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Honeypots derive much of their value from their ability to fool attackers into 

believing they’re authentic machines. current cyber-physical system (cps) 

honeypots fail to sufficiently capture and simulate behavior that’s necessary to 

project this authenticity. In response, the Honeyphy framework was developed 

for cps honeypots that takes into account behavior originating in the cps 

process and devices that make up the cps itself. Honeyphy aims to make it 

possible to construct honeypots for complex cpss. Here, the authors discuss 

their implementation of a proof-of-concept for this framework, and show that 

it’s possible to simulate these behaviors in real time.

S ince the early 1990s, the idea of 
entrapping and deceiving computer 
attackers to study their behavior 

and misdirect them has been used with 
great success in the computer security 
field. This practice, traditionally done 
through a computing system configured 
to emulate critical resources, called a 
honeypot, has revealed attacker strate-
gies and kept more critical computing 
resources safe. As attackers learned of 
honeypots, they developed techniques 
to detect their presence.

As the cyber-physical system (CPS) 
space grows and becomes increasingly 
networked, attackers have been more 
interested in compromising the resources 
controlling these CPSs. Honeypots have 

been designed to emulate CPS-specific 
components in response. However, all 
existing CPS honeypots neglect certain 
aspects of these systems that can alert 
an attacker to the nature of the hon-
eypot — namely, the simulation of the 
attached physical process and the phys-
ics of the devices that interact with the 
process. We propose a new CPS-specific 
honeypot framework, called HoneyPhy: 
A Physics-aware Honeypot Framework, 
that addresses these problems and aims 
to be extensible to all CPSs.

Traditional Honeypots
Traditionally, network-layer honeypots 
are broken into two broad classifications: 
low and high interaction. Low-interaction  
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honeypots work to accurately emulate a set of 
services and some system behaviors. No effort is 
given to other services, and the emulated services 
might not implement the service’s full feature 
set. The limited usefulness of these honeypots 
motivated the movement to high-interaction 
honeypots.

High-interaction honeypots, in contrast, don’t 
emulate. They’re real resources, instrumented to 
log attacker’s behavior, and deployed to be unused 
for any other purpose. Consequently, high-
interaction honeypots offer great benefits in log-
ging all of an attacker’s behavior, but also expose 
great risk in allowing an attacker to potentially 
compromise these real resources.

Fitting a CPS Honeypot into  
this Classification
Pure high-interaction honeypots are funda-
mentally unsuited to CPS, because they rely on 
either deploying another physical copy of the 
resource in question, or somehow virtualizing 
the resource. Deploying a copy of an entire CPS 
with the purpose of being compromised exposes 
the same safety risks as deploying the original 
system, and imposes large costs. A pure high-
interaction honeypot can be deployed for a single 
component within a CPS, but without the physical 
portion of the system to interact with, the useful-
ness of these honeypots is limited. One solution, 
proposed in more detail in the following, is to 
create a hybrid-interaction honeypot, where real 
CPS devices and interfaces interact with process 
and device simulations that can effectively repli-
cate the behavior of the CPS process.

CPS Honeypots
The first low-interaction CPS targeted honeypot 
was released in March 2004 by Cisco Systems, 
and was called the Supervisory Control and 
Data Acquisition (SCADA) HoneyNet Project.1 
It leveraged Honeyd,2 Arpd, Snort, and Trip-
wire to emulate many hosts on a network, and 
it aimed at emulating services for a Schneider 
programmable logic controller (PLC) and for a 
Siemens PLC. The honeypot made no attempt to 
simulate process behavior.

Released shortly after, Digital Bond’s Hon-
eynet3 had a similar goal of providing a low-
interaction honeypot simulating a single Modicon 
Quantum PLC. The system can be configured to 
either have a virtual machine as a target, with 
simulated applications and Honeyd monitoring 

interactions, or be deployed as a high-interaction 
honeypot with a real device. Both targets are set 
behind a Honeywall4 designed to separate the 
target machine from production networks and to 
filter outgoing traffic.

GasPot is a low-interaction honeypot moti-
vated by attacks observed on gas station control 
devices. This approach was based on research 
done at TrendMicro.5

Conpot is an actively maintained low-inter-
action CPS honeypot.6 Conpot provides a range 
of protocols, and the system is extensible to 
multiple services and devices. While inher-
ently extensible, Conpot isn’t aimed at modeling 
processes or devices. System definition occurs 
through XML files, and protocol emulation takes 
place using Python.

The Crysys PLC Honeypot (CryPLH)7 is an 
actively developed low-interaction honeypot 
designed to emulate a Siemens Simatic 300 PLC. 
It simulates the exposed interfaces on a mini-
mal Ubuntu Linux virtual machine, and uses 
a central configuration file to simplify the end 
user’s configuration.

