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Error Analysis for Dielectric Spectroscopy using
Shielded Open-Circuited Coaxial Lines of General
Length

WAYMOND R. SCOTT, JR., MEMBER, IEEE, AND GLENN S. SMITH, FELLOW, IEEE

Abstract—The shielded open-circuited coaxial line of general length
is studied in detail as a sample cell for broad-band measurements of
the dielectric permittivity. This cell is a section of transmission line
with the center conductor abruptly terminated. The dielectric material
to be measured fills the coaxial section of the cell and extends beyond
the center conductor into the tube formed by the outer conductor of
the transmission line.

The inverse function for obtaining the permittivity of the sample
from the measured input admittance of the cell is multivalued. The
error in the measured permittivity caused by passing onto the wrong
branch of the inverse function is analyzed, and a procedure that can
prevent passage onto the wrong branch is developed. The error in the
measured permittivity due to the inaccuracies in the instrumentation
is also analyzed. Contour graphs are constructed that quantify the ef-
fects of this error on the measured permittivity. This error is shown to
be largest when the combination of frequency, sample length, and sam-
ple permittivity place the measured normalized admittance near a
branch point of the inverse function.

The permittivities of several primary alcohols were measured with
the open-circuited sample cell. The measured relaxation spectra for
these alcohols are used to demonstrate the usefulness of the error anal-
ysis.

I. INTRODUCTION

HE coaxial transmission line has been used as a sam-
ple cell in dielectric measurements for many years. In
the earliest techniques, the input impedance of a section
of transmission line was measured and used to infer the
permittivity of the sample filling the line. The length of
the sample, its position, and the impedance terminating
the line were chosen to provide the best accuracy at each
frequency being used. For example, an electrically thin
sample was placed approximately one-quarter of a free-
space wavelength from a short-circuit termination. These
techniques are described in the book by von Hippel [1].
Over the last twenty years, automated instrumentation
has become commercially available that can measure
impedance over an ever increasing range of frequencies.
This instrumentation consists primarily of automated net-
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work analyzers and automated time-domain reflectome-
ters [2]-[6]. For optimum use of this instrumentation in
dielectric measurements using coaxial sample cells, it is
not practical to adjust the length of the sample or the ter-
mination to obtain the best performance at each fre-
quency. Thus it is necessary to understand in detail the
problems that exist when a single coaxial sample cell of
fixed geometry is used over a very broad frequency range.

The coaxial sample cell shown in Fig. 1 is a section of
transmission line with the center conductor abruptly ter-
minated. The dielectric material to be measured fills the
coaxial section of the cell and extends beyond the center
conductor into the tube formed by the outer conductor of
the transmission line. This cell is particularly useful for
measuring the dielectric parameters of liquids and partic-
ulate matter, since the material is easily placed in the cell
through the open end. Cells of this form have been used
at the National Bureau of Standards for measuring the di-
electric parameters of soils and agricultural materials [7].

In this paper, the coaxial sample cell shown in Fig. 1
is studied in detail. The inverse function for obtaining the
permittivity of the sample from the measured input ad-
mittance of the cell is multivalued. The error in the mea-
sured permittivity caused by passing onto the wrong
branch of the inverse function is analyzed, and a proce-
dure that can prevent passage onto the wrong branch is
developed. The error in the measured permittivity due to
the inaccuracies in the instrumentation is also analyzed.
This error is shown to be largest when the combination of
frequency, sample length, and sample permittivity place
the measured normalized admittance near a branch point
of the inverse function.

II. THE INVERSE FUNCTION

The input admittance of a section of an ideal coaxial
transmission line terminated with a perfect open circuit
and filled with a linear, homogeneous, isotropic dielectric
material is

Y(jo, &) = Y, Ve, tanh (jw Ve, lic),' (1)

where Y, is the characteristic admittance of the empty

'The TEM mode is assumed to be the only propagating mode in the
coaxial line, and all waveguide modes are assumed to be cutoff in the hol-
low tube extending beyond the center conductor.
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Fig. 1. The open-circuited coaxial sample cell.

transmission line, &, is the complex effective relative per-
mittivity of the material filling the line, c is the speed of
light in free space, and / is the length of the transmission
line. The material is assumed to be nonmagnetic, and a
harmonic time dependence of ¢/“ is used. After introduc-
ing the normalized admittance

_ Jjol Y(je, &)

w - Y, )
and the normalized propagation constant
S = juw V& lc 3)
(1) becomes
W = f(S) = S tanh (S). )

The permittivity &, is to be determined from the mea-
sured input admittance Y over a broad range of frequen-
cies. The procedure is to obtain W from Y by (2), then to
compute S from W by inverting (4), and finally to deter-
mine &, from S by (3):

— (Scllw)?. &)

In the remainder of this section, the construction of the
inverse of (4) is described, and the problems that arise due
to the singularities in the inverse function are discussed.

