
Re-thinking the Honeypot for Cyber-
Physical Systems
Samuel Litchfield1, David Formby1, Jonathan Rogers2, Sakis Meliopoulos1, Raheem Beyah1

1School of Electrical and Computer Engineering, Georgia Institute of Technology

2School of Mechanical Engineering, Georgia Institute of Technology

Abstract
Honeypots derive much of their value from their ability to fool attackers into believing they are

authentic machines. Current Cyber-Physical Systems (CPS) honeypots fail to sufficiently capture and

simulate behavior that is necessary to project this authenticity. In response, the proposed framework,

HoneyPhy, was developed for CPS honeypots that takes into account both behavior originating in the

CPS process and the devices that make up the CPS itself. We implemented a proof of concept for this

framework, and showed that it is possible to simulate these behaviors in real-time. Using HoneyPhy, it

will be possible to construct honeypots for complex CPS.

Keywords: Honeypot, Honeynet, Cyber Physical Systems, CPS Security, CPS Modeling, HoneyPhy

Introduction
Since the early 1990s, the idea of entrapping and deceiving computer attackers in order to study their

behavior and misdirect them has been used with great success in the computer security field. This

practice, traditionally done through a deliberately unused computing system configured to emulate

critical resources, called a Honeypot, has revealed many different attacker strategies, allowed

researchers to gather malware binaries, and kept more critical computing resources safe. As networking

evolved, many honeypots were linked together to form Honeynets, in order to emulate full deployed

networks. As attackers learned of honeypots, they improved their techniques to detect whether a

resource is being faked, and this is now the primary means of defeating honeynets. If an attacker can

realize that a resource is being faked, he can move on to more critical resources, or feed the defender

false information in turn.

As the Cyber-Physical Systems (CPS) space grows and becomes increasingly networked, attackers have

been more interested in compromising the resources controlling these CPS. Honeypots/Honeynets have

been designed to emulate CPS specific components in response. However, all existing CPS honeypots

neglect certain aspects of these systems that can alert an attacker to the nature of the honeypot,

namely the simulation of the attached physical process and the physics of the devices that interact with

the process. We propose a new CPS specific Honeypot framework, called HoneyPhy: A Physics-aware

Honeypot Framework, that addresses these problems and aims to be extensible to all cyber-physical

systems.

Background: Traditional Honeypots
Traditionally, network-layer honeypots are broken into two broad classifications: high and low

interaction.

Low Interaction
Low interaction honeypots work to accurately emulate a set of services and some system behaviors. No

effort is given to other services, and the emulated services might not implement the service’s full

feature set. Low interaction honeypots get their name from the low level of interaction available

between the attacker and the machine. Consequently, low interaction honeypots can behave in

unexpected fashions when they encounter unexpected behavior. This unexpected behavior can also

alert the attacker to the fact that the machine he is interacting with is a honeypot, which will likely cause

the attacker to either disconnect or continue the interaction with the intent to mislead. Additionally,

because attackers are limited in how they can interact with the machine, the information that can be

gained from the honeypot is also limited. Both of these cases severely limit the usefulness of a low

interaction honeypot, and motivated the movement to high interaction honeypots in their place. One

very well-known example of a low interaction honeypot is HoneyD [1], which can be configured to

emulate a variety of different OS, offering a variety of services.

High Interaction
High interaction honeypots, in contrast, do not emulate. They are real resources, instrumented to log an

attacker’s behavior, and are deployed to be unused for any other purpose. This allows the attacker to

interact with real operating systems and applications. Consequently high-interaction honeypots offer

great benefits in logging all of an attacker’s behavior, but also expose great risk in allowing an attacker

to potentially compromise these real resources.

High Interaction honeypots have gained popularity since virtualization has become more prevalent.

Virtualized environments allow many victim machines to be hosted on the same physical resource, and

the networking conditions to be tightly controlled.

