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Abstract 
Honeypots derive much of their value from their ability to fool attackers into believing they are 

authentic machines. Current Cyber-Physical Systems (CPS) honeypots fail to sufficiently capture and 

simulate behavior that is necessary to project this authenticity. In response, the proposed framework, 

HoneyPhy, was developed for CPS honeypots that takes into account both behavior originating in the 

CPS process and the devices that make up the CPS itself. We implemented a proof of concept for this 

framework, and showed that it is possible to simulate these behaviors in real-time. Using HoneyPhy, it 

will be possible to construct honeypots for complex CPS. 

Keywords: Honeypot, Honeynet, Cyber Physical Systems, CPS Security, CPS Modeling, HoneyPhy 

Introduction 
Since the early 1990s, the idea of entrapping and deceiving computer attackers in order to study their 

behavior and misdirect them has been used with great success in the computer security field. This 

practice, traditionally done through a deliberately unused computing system configured to emulate 

critical resources, called a Honeypot, has revealed many different attacker strategies, allowed 

researchers to gather malware binaries, and kept more critical computing resources safe. As networking 

evolved, many honeypots were linked together to form Honeynets, in order to emulate full deployed 

networks. As attackers learned of honeypots, they improved their techniques to detect whether a 

resource is being faked, and this is now the primary means of defeating honeynets. If an attacker can 

realize that a resource is being faked, he can move on to more critical resources, or feed the defender 

false information in turn. 

As the Cyber-Physical Systems (CPS) space grows and becomes increasingly networked, attackers have 

been more interested in compromising the resources controlling these CPS. Honeypots/Honeynets have 

been designed to emulate CPS specific components in response. However, all existing CPS honeypots 

neglect certain aspects of these systems that can alert an attacker to the nature of the honeypot, 

namely the simulation of the attached physical process and the physics of the devices that interact with 

the process. We propose a new CPS specific Honeypot framework, called HoneyPhy: A Physics-aware 

Honeypot Framework, that addresses these problems and aims to be extensible to all cyber-physical 

systems. 

Background: Traditional Honeypots 
Traditionally, network-layer honeypots are broken into two broad classifications: high and low 

interaction.  



Low Interaction 
Low interaction honeypots work to accurately emulate a set of services and some system behaviors. No 

effort is given to other services, and the emulated services might not implement the service’s full 

feature set. Low interaction honeypots get their name from the low level of interaction available 

between the attacker and the machine. Consequently, low interaction honeypots can behave in 

unexpected fashions when they encounter unexpected behavior. This unexpected behavior can also 

alert the attacker to the fact that the machine he is interacting with is a honeypot, which will likely cause 

the attacker to either disconnect or continue the interaction with the intent to mislead. Additionally, 

because attackers are limited in how they can interact with the machine, the information that can be 

gained from the honeypot is also limited. Both of these cases severely limit the usefulness of a low 

interaction honeypot, and motivated the movement to high interaction honeypots in their place. One 

very well-known example of a low interaction honeypot is HoneyD [1], which can be configured to 

emulate a variety of different OS, offering a variety of services. 

High Interaction 
High interaction honeypots, in contrast, do not emulate. They are real resources, instrumented to log an 

attacker’s behavior, and are deployed to be unused for any other purpose. This allows the attacker to 

interact with real operating systems and applications. Consequently high-interaction honeypots offer 

great benefits in logging all of an attacker’s behavior, but also expose great risk in allowing an attacker 

to potentially compromise these real resources. 

High Interaction honeypots have gained popularity since virtualization has become more prevalent. 

Virtualized environments allow many victim machines to be hosted on the same physical resource, and 

the networking conditions to be tightly controlled. 

How should a CPS honeypot fit into this classification? 
Pure high-interaction honeypots are fundamentally unsuited to CPS, because they rely on either 

deploying another physical copy of the resource in question, or somehow virtualizing it. Deploying a 

copy of an entire CPS with the express purpose of being compromised exposes the same safety risks as 

the original system, and imposes large costs. A pure high interaction honeypot can deployed for a single 

component or small group of components within a CPS, but without the physical portion of the system 

to interact with, the usefulness of these honeypots is limited. One solution, proposed in more detail 

below, is to create a hybrid-interaction honeypot, where real devices (e.g., programmable logic 

controllers (PLCs), intelligent electronic devices (IEDs), and remote terminal units (RTUs)) and interfaces 

interact with process and device simulations that can effectively fully replicate the behavior of the CPS 

process. 

