
september/october 2016 1089-7801/16/$33.00 © 2016 Ieee published by the Ieee computer society 9

Cy
be

r-
Ph

ys
ic

al
 S

ec
ur

it
y

an
d

Pr
iv

ac
y

Rethinking the Honeypot for
Cyber-Physical Systems

Samuel Litchfield, David
Formby, Jonathan Rogers,
Sakis Meliopoulos, and
Raheem Beyah
Georgia Institute of Technology

Honeypots derive much of their value from their ability to fool attackers into

believing they’re authentic machines. current cyber-physical system (cps)

honeypots fail to sufficiently capture and simulate behavior that’s necessary to

project this authenticity. In response, the Honeyphy framework was developed

for cps honeypots that takes into account behavior originating in the cps

process and devices that make up the cps itself. Honeyphy aims to make it

possible to construct honeypots for complex cpss. Here, the authors discuss

their implementation of a proof-of-concept for this framework, and show that

it’s possible to simulate these behaviors in real time.

S ince the early 1990s, the idea of
entrapping and deceiving computer
attackers to study their behavior

and misdirect them has been used with
great success in the computer security
field. This practice, traditionally done
through a computing system configured
to emulate critical resources, called a
honeypot, has revealed attacker strate-
gies and kept more critical computing
resources safe. As attackers learned of
honeypots, they developed techniques
to detect their presence.

As the cyber-physical system (CPS)
space grows and becomes increasingly
networked, attackers have been more
interested in compromising the resources
controlling these CPSs. Honeypots have

been designed to emulate CPS-specific
components in response. However, all
existing CPS honeypots neglect certain
aspects of these systems that can alert
an attacker to the nature of the hon-
eypot — namely, the simulation of the
attached physical process and the phys-
ics of the devices that interact with the
process. We propose a new CPS-specific
honeypot framework, called HoneyPhy:
A Physics-aware Honeypot Framework,
that addresses these problems and aims
to be extensible to all CPSs.

Traditional Honeypots
Traditionally, network-layer honeypots
are broken into two broad classifications:
low and high interaction. Low-interaction

Cyber-Physical Security and Privacy

10 www.computer.org/internet/ Ieee INterNet compUtING

honeypots work to accurately emulate a set of
services and some system behaviors. No effort is
given to other services, and the emulated services
might not implement the service’s full feature
set. The limited usefulness of these honeypots
motivated the movement to high-interaction
honeypots.

High-interaction honeypots, in contrast, don’t
emulate. They’re real resources, instrumented to
log attacker’s behavior, and deployed to be unused
for any other purpose. Consequently, high-
interaction honeypots offer great benefits in log-
ging all of an attacker’s behavior, but also expose
great risk in allowing an attacker to potentially
compromise these real resources.

Fitting a CPS Honeypot into
this Classification
Pure high-interaction honeypots are funda-
mentally unsuited to CPS, because they rely on
either deploying another physical copy of the
resource in question, or somehow virtualizing
the resource. Deploying a copy of an entire CPS
with the purpose of being compromised exposes
the same safety risks as deploying the original
system, and imposes large costs. A pure high-
interaction honeypot can be deployed for a single
component within a CPS, but without the physical
portion of the system to interact with, the useful-
ness of these honeypots is limited. One solution,
proposed in more detail in the following, is to
create a hybrid-interaction honeypot, where real
CPS devices and interfaces interact with process
and device simulations that can effectively repli-
cate the behavior of the CPS process.

CPS Honeypots
The first low-interaction CPS targeted honeypot
was released in March 2004 by Cisco Systems,
and was called the Supervisory Control and
Data Acquisition (SCADA) HoneyNet Project.1
It leveraged Honeyd,2 Arpd, Snort, and Trip-
wire to emulate many hosts on a network, and
it aimed at emulating services for a Schneider
programmable logic controller (PLC) and for a
Siemens PLC. The honeypot made no attempt to
simulate process behavior.

Released shortly after, Digital Bond’s Hon-
eynet3 had a similar goal of providing a low-
interaction honeypot simulating a single Modicon
Quantum PLC. The system can be configured to
either have a virtual machine as a target, with
simulated applications and Honeyd monitoring

interactions, or be deployed as a high-interaction
honeypot with a real device. Both targets are set
behind a Honeywall4 designed to separate the
target machine from production networks and to
filter outgoing traffic.