How should a CPS honeypot fit into this classification?
Pure high-interaction honeypots are fundamentally unsuited to CPS, because they rely on either

deploying another physical copy of the resource in question, or somehow virtualizing it. Deploying a

copy of an entire CPS with the express purpose of being compromised exposes the same safety risks as

the original system, and imposes large costs. A pure high interaction honeypot can deployed for a single

component or small group of components within a CPS, but without the physical portion of the system

to interact with, the usefulness of these honeypots is limited. One solution, proposed in more detail

below, is to create a hybrid-interaction honeypot, where real devices (e.g., programmable logic

controllers (PLCs), intelligent electronic devices (IEDs), and remote terminal units (RTUs)) and interfaces

interact with process and device simulations that can effectively fully replicate the behavior of the CPS

process.

Background: CPS Honeypots
Since 2004, a variety of CPS targeted honeypots have been released and deployed.

The first low interaction CPS targeted honeypot was released in March, 2004 by Cisco Systems, and was

called the Supervisory Control and Data Acquisition (SCADA) HoneyNet Project [2]. It leveraged HoneyD

[1], Arpd, Snort, and Tripwire to emulate many hosts on a network. Specifically, it aimed at emulating

FTP, HTTP, Telnet, and Modbus for a Schneider PLC, and FTP, HTTP, SNMP, and S7comm for a Siemens

PLC. The honeypot makes no attempt to simulate process behavior. The project is no longer maintained.

Released shortly after, Digital Bond’s Honeynet [3] has a similar goal of providing a low interaction

honeypot simulating a single Modicon Quantum PLC. The system can be configured to either have a

virtual machine as a target, with simulated applications and HoneyD monitoring interactions, or be

deployed as a high-interaction honeypot with a real device. Both targets are set behind a Honeywall [4]

designed to separate the target machine from production networks and filter outgoing traffic.

Gaspot, presented at Blackhat 2015 [5], was based on research done at TrendMicro. Motivated by

attacks observed on gas station control devices, the low interaction honeypot simulates basic services

provided by these devices, and logs all interactions. The honeypot is relatively simple, and responds to

queries with randomized values within plausible ranges. After deployment in a variety of countries,

attacker interactions and origins were analyzed.

Conpot is an actively maintained “low interactive server side Industrial Control Systems honeypot

designed to be easy to deploy, modify and extend” [6]. While inherently extensible, Conpot is not aimed

at modeling either processes or devices. System definition is done through xml files, and protocol

emulation is done using Python. Out of the box examples simulate device memory, leveraging the

Modbus_tk library.

CryPLH, the Crysys PLC Honeypot [7] is an actively developed low-interaction honeypot designed to

emulate a Siemens Simatic 300 PLC. It simulates the exposed HTTP, HTTPS, SNMP, and Siemens SIMATIC

STEP7 (carried out over the ISOTSAP protocol) configuration interfaces on a minimal Ubuntu Linux VM,

and uses a central configuration file to simplify and end user’s configuration. The HTTP/S and ISOTSAP

interfaces both have logins where no username/password combination will successfully log in, and the

visible web portal does not change to reflect the PLC’s environment.

Why Existing CPS Honeypots Are Not Sufficient
In traditional network focused honeypots, as well as in existing CPS honeypots, the main goal was to

emulate the kinds of protocol quirks that fingerprinting utilities like Nmap and p0f look for. However,

CPS honeypots should provide auxiliary information arising from the attached physical system. This

auxiliary information is both the ability to compare the moment to moment state of the CPS for

consistency (i.e., leveraging the physics of the process and sensors), as well as observing the individual

connected devices for unreasonable actuation times. If either the process physics or device actuation

time are unrealistic, an attacker can easily determine if they are in a honeypot.

A simple example can illustrate why process and device simulation are important to the design of a CPS

honeypot. A consumer home Heating Ventilation and Air Conditioning (HVAC) system represents a

familiar and intuitive CPS, where networked thermostats control physical devices like heaters,

compressors, and fans. In reality, if a command is issued by a thermostat to begin heating, a heater

turns on. If temperatures are read in succession, the home temperature can be seen to slowly rise in

response. Imagine that an attacker is interacting with a honeypot designed to emulate this system. First,

the attacker turns on the heater, and then he closely monitors the home’s temperature sensor. If this

honeypot makes no attempt to simulate the process it claims to control, and instead returns random

responses or does not respond to the heating, an attacker will see temperatures over time that do not

reflect the activation of the heater. Alternately, the temperature sensor could instantly show the final

temperature, which would completely neglect the physics of the system. In either scenario, the attacker

knows the system he is interacting with is either faulty, or does not control the system it claims to.

