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Errors Due to Spatial Discretization and
Numerical Precision in the Finite-Element Method

Waymond R. Scott, Jr.

Abstract— The effects of the spatial discretization and the numerical
precision on a plane wave propagating through a finite-element mesh are
investigated in this work. The spatial discretization results in dispersion
in the amplitude and the phase of the wave and in a non-uniform rate
of convergence within an element. The finite precision in the calculations
used in a finite-element code results in degraded accuracy. These errors
are investigated as a function of the node density, the order of the
elements, and the precision of the calculations used in the finite element
code. The errors for first- through eighth-order elements are investigated
both analytically and numerically.

I. INTRODUCTION

The errors introduced by the spatial discretization of the finite-
element (FE) method for the scalar Helmholtz equation are investi-
gated in this work. It 1s widely understood that a plane wave will
propagate along a uniform FE mesh; however, it propagates at the
wrong velocity, yielding a progressive phase error in the FE solution.
This phase dispersion is particularly troublesome for electrically large
problems, since it 1s cumulative and builds up to larger and larger
values the farther the wave propagates [1]-[3]. In many types of
problems, the phase dispersion i1s the dominant source of error. The
phase dispersion can be reduced by either increasing the node density
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of the mesh or by increasing the order of the elements. The magnitude
of this error must be known in order to make an informed decision on
the appropriate node density and order of element to use. The phase
dispersion is studied in this work for first- through eighth-order, one-
dimensional elements as a function of the node density. The phase
dispersion is shown to decrease rapidly with the increasing order of
the elements. The one-dimensional results are indicative of what to
expect in the two- and three-dimensional cases. The two- and three-
dimensional cases will yield the same error as the one-dimensional
case when the plane wave propagates in the direction of one of the
coordinate axis of a uniform mesh of quadrilateral or hexagonal
elements. This error has been studied by several investigators for
first- and second-order, one-dimensional elements and for first-order,
two-dimensional elements [4]-[7].

Other errors are also introduced by the spatial discretization. At low
node densities, the plane wave will attenuate as well as propagate at
the wrong velocity though the mesh, and the interior nodes of the
elements will exhibit much larger errors than the end nodes. These
errors are also investigated in this work.

As the node density is increased, the phase dispersion will decrease
until it reaches a minimum value and then will begin to increase
because of round-off errors that exist due to the finite precision of the
computer used to perform the calculations. The effect of the round-
off errors is investigated as a function of the node density and the
order of the elements.

II. DISPERSION RELATIONS

Consider a plane wave in a linear, homogeneous, and isotropic
material that is propagating in the z direction and is polarized so that
the electric field is = directed:'

E(z,y,2) = E(2)&
; 1
H(Iaywz) = ;E(z)g (1)

where an e’“! time dependence is assumed, and n = +/p/c is
the characteristic impedance of the material. The electric field is a
solution to the one-dimensional Helmholtz equation:

d’E 2

— +kE=0 2

12 2
where k = w,/p is the wavenumber. The exact solution is a plane
wave with wavenumber k:

E(z) = Ege 7** 3)

where Ej is a constant. In order to solve the Helmholtz equation using
the FE method, the region of interest is divided up into elements.
Consider an infinite mesh of n™-order elements with equally spaced
nodes; a portion of an infinite mesh of fourth-order elements is shown
in Fig. 1(a). The spacing between the nodes is h, and the length of
the elements is £ = nh. Using the standard scalar finite-element
formulation and the standard higher-order basis functions, the FE
method yields an approximate solution which is a plane wave with
the numerical wavenumber k:

E(z +mb) = B(z)e ™ (4

where m is an integer and { is the length of an element. Note that
the field at a certain relative position within an element is related to
the field at the corresponding position within another element by the

10nly forward traveling waves are considered in this work: backward
traveling waves behave in the same manner. In a region where waves are
traveling in both directions, the results for the forward traveling wave can be
applied separately to each wave.
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Fig. 1. Sketch of (a) a portion of a an infinite mesh of fourth-order elements,
and (b) the mesh of fourth-order elements used in the numerical computations.

wavenumber k; however, the field at a certain relative position within
a element is not as simply related to the field at a different relative
position within an element. This form of the approximate solution is
used below with the FE formulation to derive expressions for k.

