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Abstract—Two antennas are considered, a cylindrical monopole and a
conical monopole. Both are driven through an image plane from a coax-
ial transmission line. Each of these antennas corresponds to a well-posed
theoretical electromagnetic boundary value problem and a realizable ex-
perimental model. These antennas are analyzed by a straightforward
application of the finite-difference time-domain (FD-TD) method. The
computed results for these antennas, for both the time domain and the
frequency domain, are shown to be in excellent agreement with accurate
experimental measurements. The graphical displays presented for the
transient near-zone and far-zone radiation from these antennas provide
physical insight into the radiation process.

1. INTRODUCTION

IMPLE RADIATORS such as the cylindrical mono-
pole/dipole, biconical monopole/dipole, circular loop and
open-ended waveguides have received considerable attention
in the literature. These radiators are generally the first ones
discussed in a course on antenna analysis. They are analyzed
using Maxwell’s equations, and the theoretical results, such as
input impedance, field patterns, etc., are compared with ex-
perimental measurements. When good agreement is obtained
for the theory and experiment, one is presented with a con-
vincing argument for the validity and usefulness of the theory.
The theoretical analysis of these radiators is generally car-
ried out in two steps: the formulation of a theoretical model
which corresponds, as closely as possible, to the actual an-
tenna, and the analysis of the model using a particular math-
ematical technique. The theoretical model used for the an-
tenna usually involves approximations introduced to simplify
the analysis. For example, for the cylindrical dipole antenna
an idealized source is often used, the so-called ‘‘delta-function
generator” [1]. This source does not correspond to any real-
izable experimental model. Often the equations involved in
the analysis of the antenna are also approximate. For exam-
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ple, for the cylindrical dipole antenna an approximate integral
equation (thin-wire approximation) is often substituted for the
exact integral equation. Approximations, like those mentioned
above, lead to discrepancies between theoretical and experi-
mental results, and it is often difficult to quantitatively ascer-
tain the effects of the different approximations.

Accurate models and accurate theoretical analyses have
been used with these simple radiators, but their complexity
often puts them beyond the grasp of one first undertaking an-
tenna analysis. For example, the cylindrical monopole can be
modeled with the geometry shown in Fig. 1, which corre-
sponds very closely to the arrangement used in experimen-
tal measurements. A rigorous mathematical analysis for this
geometry due to Morris involves a coupled pair of singular
integral equations whose numerical solution is a formidable
task [2], [3].

The time-dependent Maxwell’s differential equations can be
represented by a set of difference equations that can be solved
numerically using a digital computer. This procedure is often
referred to as the finite-difference time-domain (FD-TD or
TD-FD) method. This approach to solving electromagnetic
problems is straightforward and easily understood by one first
undertaking antenna analysis. In addition, the method is easily
adapted to complex geometries, so simplified theoretical mod-
els are not required. The FD-TD method has been applied to
problems of scattering and interaction, such as scattering from
spheres, plates, etc., and the penetration of a field into the in-
terior of cylindrical shields [4]-[9]. However, there has been
little application of the method to antenna problems (driven).

In this paper the FD-TD method is used to analyze two ra-
diators, a cylindrical monopole and a conical monopole, both
antennas are driven through an image plane from a coaxial
line. There are three objectives: first, to describe the formu-
lation of theoretical models for these antennas that correspond
to realizable experimental configurations; second, to apply the
FD-TD method to these models and show that the theoreti-
cal results (time-domain and frequency-domain) are in excel-
lent agreement with accurate experimental measurements; and
third, to use the FD-TD results to describe the transient ra-
diation from these antennas. The graphical displays presented
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Fig. 1. Geometry for the electromagnetic boundary value problem
—monopole antenna fed through an image plane from a coaxial trans-
mission line.

for the transient radiation provide physical insight into the ra-
diation process.

II. FORMULATION OF THE ANTENNA PROBLEM

The theoretical analysis for an antenna begins with the
formulation of a well-posed electromagnetic boundary value
problem; ideally, one that closely corresponds to an actual
antenna/experimental model. Fig. 1 shows the geometry for a
monopole antenna fed through an image plane from a coax-
ial transmission line. This geometry will be used to illustrate
the boundary value problem; other simple radiators can be
handled in a similar manner.

The volume of free space V in which the electromagnetic
field is to be determined surrounds the antenna and extends
into the coaxial line to the depth z = —/4. The boundary
surface of the region is indicated by the dashed line in Fig.
1. All conductors are assumed perfect, and the field is to be
determined within V for times 0 < ¢ < ¢.