Accordingly, they are likely to not continue interacting with the system, and the honeypot loses utility.

Figure 1 Outcomes of an attacker interacting with different levels of simulation

A similar example can illustrate the need to simulate the physical/mechanical delay of a device (i.e.,

actuator). If the thermostat controls a heater through the use of a mechanical relay, activation of the

heater requires changing the state of that relay. This state change requires some amount of time,

determined by the electro-mechanical characteristics of the relay [8]. In some devices, this delay can be

on the order of milliseconds. If, as is the case in many other kinds of CPS, the thermostat is instrumented

to confirm the state change, this delay is now exposed to the attacker. An attacker can look for this

device delay, and use it to test whether the system is a honeypot. This is illustrated in Figure 1. The left

scenario illustrates an attacker interacting with a real system, so all delays and responses result from

process and device behavior. The right scenario illustrates an attacker interacting with a CPS honeypot

that does not attempt to model process behaviors and device delay, and the lack of this delay and

deviations from expected process behavior will alert the attacker to the honeypot. The middle scenario

illustrates an attacker interacting with a CPS honeypot that is capable of modeling both process behavior

and device delay. Responses provided to the attacker are thus realistic, and the attacker proceeds to

perform observed malicious actions.

Table 1 shows the state of emulation provided by the five previously noted CPS honeypots. None of

them attempt to model process behavior or device delays. In the table, the term proven either indicates

an attacker was fooled by the honeypot at this level in the honeypot’s history, or that the honeypot was

tested by an associated tool by the honeypot’s creator.

Table 1 Modeling Capabilities of Existing CPS Honeypots

 SCADA
HoneyNet

DigitalBond
Honeynet

GasPot Conpot CryPLH

Human
Interaction

Proven Proven Proved through
experimental
results

Proven “Mostly
Indistinguishable”
[7]

Network Stack
Emulation

Honeyd
provides
stack
emulation

Capable of
instrumenting
real PLC, so
full stack

Relies on
Python’s
network stack,
so
fingerprintable

Proven
through
testing by
Nmap

Nmap can discern
between
honeypot and
real PLC

System/Process
Simulation

Single
Device
emulation,
so none

Single Device
emulation, so
none

None None by
default, but
extensible

None

Device Delay
Modeling

None None None None None

Our Vision for Future CPS Honeypots
Our vision for future CPS honeypots addresses the limitations of current CPS honeypots by providing an

extensible framework, HoneyPhy: A Physics-aware honeypot framework, for accounting for the physics

of the physical process and the mechanical delays of the physical actuators.

Future honeypots should correctly model software and protocol fingerprints, as with all other

honeypots. This is the well understood portion, and the one all previous CPS honeypots aimed to

address. This interface layer of the honeypot could be either high or low interaction, depending on

access to equipment such as Human-Machine Interfaces (HMIs).

In addition to this, future honeypots should correctly model the behavior of the physical system. This

primarily ensures that physical parameters, when queried, behave in a way consistent with attacker

expectations. Without this, future attackers could conduct simple tests to check the authenticity of the

machine or machines they are interacting with. A CPS process model will require simulation.

Finally, future honeypots should correctly model the time delay introduced by the constituent devices

within the CPS. These delays could either originate from the operation of real devices used in the CPS

honeypot, or be generated by modeling the devices. Returning to the HVAC example, these delays

would originate from the time it takes for the electromechanical relays to physically open or close,

energizing or de-energizing the fan, heater, or compressor to move the system to the desired state.

Attackers measuring the physical actuation time for these devices could detect a honeypot environment

if the measurements lay outside the known operation times for each device. These operation times can

be modeled, and these models can be generated in one of two ways, white box modeling or black box

modeling.

