se redox species, heavy 

metals, and organics as impurities. Se recovery is technologically challenging since 

bacterially-produced Se(0) nanospheres exhibit colloidal properties that require 

development of novel methods for separation from treated wastewater [132].  

Se(0) nanospheres may be stabilized in vitro against crystallization by inclusion of 

proteins or extracytoplasmic polymeric substances. Se(0) nanosphere-producing 

Shewanella sp. HN-41 generates 1D Se(0) nanostructures, nanowires, and nanoribbons 

at ambient conditions in dimethyl sulfoxide solutions. The crystallinity and shape of the 

Se(0) nanostructures are controlled by Se/DMSO ratios [143]. Although the average Se(0) 

particle size was unaffected by initial biomass concentration, the reduction rate and Se(0) 

particle size distribution were governed by biomass concentration. Se(0) nanoparticles of 

1–20 nm were achievable at low initial biomass concentration and shorter reaction times. 

Initial Se(IV) concentrations did not have a significant effect on the average S(0) particle 

size, but affected the early-stage kinetics of Se(0) nanosphere production [144]. 
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