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Dielectric Spectroscopy Using Monopole Antennas
of General Electrical Length

WAYMOND R. SCOTT, JR., MEMBER, IEEE, AND GLENN S. SMITH, FELLOW, IEEE

Abstract—A procedure is developed for measuring the complex
dielectric permittivity of a material over a broad range of frequencies
using a monopole antenna. No restrictions are placed on the electrical size
of the antenna. The antenna is calibrated one time by measuring the input
admittance in a standard medium with known permittivity, such as air.
Next, the admittance is measured with the antenna immersed in a material
with unknown permittivity. These two sets of admittances are then used
to determine the permittivity of the material. As an application of the
procedure, the complex permittivity of the alcohol 1-butanol and saline
solutions were measured using a cylindrical monopole antenna. The
measured permittivities are in good agreement with those determined by
previous investigators.

I. INTRODUCTION

HE DETERMINATION of the complex dielectric

permittivity of a material from the measured input
impedance (admittance) of a monopole antenna immersed in
the material is discussed. In particular, the complex permittiv-
ity is to be determined with a single antenna over a broad range
of frequencies, a typical range being f to 200 f. Thus, the
electrical size of the antenna in the material can range from
electrically small to electrically large.

The use of antennas for dielectric measurements has been
discussed in the past, and a brief review of the subject is
presented in a recent paper [1]. A systematic procedure for the
measurement was also introduced in that paper. This proce-
dure has the following steps.

1) The input impedance of the antenna is measured over a
range of frequencies with the antenna in a standard
medium with a known permittivity, such as air. This can
be viewed as a calibration of the antenna.

2) The impedance obtained in step 1) is used in the
construction of a function which determines the input
impedance of the antenna when it is immersed in a
medium of general permittivity.

3) The antenna is inserted into the medium whose permit-
tivity is to be determined, and the impedance of the
antenna is measured over a range of frequencies. The
measured impedance is then used with the inverse of the
function obtained in step 2) to determine the complex
permittivity of the material.
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In the previous paper [1], a rational function was used in
step 2) to express the impedance in terms of the permittivity.
For a rational function of order three, the measurement
procedure was shown to be accurate when the antenna was less
than or equal to resonant size, e.g., |kh| < 1.5 for a
cylindrical monopole of height 4 in a medium with wavenum-
ber k. The extension of the procedure to higher order rational
functions and, therefore, to electrically larger antennas ap-
pears to be difficult.

It would clearly be advantageous to modify the measure-
ment procedure outlined above so that it is viable for antennas
with unrestricted electrical size. This is accomplished in this
paper by using a numerical procedure to form the functional
relationship between the input impedance of the antenna and
the complex permittivity of the surrounding medium (step 2).
To demonstrate the accuracy of the procedure, the complex
permittivities of standard liquids were measured using cylin-
drical monopole antennas of electrical size as large as |kh| =
19. The measured permittivities for these liquids are in good
agreement with those obtained by previous investigators.

II. FORMULATION OF THE MEASUREMENT PROCEDURE

Fig. 1(a) is a diagram of a monopole antenna driven from a
coaxial transmission line. The material with complex effective
permittivity § = €’ — jé” surrounds the monopole antenna
and extends into the coaxial line to the depth A;. The
permeability of the material is assumed to be u = po. The
dimensions of the coaxial line are chosen so that the transverse
electromagnetic (TEM) mode is the only propagating mode in
the line when it is filled with the material. When the material
extends into the line to a depth greater than approximately (b
— a), the field in the coaxial line is approximately TEM at the
interface (4 — A’ in Fig. 1) between the material and the
insulation, and a TEM input admittance for the antenna can be
defined at this interface. The input admittances for the antenna
in two different materials, 1 and 2, are simply related [1], [2]:

Y(s1, €1) _ Y(s2, €2)

— (1a)
é.‘rl é'r2
provided
SIVé =5Vén . (1b)

Here, s = o + jw is the complex frequency.
Using these equations, a normalized input admittance W(s,
€) is defined for the antenna; this can be expressed as a
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function f(S) of the single complex parameter S:'

sh
W, &) = — Y(s, &)=1(S) (2a)
C Yo
with the normalized propagation constant
hVe,
= s, (2b)

where c is the speed of light in free space. The monopole can
have any physical shape, and 4 can be any physical dimension
of the antenna. The cylindrical monopole of height 4 is used
for convenience in the discussion. Y, is the characteristic
admittance of the coaxial line feeding the monopole.