Black box modeling is the method of generating a model for the behavior of the device based on

physical access to it and a set of true measurements of its behavior. By comparison, white box modeling

requires no physical access to the device and involves mathematical modeling of the device based on

estimates of the device parameters and standard physical models. The primary advantage black box

modeling holds over white box modeling is that it results in the most accurate representation of the

device behavior, since it is based on empirical measurements. However, attackers will not always have

physical access to a target device type to make empirical measurements on to form the black box

model. In this scenario intelligent attackers can then resort to white box modeling to generate an

estimate of the device behavior and still make educated guesses about whether the device is a

honeypot or a true target. In our previous work, we show that not only is the construction of these

models feasible, the models are convincing [8].

Proposed New CPS Honeypot Framework
To satisfy this vision, HoneyPhy, a new CPS hybrid-interaction honeypot framework is proposed. The

new framework is composed of three major components: the Internet Interface(s) Module, the Process

Model(s) Module, and the Device Model(s) Module. Each module’s contents, permissions interfaces,

controllable and sensible process variables, and metadata are configured by a central xml file. A

framework overview can be seen in Fig. 2.

Figure 2 Proposed CPS Honeypot Architecture

Internet Interface(s) Module
The Internet Interface Module exposes the declared interfaces at the declared addresses. It will

maintain connections and multiplex them to their destinations while ensuring outgoing packets to

reflect the network fingerprint for each device and modifying them if necessary. The interfaces that are

exposed to the Internet are specified through the central xml configuration file.

Process Model(s) Module
The Process Model exists to simulate the physical process in question. It can be interrogated and acted

upon by the other devices modeling sensors and actuators, and should simulate the process in real time.

The Process Model communicates with the various Devices and Models over a separate databus. If

desired, a secure Internet-facing interface can be opened to remotely interact with the process model

directly.

Process Models could consist of LabView simulations, replays of empirically observed responses (as

done in our proof-of-concept presented later), or more traditional controls system models such as a

Linear Dynamical System or Auto-Regressive models [9, 10].

The process variables that can be sensed or acted upon, along with individual device model permissions,

are specified in the central xml configuration file.

Device Model(s) Module
The Device Models encompass all devices found within a CPS, from PLCs to relays. Where they model

computing devices such as PLCs, the model should implement logic to simulate those devices. This can

include interpreting incoming queries and responding with the value they obtain by querying the

process model, or executing incoming commands by modifying the process model. Where Device

Models simulate mechanical devices such as relays or valves, the model should introduce a suitable

delay corresponding to the time necessary to change the device’s state.

Device models can range from very simple low level black box timing models to real devices, sufficiently

instrumented to interact with the process model.

For each model, the central configuration file specifies metadata such as manufacturer and part

number, as well as process parameters the device can sense and act upon. This ensures that devices

only act upon appropriate physical quantities.

Inter-module Communication
While our framework does not specify a required inter-module communication method, it does specify

where communication must be available. The Internet Interface module must be able to route

incoming/outgoing communications to all applicable devices, and optionally expose the internet facing

interface for the process model. Additionally, all devices must be able to talk not only to each other, but

also to the process model. This necessitates a separate Process/Device databus.

Putting the Pieces Together
We propose this framework in order to provide a means to identify the key components of a process,

identify how those components map to models, and provide a common language to configure and

interconnect those models. In the future, process models could be simulations in LabView,

communicating with physical PLCs located behind a production HMI. Existing honeypot technology such

as HoneyD could be configured to expose realistic Internet interfaces for black box device models

communicating to a process model that is empirically generated (as will be shown in the next section).

Physical boundaries do not have to dictate the boundaries of the models either. For example, substation

protection relays and their attached physical relays could be modeled as a single unit. The Internet

interface unit could be implemented within the process model. The most logical implementation is left

up to the honeypot creator, but if there exists a common way to interface these different levels and

types of simulations, constructing CPS honeypots will become much more accessible and possible for

complex systems.

Our Proof of Concept Implementation
Leveraging an early version of HoneyPhy, we constructed a simple heating system, modeled the process

and devices involved, and set up a real-time simulation that uses existing honeypot technology as the

system interface.

Physical System Architecture

Figure 3 Logical Architecture of the Proof of Concept HVAC System

The simple heating system consists of an insulated and heated volume, a set of components acting as a

thermostat, and a set of components acting as a heater. The logical architecture of this system is

presented in Fig. 3.