GasPot is a low-interaction honeypot moti-
vated by attacks observed on gas station control
devices. This approach was based on research
done at TrendMicro.5

Conpot is an actively maintained low-inter-
action CPS honeypot.6 Conpot provides a range
of protocols, and the system is extensible to
multiple services and devices. While inher-
ently extensible, Conpot isn’t aimed at modeling
processes or devices. System definition occurs
through XML files, and protocol emulation takes
place using Python.

The Crysys PLC Honeypot (CryPLH)7 is an
actively developed low-interaction honeypot
designed to emulate a Siemens Simatic 300 PLC.
It simulates the exposed interfaces on a mini-
mal Ubuntu Linux virtual machine, and uses
a central configuration file to simplify the end
user’s configuration.

Why Existing CPS Honeypots
are Insufficient
In traditional network focused honeypots, as
well as in existing CPS honeypots, the main goal
was to emulate the kinds of protocol quirks that
fingerprinting utilities such as Nmap and p0f
look for. However, CPS honeypots should provide
auxiliary information arising from the attached
physical system. This auxiliary information
enables the ability to compare the moment-to-
moment state of the CPS for consistency (for
example, leveraging the physics of the process
and sensors), as well as observing the individ-
ual connected devices for unreasonable actua-
tion times. If either the process physics or device
actuation time are unrealistic, an attacker can
easily determine whether they’re in a honeypot.

A simple example can illustrate why pro-
cess and device simulation are important to the
design of a CPS honeypot. A consumer home
heating, ventilation, and air conditioning (HVAC)
system represents a familiar and intuitive CPS,
where networked thermostats control physical
devices such as heaters, compressors, and fans. In
reality, if a command is issued by a thermostat to
begin heating, a heater turns on. If temperatures
are read in succession, the home temperature will
slowly rise in response. Imagine that an attacker

Rethinking the Honeypot for Cyber-Physical Systems

september/october 2016 11

is interacting with a honeypot designed to emu-
late this system. First, the attacker turns on the
heater, and then he closely monitors the home’s
temperature sensor. If this honeypot makes no
attempt to simulate the process it claims to con-
trol, and instead returns random responses or
doesn’t respond to the heating, an attacker will
see temperatures over time that don’t reflect the
heater’s activation. Alternatively, the temperature
sensor could instantly show the final tempera-
ture. In either scenario, the attacker knows the
system he’s interacting with is either faulty, or
doesn’t control the system it claims to.

A similar example can illustrate the need
to simulate the physical/mechanical delay of a
device (for example, the actuator). If the ther-
mostat controls a heater through the use of
a mechanical relay, activation of the heater
requires changing the state of that relay. This
state change requires an amount of time deter-
mined by the relay’s electromechanical char-
acteristics.8 In some devices, this delay can be
on the order of milliseconds. If, as is the case
in many other kinds of CPSs, the thermostat is

instrumented to confirm the state change, this
device delay is now exposed to the attacker. An
attacker can look for this device delay, and use it
to test whether the system is a honeypot. Figure 1
illustrates this: the left scenario illustrates an
attacker interacting with a real system, so all
delays and responses result from process and
device behavior. The right scenario illustrates an
attacker interacting with a CPS honeypot that
doesn’t attempt to model process behaviors and
device delay, and the lack of this delay and devia-
tions from expected process behavior will alert
the attacker to the honeypot. The middle scenario
illustrates an attacker interacting with a CPS
honeypot that’s capable of modeling both process
behavior and device delay. Responses provided to
the attacker are thus realistic, and the attacker
proceeds to perform observed malicious actions.

Table 1 shows the state of emulation pro-
vided by the five previously noted CPS honey-
pots. None of them attempt to model process
behavior or device delays. In the table, the term
“proven” either indicates an attacker was fooled
by the honeypot at this level in the honeypot’s

Figure 1. Outcomes of an attacker interacting with different levels of modeling. The left side
shows an attacker interacting with a real system; the middle scenario shows a well-modeled
system with an attacker interacting with a cyber-physical system (CPS) honeypot that’s capable
of modeling process behavior and device delay; and the right side shows a poorly modeled system
with an attacker interacting with a CPS honeypot that doesn’t model process behaviors and
device delay.

Reality

Attacker System Attacker System

Get to 78F

Getting to 78F

Get to 78F

Getting to 78F

Get to 78F

Getting to 78F

How hot are you?
I am 73F

How hot are you?
How hot are you?

I am 78FI am 78F

System
Attacker System interface Model

Well-modeled system Poorly modeled

Something’s not right ...
I’m going elsewhere.