Background: CPS Honeypots 
Since 2004, a variety of CPS targeted honeypots have been released and deployed. 

The first low interaction CPS targeted honeypot was released in March, 2004 by Cisco Systems, and was 

called the Supervisory Control and Data Acquisition (SCADA) HoneyNet Project [2]. It leveraged HoneyD 

[1], Arpd, Snort, and Tripwire to emulate many hosts on a network. Specifically, it aimed at emulating 

FTP, HTTP, Telnet, and Modbus for a Schneider PLC, and FTP, HTTP, SNMP, and S7comm for a Siemens 

PLC. The honeypot makes no attempt to simulate process behavior. The project is no longer maintained. 



Released shortly after, Digital Bond’s Honeynet [3] has a similar goal of providing a low interaction 

honeypot simulating a single Modicon Quantum PLC. The system can be configured to either have a 

virtual machine as a target, with simulated applications and HoneyD monitoring interactions, or be 

deployed as a high-interaction honeypot with a real device. Both targets are set behind a Honeywall [4] 

designed to separate the target machine from production networks and filter outgoing traffic. 

Gaspot, presented at Blackhat 2015 [5], was based on research done at TrendMicro. Motivated by 

attacks observed on gas station control devices, the low interaction honeypot simulates basic services 

provided by these devices, and logs all interactions. The honeypot is relatively simple, and responds to 

queries with randomized values within plausible ranges. After deployment in a variety of countries, 

attacker interactions and origins were analyzed. 

Conpot is an actively maintained “low interactive server side Industrial Control Systems honeypot 

designed to be easy to deploy, modify and extend” [6]. While inherently extensible, Conpot is not aimed 

at modeling either processes or devices. System definition is done through xml files, and protocol 

emulation is done using Python. Out of the box examples simulate device memory, leveraging the 

Modbus_tk library. 

CryPLH, the Crysys PLC Honeypot [7] is an actively developed low-interaction honeypot designed to 

emulate a Siemens Simatic 300 PLC. It simulates the exposed HTTP, HTTPS, SNMP, and Siemens SIMATIC 

STEP7 (carried out over the ISOTSAP protocol) configuration interfaces on a minimal Ubuntu Linux VM, 

and uses a central configuration file to simplify and end user’s configuration. The HTTP/S and ISOTSAP 

interfaces both have logins where no username/password combination will successfully log in, and the 

visible web portal does not change to reflect the PLC’s environment. 

Why Existing CPS Honeypots Are Not Sufficient 
In traditional network focused honeypots, as well as in existing CPS honeypots, the main goal was to 

emulate the kinds of protocol quirks that fingerprinting utilities like Nmap and p0f look for. However, 

CPS honeypots should provide auxiliary information arising from the attached physical system. This 

auxiliary information is both the ability to compare the moment to moment state of the CPS for 

consistency (i.e., leveraging the physics of the process and sensors), as well as observing the individual 

connected devices for unreasonable actuation times. If either the process physics or device actuation 

time are unrealistic, an attacker can easily determine if they are in a honeypot. 

A simple example can illustrate why process and device simulation are important to the design of a CPS 

honeypot. A consumer home Heating Ventilation and Air Conditioning (HVAC) system represents a 

familiar and intuitive CPS, where networked thermostats control physical devices like heaters, 

compressors, and fans. In reality, if a command is issued by a thermostat to begin heating, a heater 

turns on. If temperatures are read in succession, the home temperature can be seen to slowly rise in 

response. Imagine that an attacker is interacting with a honeypot designed to emulate this system. First, 

the attacker turns on the heater, and then he closely monitors the home’s temperature sensor. If this 

honeypot makes no attempt to simulate the process it claims to control, and instead returns random 

responses or does not respond to the heating, an attacker will see temperatures over time that do not 

reflect the activation of the heater. Alternately, the temperature sensor could instantly show the final 

temperature, which would completely neglect the physics of the system. In either scenario, the attacker 



knows the system he is interacting with is either faulty, or does not control the system it claims to. 