The function f(S) has simple poles at S = j(2n + 1)
w/2,n=0, +1, +2, +3, - - - ; simple zeros at § = jnm,
n=+1, 42, +3, - - - ; and a double zero at § = 0. The
function f(S) is single valued, but the inverse function
f ™' (W) is multivalued. The branch points W,; of the in-
verse function occur at the points S,; at which the first
derivative of f(S) is zero; therefore, the branch points can
be determined from the solutions S,; of

df(S)/dS = d[S tanh (§5)]/dS = 0

€ =

or
28 = —sinh (29). ©)

Equation (6) has an infinite number of solutions; thus the
inverse function has an infinite number of branch points.
The branch points are all of first order, i.e., d*f(S)/dS 2
# 0 at S = §,,. Since the branch points are of the first
order, the inverse function has the behavior [W — W,;]""
near Wy;.

The inverse function can be made to appear single val-
ued by the use of a Riemann surface [8]. One way that
this surface can be constructed is shown in Fig. 2. This
surface consists of an infinite number of sheets (4, 4,, 4,,

131

As, - - - and B, By, B,, B3, + - -+ ). Sheets A and B have
an infinite number of branch points and branch cuts; these
two sheets are attached by the branch cut along the real
axis that connects the branch point W,y = 0 to the branch
point at infinity. Each of the sheets A;, A,, A3, * - - and
B,, B,, B;, - * + has only two branch points and one branch
cut. Sheet A is attached to each sheet 4;,i = 1,2,3, - - -,
by the branch cut connecting the branch points W,z and
W,.:.2 Likewise, sheet B is attached to each sheet B;, i =
1, 2, 3, - - -, by the branch cut connecting the branch
points Wgg; and Wy, ;.

The inverse function f ~'(W) maps each sheet of the
Riemann surface into a region in the S-plane. The regions
in the S-plane corresponding to the sheets in Fig. 2 are
shown in Fig. 3. The poles and the zeros of the function
f(S) are indicated in Fig. 3 by the crosses and the circles
on the imaginary axis, and the points S,; corresponding to
the branch points W,; of f ~'(W) are indicated by the as-
terisks. Any two of these regions in the S-plane have at
most one point in common (the value of the inverse func-
tion at a common branch point). The interconnections of
the sheets at the branch cuts are illustrated by the dashed
curve on the Riemann surface in Fig. 2. The curve passes
through, not over, the cuts. The corresponding curve on
the S-plane is shown in Fig. 3; it passes from region to
region as the curve on the Riemann surface passes from
sheet to sheet. Note, for passive dielectric materials,
Re (¢,) = 1 and Im (§,) < 0; thus the normalized propa-
gation constant S, for real frequencies, must be in the sec-
ond octant of the S-plane; this is the shaded area in Fig.
3.

In the experimental determination of €,, the admittance
is measured over a range of frequencies which determines
a curve in the W-plane, (2). Since W is determined from
measured data, it is subject to experimental error. This
error can cause the curve in the W-plane to pass onto the
wrong sheet when it passes near a branch point. For ex-
ample, consider the curves C; and C, on the Riemann sur-
face of the W-plane and on the S-plane in Fig. 4. C, is a
curve which starts and ends on sheet A. C, is a curve dis-
placed by a small amount from C;; it starts on sheet 4 but
passes onto sheet A4,. Once the curve passes onto the
wrong sheet, it is very unlikely that it will return to the
correct sheet. The two corresponding curves in the S-plane
are very different. One can see that a small error in W that
causes the inversion to pass onto the wrong branch (sheet)
can cause a large error in S and, therefore, a large error
in &,. In the next section this error is discussed in detail.

An analytical description of the inversion procedure will
now be developed. The Riemann surface is a geometric
device that can be used to illustrate some of the properties
and the problems associated with the inverse. It would be
difficult, if not impossible, to form a reasonably simple
expression for the inverse on each sheet of the Riemann
surface; fortunately, this is not necessary as the following

2The subscript R(L) on W indicates that the corresponding point lies in
the right (left) half of the S plane.