Device
(heater)

activation
time

Device
(therm.)
query
time

Device
(heater)

activation
time

Device
(therm.)
query
time

Get to 78F.
How long does
activation take?

Get to 78F.
activation takes this

long.

Get temperature.
How long does the

query take?

Temp is 78F. Query
takes this long.

Seems normal...
let’s attack!

Seems normal...
let’s attack!

Cyber-Physical Security and Privacy

12 www.computer.org/internet/ Ieee INterNet compUtING

history, or that the honeypot was tested by an
associated tool by the honeypot’s creator.

Our Vision for Future CPS Honeypots
We address the limitations of current CPS hon-
eypots by providing HoneyPhy’s extensible
framework that accounts for the physics of the
physical process and the mechanical delays of
the physical actuators.

Future honeypots should correctly model
software and protocol fingerprints, as with all
other honeypots. This interface layer of the
honeypot could be either high or low interac-
tion, depending on access to equipment such as
human-machine interfaces (HMIs).

In addition to this, future honeypots should
correctly model the physical system’s behav-
ior. This primarily ensures that physical param-
eters behave in a way consistent with attacker
expectations. A CPS process model will require
simulation.

Finally, future honeypots should correctly
model the time delay introduced by the con-
stituent devices within the CPS. These delays
could either originate from the operation of real
devices used in the CPS honeypot, or be gen-
erated by modeling the devices. Attackers mea-
suring the physical actuation time for these
devices could detect a honeypot environment if
the measurements lay outside the known opera-
tion times for each device. These operation times
can be modeled, and these models can be gener-
ated in one of two ways — white or black box
modeling.

Black box modeling is the method of gen-
erating a model for the device’s behavior
based on physical access to it and a set of true

measurements of its behavior. By compari-
son, white box modeling requires no physical
access to the device and involves mathemati-
cal modeling of the device based on estimates
of the device parameters and standard physi-
cal models. The primary advantage black box
modeling holds over white box modeling is
that it results in the most accurate representa-
tion of the device behavior, because it’s based
on empirical measurements. In our previous
work, we showed that not only is the construc-
tion of these models feasible, the models are
convincing.8

The New CPS Honeypot Architecture
To satisfy our vision of future honeypots, Hon-
eyPhy offers a CPS hybrid-interaction honeypot
framework. This framework contains three major
modules: the Internet interface(s) module, process
model(s) module, and device model(s) module.
Each module’s contents, permissions, interfaces,
controllable and sensible process variables, and
metadata are configured by a central XML file.
Figure 2 shows a framework overview.

Internet Interface(s) Module
The Internet interface module exposes the declared
interfaces at the declared addresses. It will main-
tain connections and multiplex them to their des-
tinations, while ensuring that outgoing packets
reflect the network fingerprint for each device, and
modifying them if necessary.

Process Model(s) Module
The process model exists to simulate the physi-
cal process in question. It can be interrogated
and acted upon by the other devices modeling

Table 1. Modeling capabilities of existing CPS honeypots.

Capability Supervisory Control
and Data Acquisition
(SCADA) HoneyNet

Digital Bond
Honeynet

GasPot Conpot Crysys Programmable
Logic Controller (PLC)
Honeypot (CryPLH)

Human
interaction

proven proven proven through
experimental
results

proven mostly indistinguishable7

Network stack
emulation

Honeyd provides
stack emulation

capable of
instrumenting a real
pLc, so a full stack

relies on python’s
network stack, so
fingerprintable

proven through
testing by Nmap

Nmap can discern
between honeypot
and real pLc

system/process
simulation

single device
emulation, so none

single device
emulation, so none

None None by default,
but extensible

None

Device delay
modeling

None None None None None

Rethinking the Honeypot for Cyber-Physical Systems

september/october 2016 13

sensors and actuators, and should simulate the
process in real time.

The process model communicates with the var-
ious devices and models over a separate databus. If
desired, a secure Internet-facing interface can be
opened to remotely interact with the process model
directly.

Process models could consist of National
Instruments LabVIEW simulations, replays of
empirically observed responses (as done in our
proof-of-concept presented later), or more tradi-
tional controls system models such as a linear
dynamical system or auto-regressive models.9,10

Device Model(s) Module
The device models encompass all devices found
within a CPS. Where they model computing
devices such as PLCs, the model should implement
logic to simulate those devices. This can include
interpreting incoming queries and responding
with the value they obtain by querying the pro-
cess model, or executing incoming commands by
modifying the process model. Where device mod-
els simulate mechanical devices such as relays
or valves, the model should introduce a suitable
delay corresponding to the time necessary to
change the device’s state.