The purpose of this analysis is to determine the complex
permittivity €, over a broad range of frequencies from the
measured input admittance of the antenna. This is accom-
plished with a three-step procedure.

1) The first step is to make a one-time calibration of the
antenna. The input admittance Y(jw, €.) is measured
over a broad range of real frequencies with the antenna
immersed in a standard medium of known complex
permittivity €. The normalized admittance W( jw, &) is
then formed. This determines f(S) along a line in the
complex S-plane. For the remainder of the discussion,
the standard medium is assumed to be air, so that &, = 1
and S = jwh/c. The line in the S plane for the
calibration is then along the imaginary axis.

2) Values of f(S) at general S are obtained by analytically
continuing the data from the line. A method for
performing the analytic continuation is presented later.

3) The input admittance Y(jw, €,) is measured over a broad
range of frequencies with the antenna immersed in the
material of unknown complex permittivity €. The
normalized input admittance W( jw, €,) is used with the
inverse of f(S) to obtain S:

S=f[W(w, &), A3)

and finally the complex permittivity is obtained from S:

€= — .
wh

The open-circuited coaxial line shown in Fig. 1(b) is a
structure whose electrical performance is similar to that of the
cylindrical monopole antenna shown in Fig. 1(a). The
monopole can very crudely be thought of as the coaxial line
with the outer conductor folded down to form the image plane.
The normalized input admittance for the coaxial line, unlike
that for the antenna, has a simple analytical representation:

&)

Here, S is given by (2b) with 4 replaced by the effective length
| of the transmission line. The open-circuited coaxial line has

“

W(jw, €&)=f(S)=S tanh (S).

! Note that the normalized admittance is different from the normalized
admittance defined in [1].
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been studied in detail in [3] as a sample cell for dielectric
spectroscopy, and the knowledge gained from that study will
be used to assist in the discussion of the monopole antenna.

ITI. ANALYTIC CONTINUATION

The antenna is calibrated by measuring the reflection
coefficient p(jw, &) at its terminals, over the frequency range
0 € w < wmax, When it is immersed in the standard medium—
air with €, = 1. The input admittance is then determined from

1—
Y=YO< p>’
1+p

and the normalized admittance W is obtained from (2a). This
determines the function f(S) along a segment of the imaginary
axis in the S plane

(6)

0 < S < jomah/c. Q)

The function f(S) is analytically continued from this line
into the right half of the S plane by first analytically continuing
the reflection coefficient p in the s plane, and then obtaining
f(S) using (6) and (2). The reflection coefficient is analyti-
cally continued because it is generally well behaved along the
imaginary axis in the s plane, |p| < 1.0. In contrast, the
admittance can have singularities close to or along the
imaginary axis. For example, the admittance for the open-
circuited coaxial line, Fig. 1(b), has poles on the imaginary
axisat S = j2n + )n/2,n = 0, 1, 2, - --. Note that both
the reflection coefficient and the admittance have no singulari-
ties in the right half of the s plane or S plane.

Now consider the analytic continuation of the reflection
coefficient inthe s = ¢ + jw plane. From the definition of the
two-sided Laplace transform

p(s)= rm h(t)e* dt, ®)
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where h(f) represents the reflection of an impulse from the
terminals of the antenna. Since A(?) is causal, viz, A(f) = 0 for
t < 0, (8) can be changed to

o(s) = S: h(t)e-°ltle=iot g, ©)

This is the Laplace transform with s = jw of the product of
h(t) and exp (—o|t]). Thus, p(s) can be expressed as the
convolution of two frequency-domain quantities:

1
p(s) =5 PU)*G(w; 0)
0

1

=— |7 pGu=NGGN ) ax,  (10)
27 J-w
where
Gliw; 0)=— (11)
Jos 9 Col+w?’