132 IEEE TRANSACTIONS ON

INSTRUMENTATION AND MEASUREMENT, VOL. IM-35, NO. 2, JUNE 1986

Wl . W, Re \V;.l| Re Re
W Wa,
[} |
... > et
Sheet A Sheet A, Sheet A,

Re

ah

Re Re

b)Y §
,5 W
-—-—af
z

w.')
7=

Sheet B

Sheet B,

Sheet B,

Fig. 2. The Riemann surface of the W-plane (normalized admittance).

Ilm

Region A

Boundary A, B

Region B

Fig. 3. The S-plane (normalized propagation constant).

procedure shows. Let Cy, be a curve in the W-plane, and
let Cs be the corresponding curve in the S-plane that is
computed by the inversion procedure. It is assumed that
a starting value is given, i.e., the value S, corresponding
to the measured value W,.*> Also, the first derivative of
the function f is assumed to be non-zero at the point S,,

*One way to obtain a starting value is to make a measurement at a low

frequency; then the correct inverse of W, is the root of (4) with the smallest
magnitude.
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Fig. 4. Diagram showing how a small error in W can cause the inversion
to pass onto the wrong branch.

i.e., Wy is not a branch point. The inverse function is
expanded in a Lagrange’s series about the point W, [8]:

S=f"'Wm =5

®© l dﬂ—l
{dsn—l j|} (W - WO)"-
5=S% @)

n=1n!
This representation of f ~' is valid whenever |W — W, |
< p, where p is the radial distance on the Riemann sur-
face from W, to the closest singularity.
The series in (7) is used to invert a section of the curve
in the W-plane that lies within the region where the series
is valid. Now, the last point on the section of the curve

S—-5
f8) — W,
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C;, obtained by inverting the section of the curve Cy, can
be used as the starting value S; for a new Lagrange’s se-
ries expansion. Repeated application of this procedure
produces an analytic continuation of the inverse function
f 7! from the point So. When the curve moves from sheet
to sheet on the Riemann surface, the analytic continuation
provides an inverse that moves from region to region in
the S-plane.

III. ERROR ANALYSIS

There are several sources of error that occur in the de-
termination of the permittivity é, from the measured data.
It is assumed that all of these errors can be lumped into
an error associated with the measured normalized admit-
tance W. Previously, it was shown how a small error in
W can cause a large error in S and in &, when the inversion
passes onto the wrong branch. This is not the only way
an error in W can cause an error in S and in . Even if
the inversion is on the correct branch, an error in W will
cause an error in S. The inversion process can make the
relative error in S either larger or smaller than the relative
error in W. In this section these errors are discussed.

The error in S that results from being on the wrong
branch is considered first. The value S corresponds to W
being on a particular sheet of the Riemann surface, and
the value S’ corresponds to W being on one of the other
sheets of which there are an infinite number. The error
that results from being on the wrong branch is then de-
fined as

ExS) = |S — S'|/|S]. ®)

Of the possible values of S’, the one that is closest to S is
used in (8), so that the error Ep is the minimum error.
This error is zero when W = W,, since S = §' = §,, and
the error increases as W moves away from W,, because S
and S’ move away from S, and away from each other. The
error is easily computed when S and S’ are near one of
the points S,; (W is near one of the branch points W,,;) by
using (4) to compute W and S and (11) to compute S’ from
W. Note that (11) gives two values, S’ and the original
value of S.

Fig. 5 is a contour graph of the error Ep with S re-
stricted to the first quadrant. Notice that this error is
smallest in the regions near the points S,; these are the
regions where it is possible to pass onto the wrong branch.
This type of error can be avoided by using a procedure
that prevents passage onto the wrong branch when per-
forming the inversion. Such a procedure is presented next.

It is assumed 1) that the path of the curve in the S-plane
can be predicted reasonably well from its previous path,
and 2) that a reasonable error bound on W is known. Con-
sider the following procedure and the curves Cy and Cg
in Fig. 6. First, the analytic continuation is stopped if the
error in W can cause the curve Cy to pass on the wrong

side of a branch point. The stopping criterion is
W — W,| < Ew|W| )]

where W is a point on the curve Cy, W, is the closest
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Fig. 6. Diagrams used in the description of the inversion procedure.
(a) The error in W causes the curve Cy to pass on the wrong side of the
branch point W,. (b) The curve Cy passes on the correct side of the
branch point W,.