The thermostat analogue labeled in Fig. 3 consists partially of a personal computer executing

temperature control logic based on the temperature read from a USB thermometer located inside the

heated area. If this temperature violates the programmed limit set points, the PC sends a DNP3

command, using the OpenDNP3 library, to a connected SEL-751A Relay to either turn the heater on or

off. The SEL-751A Relay responds to that command by closing or opening a physical relay (Potter and

Brumfield (P&B) KUL-11D15D-24), for which a black box model was previously obtained.

This physical relay, along with the ceramic heater bulb it controlled, formed our heater analogue, as

labeled in Fig. 3.

While not implemented in the system, in a real Internet of Things (IoT) thermostat the current

temperature, heater status, and set points could be interrogated and controlled through an external

network interface of the PC.

Models and Simulation
In order to simulate this system, we developed an analytic model of how the enclosed volume was

heated by the heating element and was cooled by the environment. This was based on empirical results

gathered from the internal USB thermometer, and made up of closed form equations, seen in Equations

1 and 2 where T𝑏𝑢𝑙𝑏 , T𝑎𝑖𝑟 and T𝑒𝑛𝑣 represent the temperatures in degrees Celsius of the bulb, air, and

environment respectively, t indicates time, and Sℎ𝑒𝑎𝑡𝑒𝑟 represents the state of the heater. As the model

looped through the simulation, the time between the last state update and the current state update are

used to calculate the update in observed temperature for both the internal heater and the air

temperature. The specific coefficients in the equations resulted from creating the general form of the

equations from Newton’s Law of Cooling, then fitting the resulting equations to the observed data. This

analytic model was used for the process model portion of the simulation.

𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) = 𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + ∆𝑡 ∙ [(𝐻𝑒𝑎𝑡𝑒𝑟 𝑆𝑡𝑎𝑡𝑒) ∙ (0.00775 ∙

𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1.04) − 0.00084 ∙ (𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)1.48775]

𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) = 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + ∆𝑡 ∙ [0.00084 ∙ (𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 −

𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)1.085 − 0.00041 ∙ (𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)1.225]

Fig. 4 shows an observed heating/cooling curve from the physical system, and a similar curve generated

by the process model for the same control actions. This curve occurs above room temperature,

energizing the heater at the beginning of the data set at 28.5° C and turning it off at the vertical read

line. Assuming these control commands originate from the attacker, if they energize the heater at t = 0s,

at t = 500s they can compare the reported temperature of the system against either their intuition of

the system or a separate process model they have created.

Data points have been superimposed below the real data to illustrate what Digital Bond’s SCADA

Honeynet and Gaspot would return when asked for the air temperature, if used to simulate a similar

system. This data was generated by inspecting relevant source. This clearly does not capture process

behavior, and when the attacker checks the reported behavior of the system at t = 500s, it will be clear

that something is wrong.

Figure 4 Empirical Heating Results vs. Generated Process Model vs. What Some Other CPS Honeypots Responds With

To capture device behavior, we leveraged black box models developed in previous work for the same

relay [8]. For our device model, we randomly sampled the black box data gathered. We also developed a

white box model for the same relay. The simulation is convincing with both models, as can be seen in

Fig. 5, which shows histograms of device operation times from both models. The black box model was

generated by empirically observing the device, while the white box was generated by simulating

mechanical properties based on specifications. While the standard deviation of both distributions differs

slightly due to simplifications made in the white box modeling, the means of both models are clearly

similar. The present differences should not be apparent to any shorter term attackers. Machine learning

tools in [8], trained using this white box model, successfully differentiated two physical relays with 80%

accuracy.

Figure 5 Black and White Box Models for P&B Relay, Seen On Right

The modules used in this HoneyPhy instance were all multithreaded and written in Python, using

standard system libraries. When complete, the system is capable of real-time simulation, at a variety of

time-step granularities.

Getting Started with HoneyPhy
When approaching construction of a CPS honeypot with HoneyPhy, the first step is to identify what

physical devices within the system need to be included in the Device Models Module, and which

physical devices, if any, can be combined within a single Device Model. Identify how those models

interact with each other and the underlying process, and what each model can sense and control.

Additionally, identify which models will need to be accessible from the Internet.