Accordingly, they are likely to not continue interacting with the system, and the honeypot loses utility. 

 

Figure 1 Outcomes of an attacker interacting with different levels of simulation 

A similar example can illustrate the need to simulate the physical/mechanical delay of a device (i.e., 

actuator). If the thermostat controls a heater through the use of a mechanical relay, activation of the 

heater requires changing the state of that relay. This state change requires some amount of time, 

determined by the electro-mechanical characteristics of the relay [8]. In some devices, this delay can be 

on the order of milliseconds. If, as is the case in many other kinds of CPS, the thermostat is instrumented 

to confirm the state change, this delay is now exposed to the attacker. An attacker can look for this 

device delay, and use it to test whether the system is a honeypot. This is illustrated in Figure 1. The left 

scenario illustrates an attacker interacting with a real system, so all delays and responses result from 

process and device behavior. The right scenario illustrates an attacker interacting with a CPS honeypot 

that does not attempt to model process behaviors and device delay, and the lack of this delay and 

deviations from expected process behavior will alert the attacker to the honeypot. The middle scenario 

illustrates an attacker interacting with a CPS honeypot that is capable of modeling both process behavior 

and device delay. Responses provided to the attacker are thus realistic, and the attacker proceeds to 

perform observed malicious actions.  

Table 1 shows the state of emulation provided by the five previously noted CPS honeypots. None of 

them attempt to model process behavior or device delays. In the table, the term proven either indicates 

an attacker was fooled by the honeypot at this level in the honeypot’s history, or that the honeypot was 

tested by an associated tool by the honeypot’s creator. 

Table 1 Modeling Capabilities of Existing CPS Honeypots 

 SCADA 
HoneyNet 

DigitalBond 
Honeynet 

GasPot Conpot CryPLH 



Human 
Interaction 

Proven Proven Proved through 
experimental 
results 

Proven “Mostly 
Indistinguishable” 
[7] 

Network Stack 
Emulation 

Honeyd 
provides 
stack 
emulation 

Capable of 
instrumenting 
real PLC, so 
full stack 

Relies on 
Python’s 
network stack, 
so 
fingerprintable 

Proven 
through 
testing by 
Nmap 

Nmap can discern 
between 
honeypot and 
real PLC 

System/Process 
Simulation 

Single 
Device 
emulation, 
so none 

Single Device 
emulation, so 
none 

None None by 
default, but 
extensible 

None 

Device Delay 
Modeling 

None None None None None 

Our Vision for Future CPS Honeypots 
Our vision for future CPS honeypots addresses the limitations of current CPS honeypots by providing an 

extensible framework, HoneyPhy: A Physics-aware honeypot framework, for accounting for the physics 

of the physical process and the mechanical delays of the physical actuators.  

Future honeypots should correctly model software and protocol fingerprints, as with all other 

honeypots. This is the well understood portion, and the one all previous CPS honeypots aimed to 

address. This interface layer of the honeypot could be either high or low interaction, depending on 

access to equipment such as Human-Machine Interfaces (HMIs). 

In addition to this, future honeypots should correctly model the behavior of the physical system. This 

primarily ensures that physical parameters, when queried, behave in a way consistent with attacker 

expectations. Without this, future attackers could conduct simple tests to check the authenticity of the 

machine or machines they are interacting with. A CPS process model will require simulation. 

Finally, future honeypots should correctly model the time delay introduced by the constituent devices 

within the CPS. These delays could either originate from the operation of real devices used in the CPS 

honeypot, or be generated by modeling the devices. Returning to the HVAC example, these delays 

would originate from the time it takes for the electromechanical relays to physically open or close, 

energizing or de-energizing the fan, heater, or compressor to move the system to the desired state. 

Attackers measuring the physical actuation time for these devices could detect a honeypot environment 

if the measurements lay outside the known operation times for each device. These operation times can 

be modeled, and these models can be generated in one of two ways, white box modeling or black box 

modeling. 