Note that ¢ > 0 for the existence of the Laplace transform of
exp (—o|¢|). Thus, (10) can be used to analytically continue p
from the imaginary axis, s = jw, into the right half of the s
plane, but it cannot continue p into the left half of the s plane.

Equation (10) assumes that the reflection coefficient is
known for all frequencies w, but recall that the reflection
coefficient is only measured for 0 < w < wpa- Let p(jw) be
expressed as

p(jw)=p (Jw)+p5(Jw), (12)
where
p<(jw)=p(w) || < Wmax
=0 |w| > Wmax
p>(Jw)=0 || < max
=p(Jw) |w| > wmax- 13)

In addition, let N(s) be a causal window function that has a
magnitude approximately equal to one when s = jw, |w| <
wmax and approximately equal to zero when s = jo, |w| >
wmax- When (10) is used to analytically continue the product
p(Jjw)N(jw), the following result is obtained:

1
p(SIN(s) = oy [p<(UIN(w)+p5(J@IN(Gw)*CG(jw; o)

or
(04 ) o LUONGON*G s 0)
P 27N(o+jw)
[o>(JoIN()I*G(jw; 0)

2xN(o+jw) (14)

The first term on the right of (14) can be evaluated since
p<(Jjw) is measured; the second term, however, cannot be
evaluated since p. (jw) is not known. Thus, the second term
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represents the error that results from continuing the reflection
coefficient from values along the segment of the imaginary
axis |w| < wmax rather than from values along the entire
imaginary axis. This error can be made small by proper choice
of the window function N(s).

Graphical representations for the various functions in (14)
are shown in Fig. 2. From the graphs, it is clear that the
relative error in the continuation, which is proportional to
|(esN)*G|/|(0<N)*G|, can be made very small for s = ¢
+ jw, |w| S wmax by using a window function with a sharp
cutoff near |w| = wpax. Thus, the analytic continuation of the
reflection coefficient from the imaginary axis is well approxi-
mated by

[p<(JI)N(w)I*G(jw; o)
2eN(o+jw)

p(o+jw)= 15)

for |w| S Wmax-

In this work, an elliptic filter is used as a causal window
function N(s). The reflection coefficient p( jw) is measured at
discrete points on the range 0 € w < wpa, and a complex
cubic spline is fit to these data. An efficient procedure, based
on the window function being a rational function, was
developed for performing the convolution integral in (15); this
is described in [4].

A numerical simulation was performed to demonstrate the
accuracy of the analytic continuation procedure. The normal-
ized admittance of the open-circuited coaxial line (5) was used
to obtain the reflection coefficient for this example. The
reflection coefficient was computed at 181 discrete points
along the jw axis for 0 € w < Wpax, With wpal/c = 19.6. This
corresponds to a line of effective length / = 5.2 cm and a
maximum frequency f,.x = 18.0 GHz. The elliptic filter used
as the causal window function had a passband ripple of 1 dB,
a cutoff frequency of 0.99 wp,.x, and a stop-band attenuation of
40 db.

The reflection coefficient was analytically continued from
the imaginary axis into the right half of the s plane using (15).
The function f(S) was then computed, and the error in f(S)
that is a result of the continuation was evaluated. The error is
defined as

fe(S)-S(S)
S |

Here, f.(S) is obtained from the analytic continuation of p(s),
and f(S) is obtained from the analytic expression for the
reflection coefficient ((5) with (6) and (2)). Fig. 3(a) is a
contour graph of this error in the normalized S plane, S, = S/
(wmax!/€). Note that the procedure can analytically continue the
function f(S) from the imaginary axis to values of S with Im
(Sn) < 0.9 with an error of less than one percent.