Device models can range from very sim-
ple low-level black box timing models to real
devices, sufficiently instrumented to interact
with the process model.

Inter-module Communication
While our framework doesn’t specify a required
inter-module communication method, it does specify
where communication must be available. The Inter-
net interface module must be able to route incom-
ing and outgoing communications to all applicable
devices, and optionally expose the Internet-facing
interface for the process model. Additionally, all
devices must be able to talk not only to each other,
but also to the process model. This necessitates a
separate process/device databus.

Our Proof-of-Concept Implementation
Leveraging an early version of HoneyPhy, we
constructed a simple heating system, modeled
the process and devices involved, and set up a
real-time simulation that uses existing honey-
pot technology as the system interface.

Physical System Architecture
The simple heating system consists of an insu-
lated and heated volume, a set of components

Figure 2. HoneyPhy, the proposed CPS honeypot architecture. The framework contains three major
modules: Internet interface(s) module, process model(s) module, and device model(s) module.

Ethernet

Serial

USB
Internet interfaces

Process interfaces

Process model

Process-device interface Device one-process int. Device two-process int. Device N-process int.

Device N modelDevice two modelDevice one model

Device one interface Device two interface Device N interface

Simulation communication bus

Network communication busPotentially disabled by con�guration

Cyber-Physical Security and Privacy

14 www.computer.org/internet/ Ieee INterNet compUtING

acting as a thermostat, and a set of components
acting as a heater. Figure 3 shows the system’s
logical architecture.

The thermostat analogue labeled in Figure
3 consists partially of a computer executing
 temperature control logic based on the tempera-
ture read from a USB thermometer located inside
the heated area. If this temperature violates the
programmed limit set points, the PC sends a
Distributed Network Protocol (DNP3) command,
using the OpenDNP3 library, to a connected
SEL-751A Relay to either turn the heater on or
off. The SEL-751A Relay responds to that com-
mand by closing or opening a physical relay (a
Potter and Brumfield KUL-11D15D-24), for which
a black box model was previously obtained.

This physical relay, along with the ceramic
heater bulb it controlled, formed our heater ana-
logue (see Figure 3).

While not implemented in the system, in a
real Internet of Things (IoT) thermostat the cur-
rent temperature, heater status, and set points
could be interrogated and controlled through a
PC’s external network interface.

Models and Simulation
To simulate this system, we developed an analytic
model of how the enclosed volume was heated

and cooled. This was based on empirical results
gathered from the internal USB thermometer, and
made up of closed-form equations seen in Equa-
tions 1 and 2:

[

]

= −∆ +∆

⋅ ⋅ ⋅ −∆ −

⋅ −∆ − −∆

T t T t t t

S T t t

T t t T t t

() ()

() (0.00775 ()) 0.00084

(() ())

bulb bulb

heater bulb
1.04

bulb air
1.48775

 (1)

= −∆ +∆

⋅ ⋅ −∆ − −∆ −

⋅ −∆ − −∆

T t T t t t

T t t T t t

T t t T t t

() ()

 [0.00084 (() ()) 0.00041

 (() ())],

air air

bulb air
1.085

air env
1.225

 (2)

where Tbulb, Tair, and Tenv represent the temper-
atures in degrees Celsius of the bulb, air, and
environment, respectively; t indicates time; and
Sheater represents the heater’s state. The coeffi-
cients resulted from creating the general form
of the equations from Newton’s Law of Cooling,
then fitting the equations to the observed data.
We used this analytic model for the process
model portion of the simulation.

Figure 4a shows an observed heating/cool-
ing curve from the physical system, and a
similar curve generated by the process model
for the same control actions. The heater is
energized at the beginning of the dataset and
de-energized at the vertical red line. Assum-

Figure 3. Logical architecture of a proof-of-concept heating system. The system consists of an insulated and
heated volume, a set of components acting as a thermostat, and a set of components acting as a heater.

Network thermostat
control

DNP3 over Ethernet

Control algorithm
and

temperature polling

USB

SEL-751A for relay
control

Digital
Outputs

Air temperature
thermometer Thermostat analogue

120 VAC

Heater analogueHeating element
Heated
Volume

P&B 24V relay

Potential external Internet
control interface

Rethinking the Honeypot for Cyber-Physical Systems

september/october 2016 15

ing these control commands originate from the
attacker, if they energize the heater at t = 0 s, at
t = 500 s they can compare the reported system
temperature against either their intuition of
the system or a separate process model they’ve
created.