Using Galerkin’s formulation, residual integrals are computed for
each node in the mesh. The contribution of the fourth-order element
(e) to the residual integral for node p is

. d?E(z -
R = _/ap(z)[ dzg ) +k2E(:)}d: ®)
where p = 4,4+ 1,i + 2,7+ 3, and ¢ + 4; and the a’s are the usual
finite-element basis functions [8]. The ~integral is placed in the “weak
form” and the approximate solution E' is expanded in terms of the
basis functions:

E(z) =) Eyaq(=) 6)
q

where ¢ = i, i +1, i+2, i+ 3, and i + 4. The residual integrals are
then used to generate a set of linear equations for each element, and
these equations are assembled to form the global set of equations. The
contribution to the residual equations from the fourth-order element

(e) is

R
g !
0 945¢
R\,
4025 —6848 3048 —1472 3477 E
—6848 16640 —14208 5888 —1472 | |Eis
3048 —14208 22320 —14208 3048 | | Eito
_1472 5888 —14208 16640 —6848 | |Eits
347  —1472 3048 —6848  4929) LB,
202 296 —174 56 —291[ E:
20 | 206 1702 384 256 56| |Ein
- _174 —384 1872 —384 —174||Eit»
5670 | 56 956 —384 1792 296 | | Eiss
—29 56 —174 206 202) LEits
@)

The residual equations for the interior nodes of an element only have
a contribution from that element, so the equations for the interior
nodes only involve the value of the field at the nodes in that element.
Thus, the values of the field at the interior nodes can be expressed
in terms of the values at the end nodes (interelement nodes) of the
element. The three equations for the interior nodes of element (e) are
used to solve for E; 11, Eit2, and E;y3 in terms of F; and E;44:

Eit1 =aF; + bEi14
Eiyo =c(E;i+ Eita)
Eii3 =bE;+aFE; 4 ®
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TABLE 1
NUMERICAL WAVENUMBER k AND THE VALUES OF A/h FOR WHICH Im(k) # 0 FOR FIRST- THROUGH FOURTH-ORDER ELEMENTS

Order Numerical Wavenumber & Values of 7“4‘ for
which & = —Im(k) # 0.
2
1 1 1| 6 2(kA)" None*
h 6+ (kh)?
1 [15-26(kh)? +3(kh)* A
2 ~ cos™ 3.62760<M ¢ <3.97384
2% [ 15+ 4(khY: + (kh)* Z
2.43347<h <2 90855
3 1. OS1|:2800—11520(kh)2+4860(kh)“—324(kh)6] or
2 4 6
3h 2800 +1080(kh)* +270(kh)* +81(kh) 596075k <5.99833
. \ . . 2.00000* <A/ <2.48692,
4 1 _1[19845—148680(kh) +;134064(kh)4—28800(k6h) +1280(8kh) ] 3.87807< /Kj <3.98557, o
an’e 19845 +10080(kh)? +3024(kh)* +768(kh)® + 256(kh) 7.99777<h <7.99994

* Only node densities greater than the Nyquist rate (% >2) are considered in this work.

where

o L [-15876+ 15750(kh)? — 945(kh)* — 312(kh)®
T 16| —1323 4 2856(kh)? — 1232(kh)* + 128(kh)S

_ 1 [ —5292—1806(kh)* — 497(kh)* + 8(kh)°
T 16 | —1323 + 2856(kh)2 — 1232(kh)% + 128(kh)S
63 + 14(kh)* + 2(kh)*