branch point on the Riemann surface, and Ey is the rela-
tive error bound on W. This stopping point on Cy is la-
beled W,, and the associated point on Cs is S;. Second,
subsequent points along the curve Cy are examined until
a point W, is found where (9) is no longer true. At this
point, the value of the inverse S, is estimated from the
previous path of Cs. One way of estimating S, is by as-
suming that the value of & does not change very much
over the frequency interval associated with skipping from
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point W, to W,. Using this assumption, the estimate S, for
S, is

S, = S,w,/w; (10)

where w, and w, are frequencies associated with S; and S,.
The next step is to find the one inverse of W, on each of
the two branches that are connected at the branch point
W,. Both of these values can be found by expanding the
inverse function f ' in a generalized Lagrange’s series
about the branch point W, (8):*

. dn—l
S=f'w)y=5, + Z {Sn_, w(sn}
$=Sp
B EUA ARG (11)
where
_ S - Sb
Wws) = 7s) = W™ (12)

This representation of f ~' is valid whenever |W — W, |
< p, where p is the radial distance on the Riemann sur-
face from the singularity at W, to the next closest singu-
larity. The two solutions S, and S, are determined by the
+ in (11) when all of the square roots are taken to be on
the same branch. Of these two inverses, the one which is
closest to the estimated value S, is chosen.’ This choice
determines which branch the inversion is on.

Now, (11) is used to determine the two possible in-
verses for each point along the part of the curve Cy, that
was skipped, for example S, and S; in Fig. 6. Of the two
possible inverses, the one S, closest to a value S,, esti-
mated by linearly interpolating between the point S; and
S, is chosen:

Sae = Ss + (Sr - Ss)(wa - ws)/(wr - ws) (13)

where w,, w,, and w, are the frequencies associated with
the points S,, S;, and S,, respectively. Finally, the point
S, is used as a starting value to resume the process of
analytic continuation. Note that in Fig. 6 two cases are
shown (a) the error in W causes the curve Cy to pass on
the wrong side of the branch point W, and (b) the error in
W does not cause the curve Cy to pass on the wrong side
of the branch point W,,.

The procedure outlined above can be used to invert
other functions that have multivalued inverses, for ex-
ample, the function f(S) = tanh (S)/S that must be in-
verted to obtain the permittivity from the measured
impedance of a transmission line terminated in a short cir-
cuit [9].

This Lagrange’s series inversion procedure provides a
clear and easily understandable analytic description of the
inversion process. A more efficient inversion algorithm
was also developed for use with measured data; this al-

“Here, W, is assumed to lie within the region of convergence for the
series.

5It is assumed that the choice between S, and S; is clear. If the choice
is not clear, the estimate for S, (10), is probably not good; or the error-
bound E is too small.
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Fig. 7. The vector errors AW and AS in W and S, respectively.

gorithm uses a numerical root finding technique and in-
corporates the procedure described above for choosing the
correct branch.

Now the error in S that results from an error in W is
considered. The error in W is represented by the vector
A W which has a magnitude proportional to the magnitude
of W and an arbitrary direction. The addition of W and all
of the possible A W’s defines a circle around the point W,
as shown in Fig. 7(a). If the circle does not contain a
branch point, the inversion maps the circle into a closed
contour around S, as in Fig. 7(b). The upper bound on the
error in S is

E¢(S) = MAX I——I MAX
We

— 3 | (14)

where

S.=f"'W)

and W, is a point on the circle around W. If the circle
around W contains a branch point, the two branches of the
inversion map the circle into two sections of the closed
contour around S, the solid and dashed curves in Fig. 7(c).
In this case, the upper bound on the error in § is taken to
be

SI’ Is(2 -
S

E¢(S) = MAX iMIN (IS0 =
We

S |]l (15)
where S, and S, are the two possible inverses of a point
W, on the circle around W.

Fig. 8 is a contour graph of the error Es produced by a
2-percent error in the measured normalized admittance
(|JAW/W| = 0.02). In this graph, the regions of highest
error surround the points S,;, and the region with the low-
est error is adjacent to the imaginary axis. A simple ex-
planation of these errors can be obtained by considering
a Taylor series expansion for the function f(S) about a
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Fig. 8. Contour graph of the error E, (percent) in the normalized propa-
gation constant produced by a 2-percent error in the normalized input
admittance W.

point that is not a singularity of f(S):

W+ AW = f(S + AS) = f(S) + f'(S) AS. (16)
A rearrangement of (16) gives
|AS/S| = M|AWIW| a7
where the multiplier M for the relative error is
M = | f(S)ISf'(S)|- (18)