With the identified devices and controls known, one could then apply existing technologies or real

devices to simplify the system. For example, existing HMIs can make good Internet Interfaces and

require no simulation. If a device needs to be simulated, HoneyD can conform a simulation’s outgoing

packets to a desired network fingerprint. It is possible that when adding real devices, instrumentation

will also need to be added to convert raw control signals into something the relevant process model can

implement.

Once it is decided how all devices will interact with the process model, the process model itself must be

developed while taking into account the necessary interaction with the devices or device models. This

can be done in a variety of ways, but explicitly defining input and output signals from the model early

will simplify the process.

In the example instance of HoneyPhy provided earlier, physically distinct entities mapped well onto

device models. Once the device model boundaries were decided upon, we determined the control

actions each device could exert on each other and the system, as well as possible delays encountered in

each device’s actuation. In this case, the only device that added significant actuation delay was the

physical relay, for which a previously developed black box model was used.

With model boundaries and control actions known, it was decided that models would communicate by

local network sockets, using a simple string-based message format.

Once all device models, control actions, and communication methods were decided upon, the process

model was developed to respond to those control actions, with the chosen communication method.

Extending to Real CPSs
While the proof of concept provided here applied to a scaled down version of an HVAC setting,

HoneyPhy will extend to any CPS, of any size, given models are created at the right level of abstraction.

One complete example could be to simulate an electric power substation. Substations are prime targets

for attackers due to their complexity, the number of devices located within the substation, and the

potential to inject false data from the substation. Constructing a honeynet that models an entire

substation would require the ability to simulate the effects various control actions would have on the

substation’s state.

Power transmission systems commonly use system level state estimation to combine individual sensor

readings from substations into a representation of the state of the entire system, so this kind of high-

level state estimation from sensor readings is a well-known problem. The model associated with system

wide state estimation is simplified and corresponds to balanced operating conditions. This model will

not be useful to the HoneyPhy concepts, as it may provide unrealistic responses to attacker’s

commands. This system level state estimation is then used for both economic functions, such as load

forecasting and pricing, as well as security functions, such as managing line congestion and automatic

generator control. System level state estimation is traditionally centralized, depending on data returned

from individual substations.

Our previous work involved the development of a substation level Distributed State Estimation (DSE) for

the purpose of detecting malicious control actions within power substations [11]. This DSE system

utilizes a high fidelity dynamic model (3-phase) and accurately simulates the results of control actions on

an individual substation’s systems faster than real-time. For a prospective honeypot modeling a

substation, this DSE could be used as the process model for an entire substation. While it has faster than

real time capability, it will respond to attacker’s commands with the actual timing of system evolution so

that the attacker will think he is interacting with the real system.

With the DSE in hand, all that would be required to implement the proposed framework is developing

models for the individual power devices that make up the substation. In Appendix E. of [8], we have

constructed a white-box model for a common Siemens GMSG vacuum circuit breaker, proving the

feasibility and value of constructing these device models.

High fidelity power system models tend to be complex. For a practical HoneyPhy system it will be

necessary to automatically create the high fidelity model. The automated generation of the model is

described in [12]. With a real-time process model, proven possible by the DSE, and sufficiently

convincing device models, which are shown to be obtainable, a convincing honeypot for a system as

complex as a substation could be constructed using the proposed CPS honeypot framework.

Conclusion
Honeypots derive much of their value from their ability to fool attackers into believing they are

authentic machines. Current CPS honeypots fail to sufficiently capture and simulate behavior that is

necessary to project this authenticity. In response, the proposed framework, HoneyPhy, was developed

for CPS honeypots that takes into account both behavior originating in the CPS process and the devices

that make up the CPS itself. We implemented a proof of concept for this framework, and proved it is

possible to simulate these behaviors in real-time. Using HoneyPhy, it will be possible to construct

honeypots for complex CPS. More details and future updates to HoneyPhy can be found at

www.honeyphy.gatech.edu

References

[1] N. Provos, "Developments of the Honeyd Virtual Honeypot," 2008. [Online]. Available:

http://honeyd.org/.