Black box modeling is the method of generating a model for the behavior of the device based on 

physical access to it and a set of true measurements of its behavior. By comparison, white box modeling 

requires no physical access to the device and involves mathematical modeling of the device based on 

estimates of the device parameters and standard physical models. The primary advantage black box 

modeling holds over white box modeling is that it results in the most accurate representation of the 

device behavior, since it is based on empirical measurements. However, attackers will not always have 

physical access to a target device type to make empirical measurements on to form the black box 



model. In this scenario intelligent attackers can then resort to white box modeling to generate an 

estimate of the device behavior and still make educated guesses about whether the device is a 

honeypot or a true target. In our previous work, we show that not only is the construction of these 

models feasible, the models are convincing [8]. 

Proposed New CPS Honeypot Framework 
To satisfy this vision, HoneyPhy, a new CPS hybrid-interaction honeypot framework is proposed. The 

new framework is composed of three major components: the Internet Interface(s) Module, the Process 

Model(s) Module, and the Device Model(s) Module. Each module’s contents, permissions interfaces, 

controllable and sensible process variables, and metadata are configured by a central xml file. A 

framework overview can be seen in Fig. 2. 

 

Figure 2 Proposed CPS Honeypot Architecture 

Internet Interface(s) Module 
The Internet Interface Module exposes the declared interfaces at the declared addresses. It will 

maintain connections and multiplex them to their destinations while ensuring outgoing packets to 

reflect the network fingerprint for each device and modifying them if necessary. The interfaces that are 

exposed to the Internet are specified through the central xml configuration file. 

Process Model(s) Module 
The Process Model exists to simulate the physical process in question. It can be interrogated and acted 

upon by the other devices modeling sensors and actuators, and should simulate the process in real time.  



The Process Model communicates with the various Devices and Models over a separate databus. If 

desired, a secure Internet-facing interface can be opened to remotely interact with the process model 

directly. 

Process Models could consist of LabView simulations, replays of empirically observed responses (as 

done in our proof-of-concept presented later), or more traditional controls system models such as a 

Linear Dynamical System or Auto-Regressive models [9, 10]. 

The process variables that can be sensed or acted upon, along with individual device model permissions, 

are specified in the central xml configuration file. 

Device Model(s) Module 
The Device Models encompass all devices found within a CPS, from PLCs to relays. Where they model 

computing devices such as PLCs, the model should implement logic to simulate those devices. This can 

include interpreting incoming queries and responding with the value they obtain by querying the 

process model, or executing incoming commands by modifying the process model. Where Device 

Models simulate mechanical devices such as relays or valves, the model should introduce a suitable 

delay corresponding to the time necessary to change the device’s state. 

Device models can range from very simple low level black box timing models to real devices, sufficiently 

instrumented to interact with the process model. 

For each model, the central configuration file specifies metadata such as manufacturer and part 

number, as well as process parameters the device can sense and act upon. This ensures that devices 

only act upon appropriate physical quantities. 

Inter-module Communication 
While our framework does not specify a required inter-module communication method, it does specify 

where communication must be available. The Internet Interface module must be able to route 

incoming/outgoing communications to all applicable devices, and optionally expose the internet facing 

interface for the process model. Additionally, all devices must be able to talk not only to each other, but 

also to the process model. This necessitates a separate Process/Device databus. 

Putting the Pieces Together 
We propose this framework in order to provide a means to identify the key components of a process, 

identify how those components map to models, and provide a common language to configure and 

interconnect those models. In the future, process models could be simulations in LabView, 

communicating with physical PLCs located behind a production HMI. Existing honeypot technology such 

as HoneyD could be configured to expose realistic Internet interfaces for black box device models 

communicating to a process model that is empirically generated (as will be shown in the next section). 

Physical boundaries do not have to dictate the boundaries of the models either. For example, substation 

protection relays and their attached physical relays could be modeled as a single unit. The Internet 

interface unit could be implemented within the process model. The most logical implementation is left 

up to the honeypot creator, but if there exists a common way to interface these different levels and 

types of simulations, constructing CPS honeypots will become much more accessible and possible for 

complex systems. 



Our Proof of Concept Implementation 
Leveraging an early version of HoneyPhy, we constructed a simple heating system, modeled the process 

and devices involved, and set up a real-time simulation that uses existing honeypot technology as the 

system interface. 

Physical System Architecture

 
Figure 3 Logical Architecture of the Proof of Concept HVAC System 

The simple heating system consists of an insulated and heated volume, a set of components acting as a 

thermostat, and a set of components acting as a heater. The logical architecture of this system is 

presented in Fig. 3.  