Data points have been superimposed below
the real data to illustrate what SCADA Hon-
eynet and GasPot would return when asked for
the air temperature, if used to simulate a similar
system. We generated this data by inspecting
relevant sources. This clearly doesn’t capture
process behavior, and when the attacker checks
the system’s reported behavior at t = 500 s, it
will be clear that something is wrong.

To capture device behavior, we leveraged
black box models developed in previous work
for the same relay,8 randomly sampling the
black box data gathered. We also developed a
white box model for this relay. The simulation
is convincing with both models, as can be seen

in Figures 4b and 4c, which shows histograms
of device operation times from both models.
Machine learning tools leveraging the white box
model differentiated two relays with 80 percent
accuracy.8

Extending to Real CPSs
While the proof-of-concept provided here applies
to a scaled-down version of an HVAC setting,
HoneyPhy will extend to any CPS, of any size,
given that models are created at the right level of
abstraction.

One complete example could be to simu-
late an electric power substation. Constructing
a honeypot that models an entire substation
would require the ability to simulate the effects
that various control actions would have on the
substation’s state.

Power transmission systems commonly use
system-level state estimation to combine indi-
vidual sensor readings from substations into a

Figure 4. Simulation results. (a) Process model comparisons. (b) Black box model used in simulation.
(c) White box model used for the same relay.

(b)

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00N
or

m
al

iz
ed

 fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Operating time (ms)

0 10 20 30 40 50

Open
Close

Operating time (ms)

0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
10

N
or

m
al

iz
ed

 fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

20 30 40 50

(c)

Open
Close

40
Air temperature reading

38

36

34

32

30
Te

m
pe

ra
tu

re
 (

°C
)

28

26

24

22
0 500 1,000 1,500 2,000

Time (s)(a)
2,500 3,000 3,500

Observed readings
Other CPS honeypots
Model generated readings
Heater de-energized

Cyber-Physical Security and Privacy

16 www.computer.org/internet/ Ieee INterNet compUtING

representation of the state of the entire system.
Our previous work involved the development of a
substation-level distributed state estimation (DSE)
for the purpose of detecting malicious control
actions within power substations.11 This DSE sys-
tem uses a high-fidelity dynamic model (three-
phased) and accurately simulates the results of
control actions on an individual substation’s
systems faster than real time. For a prospective
honeypot modeling a substation, this DSE could
be used as the process model for an entire sub-
station. While it has faster-than-real-time capa-
bility, it will respond to an attacker’s commands
with the actual timing of system evolution so
that the attacker will think he’s interacting with
the real system.

With the DSE in hand, all that would be
required to implement the proposed frame-
work is developing models for the individual
power devices that make up the substation. In
Appendix E of our previous work,8 we con-
structed a white box model for a common Sie-
mens GMSG vacuum circuit breaker, proving
the feasibility and value of constructing these
device models.

High-fidelity power system models tend to
be complex. For a practical HoneyPhy system,
it will be necessary to automatically create the
high-fidelity model. The model’s automated gen-
eration is described elsewhere.12 With a real-
time process model — proven possible by the
DSE, and sufficiently convincing device models,
which are shown to be obtainable — a convinc-
ing honeypot for a system as complex as a sub-
station could be constructed using the proposed
CPS honeypot framework.

M ore details and future updates to Honey-
Phy can be found at www.honeyphy.

gatech.edu.

References
1. V. Pothamsetty and M. Franz, SCADA HoneyNet Proj-

ect: Building Honeypots for Industrial Networks, tech.

report, Cisco Systems, 2005; http://scadahoneynet.

sourceforge.net.

2. N. Provos, Developments of the Honeyd Virtual Honey-

pot, user forum, 2008; http://honeyd.org.

3. Digital Bond, SCADA Honeynet, 2016; http://dig-

italbond.com/tools/scada-honeynet.

4. The Honeynet Project, Honeywall, 2016; https://proj-

ects.honeynet.org/honeywall.

5. K. Wilhoit and S. Hilt, The GasPot Experiment: Unexam-

ined Perils in Using Gas-Tank-Monitoring Systems, white

paper, 2015; www.blackhat.com/docs/us-15/materials/

us-15-Wilhoit-The-Little-Pump-Gauge-That-Could-

Attacks-Against-Gas-Pump-Monitor ing-Systems-

wp.pdf.