© = 126 — 224(kh)? + 32(kh)*" ©

The residual integral for node 7 has contributions from elements (e)
and (e — 1) and yields the linear equation:

[347Ez‘A4 — 1472F;_3 + 3048F,;_o — 6848E;_; + 9858 E;
- 6848Ez‘+1 + 3048F;4+2 — 1472Ei+3 + 347E,’+4]

2
- @[—QQE,_A; +56F;,_3 — 174F,_> + 296 E;_1 + 582F;
+ 296F;4+1 — 174E1‘+2 + 56Ei+3 - 29Ei+4] =0 (10)

where the residual contribution from element (e— 1) is computed
by shifting the indices in the residual contribution from element (e).
Equations (8) and (9) for the interior nodes of element (e) and the
corresponding equations for element (e— 1) are used to eliminate the
values of the field at the interior nodes in (10):

[19845 + 10080(kh)? + 3024(kh)*
+ 768(kh)® + 256(kh)®|[Ei—4 + Eiya)
+ [—39690 + 297360(kh)* — 268128(kh)*

+ 57600(kh)® — 25600(kh)*|E; = 0. (11)

Since we are considering an infinite uniform mesh, each of the
residual equations for the interelement nodes is a shifted version

of the other equations. Thus, only one of the residual equations is
needed to determine k. Using (4), E;_4 and E; 14 can be expressed
in terms of E;:

Ei_y = Eie’™ = Eyel*th
Eiys = Eje % = Bie %t (12)
Then these equations are used with (11) to solve for k. The resulting
expression for k for fourth-order elements is in Table I. Expression for
k for first- through third-order elements are also included in Table I;
they are derived in a similar manner to that used for the fourth-order
elements.

From the expressions for k, it is seen that k is purely real for
certain values of kh and complex (Im(k) # 0) for other values of
kh. k is purely real when the argument of the inverse cosine has
a magnitude less than one and is complex when the magnitude is
greater than one. Note that the length of the elements is an integer
multiple of one half of a numerical wavelength when kis complex:
£ =m)/2 = mn/Re(k) where m is an integer. Since Re(k) ~ k,
the length of the elements is also approximately an integer multiple of
A/2 when k is complex: £ = mA/2. This is because the real part of
an inverse cosine of a real number with a magnitude greater than one
is an integer multiple of 7: Re (cos™' &) = mx where m is an even
integer when « > 1 and is an odd integer when z < —1. The values
of A/h for which k is complex are presented in Table 1. The node
density is expressed here in nodes per wavelength (A\/h = 27 /kh)
instead of kh. Note that these values are in n — 1 contiguous regions
where n is the order of the elements. The regions correspond to the
lengths £ = mS\/2 where m =1, 2, 3, ---,n—1. For example, the
fourth-order elements have three regions for which k is complex:
€ = X/2,\ and 3 )\/2.

Since Re(k) # k, a wave propagating along the mesh experiences
phase dispersion, which when expressed as a phase error in degrees
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Fig. 2. Graphs of the phase error in degrees per wavelength and of the attenuation constant in nepers per wavelength as a function of the number of
nodes per wavelength for (a) first-, (b) second-, (c) third-, and (d) fourth-order elements.

per wavelength is

Re(k) — k ‘

A 13)

Aphase = 360‘

When Im(ic) # 0, a wave propagating along the mesh experiences an
amplitude dispersion. The amplitude dispersion yields a exponential
decay that is characterized by the attenuation constant & = —Im(ic).
The attenuation constant is expressed in nepers per wavelength, &A.

The phase error and the attenuation constant are graphed in Fig. 2
as a function of node density for first- through fourth-order elements.
The attenuation constant is seen to be non-zero for the values of \/h
specified in Table I, and the phase error is seen to change abruptly
at the boundaries of these regions.