[2] V. Pothamsetty and M. Franz, "SCADA HoneyNet Project: Building Honeypots for Industrial

Networks," 2005. [Online]. Available: http://scadahoneynet.sourceforge.net/.

http://www.honeyphy.gatech.edu/

[3] DigitalBond, "SCADA Honeynet," 2016. [Online]. Available: http://digitalbond.com/tools/scada-

honeynet/.

[4] The Honeynet Project, "Honeywall," 2016. [Online]. Available:

https://projects.honeynet.org/honeywall/.

[5] K. Wilhoit and S. Hilt, "The GasPot Experiment: Unexamined Perils in Using Gas-Tank-Monitoring

Systems," 2015. [Online]. Available: https://www.trendmicro.com/cloud-content/us/pdfs/security-

intelligence/whitepapers/wp_the_gaspot_experiment.pdf.

[6] L. Rist, J. Vestergaard, D. Haslinger and A. Pasquale, "Conpot," 2016. [Online]. Available:

http://conpot.org.

[7] I. D. Buza, F. Juhasz, G. Miru, M. Felegyhazi and T. Holczer, "CryPLH: Protecting Smart Energy

Systems from Targeted Attacks with a PLC Honeypot," in Smart Grid Security: Second International

Workshop, 2014.

[8] D. Formby, P. Srinivasan, A. Leonard, J. Rogers and R. Beyah, "Who's in Control of Your Control

System? Device Fingerprinting for Cyber-Physical Systems," NDSS, February 2016.

[9] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi and M. Srivastava, "Py-CRA: Physical Challenge-Response

Authentication for Active Sensors Under Spoofing Attacks," in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, New York, NY, 2015.

[10] D. Hadziosmanovic, R. Sommer, E. Zambon and P. H. Hartel, "Through the Eye of the PLC: Semantic

Security Monitoring for Industrial Processes," in Proceedings of the 30th Annual Computer Security

Applications Conference, 2014.

[11] S. Meliopoulos, R. Huang, E. Polymeneas and G. Cokkinides, "Distributed dynamic state estimation:

Fundamental building block for the smart grid," in 2015 IEEE Power Energy Society General

Meeting, 2015.

[12] S. Choi, B. Kim, G. J. Cokkinides and S. Meliopoulos, "Feasibility Study: Autonomous State

Estimation in Distribution Systems," IEEE Transactions on Power Systems, pp. 2109-2117, 2011.

Authors

Samuel Litchfield is a Master’s Student in the School of Electrical and Computer Engineering at

Georgia Tech, and a member of the Communications Assurance and Performance Group (CAP).

His current research interests lie in network and control systems cybersecurity.

David Formby is a PhD student in the School of Electrical and Computer Engineering at

Georgia Tech, and a member of the Communications Assurance and Performance (CAP) group.

His research primarily focuses on network security for industrial control system networks.

Jonathan Rogers is an Assistant Professor in the Woodruff School of Mechanical Engineering

at the Georgia Institute of Technology and the Director of the Intelligent Robotics and Emergent

Automation Lab. Dr. Rogers research interests are in the areas of nonlinear dynamics, control,

and state estimation with particular expertise in modeling and simulation of multi-body systems

and complex dynamics.

A. P. Sakis Meliopoulos (M ’76, SM ’83, F ’93) received the M.E. and E.E. diploma from

NTUA, Greece, in 1972; the M.S.E.E. and Ph.D. degrees from GIT in 1974 and 1976,

respectively. In 1976. He joined the Faculty of ECE, GIT, and he hold the Georgia Power

Distinguished Professorship. He has made significant contributions to power system protection,

automation, grounding, harmonics, and reliability assessment of power systems. He is the author

of three books, he holds three patents and he has published over 330 technical papers. Recent

honors: IEEE Richard Kaufman Award (2005), George Montefiore Award, Belgium (2010). He

is the Chairman of the Georgia Tech PRC, a Fellow of the IEEE and a member of Sigma Xi.

Raheem Beyah is the Motorola Foundation Professor in the School of Electrical and Computer

Engineering at Georgia Tech where he leads the Communications Assurance and Performance

Group (CAP). He received the National Science Foundation CAREER award in 2009 and was

selected for DARPA’s Computer Science Study Panel in 2010. He is a member of AAAS,

ASEE, a lifetime member of NSBE, and a senior member of ACM and IEEE.