To obtain a unique solution to Maxwell’s equations within

-V for times 0 < t < to, we must specify € and 3 within V
at time ¢ = 0. In addition, /2 x § or 7 x 3C must be specified
on the boundary surface of ¥ for all times 0 < < ¢g [10]

We will assume that the electromagnetic field (€ and 3) is
zero within V at time ¢ = 0. On the cross section of the coaxial
line at A —A’ (z = —14), the tangential component of the inci-
dent electric field (—z x &) is specified for times 0 < ¢ < fo.
Now this will be the only electric field at this cross section
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if we choose 24 > ctg, because the field reflected from the
end of the line will not reach this cross section during the ob-
servation time. Since we have perfect conductors, 7 X §=0
on the surface of the coaxial line, antenna and ground plane.
The minimum distance to the surface S that surrounds the an-
tenna above the image plane is Ryin. When Rpyin > cto —/a,
the electromagnetic field (A x &€ and A x JC) will be zero on
the surface S, for all observation times. A review of the above
specifications shows that all the requirements have been met
for obtaining a unique solution to Maxwell’s equations within
the volume V for times 0 < ¢ < #y.

The dimensions of the coaxial transmission line, @ and b,
are chosen so that only a transverse electromagnetic (TEM)
mode can propagate within the line for the signals of interest.
Thus, on the cross section A — A’ the incident electric field is

Vi)
In(b/a)yr -

The radiators considered represent two-dimensional elec-
tromagnetic problems. For example, the radiator in Fig. 1 is
rotationally symmetric and is excited by a rotationally sym-
metric source. Therefore, the electromagnetic field is indepen-
dent of the cylindrical coordinate ¢, and Maxwell’s equations
can be expressed as two independent sets: one that involves
only the components &, 3C,, 3C;, the transverse electric (TE)
field; and one that involves only the components &, &;, 3Cqy,
the transverse magnetic (TM) field. Since the excitation for
the antenna in Fig. 1 is a TEM mode, which has only the
field components &,, 3Cy, only the rotationally symmetric TM
modes are excited. The relevant Maxwell’s equations are then

&) =

(1)

88, 08, 93¢,
oz or Mo 22)
93¢, 08,
Tz o (2b)
1003, _ 98
ror Yo (20)

In the FD-TD formulation both space and time are dis-
cretized. For the spatial increments Ar and Az, and the time
increment At the notation is

8.(r,z,t) =& (iAr, jAz, nAt) = &(, j).

For Yee’s method of discretization, components of & and
JC are evaluated at interleaved spatial grid points and inter-
leaved time steps [4]. The spatial grid points for the cylin-
drical system (r, ¢, z) and the field components evaluated at
these points are shown in Fig. 2. The Maxwell’s equations
(2) after discretization are

At
S ) — —05,: . .
35033, j) = 35700, ) + MO—A;[SZ(I +0.5, j)

At
—8"i —0.5, j)] — ——[8"¢, j+0.5
2 (0 N quz[ r(i, j +0.5)

— &, j —0.5)], (3a)
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Fig. 2. Spatial grid and field components for the two-dimensional problem with cylindrical symmetry.

At

IYAYA
- [3CRH05(, j) — 3eAT03G, j — 1], (3b)

&tl(i, j —0.5) = &', j —0.5) —

At 1
€AT Iios

[rin 35036 + 1, j) — ridCy %G, NI (3o

&1 +0.5, j) = 8 +0.5, j) +

Note that the grid in Fig. 2 is arranged so that the electric field
component tangential to the surface of a perfect conductor is
evaluated at the surface. With the tangential electric field &,
specified at the boundary A — A’, these equations (3a)-(3c)
are used in a time-stepping procedure to determine the elec-
tromagnetic field in the volume V for times 0 < ¢ < fo.

In a practical implementation an absorbing boundary con-
dition is used at the surface S.; this allows the observation
period to be extended beyond ¢ = ¢o. Various approximately
absorbing boundary conditions have been proposed; the one
used here is due to Merewether [5]. In this approach the field
near the boundary is assumed to have the functional form
f( —R/c)/R, and the tangential component of the electric
field on the surface S, is computed from local values within
V by interpolation. The TEM field within the coaxial line has
a known functional form f (¢ —z/c); thus, an exactly absorb-
ing boundary condition can be constructed within the line.
In this procedure the incident field is additively injected at a
plane z = —/, and the absorbing boundary condition, placed
at z = —(I + Az), exactly absorbs the field of a TEM mode
propagating in the —z direction. This allows the cross section
at which the incident field is specified to be moved closer to
the ground plane; namely, in Fig. 1 B —B’ (z = —Ip) is used
instead of A — A’ (z = —I4).! This reduces both the time
required for observation and the size of the grid.