The phase error is graphed in Fig. 3 for higher node densities
than those shown in Fig. 2. These analytical results are denoted by
the dashed curves. The phase errors are seen to decrease mono-
tonically with increasing node density when the elements are less
that approximately one half of a wavelength long (¢ < A/2 or
A/h = 2n) and to decrease more rapidly for the higher-order
elements. The phase errors are seen to proportional to (h/X)*"
for large values of A/h; thus, k converges at the rate O[(h/))*"]
which is a superconvergent rate compared to the ordinary rate of

O[(h/X)""1].

III. NUMERICAL COMPUTATIONS AND ROUNDOFF ERRORS

A FE code using n™-order elements was written and used to
numerically verify this analysis and to further investigate the errors.
The mesh for the code consists of M evenly space nodes divided up
into (M —1)/n elements. A mesh of fourth-order elements is shown
in Fig. 1(b). A wave is injected on the left end of the mesh using
an essential (Dirichlet) boundary condition. The wave is absorbed on
the right end of the mesh by replacing the residual equation for the
node on the right end with the constraint equation,

En = En—ne ™. (14)

This absorbing boundary condition is exact since it relates- two
interelement nodes using k from Table L. Since expressions for k
are not available when n > 4, k is used in (14) for these cases; then,
the boundary condition is not exact.

The numerical wavenumber is determined from the field obtained
with the FE code. The real part of k is determined from the unwrapped
phase of the field and the imaginary part of k is determined from the
exponential decay of the amplitude of the field:

jln(Em/E))
(M -1)h

—Phase(Eyv /E1) 4 jIn(|Ev/Er|)

k= (M - Dh

. (15)
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Fig. 3. Graphs of the phase error in degrees per wavelength as a function
of the number of nodes per wavelength when (a) 64-bit arithmetic and (b)
32-bit arithmetic are used in the FE code.

The phase error and the amplitude constant from the FE code are
compared to those from the analytical formulas in Fig. 2 for first-
through fourth-order elements. The results are seen to be essentially
identical. For this comparison, M = 41.

The phase error from the FE code for first- through eighth-order
elements is graphed in Fig. 3(a) for 64-bit arithmetic and in Fig. 3(b)
for 32-bit arithmetic.”> The phase error from the FE code is seen to
decrease until it reaches a minimum and then begins to increase; this
increase is caused by the round-off errors in the calculations. For the
lower node densities where the round-off errors are insignificant, the
phase errors determined from the code and the analytical dispersion
relations are seen to be essentially identical; however, for the higher
node densities where the round-off errors are significant, the phase
errors from the code and the analytical relations are seen to differ. The
minimum phase error and the node density at which the minimum
phase error occurs are seen to be functions of the precision of the
arithmetic and the order of the elements. The minimum phase errors

2A longer mesh (M = 5041) was used for these results because the
absorbing boundary condition for the fifth- through eight-order elements is
not exact. The relative error introduced by the inexact boundary condition
decreases when the length of the mesh is increased; this error is insignificant
for a mesh of this length.
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Fig. 4. Graphs of the relative difference A as a function of the number of
nodes per wavelength for the three interior nodes of a fourth-order element.

are seen to be much smaller for the 64-bit arithmetic than for the 32-
bit arithmetic, and the node densities at which the minimum phase
error occurs are seen to decrease with the increasing order of the
elements and are seen to be much smaller for the 32-bit arithmetic
than for the 64-bit arithmetic. Note that the minimum phase error
occurs at relatively low node densities for the highest-order elements.
For example with eight-order elements, the minimum phase error
occurs at approximately 7 nodes per wavelength for 32-bit arithmetic
and at approximately 22 nodes per wavelength for 64 bit arithmetic.