Why Existing CPS Honeypots  
are Insufficient
In traditional network focused honeypots, as 
well as in existing CPS honeypots, the main goal 
was to emulate the kinds of protocol quirks that 
fingerprinting utilities such as Nmap and p0f 
look for. However, CPS honeypots should provide 
auxiliary information arising from the attached 
physical system. This auxiliary information 
enables the ability to compare the moment-to-
moment state of the CPS for consistency (for 
example, leveraging the physics of the process 
and sensors), as well as observing the individ-
ual connected devices for unreasonable actua-
tion times. If either the process physics or device 
actuation time are unrealistic, an attacker can 
easily determine whether they’re in a honeypot.

A simple example can illustrate why pro-
cess and device simulation are important to the 
design of a CPS honeypot. A consumer home 
heating, ventilation, and air conditioning (HVAC) 
system represents a familiar and intuitive CPS, 
where networked thermostats control physical 
devices such as heaters, compressors, and fans. In 
reality, if a command is issued by a thermostat to 
begin heating, a heater turns on. If temperatures 
are read in succession, the home temperature will 
slowly rise in response. Imagine that an attacker 
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is interacting with a honeypot designed to emu-
late this system. First, the attacker turns on the 
heater, and then he closely monitors the home’s 
temperature sensor. If this honeypot makes no 
attempt to simulate the process it claims to con-
trol, and instead returns random responses or 
doesn’t respond to the heating, an attacker will 
see temperatures over time that don’t reflect the 
heater’s activation. Alternatively, the temperature 
sensor could instantly show the final tempera-
ture. In either scenario, the attacker knows the 
system he’s interacting with is either faulty, or 
doesn’t control the system it claims to.

A similar example can illustrate the need 
to simulate the physical/mechanical delay of a 
device (for example, the actuator). If the ther-
mostat controls a heater through the use of 
a mechanical relay, activation of the heater 
requires changing the state of that relay. This 
state change requires an amount of time deter-
mined by the relay’s electromechanical char-
acteristics.8 In some devices, this delay can be 
on the order of milliseconds. If, as is the case 
in many other kinds of CPSs, the thermostat is 

instrumented to confirm the state change, this 
device delay is now exposed to the attacker. An 
attacker can look for this device delay, and use it 
to test whether the system is a honeypot. Figure 1 
illustrates this: the left scenario illustrates an 
attacker interacting with a real system, so all 
delays and responses result from process and 
device behavior. The right scenario illustrates an 
attacker interacting with a CPS honeypot that 
doesn’t attempt to model process behaviors and 
device delay, and the lack of this delay and devia-
tions from expected process behavior will alert 
the attacker to the honeypot. The middle scenario 
illustrates an attacker interacting with a CPS 
honeypot that’s capable of modeling both process 
behavior and device delay. Responses provided to 
the attacker are thus realistic, and the attacker 
proceeds to perform observed malicious actions.

Table 1 shows the state of emulation pro-
vided by the five previously noted CPS honey-
pots. None of them attempt to model process 
behavior or device delays. In the table, the term 
“proven” either indicates an attacker was fooled 
by the honeypot at this level in the honeypot’s 

Figure 1. Outcomes of an attacker interacting with different levels of modeling. The left side 
shows an attacker interacting with a real system; the middle scenario shows a well-modeled 
system with an attacker interacting with a cyber-physical system (CPS) honeypot that’s capable 
of modeling process behavior and device delay; and the right side shows a poorly modeled system 
with an attacker interacting with a CPS honeypot that doesn’t model process behaviors and 
device delay.
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history, or that the honeypot was tested by an 
associated tool by the honeypot’s creator.

Our Vision for Future CPS Honeypots
We address the limitations of current CPS hon-
eypots by providing HoneyPhy’s extensible 
framework that accounts for the physics of the 
physical process and the mechanical delays of 
the physical actuators.

Future honeypots should correctly model 
software and protocol fingerprints, as with all 
other honeypots. This interface layer of the 
honeypot could be either high or low interac-
tion, depending on access to equipment such as 
human-machine interfaces (HMIs).

In addition to this, future honeypots should 
correctly model the physical system’s behav-
ior. This primarily ensures that physical param-
eters behave in a way consistent with attacker 
expectations. A CPS process model will require 
simulation.

Finally, future honeypots should correctly 
model the time delay introduced by the con-
stituent devices within the CPS. These delays 
could either originate from the operation of real 
devices used in the CPS honeypot, or be gen-
erated by modeling the devices. Attackers mea-
suring the physical actuation time for these 
devices could detect a honeypot environment if 
the measurements lay outside the known opera-
tion times for each device. These operation times 
can be modeled, and these models can be gener-
ated in one of two ways — white or black box 
modeling.