The plane B — B’ must be chosen so that all the evanescent TM modes
present at z = O are insignificant at z = —/3, typically /g =3(b — a).

The spatial and temporal increments (Ar, Az, and Af)
are chosen to satisfy the ‘““domain of dependence condition™
or ‘“Courant-Friedrichs-Lewy condition” [11]:

/ ArPAZ?
At < | —————.
¢ =V Arr+ AZ?

In this work two spatial grid spacings are used: a fine spacing
(Ar; = Az;) within the coaxial line and close to the antenna
where the field is varying rapidly with spatial position, and
a course grid (Ar, = (3-5)Ar;, Az = (3-5)Az;) in the
remainder of the space. The use of the dual grid reduces com-
puter storage. Note, when (4) is satisfied for the fine grid it
is automatically satisfied for the course grid. In the examples
that follow

C))

. min(Arl, AZ])
= 5 ,
and the increments Ar;, Az, are chosen small enough to
resolve the spatial variation of the field.

cAt (&)

ITI. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

In this section the FD-TD method is used to analyze two an-
tennas: a cylindrical monopole and a conical monopole, both
are driven through an image plane from a coaxial transmission
line. The theoretical models for each of these radiators fit the
formulation presented in Section II and correspond closely to
realizable experimental configurations.

A. Cylindrical Monopole

The cylindrical monopole antenna shown in Fig. 3(a) has
been studied extensivély both theoretically and experimen-
tally; it is one of the canonical problems in antenna analysis.
Various approximations have been used to make the theoret-
ical analysis tractable, such as assuming a TEM field in the
coaxial aperture at the image plane (z = 0) [12], [13]. An.
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Dimensions for the antenna models. (a) Cylindrical monopole. (b)
Conical monopole.

Fig. 3.

accurate analysis of the correct boundary value problem, the
one that corresponds to the experimental model, was carried
out by Morris in 1980 and verified by accurate experimental
measurements [2], [3]. Here a straightforward application of
the FD-TD method to this antenna will be shown to produce
results of comparable accuracy.

The parameters that describe the monopole antenna are the
height 4 and the radii of the conductors of the coaxial line
a and b. For the results shown in Figs. 4-7 b/a = 2.30,
which corresponds to a characteristic impedance of 50 €2 for
the coaxial line. Two grid spacings were used, as in Fig.
1: Ary = (b —a)/4, Azy = h/203; and Ar, = 3Ar,,
AZz = 3AZ] .

The cylindrical monopole was first studied for a Gaussian
pulse excitation; the incident electric field in the transmission
line at reference plane A — A’ being (1) with

(6)

The antenna is characterized by the time 7, = h/c; this is
the time required for light to travel its length. For the results
shown in Figs. 4-7 the ratio of the characteristic time for the
Gaussian pulse 7, to the characteristic time for the antenna 7,
is 7, /7, = 8.04 x 10722

Fig. 4 shows the surface charge density on the coaxial line
and antenna as a function of the normalized position z /A and
the normalized time ¢ /7,. This is the surface charge density on
the inner conductor of the coaxial line for —1.0 < z/h < 0.0
and on the antenna for 0.0 < z /A < 1.0. This bounce diagram
clearly shows that the pulse travels up the coaxial line until it
reaches the aperture (z/h = 0.0, t /7, ~ 1.0; A in Fig. 4). At
this point a portion of the pulse is reflected back into the line,
and the remainder emerges on the antenna. The pulse is next
reflected at the end of the antenna (z /h ~ 1.0, t /7, =~ 2.0; B);
then, it travels down to the aperture (z/h ~ 0.0, t /7, = 3.0;
C) where it is partially reflected and enters the coaxial line.
This process is then repeated.

Vi(t) = Voexp (—t* /27-3).

2The pulse duration was chosen short enough to resolve the reflections
from different points on the antenna. However, the pulse duration is not so
short that it excites propagating TM modes (other than the TEM mode) in
the coaxial line. At the cutoff frequency for the lowest mode, the TMo,
the spectrum of the pulse is reduced by the factor ~3 x 10732 from its
maximum.
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Fig. 4. Normalized surface charge vdensity on the cylindrical monopole an-
tenna as a function of the normalized position z /A and the normalized time
t/1,: bja =230, h/a =658, and 7, /7, = 8.04 x 1072,

The peaks at the points A and B are the result of the singu-
larities in the charge density that occur at the sharp edges of
the structure. The concentration of charge at A is produced
by the singularity at the edge of the outer conductor of the
coaxial line, while the spike at B is the singularity at the edge
on the top of the antenna.