To test the analytic continuation procedure for noisy data, a
complex random error term was added to f(S) prior to
continuation. The values of f(S) with the added error are

ELS) = (16)

Je(S)=1(S)(1 + ArR))

Si=jwil/c, i=0,1, 2, ---, 180, (17)
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Fig. 2. Graphical representation for the functions that make up p(¢ + Jjo).

where f(S;) is the true value obtained from (5), Ay is the
amplitude of the random error term, and R; is a complex
random variable that has a magnitude uniformly distributed
between 0 and 1 and has a phase uniformly distributed between
0 and 2. Fig. 3(b) shows the error (16) in the analytic
continuation of f(S) when the amplitude of the random error
added to the admittance is one percent (Ax = 0.01). A
comparison of Figs. 3(a) and 3(b) shows that the addition of
the random error has little effect on the error in the
continuation when Im (S,) = 0.9, E. = 1.0 percent (the upper
portion of the graphs). These errors, E. = 1.0 percent, are
mainly due to the limitations imposed on the continuation
procedure by the omission of the second term on the right side
of (14). Over the remainder of the graph in Fig. 3(b), the error
is less than one percent, E. < 1.0 percent, and randomly
distributed.

Other considerations involved in the selection of the causal
window function N(s) used in the analytic continuation are
discussed [4].

IV. THE INVERSE FUNCTION

The function f(S) for the open-circuited coaxial line or for
the monopole antenna is single valued, but the inverse function
S~ (W) is multivalued. The problems than can arise due to
this multivaluedness must be understood when f~ (W) is used
to determine S and €, in the measurement procedure, (3) and
).

The inverse function for the open-circuited coaxial line was
recently studied in detail [3], and two problems were identified
that are also relevant to the inverse function for the monopole
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normalized admittance that are analytically continued, Az = 0. (b) Fora 1
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antenna. First, there is a possibility that the inverse can pass
onto the wrong branch, particularly when there are errors in
the measurement. In this event, the wrong value of § =
S YW) is selected for a particular measured value of W. An
inversion procedure was developed that can keep the inverse
on the correct branch, and the effectiveness of this procedure
was demonstrated with measured data for the coaxial line.
This procedure can also be used with the monopole antenna.

The second problem is more subtle. Even if the inversion is
on the correct branch, an error in the measured W can cause
an error in S and in €. The inversion process can make the
relative error in S either larger or smaller than the relative
error in W. The former is true when the measured W places S
near one of the points Sp;. The reason for the increased error
near these points is fairly simple. At these points

S (S)|sp=0, (18)
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Fig. 4. Points S, and the poles. (a) Open-circuited coaxial line. (b) Cylindrical antenna. Note that S = sl/c for the coaxial line, and
S = sh/c for the antenna.

thus at or near these points a small error in W can produce a
large error in S. The points Sp; correspond to branch points
Wi of f~1(W) in the W plane.

For the open-circuited coaxial line, the points Sj; are easily
determined by applying (18) to the analytical formula for f(S)
(5), and the locations of these points in the S plane are shown
in Fig. 4(a). For the monopole antenna, there is no simple
analytical formula for f(S ) that can be used to determine these
points; however, the following procedure can be used with the
measured reflection coefficient for the antenna to numerically
determine f’(S) and the points S;;. After differentiation (2a)
becomes

S (S)=[Y(s)+sY (9 Yo, 19)
and when p(s) is introduced
—p2(s) — ’
f’(S)=1 p*(s)—2sp (S). 20)

(1+p(s))?

Now p’(s) is obtained from p’ (jw) by the formula for analytic
continuation (15):

_lp<YoING)*Glw; 0)

27 N(o+jw) ’ @D

p’(s)

and p” (jw) is obtained by analytically differentiating the cubic
spline that is fit to the measured values of p .(jw). The points
Sp; in the right half of the S plane for a cylindrical monopole
antenna are shown in Fig. 4(b). These points were determined
using the procedure described above with measured data for a
monopole antenna with h/a = 34.2, hi/a = 1.33,and b/a =
2.30.