Black box modeling is the method of gen-
erating a model for the device’s behavior 
based on physical access to it and a set of true 

measurements of its behavior. By compari-
son, white box modeling requires no physical 
access to the device and involves mathemati-
cal modeling of the device based on estimates 
of the device parameters and standard physi-
cal models. The primary advantage black box 
modeling holds over white box modeling is 
that it results in the most accurate representa-
tion of the device behavior, because it’s based 
on empirical measurements. In our previous 
work, we showed that not only is the construc-
tion of these models feasible, the models are 
convincing.8

The New CPS Honeypot Architecture
To satisfy our vision of future honeypots, Hon-
eyPhy offers a CPS hybrid-interaction honeypot 
framework. This framework contains three major 
modules: the Internet interface(s) module, process 
model(s) module, and device model(s) module. 
Each module’s contents, permissions, interfaces, 
controllable and sensible process variables, and 
metadata are configured by a central XML file. 
Figure 2 shows a framework overview.

Internet Interface(s) Module
The Internet interface module exposes the declared 
interfaces at the declared addresses. It will main-
tain connections and multiplex them to their des-
tinations, while ensuring that outgoing packets 
reflect the network fingerprint for each device, and 
modifying them if necessary.

Process Model(s) Module
The process model exists to simulate the physi-
cal process in question. It can be interrogated 
and acted upon by the other devices modeling 

Table 1. Modeling capabilities of existing CPS honeypots.

Capability Supervisory Control 
and Data Acquisition 
(SCADA) HoneyNet

Digital Bond 
Honeynet

GasPot Conpot Crysys Programmable 
Logic Controller (PLC) 
Honeypot (CryPLH)

Human  
interaction

proven proven proven through 
experimental 
results

proven mostly indistinguishable7

Network stack 
emulation

Honeyd provides  
stack emulation

capable of 
instrumenting a real 
pLc, so a full stack

relies on python’s 
network stack, so 
fingerprintable

proven through 
testing by Nmap

Nmap can discern  
between honeypot  
and real pLc

system/process 
simulation

single device  
emulation, so none

single device 
emulation, so none

None None by default, 
but extensible

None

Device delay  
modeling

None None None None None
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sensors and actuators, and should simulate the 
process in real time.

The process model communicates with the var-
ious devices and models over a separate databus. If 
desired, a secure Internet-facing interface can be 
opened to remotely interact with the process model 
directly.

Process models could consist of National 
Instruments LabVIEW simulations, replays of 
empirically observed responses (as done in our 
proof-of-concept presented later), or more tradi-
tional controls system models such as a linear 
dynamical system or auto-regressive models.9,10

Device Model(s) Module
The device models encompass all devices found 
within a CPS. Where they model computing 
devices such as PLCs, the model should implement 
logic to simulate those devices. This can include 
interpreting incoming queries and responding 
with the value they obtain by querying the pro-
cess model, or executing incoming commands by 
modifying the process model. Where device mod-
els simulate mechanical devices such as relays 
or valves, the model should introduce a suitable 
delay corresponding to the time necessary to 
change the device’s state.

Device models can range from very sim-
ple low-level black box timing models to real 
devices, sufficiently instrumented to interact 
with the process model.

Inter-module Communication
While our framework doesn’t specify a required 
inter-module communication method, it does specify 
where communication must be available. The Inter-
net interface module must be able to route incom-
ing and outgoing communications to all applicable 
devices, and optionally expose the Internet-facing 
interface for the process model. Additionally, all 
devices must be able to talk not only to each other, 
but also to the process model. This necessitates a 
separate process/device databus.

Our Proof-of-Concept Implementation
Leveraging an early version of HoneyPhy, we 
constructed a simple heating system, modeled 
the process and devices involved, and set up a 
real-time simulation that uses existing honey-
pot technology as the system interface.

Physical System Architecture
The simple heating system consists of an insu-
lated and heated volume, a set of components 

Figure 2. HoneyPhy, the proposed CPS honeypot architecture. The framework contains three major 
modules: Internet interface(s) module, process model(s) module, and device model(s) module.
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acting as a thermostat, and a set of components 
acting as a heater. Figure 3 shows the system’s 
logical architecture.