The electric field surrounding the monopole antenna is dis-
played on a gray scale in Fig. 5 for three times. Graphs of
the surface charge density on the antenna are below each plot;
these correspond to the slices marked a, b, and c in Fig.
4. The spacing between the conductors of the coaxial line is
expanded in these plots to clarify the presentation.

In Fig. 5(a) the pulse has been reflected at the aperture
and is traveling out along the antenna. The spherical wave-
front centered on the aperture (W) in Fig. 5(a)) is attached to
packets of charge on the antenna and image plane. A second
wavefront (W3) is produced when this pulse is reflected at the
end of the antenna. This spherical wavefront, centered on the
end of the antenna, is clearly shown in Fig. 5(b). The pulse,
after reflection from the end, travels down the antenna, even-
tually being partially reflected at the aperture and entering the
coaxial line. A third spherical wavefront (W3), centered at the
aperture, is produced on this reflection, Fig. 5(c). The effect
the image plane has on the wavefront W, is easily understood
when the dipole configuration of the antenna is viewed, Fig.
6. The wavefront Wog, the reflection of wavefront W, at the
image plane, is seen to be the same as the wavefront radiated
from the opposite end of the dipole.

For times beyond those shown in Fig. 5, the pulse travels
along the antenna alternately being reflected at the end and
coaxial aperture and decreasing in amplitude. Eventually there
is no charge on the antenna, and the radiation ceases. At each
reflection a wavefront similar to one in Fig. 5 is produced;
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Radiation of a Gaussian pulse from a cylindrical monopole antenna. Gray scale plots show the magnitude of the electric

field, the line drawings show the surface charge density on the antenna. b /a =2.30, h/a = 65.8, and 7, /7, = 8.04 X 1072,

Fig. 6. Dipole configuration corresponding to Fig. 5(c).

for example, the next waveform W4, which is similar to W5,
is produced when the pulse traveling up the antenna is again
reflected at the end.

To complete the description of the radiation from this an-
tenna, the electric field in the far zone will be determined.
This is accomplished by using the electromagnetic form of

Huygens’ principle to continue the FD-TD results to the far
zone. In particular, the electric field " in the far zone is

R L0 o
8’(?,t)=‘%#s{ixrXW[nXJC(F"',t’)]

—%f x %{ﬁ X E(F', N} dS |y p_ryer (D)
where F locates the point in the far zone, 7’ locates the point
on the surface S surrounding the antenna, and the outward
normal to this surface is 7.3

The far-zone electric field &, for the cylindrical monopole
antenna is shown in Fig. 7. The surface used in (7) for these
calculations was the cylindrical boundary separating the fine
and coarse grids in Fig. 1. Each trace in this figure shows
the electric field at a fixed polar angle 6 as a function of the
normalized time 7 /7,. On these graphs the origin for the time,
7/7a = 0, and the amplitude for the field were selected to
clarify the presentation. Notice that wavefronts from the same
point on the antenna are always separated by a time interval
which is a multiple of 27,, the round-trip transit time for the
pulse on the antenna. For example, wavefronts W, and W3,
which are centered on the drive point, are separated by the
time 27,, as are wavefronts W, and W, which are centered
on the end. However, the relative position of the wavefront
pairs, such as W, W3 and W, W, changes with the viewing
angle 6. For example, at 6 = 90° the wavefronts W, W,,

3The frequency domain counterpart to this formula is presented in the
literature [14], [15]. Equation (7) is obtained by specializing this formula to
the far zone and then taking the inverse Fourier transform.
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Radiation of a Gaussian pulse from a cylindrical monopole antenna. Each trace shows the far-zone electric field & at a

fixed polar angle 0 as a function of the normalized time ¢ /7,. b/a =2.30, h/a = 65.8, and 7, /7, = 8.04 x 102,
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Fig. 8. Comparison of the theoretical (FD-TD) and the measured reflected
voltages in the coaxial line for a cylindrical monopole antenna excited by a
1 V Gaussian pulse: b/a =2.30, h/a =32.8, and 7, /7, = 1.61 x 10~".