The poles of f(S) for the coaxial line and the monopole
antenna are also shown in Fig. 4. The poles for the monopole
antenna are theoretical and are for a slightly thinner antenna
than the one measured [5], [6]. Note that there is more than

one layer of poles for the antenna, whereas there is a single
layer of poles for the coaxial line. Each of the layers for both
the antenna and the coaxial line contain an infinite number of
poles. The coaxial line has an infinite number of the points Sp;
arranged in two layers that are symmetrically located about the
Im (S) axis. The antenna is also expected to have an infinite
number of points S; arranged in layers. There are most likely
two layers of the points S,; for each layer of poles. Only the
points S, in the right half-plane are shown in Fig. 4(b); these
are the ones of concern when using an antenna for dielectric
measurements.

In Fig. 4, the points S, for the monopole antenna are seen to
move to the left and down with respect to those for the coaxial
line; this is what one would expect, since the poles move in a
similar way.

V. APPLICATION OF THE MEASUREMENT PROCEDURE

In the preceding sections, a procedure for measuring the
permittivity of a material using a monopole antenna was
presented, and two key elements in the procedure were
described: the analytic continuation of the function f(S) and
the formation of the inverse f~!(W). Now the validity of the
procedure will be established by presenting the result of
measurements for materials with known dielectric properties.

A. Open-Circuited Coaxial Line

It is instructive to first consider the measurement procedure
applied to the open-circuited coaxial line, Fig. 1(b). An open-
circuited coaxial line was constructed from a section of APC-7
precision coaxial line. The center conductor of effective length
| = 5.20 cm was supported by a Teflon bead of length [, =
2.03 mm. The input admittance was measured with the coaxial
line filled with air over the frequency range 50 MHz < f < 18
GHz using a Hewlett Packard model 8409c automated network
analyzer.

The coaxial line was then used to measure the permittivity
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of the primary alcohol ethanol over the frequency range 50
MHz < f < 8 GHz. The ethanol exhibits a Debye relaxation
for the complex permittivity in this frequency range:

(22)
The three parameters in this expression ¢, €., and 7 have
been measured at various temperatures by many investigators
[7]-[12]. In Fig. 5, the measured permittivities of ethanol are
plotted as a function of frequency for two cases (a) the analytic
relationship (5) for f(S) is used in the inversion and (b) the
relationship for f(S) formed from the data measured for the
air-filled line with the analytic continuation procedure de-
scribed in Section III is used in the inversion. The dashed lines
in these graphs represent the bounds of the permittivities
measured by previous investigators. These dashed lines were
determined from (22) using the parameters ¢, €., and 7 and
the variations of these parameters Ae,, A€, and A7. The
measured permittivities for the two cases are seen to be in
good agreement with each other and also be in good agreement
with the results of previous investigators. This validates the
analytic continuation procedure.

The points S,; for the coaxial line were also computed in two
ways—from the analytic relationship (5) with (18) and from
the formula based on the analytic continuation procedure (20)
with (18). In Table I, the points computed by the two methods
are seen to be in good agreement.

Note, in Fig. 5 the deviations in the measured permittivities
are larger for both cases near the frequency 1.3 GHz. The path
of the normalized propagation constant S is shown in Fig. 6.
The asterisks indicate the points Sy;; recall that the regions of
high error surround these points. The path of the normalized
propagation constant is seen to pass close to one of these
points. This is the cause of the increased deviation in the
measured permittivities near 1.3 GHz in Fig. 5.

€=€/—je! =€ront (ers— €r00)/ (1 + jwT).

B. Cylindrical Monopole Antenna

Measurements were also made with several different mono-
pole antennas. The results that are presented here are for a
cylindrical monopole of length 2 = 5.20 cm and radius @ =
1.52 mm. The Teflon bead supporting the antenna had a length
l, = 1.95 mm and was recessed into the APC-7 coaxial line to
the depth h; = 2.02 mm. The input admittance of this antenna
was measured in air over the frequency range 50 MHz < f <
18 GHz. For these measurements, the antenna was mounted at
the center of an aluminum image plane (117 cm by 152 cm)
surrounded by absorbing material to reduce unwanted reflec-
tions. Fig. 7 is a graph of the measured input admittance
versus frequency. Note that the effective length of the antenna
is more than three wavelengths at 18 GHz (S = /19.6). The
function f(S) was formed from the measured input admittance
of the antenna in air with the analytic continuation procedure
described in Section III. When the input admittance is
measured with the antenna immersed in a material, the
complex permittivity €, of the material can be determined for
all values of S = jwv/é,h/c such that Im (S) < 19.6. That is,
the values of S must be within the range in Fig. 3 where the
analytic continuation is valid. Note, for a measurement
technique like that described in [1] that is applicable for