The thermostat analogue labeled in Figure 
3 consists partially of a computer executing 
 temperature control logic based on the tempera-
ture read from a USB thermometer located inside 
the heated area. If this temperature violates the 
programmed limit set points, the PC sends a 
Distributed Network Protocol (DNP3) command, 
using the OpenDNP3 library, to a connected 
SEL-751A Relay to either turn the heater on or 
off. The SEL-751A Relay responds to that com-
mand by closing or opening a physical relay (a 
Potter and Brumfield KUL-11D15D-24), for which 
a black box model was previously obtained.

This physical relay, along with the ceramic 
heater bulb it controlled, formed our heater ana-
logue (see Figure 3).

While not implemented in the system, in a 
real Internet of Things (IoT) thermostat the cur-
rent temperature, heater status, and set points 
could be interrogated and controlled through a 
PC’s external network interface.

Models and Simulation
To simulate this system, we developed an analytic 
model of how the enclosed volume was heated 

and cooled. This was based on empirical results 
gathered from the internal USB thermometer, and 
made up of closed-form equations seen in Equa-
tions 1 and 2:

[
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where Tbulb, Tair, and Tenv represent the temper-
atures in degrees Celsius of the bulb, air, and 
environment, respectively; t indicates time; and 
Sheater represents the heater’s state. The coeffi-
cients resulted from creating the general form 
of the equations from Newton’s Law of Cooling, 
then fitting the equations to the observed data. 
We used this analytic model for the process 
model portion of the simulation.

Figure 4a shows an observed heating/cool-
ing curve from the physical system, and a 
similar curve generated by the process model 
for the same control actions. The heater is 
energized at the beginning of the dataset and 
de-energized at the vertical red line. Assum-

Figure 3. Logical architecture of a proof-of-concept heating system. The system consists of an insulated and 
heated volume, a set of components acting as a thermostat, and a set of components acting as a heater.
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ing these control commands originate from the 
attacker, if they energize the heater at t = 0 s, at 
t = 500 s they can compare the reported system 
temperature against either their intuition of 
the system or a separate process model they’ve 
created.

Data points have been superimposed below 
the real data to illustrate what SCADA Hon-
eynet and GasPot would return when asked for 
the air temperature, if used to simulate a similar 
system. We generated this data by inspecting 
relevant sources. This clearly doesn’t capture 
process behavior, and when the attacker checks 
the system’s reported behavior at t = 500 s, it 
will be clear that something is wrong.

To capture device behavior, we leveraged 
black box models developed in previous work 
for the same relay,8 randomly sampling the 
black box data gathered. We also developed a 
white box model for this relay. The simulation 
is convincing with both models, as can be seen 

in Figures 4b and 4c, which shows histograms 
of device operation times from both models. 
Machine learning tools leveraging the white box 
model differentiated two relays with 80 percent 
accuracy.8

Extending to Real CPSs
While the proof-of-concept provided here applies 
to a scaled-down version of an HVAC setting, 
HoneyPhy will extend to any CPS, of any size, 
given that models are created at the right level of 
abstraction.

One complete example could be to simu-
late an electric power substation. Constructing 
a honeypot that models an entire substation 
would require the ability to simulate the effects 
that various control actions would have on the 
substation’s state.

Power transmission systems commonly use 
system-level state estimation to combine indi-
vidual sensor readings from substations into a  

Figure 4. Simulation results. (a) Process model comparisons. (b) Black box model used in simulation. 
(c) White box model used for the same relay.
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representation of the state of the entire system. 
Our previous work involved the development of a 
substation-level distributed state estimation (DSE) 
for the purpose of detecting malicious control 
actions within power substations.11 This DSE sys-
tem uses a high-fidelity dynamic model (three-
phased) and accurately simulates the results of 
control actions on an individual substation’s 
systems faster than real time. For a prospective 
honeypot modeling a substation, this DSE could 
be used as the process model for an entire sub-
station. While it has faster-than-real-time capa-
bility, it will respond to an attacker’s commands 
with the actual timing of system evolution so 
that the attacker will think he’s interacting with 
the real system.

With the DSE in hand, all that would be 
required to implement the proposed frame-
work is developing models for the individual 
power devices that make up the substation. In 
Appendix E of our previous work,8 we con-
structed a white box model for a common Sie-
mens GMSG vacuum circuit breaker, proving 
the feasibility and value of constructing these 
device models.

High-fidelity power system models tend to 
be complex. For a practical HoneyPhy system, 
it will be necessary to automatically create the 
high-fidelity model. The model’s automated gen-
eration is described elsewhere.12 With a real-
time process model — proven possible by the 
DSE, and sufficiently convincing device models, 
which are shown to be obtainable — a convinc-
ing honeypot for a system as complex as a sub-
station could be constructed using the proposed 
CPS honeypot framework.

M ore details and future updates to Honey-
Phy can be found at www.honeyphy. 

gatech.edu. 
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