The thermostat analogue labeled in Fig. 3 consists partially of a personal computer executing 

temperature control logic based on the temperature read from a USB thermometer located inside the 

heated area. If this temperature violates the programmed limit set points, the PC sends a DNP3 

command, using the OpenDNP3 library, to a connected SEL-751A Relay to either turn the heater on or 

off. The SEL-751A Relay responds to that command by closing or opening a physical relay (Potter and 

Brumfield (P&B) KUL-11D15D-24), for which a black box model was previously obtained. 

This physical relay, along with the ceramic heater bulb it controlled, formed our heater analogue, as 

labeled in Fig. 3. 

While not implemented in the system, in a real Internet of Things (IoT) thermostat the current 

temperature, heater status, and set points could be interrogated and controlled through an external 

network interface of the PC. 



Models and Simulation 
In order to simulate this system, we developed an analytic model of how the enclosed volume was 

heated by the heating element and was cooled by the environment. This was based on empirical results 

gathered from the internal USB thermometer, and made up of closed form equations, seen in Equations 

1 and 2 where T𝑏𝑢𝑙𝑏 , T𝑎𝑖𝑟 and T𝑒𝑛𝑣 represent the temperatures in degrees Celsius of the bulb, air, and 

environment respectively, t indicates time, and Sℎ𝑒𝑎𝑡𝑒𝑟 represents the state of the heater. As the model 

looped through the simulation, the time between the last state update and the current state update are 

used to calculate the update in observed temperature for both the internal heater and the air 

temperature. The specific coefficients in the equations resulted from creating the general form of the 

equations from Newton’s Law of Cooling, then fitting the resulting equations to the observed data. This 

analytic model was used for the process model portion of the simulation. 

𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) = 𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + ∆𝑡 ∙ [(𝐻𝑒𝑎𝑡𝑒𝑟 𝑆𝑡𝑎𝑡𝑒) ∙ (0.00775 ∙

𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1.04) − 0.00084 ∙ (𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)1.48775]  

𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) = 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + ∆𝑡 ∙ [0.00084 ∙ (𝐵𝑢𝑙𝑏 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 −

𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)1.085 − 0.00041 ∙ (𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)1.225]  

Fig. 4 shows an observed heating/cooling curve from the physical system, and a similar curve generated 

by the process model for the same control actions. This curve occurs above room temperature, 

energizing the heater at the beginning of the data set at 28.5° C and turning it off at the vertical read 

line. Assuming these control commands originate from the attacker, if they energize the heater at t = 0s, 

at t = 500s they can compare the reported temperature of the system against either their intuition of 

the system or a separate process model they have created.  

Data points have been superimposed below the real data to illustrate what Digital Bond’s SCADA 

Honeynet and Gaspot would return when asked for the air temperature, if used to simulate a similar 

system. This data was generated by inspecting relevant source. This clearly does not capture process 

behavior, and when the attacker checks the reported behavior of the system at t = 500s, it will be clear 

that something is wrong. 



 

Figure 4 Empirical Heating Results vs. Generated Process Model vs. What Some Other CPS Honeypots Responds With 

To capture device behavior, we leveraged black box models developed in previous work for the same 

relay [8]. For our device model, we randomly sampled the black box data gathered. We also developed a 

white box model for the same relay. The simulation is convincing with both models, as can be seen in 

Fig. 5, which shows histograms of device operation times from both models. The black box model was 

generated by empirically observing the device, while the white box was generated by simulating 

mechanical properties based on specifications. While the standard deviation of both distributions differs 

slightly due to simplifications made in the white box modeling, the means of both models are clearly 

similar. The present differences should not be apparent to any shorter term attackers. Machine learning 

tools in [8], trained using this white box model, successfully differentiated two physical relays with 80% 

accuracy. 

 

Figure 5 Black and White Box Models for P&B Relay, Seen On Right 



The modules used in this HoneyPhy instance were all multithreaded and written in Python, using 

standard system libraries. When complete, the system is capable of real-time simulation, at a variety of 

time-step granularities. 

Getting Started with HoneyPhy 
When approaching construction of a CPS honeypot with HoneyPhy, the first step is to identify what 

physical devices within the system need to be included in the Device Models Module, and which 

physical devices, if any, can be combined within a single Device Model. Identify how those models 

interact with each other and the underlying process, and what each model can sense and control. 