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. AP-34, NO. 7, JULY 1986

25 T
20 4
15 -
- M -
[} J
————DBounds from ]
10 115
Previous Meas. ]
5 10
b T W
] W
0 15
0.05 0.10 0.40 1.00 4.00 10.00
Frequency (GHz)
(@
T
]
415
410
b B
] w
-15
{ 0
0.05 0.10 0.40 1.00 4.00 10.00
Frequency (GHz)
(b)
Fig. 5. Complex permittivity as a function of frequency for ethanol

measured with the open-circuited coaxial line, T = 26°C, / = 5.2 cm. (a)
The analytic relationship for f(S) is used in the inversion. (b) The
relationship for f(S) formed with the analytic continuation procedure is
used in the inversion.

antennas less than or equal to resonant size, the restriction on
Im (S) is much more severe, Im (S) < 1.5. For the procedure
described in this paper, the range of applicable Im (S) can be
extended by simply measuring the input admittance of the
antenna in air over a larger frequency range.

Fig. 8 is an alternate representation for the admittance of the
cylindrical antenna in air. This is a graph of the imaginary part
of the normalized admittance W versus the real part. The
curve is seen to form a succession of closed loops, with each
loop surrounding one of the branch points W;;. From the form
of this graph, it can be argued that each of these branch points
is of first order [4].

The cylindrical antenna was used to measure the permittiv-
ity of the primary alcohol, 1-butanol. This alcohol exhibits a
Debye relaxation for the complex permittivity as described by
(22). For this measurement, the antenna was placed in a
hemispherical plastic tank of radius 21 cm attached to a metal
image plane; Fig. 9 is a drawing of the tank. The tank was
filled with the alcohol, the input admittance of the antenna was
measured, and the permittivity was obtained by inverting the
measured input admittance. The measured permittivities of the
1-butanol are shown in the Argand diagram in Fig. 10 and are
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TABLE I
COMPARISON BETWEEN THE EXPERIMENTALLY AND ANALYTICALLY
DETERMINED POINTS S;;; BRANCH POINTS W,; ARE ALSO COMPARED

Analytic Experimental
i Sbi Wp Sbi Wpi
0 0 0 0 0
1 1.13 +5 2.1 1.65 +j 2.06 1.12 +j5 2.10 1.64 +j 2.06
2 1.55 +j 5.36 2.06 +j 5.33 1.54 +j 5.35 2.04 +j 5.34
3 1.78 +j 8.54 2.28 +j 8.52 1.77 +j 8.51 2.25 +j 8.55
4 1.93 +j 11.70 2.43 +j 11.69 1.91 +j 11.64 2.34 +j 11.80
5 2.05 +j 14.85 2.55 +j 14.85 2.01 +j 14.80 2.37 +j 15.07
6 2.14 +j 18.00 2.64 +j 18.00 1.91 +j 18.37 1.94 +j 17.81
20 T T T T T T T T T 40 AN R B N B B B B N B B S |
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the normalized admittance for the cylindrical antenna in air.

graphed as functions of frequency in Fig. 11. The permittivi-
ties are seen to be in good agreement with the values measured
by previous investigators [7]-[15], except for a few of the
measured points near approximately 200 MHz and near 600
MHz. The small deviation near 200 MHz is due to reflections
from the side of the tank. Fig. 12 is a graph of the normalized
propagation constant S. The path of S passes close to one of
the points Sy;; this is the cause of the deviation near 600 MHz.
At the highest frequencies (f near 10 GHz), the measured
values of S deviate from the solid curve; this is due to the
dispersion in €, in addition to the Debye relaxation, indicating
the possible onset of a second relaxation.