W, and W, are all separated, but at 6 = 5° W, and W, are
superposed as are W3 and W,. Of course, the far zone field
off the end of the antenna is zero (§ = 0°).

An experimental model was constructed for the cylindri-
cal monopole antenna with the dimensions b/a = 2.30,
h/a = 32.8. This model was mounted on an aluminum im-
age plane (120 x 155 cm) that was surrounded by absorbing
material to reduce reflections. The input reflection coefficient
for this antenna was measured at a number of frequencies (50

MHz < f < 18 GHz) using a Hewlett Packard Model 8409C
Automated Network Analyzer. These data were then used with
a fast Fourier transform to obtain the response of the antenna
to a Gaussian pulse (6).

In Fig. 8 the reflected voltage measured in the coax-
ial line (dots) is compared with results computed by the
FD-TD method (solid line) for a Gaussian pulse with 7, /7, =
1.61 x 10—, This is the reflected voltage at the plane B — B’
in Fig. 1 where only the TEM mode is present. The agreement
between the two sets of data is excellent. Note that the peaks
in the reflected voltage are spaced by about the round-trip
transit time for the pulse on the antenna, ¢ /7, = 2.0.

As a second test, the FD-TD method was used to compute
the response of a monopole excited by the signal

Vi(t) = Vor(t) sin (w?). ®

Here r(¢) is a ramp function which goes from 0 at time £ =0
to 1.0 at time ¢ = 7,; 7, is chosen to be several cycles of
the sinusoid. The long-time response to this signal is approx-
imately monochromatic and can be compared with frequency
domain measurements.* The steady state sinusoidal voltage at
the reference plane B — B’ in Fig. 1 is used to determine
the reflection coefficient for the antenna, and this, in turn,
determines the input admittance.

The geometry chosen corresponds to an antenna measured
by Cooper: b/a = 3.00; a/\ = 7.02 x 1073 [16]. The end
of this antenna is hemispherical; it was modeled by six dis-

“The monochromatic case could be obtained by Fourier transforming a
pulse response. This was not done, because the objective of this paper is to
illustrate the direct use of the FD-TD method. For a single frequency the use
of the Fourier transform with the FD-TD pulse response may also be less
efficient, since the higher frequencies necessary in the pulse would require
finer discretization in time and space.
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admittances, Y = G + jB, for a cylindrical monopole antenna with a
hemispherical end: b/a =3.00, a/\ =7.02 x 1073.

crete steps in the FD-TD grid. In Fig. 9 the FD-TD results
(solid line) are compared with Cooper’s data (dots) for the
input admittance measured for a range of lengths surround-
ing the first resonance of the antenna, 0.1 <A /A < 0.4. The
agreement is very good, particularly when one considers that
Cooper estimates the error bound on his data to be 5%.

B. Conical Monopole

The theoretical model usually used for the conical
monopole antenna is a vertical, solid cone over an image
plane. This structure is analyzed by expanding the electromag-
netic field in spherical models [17], [18]. At the drive point of
the antenna, the vertex of the cone, the input impedance is de-
termined from the outwardly propagating and reflected TEM
spherical waves. This theoretical model is only an approxi-
mation to the usual experimental model, a cone fed through
an image plane by a coaxial transmission line as in Fig. 3(b).
Thus, this modal analysis cannot produce results that are in
extremely good agreement with experiment.

Here we use the FD-TD method to study the electromag-
netic characteristics of the conical monopole antenna in Fig.
3(b). This antenna is described by the following parameters:
b/a, h/a, h'/h and the half angle of the cone . The antenna
is characterized by a time 7, = h /c; this is the time required
for light to travel over the slant height of the cone.

The grid spacings for the FD-TD method were essentially
the same as those used with the cylindrical monopole. The
side of the cone was handled by setting & and &, equal to
zero at all grid points inside the cone.

Fig. 10 shows the response of a conical monopole to a
Gaussian pulse; the electric field in the transmission line be-
ing (1) with V(1) given by (6). The ratio of characteris-
tic times is 7,/7, = 3.44 x 1072, and the other parame-

ters for the antenna are b/a = 2.30, h/a = 1.54 x 10?,
h'/h = 134 x 1072 and o = 30°. The electric field in the
space surrounding the antenna is displayed on a gray scale,
and the surface charge density on the antenna is shown below
each plot. Again the spacing between the conductors of the
coaxial line is expanded to clarify the presentation.