In the region adjacent to the imaginary axis, the relative
error in § is less then the relative errorin W (M < 1, Eg
< 2 percent in Fig. 8) due to the close proximity of the
poles and zeros. Near a simple pole or a simple zero §’,
M = |(S — $')/S| < 1, and near the double zero at the
origin M = 1/2. In the region surrounding the points S,;,
the relative error in S is greater than the relative error in
W (M > 1, Eg > 2 percent in Fig. 8), since M = [1/2(S
— S3)| > 1. In the right half of the graph, the error is
approximately constant and equal to 2 percent. This is a
consequence of W = f(S) = S tanh (S) = S for Re (S)
>> 1 which makes the error in S approximately the same
as the error in W.

For the experimenter, a graph of the error E, in the per-
mittivity due to the error in the measured normalized ad-
mittance W is more useful than a graph of E;. The vector
error E, is determined in the same manner as the error Eg
with (14) and (15) replaced by
AE

€

sz — §?
S2

E(S) = MAX

We

= MAX

19)

where S. is the inverse used in (14) or (15).
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Fig. 9. Contour graph of the error E, (percent) in the permittivity €, pro-
duced by a 2-percent error in the normalized input admittance W.

Fig. 9 is a contour graph of the error E, for a 2-percent
error in W. From this graph, it can be seen that the re-
sulting error in €, varies from a minimum of less than 0.5
percent to a maximum of greater than 20 percent depend-
ing on the location of S. For an accurate measurement of
§,, it is certainly advantageous to pick the length / of the
transmission line so that S for the frequencies of interest
remains in the regions of lower error. This point is illus-
trated in Fig. 9 by the two dashed curves C, and C, which
are for a single material, but for transmission lines of
lengths [ and I/2, respectively. These curves represent the
normalized propagation constants measured over the same
range of frequencies. C, passes through regions of rela-
tively high error, while C, passes only through regions of
relatively low error.

The relative errors E; and E, are determined from the
magnitudes of the complex numbers S, AS, and ¢,, AE;
their interpretation in terms of vectors is shown in Fig. 7.
The relative error in either the real part or the imaginary
part of € = & — jé; can be much larger than the error
E,. This results when there is a large disparity in the size
of the two components €, and €.

IV. MEASURED PERMITTIVITIES FOR PRIMARY
ALCOHOLS

Measurements were made using several primary alco-
hols with known permittivities to confirm the inversion
procedure and to demonstrate the usefulness of the error
analysis. The sample cell shown in Fig. 1 was filled with
the alcohol, and a cap was placed on the end of the cell
to retain the liquid when the cell was positioned horizon-
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Fig. 10. (a) Graphs of ¢,, and ¢, ., as a function of temperature T. (b) Graphs
of the relaxation time 7 versus 10%/T.

tally for the measurement. The cell is formed from a sec-
tion of 50-Q Laboratory Precision coaxial air line (Gen-
eral Radio GR900). The center conductor of the line is
supported by a Teflon bead of length /, and relative per-
mittivity €, = 2.03. The input admittance of the sample
cell was measured with a time-domain measurement sys-
tem at frequencies in the range 50 MHz < f < 2 GHz.
This frequency range was determined by the accuracy of
the instrumentation. Note that the measurement technique
is applicable at any frequency for which the TEM mode
is the only propagating mode in the sample cell.

In the previous theoretical analysis, the coaxial trans-
mission line (sample cell) is terminated in a perfect open
circuit. The perfect open circuit is a theoretical model,
and it can only be approximated in an experiment. When
the center conductor of the line is terminated abruptly as
in Fig. 1, the input admittance of the transmission line is
approximately the same as that for a transmission line that
is terminated in a perfect open circuit and has a center
conductor that is slightly longer than the physical length
I = I; + Al. The additional length A/ has been determined
both theoretically and experimentally by several investi-
gators [10]-[12]. For the transmission line used in these
experiments Al =~ 2.4 mm.®

The permittivities of the two alcohols ethanol and 1-
butanol are presented in this paper. These alcohols exhibit
a Debye relaxation for the complex permittivity over this
frequency range [1]:

& =€ —J&§ = € + (65 — €)/(1 + jwr). (20)

The three parameters ¢,, €,4, and 7 have been measured
for these alcohols by many investigators (ethanol [13]-
[18] and 1-butanol [13]-[21]). These results are summa-
rized in Fig. 10 where ¢,, and ¢,., are graphed as functions
of temperature T, and In (7) is graphed as a function of
10*/T. The graphs of ¢,, versus T and of In (7) versus 10°/
T are seen to be approximately straight lines. The tem-
perature dependences of the parameters ¢,, and T were es-

°If higher frequencies were used, a small additional frequency-depen-
dent term would be included in the expression for Al. The correction Al
would then depend on the material filling the line.
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Fig. 11. Argand diagrams of the measured complex permittivity, T = 24.5
+ 0.5°C. (a) 1-Butanol, / = 13.705 cm. (b) Ethanol, / = 6.186 cm.
The spacing between the measured points is 50 MHz.