The cylindrical antenna was also used to measure the
permittivity of two aqueous NaCl solutions. For this measure-
ment, the antenna was mounted on an aluminum image plane
that is attached to the side of a large rectangular tank filled
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Fig. 12.

with the solution; Fig. 13 is a drawing of the tank. The
complex effective permittivities of the saline solutions are
accurately described by a Debye relaxation (22) plus a term to
account for the ionic conductivity:

&=€—j€! =€¢wt (6rs— €r00)/ (1 +jwT) — jo' /wEo.  (23)

The two parameters ¢, and 7 are functions of the temperature
and the normality of the solution; expressions for these
parameters, determined from measured data, are available
[16]. The third parameter €, is approximately independent of
the temperature and the normality of the solution. The ionic
conductivity was measured with a conductance cell at a
frequency of 20 kHz. The effective permittivity e, = €, and
the effective conductivity o, = weo€,” for the two saline
solutions are graphed as functions of frequency in Fig. 14. The
measured constitutive parameters for the two solutions, o’ =
0.10 S/m and ¢’ = 1.0 S/m, are seen to be in generally good
agreement with the constitutive parameters determined from
(22).

Fig. 15 is a graph of the normalized propagation constants
for the two solutions. The path of S for the solution with ¢’ =
0.10 S/m passes close to two of the points Sy;; this is the cause
of the increased error in o, at the higher frequencies in Fig.
14(a). The path of S for the solution with ¢’ = 1.0 S/m does
not pass close to any of the points Sy; thus, the measured
constitutive parameters do not have a region of high error.

The measured constitutive parameters of the saline solution
with ¢’ = 1.0 S/m are seen to be noisy. A simple explanation
for the cause of the noisy data is presented next. The reflection
coefficient p(jw) of the antenna is measured, and the
admittance is determined from the reflection coefficient by
(6). An expression relating the error in the admittance AY to a
small error in the reflection coefficient Ap is obtained by
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Fig. 14. Effective permittivity and effective conductivity for saline solutions
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¢’ = 1.0S/m, T = 25°C.
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g =1.0S/m, T = 25°C.

considering a Taylor series expansion of (6):

|AY/Y|=M|Ap/p|, 24)
where the multiplier M for the relative error is
M=12/(1-p)|. 25)

The multiplier is large when p = 1 or — 1. The reflection
coefficient for the antenna in the saline solutions with ¢’ =
1.0 S/mis close to — 1, particularly at the higher frequencies.
Thus, M is large (at 2.0 GHz, |p| = 0.85, and M = 7.2).
Small errors in the measured reflection coefficient, therefore,
become larger errors in the admittance and in the constitutive
parameters determined from the admittance.

The measurement procedure is not limited to cylindrical
monopole antennas. Measurements were also made with a
conical monopole of half-angle 30°, and the accuracy for the
measured constitutive parameters was comparable to that
obtained with the cylindrical monopole [4].

VI. REFLECTIONS FROM MATERIAL BOUNDARIES

The monopole antenna is an open structure that radiates into
the surrounding medium. When the medium is finite in extent,
the radiation is reflected from the boundaries of the medium,
and it may cause the measured admittance for the antenna to
deviate from that for an antenna in an infinite medium. At very
low frequencies where the monopole is electrically short, the
radiation from the antenna is very small. Thus, the amplitude
of the reflections is very small, and they have little effect on
the admittance. At very high frequencies where materials are
fairly dissipative, the radiation and the reflections are ab-
sorbed in the material surrounding antenna. Again, the
amplitude of the reflections is small, and they have litile effect
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Fig. 16. Admittance of the cylindrical antenna in fresh water, ¢’ = 8.0 x
1073 S/m, T = 22°C. (a) Uncorrected, note the ripples due to the
reflections from the walls of the tank. (b) Corrected.

on the admittance. It is at the frequencies intermediate to these
two extremes where the reflections have the largest effect on
the input admittance of the antenna and on the determination of
the constitutive parameters of the surrounding medium. This
point is clearly demonstrated by the results in Figs. 10 and 11,
where the finite size of the tank is seen to affect the measured
permittivity only at frequencies in the range 150 MHz < f <
250 MHz. In certain instances, signal processing can be used
to remove the effects of the reflections from the material
boundaries, as demonstrated by the example presented below.