IV. NON-UNIFORM RATE OF CONVERGENCE

Consider a plane wave propagating along an infinite mesh of
n"-order elements. One would expect that the field to be

E(z) = Ege™7** (16)
where Ey is a constant at any point in the mesh; however, the field is
more complicated; it has the form given by (4). In order to investigate
the behavior of the field in the interior of the elements, let the value
of the field at the interelement nodes be

E(mt) = Ege 7*m¢ a7
where m is a integer. The field in the interior of the element is
then determined from the field at the interelement nodes by using
the residual equations for the element. For example, the field at the
interior nodes of a fourth-order element is given by the expression
(8), and the field between the nodes is determined from (6). The
relative difference between the FE field E(z) and the expected field
E(z) is defined as

B(:) - F()|

E(z) (15

re=|

The relative difference varies within an element but it does not vary
element to element; the relative difference is zero at the interelement
nodes. Fig. 4 is a graph of the relative difference as a function
of A/h for the three interior nodes of a fourth-order element. The
asymptotic rate of convergence is seen to be O[(h/A)™ 2] for the mid
node and to be O[(h/A\)"T'] for the other two nodes. The relative
differences are seen to be very large and nonlinear near regions for
which & # 0; thus, the field near these regions will be very different
than that expected, (16). Similar behavior is also exhibited by the
other elements with different order.
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Fig. 5. Graphs of the magnitude of the field as a function of z /h for A/h =
7.99776, 8, and 9 for fourth-order elements.

As an example, the field was calculated using the FE code for
fourth-order elements with M = 21. Fig. 5 is a graph of the
magnitude of the field as a function of z/h for three node densities:
M h = 7.99776 and A\/h = 8 which are near a region where & #
0, and A\/h = 9 which is not near one of these regions. One would
expect these graphs to be constant since k is real for these node
densities. The graph for A/h = 9 is seen to be relatively constant;
however, the graphs for A/h = 7.99776 and 8 are seen to have
large variations. The size of the variations at the interior nodes are
consistent with those predicted in Fig. 4. Note that from Fig. 4 the
variations would be even larger near the other regions where & # 0.

Clearly, one would not want to use node densities near the regions
where & # 0. Note that for the highest-order elements, these regions
where & # 0 overlap with the regions where round-off errors are
significant. For example for eight-order elements, & # 0 when A /h =
16 /m withm =1, 2,3, ..., 7; and the round-off errors are significant
when \/h = 7 for 32-bit arithmetic; thus, making it impractical to
avoid both the regions where & # 0 and where round-off errors are
significant.

Often boundary conditions that involve a derivative of the field with
respect to z at the end of an element are used to inject and absorb
waves at the boundaries of a FE mesh. These boundary conditions
will not perform properly when the node density is near one of the
regions where & # 0, since the derivatives with respect to z will
deviate significantly from what is expected.

V. CONCLUSION

The numerical dispersion of a plane propagating through a FE mesh
has been investigated in this work. Analytical dispersion relationships
were derived and used to investigate the numerical dispersion for
first- through fourth-order elements, and a FE code was written and
used to calculate and investigate the numerical dispersion for first-
through eighth-order elements. All of the elements are shown to
exhibit a phase dispersion at all node densities, and the elements
with order greater than first are shown to exhibit an amplitude
dispersion & # 0 for certain ranges of node densities. The numerical
dispersion calculated analytically and numerically were shown to be
essentially identical. The phase error was shown to decrease rapidly
with increasing order of the elements. For example, at 10 nodes per
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wavelength, the phase error is 60 degrees per wavelength for first-
order elements, while it is only 10™% degrees per wavelength for
fourth-order elements, and it is only 5 x 10™° degrees per wavelength
for eighth-order elements.

Roundoff errors were shown to limit the minimum achievable
phase error. The minimum phase errors were shown to be much
smaller for 64-bit arithmetic than for 32-bit arithmetic. The minimum
phase error was also shown to be a function of the order of the
elements.

It was also shown that the field calculated with the FE method
exhibited large unexpected errors when node densities were near the
regions where & # 0. Thus, in order to obtain an accurate result,
one needs to choose a node density that is not near a region where
& # 0 as well as a node density that results in a sufficiently small
phase error.
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