6. L. Rist et al., “Conpot,” 2016; http://conpot.org.

7. I.D. Buza et al, “CryPLH: Protecting Smart Energy

Systems from Targeted Attacks with a PLC Honey-

pot,” Smart Grid Security, LNCS 8448, Springer, 2014;

pp. 181–192.

8. D. Formby et al., “Who’s in Control of Your Control

System? Device Fingerprinting for Cyber-Physical

Systems,” Proc. Network and Distr ibuted Secu-

rity Symp., 2016; www.internetsociety.org/sites/

default/files/blogs-media/who-control-your-control-

sys tem-dev ice-f inger pr int ing-cyber-physica l-

systems.pdf.

9. Y. Shoukry et al., “Py-CRA: Physical Challenge-

Response Authentication for Active Sensors Under

Spoofing Attacks,” Proc. 22nd ACM Sigsac Conf. Com-

puter and Comm. Security, 2015, pp. 1004–1015.

10. D. Hadziosmanovic et al., “Through the Eye of

the PLC: Semantic Security Monitoring for Indus-

trial Processes,” Proc. 30th Ann. Computer Security

Applications Conf., 2014; www.icir.org/robin/papers/

acsac14-ics.pdf.

11. S. Meliopoulos et al., “Distributed Dynamic State Esti-

mation: Fundamental Building Block for the Smart

Grid,” Proc. 2015 IEEE Power Energy Society General

Meeting, 2015; doi:10.1109/PESGM.2015.7285790.

12. S. Choi et al., “Feasibility Study: Autonomous State

Estimation in Distribution Systems,” IEEE Trans. Power

Systems, vol. 26, no. 4, 2011, pp. 2109–2117.

Samuel Litchfield is a master’s student in the School of

Electrical and Computer Engineering at the Geor-

gia Institute of Technology, and a member of the

Communications Assurance and Performance (CAP)

group. His research interests include network and

control systems’ cybersecurity. Litchf ield has a BS

in computer engineering from the Georgia Insti-

tute of Technology. Contact him at slitchf ield3@

gatech.edu.

David Formby is a PhD student in the School of Electri-

cal and Computer Engineering at the Georgia Institute

of Technology, and a member of the CAP group. His

research primarily focuses on network security for

industrial control system networks. Formby has an MS

in electrical and computer engineering from the Geor-

gia Institute of Technology. Contact him at djformby@

gatech.edu.

Rethinking the Honeypot for Cyber-Physical Systems

september/october 2016 17

Jonathan Rogers is an assistant professor in the Woodruff

School of Mechanical Engineering at the Georgia Institute

of Technology, and the director of the Intelligent

Robotics and Emergent Automation Lab. His research

interests include nonlinear dynamics, control, and

state estimation with a focus on modeling and simu-

lation of multibody systems and complex dynamics.

Rogers has a PhD in aerospace engineering from the

Georgia Institute of Technology. Contact him at jona-

than.rogers@me.gatech.edu.

Sakis Meliopoulos holds the Georgia Power Distinguished

Professorship in the School of Electrical and Com-

puter Engineering at the Georgia Institute of Tech-

nology. His research interests include power system

protection, automation, grounding, harmonics, and

reliability assessment of power systems. Meliopou-

los has a PhD in electrical and computer engineer-

ing from the Georgia Institute of Technology. He’s a

recipient of the IEEE Richard Kaufman Award and the

George Montefiore Award, Belgium. He’s also a Fellow

of IEEE and a member of Sigma Xi. Contact him at

sakis.m@gatech.edu.

Raheem Beyah is the Motorola Foundation Professor in

the School of Electrical and Computer Engineering at

the Georgia Institute of Technology, where he leads

the CAP group. His research interests include network

security, wireless networks, network traffic character-

ization and performance, and critical infrastructure

security. Beyah has a PhD in electrical and computer

engineering from the Georgia Institute of Technol-

ogy. He’s a recipient of the US National Science Foun-

dation CAREER award and was selected for DARPA’s

2010 Computer Science Study Panel. He’s also a senior

member of ACM and IEEE. Contact him at rbeyah@ece.

gatech.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

Take the CS Library
wherever you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society
Digital Library, and you can read them on any device that supports
ePub. For more information, including a list of compatible devices, visit

www.computer.org/epub