The cylindrical antenna was used to measure the permittiv-
ity of fresh water with the tank shown in Fig. 13. Fig. 16(a) is
a graph of the measured input admittance of the antenna in
fresh water. The admittance is seen to oscillate rapidly; this is
due to the reflections from the sides of the tank. Fig. 17(a) is a
graph of the constitutive parameters ¢, and o, obtained from
the measured admittance; as expected, these parameters also
exhibit rapid oscillations. The frequency-domain data were
transformed into the time domain to examine the reflections
from the walls of the tank. Fig. 18 is the pulse reflected from
the terminals of the antenna when the incident pulse is exp { [(#
— 2.0 x 107%/2.26 x 10~°]2}. The ripples that occur for ¢
> 50 ns are the reflections and the multiple reflections from
the sides of the tank. These reflections can be removed by
windowing them out in the time domain. The windowed pulse
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Fig. 18. Pulse reflected from the terminals of the cylindrical antenna in fresh
water, ¢’ = 8.0 X 1073 S/m, T = 22°C.

can then be transformed into the frequency domain and used to
determine a corrected admittance. Fig. 16(b) is a graph of the
corrected admittance; it is seen to be much smoother than the
measured admittance in Fig. 16(a). Fig. 17(b) is a graph of the
parameters ¢, and g, obtained from the corrected admittance;
these parameters are much smoother and more accurate than
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the parameters in Fig. 17(a) obtained directly from the
measured admittance.

VII. ConcLUsION

A procedure was developed for using a monopole antenna to
measure the complex permittivity of a material over a broad
range of frequencies. The electrical size of the antenna is not
restricted as in previous approaches; e.g., restricted to be
electrically small or resonant. In this method, the antenna is
calibrated one time by measuring the input admittance of the
antenna in a standard material with a known permittivity €,
such as air, over a broad range of frequencies, 0 < w < Wnax-
The analytic continuation used with the calibration data is
valid when Im (S) < Im (jwmaVésh/c). For example, when
the calibration is in air €, = 1, the antenna can be used to
measure the complex permittivity €, of a material at all
frequencies w such that Re (WVE) S Wmax-

Errors in the measurement are enhanced whenever the
combination of frequency, antenna length, and material
properties places the normalized propagation constant S near
one of the points Sp;. These are the points in the S plane that
correspond to the branch points Wj; of the normalized
admittance. A similar problem was identified in a study of the
open-circuited coaxial line [3]. This error can be reduced by
selecting a length for the antenna so that S does not pass close
to any of these points. This choice can be based on an estimate
of the permittivity; however, if an estimate for the permittivity
is not available, the permittivity can be measured with an
antenna of convenient length, and then this permittivity can be
used to obtain a better length.

The measurement procedure was verified with a series of
experiments. Cylindrical and conical monopole antennas were
used to measure the complex permittivity of the alcohol 1-
butanol and saline solutions. Only the results for the cylindri-
cal monopole are described in this paper. The antennas were
more than three wavelengths long in the materials at the
highest frequencies used in the measurements. The permittivi-
ties measured with these antennas are in good agrecment with
the results of previous investigators.

The greatest accuracy for this measurement procedure is
obtained when the material to be measured completely
surrounds the antenna and fills the recess in the coaxial line;
this is no problem when measuring liquids or fine particulate
matter, such as soil. For a solid material, such as rock, it
would be difficult to fit the material around the antenna and the
coaxial recess without producing air gaps. The errors pro-
duced by air gaps are expected to be similar to those
encountered with standard coaxial line techniques when the
sample being measured does not make complete contact with
the inner and outer conductors.
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