TABLE 1
PARAMETERS OBTAINED FROM THE RESULTS OF PREVIOUS INVESTIGATORS
ETHANOL 1-BUTANOL |

Ag,, =02 *0.35

Ag, *06 *03

€roo 44 34

A *25ps *35ps

So 28.17 20.45

5 —0.1509 —0.1239

o —28141 —5.8372

n 2.3423 35798

timated by fitting straight lines to the measured data using
a least squares error criterion:

6rx-(T) =
In [10”7(T)] =

The high frequency permittivity ¢,,, was assumed to be
independent of the temperature and equal to the average
value of the measured data. The variations Ae,,, A¢,,, and
A7 in the parameters were estimated from the deviation
of the measured data from the straight lines near room
temperatures (25°C). These variations, the average val-
ues of ¢,4,, and the coefficients sy, s, ry, and r, are given
in Table I for each of the two alcohols.

The measured permittivities of 1-butanol and ethanol
are shown in the Argand diagrams in Fig. 11. The solid
lines and dashed lines in these graphs represent the mea-
sured permittivities of previous investigators. The solid
lines were determined from (20) using the parameters ¢,
€rx> and 7 obthined from the values given in Table I. The
dashed lines were determined from (20) using the varia-
tions Ae,, A€o, and A, of these parameters. The mea-
sured permittivities of both alcohols are seen to be in good
agreement with the values measured by other investiga-
tors, except for a few of the measured points for ethanol
near the top of the semi-circle.

so + 5, T(C) 21

ro + r[10%/T(K)]. 22)
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Fig. 12. Graphs of the normalized propagation constant, T = 24.5 +
0.5°C. (a) 1-Butanol, ! = 13.705 cm. (b) Ethanol, I = 6.186 cm.

The paths of the normalized propagation constants S for
the two alcohols ethanol and 1-butanol are shown in Fig.
12. The asterisks indicate the points S;;; recall that the
regions of high error surround these points is clearly
shown in Fig. 9. The path of the normalized propagation
constant for the ethanol, Fig. 12(b), passes very close to
one of these points. This is the cause of the increased
error in the measured permittivity of the ethanol near the
top of the semi-circle in Fig. 11(b). The path of the nor-
malized propagation constant for 1-butanol, Fig. 12(a),
does not pass through one of these regions of high error;
thus the measured permittivity does not have a region of
higher error. At the higher frequencies, the measured val-
ues of S for 1-butanol deviate slightly from the solid curve;
this is due to the presence of a second relaxation [20],
[21].

Note that the frequency range for the measurements
presented here was dictated by the available instrumen-
tation. The general measurement technique can be used at
all frequencies for which the TEM mode is the only prop-
agating mode in the coaxial sample cell.

VI. CONCLUSIONS

The open-circuited coaxial line of general length was
studied in detail as a sample cell for broad-band measure-
ments of the dielectric permittivity. The multivalued na-
ture of the inverse function for this cell was discussed.
The error that results from passing onto the wrong branch
of the inverse function was analyzed, and a procedure that
can prevent the passage onto the wrong branch was de-
veloped. The measured results demonstrate that the in-
version procedure can remain on the correct branch even
when a combination of the frequency, sample length, and
sample permittivity cause the normalized admittance to
pass very close to a branch point of the inverse function.

The error due to the inaccuracies of the instrumentation
was also analyzed. Contour graphs were constructed that
quantify the effects of this error. The measured results
demonstrate that the errors in the permittivity are largest
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when the normalized input admittance is close to one of
the branch points of the inverse function f ~'(W), as pre-
dicted by the contour graphs.

The error in the measured permittivity can be mini-
mized by adjusting the length of the sample cell so that
the path of the normalized propagation constant S lies in
a region of low error on these graphs. This length can be
determined a priori if the permittivity is approximately
known. Otherwise, the permittivity can be measured with
a cell of convenient length, and then these data used to
determine a better cell length, if necessary.
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