Additionally, identify which models will need to be accessible from the Internet. 

With the identified devices and controls known, one could then apply existing technologies or real 

devices to simplify the system. For example, existing HMIs can make good Internet Interfaces and 

require no simulation. If a device needs to be simulated, HoneyD can conform a simulation’s outgoing 

packets to a desired network fingerprint. It is possible that when adding real devices, instrumentation 

will also need to be added to convert raw control signals into something the relevant process model can 

implement. 

Once it is decided how all devices will interact with the process model, the process model itself must be 

developed while taking into account the necessary interaction with the devices or device models. This 

can be done in a variety of ways, but explicitly defining input and output signals from the model early 

will simplify the process. 

In the example instance of HoneyPhy provided earlier, physically distinct entities mapped well onto 

device models. Once the device model boundaries were decided upon, we determined the control 

actions each device could exert on each other and the system, as well as possible delays encountered in 

each device’s actuation. In this case, the only device that added significant actuation delay was the 

physical relay, for which a previously developed black box model was used. 

With model boundaries and control actions known, it was decided that models would communicate by 

local network sockets, using a simple string-based message format. 

Once all device models, control actions, and communication methods were decided upon, the process 

model was developed to respond to those control actions, with the chosen communication method. 

Extending to Real CPSs 
While the proof of concept provided here applied to a scaled down version of an HVAC setting, 

HoneyPhy will extend to any CPS, of any size, given models are created at the right level of abstraction. 

One complete example could be to simulate an electric power substation. Substations are prime targets 

for attackers due to their complexity, the number of devices located within the substation, and the 

potential to inject false data from the substation. Constructing a honeynet that models an entire 

substation would require the ability to simulate the effects various control actions would have on the 

substation’s state. 

Power transmission systems commonly use system level state estimation to combine individual sensor 

readings from substations into a representation of the state of the entire system, so this kind of high-



level state estimation from sensor readings is a well-known problem. The model associated with system 

wide state estimation is simplified and corresponds to balanced operating conditions. This model will 

not be useful to the HoneyPhy concepts, as it may provide unrealistic responses to attacker’s 

commands. This system level state estimation is then used for both economic functions, such as load 

forecasting and pricing, as well as security functions, such as managing line congestion and automatic 

generator control. System level state estimation is traditionally centralized, depending on data returned 

from individual substations. 

Our previous work involved the development of a substation level Distributed State Estimation (DSE) for 

the purpose of detecting malicious control actions within power substations [11]. This DSE system 

utilizes a high fidelity dynamic model (3-phase) and accurately simulates the results of control actions on 

an individual substation’s systems faster than real-time. For a prospective honeypot modeling a 

substation, this DSE could be used as the process model for an entire substation. While it has faster than 

real time capability, it will respond to attacker’s commands with the actual timing of system evolution so 

that the attacker will think he is interacting with the real system. 

With the DSE in hand, all that would be required to implement the proposed framework is developing 

models for the individual power devices that make up the substation. In Appendix E. of [8], we have 

constructed a white-box model for a common Siemens GMSG vacuum circuit breaker, proving the 

feasibility and value of constructing these device models. 

High fidelity power system models tend to be complex. For a practical HoneyPhy system it will be 

necessary to automatically create the high fidelity model. The automated generation of the model is 

described in [12]. With a real-time process model, proven possible by the DSE, and sufficiently 

convincing device models, which are shown to be obtainable, a convincing honeypot for a system as 

complex as a substation could be constructed using the proposed CPS honeypot framework. 

Conclusion 
Honeypots derive much of their value from their ability to fool attackers into believing they are 

authentic machines. Current CPS honeypots fail to sufficiently capture and simulate behavior that is 

necessary to project this authenticity. In response, the proposed framework, HoneyPhy, was developed 

for CPS honeypots that takes into account both behavior originating in the CPS process and the devices 

that make up the CPS itself. We implemented a proof of concept for this framework, and proved it is 

possible to simulate these behaviors in real-time. Using HoneyPhy, it will be possible to construct 

honeypots for complex CPS. More details and future updates to HoneyPhy can be found at 

www.honeyphy.gatech.edu 
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