In Fig. 10(a) the Gaussian pulse has been reflected at the
aperture and has moved out onto the antenna as the spherical
wavefront W . When this pulse hits the top edge of the cone,
Fig. 10(b), a second toroidal wavefront W5, centered on the
edge, is produced. Note that wavefront W, is attached to the
packets of charge on the top of the cone and on the image
plane, whereas waveform W, is attached to the packets of
charge on the top and side of the cone.’

The charge packet on the side of the cone moves to the
vertex, Fig. 10(c), where it eventually enters the coaxial line
and is partially reflected to produce wavefront W, which is
centered on the aperture, Fig. 10(d). The charge packet on
the top of the cone, Figs. 10(b) and 10(c), travels across the
top of the cone and produces a wavefront W, when it hits the
opposite edge of the top, Fig. 10(d).

The far-zone electric field & for the conical monopole an-
tenna is shown in Fig. 11. As for the cylindrical monopole,
each trace is the electric field & at a fixed polar angle 0 as
a function of the normalized time ¢ /7,. Notice that there are
now two contributions from the wavefront W, marked W+
and W% in Figs. 10 and 11. This is a result of the wavefront
crossing itself on the top of the cone (§ = 0°), as clearly seen
in Figs. 10(c) and 1u(d).

An experimental model was constructed for the conical
monopole antenna with the dimensions b/a = 2.30, h/a =

3The division of the total field into specific wavefronts is somewhat arbi-
trary, since two or more of the wavefronts often overlap.
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Fig. 10. Radiation of a Gaussian pulse from a conical monopole antenna. Gray scale plots show the magnitude of the electric
field, the line drawings show the surface charge density on the antenna. b/a = 2.30, k/a = 1.54 x 107, h'/h =134 x 1072,
o =30°, and 7, /7, =3.44 X 1072, Charge density is scaled in (b) and (c) by a factor of 15, and in (d) by a factor of 5.

23.1, h'/h = 8.63 x 1072, and o = 30°. The reflected volt-
age at the input of this antenna was measured in the same
manner as for the cylindrical monopole. In Fig. 12 the mea-
sured reflected voltage (dots) is compared with results com-
puted by the FD-TD method (solid line) for a Gaussian pulse
with 7, /7, = 2.29 x 10~!. The agreement between the two
" sets of data is excellent. The reflections due to the drive point
and the near and far edges of the top are evident in this figure.
Note the small negative spike at the beginning of the wave-
form in Fig. 12. This is caused by the cone partially filling the
coaxial aperture at 2 = 0, as in Fig. 3(b). This spike occurs
whenever h’/a > 1/tan (). It is impressive that the FD-TD
method handles this fine detail correctly.

IV. SuMMARY AND CONCLUSION

Two antennas were considered, a cylindrical monopole and
a conical monopole, both are driven through an image plane

from a coaxial transmission line. Each of these corresponds to
a well-posed theoretical electromagnetic boundary value prob-
lem and a realizable experimental model. These antennas are
structures of different complexity. The cylindrical monopole
is a solid perfectly conducting structure with only right angle
corners. The boundary surfaces of this antenna are at grid
points where a tangential component of the electric field is set
to zero. The conical monopole, however, involves corners of
arbitrary angle («) and a boundary surface (side) that does
not pass through a specific set of grid points.

These antennas were analyzed by a straightforward appli-
cation of the finite-difference time-domain method. The com-
puted results are in excellent agreement with accurate experi-
mental measurements. A survey of the literature for these an-
tennas shows that no better results (in better agreement with
measurement) have been obtained with analytical techniques
or more involved numerical techniques.



MALONEY er al.: ACCURATE COMPUTATION OF RADIATION FROM SIMPLE ANTENNAS

75°

Wy + War

Wi —

30°

15°

Fig. 11.

t/7,

Radiation of a Gaussian pulse from a conical monopole antenna. Each trace shows the far-zone electric field &; at a

fixed polar 8 as a function of the normalized time ¢/7,. b/a =230, h/a = 1.54 x 102, ' /h = 1.34 x 1072, o = 30°, and
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Comparison of the theoretical (FD-TD) and the measured reflected

voltages in the coaxial line for a conical monopole antenna excited by a 1 V
Gaussian pulse: b/a =230, h/a =23.1, h' /h =8.63 x 1072, a = 30°,

and 7, /7, =229 x 1071,

The graphical displays for the electromagnetic behavior of
these antennas (the response to a pulse excitation) are pre-
sented in a manner that increases physical insight into the
radiation process and is useful for instruction.
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Figs. 7 and 11. These graphs enhance the description of the

transient radiation.
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