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In recent experiments and numerical studies, a leaky surface wave has been observed at the surface
of an isotropic homogeneous elastic solid. This paper gives a detailed description of this leaky
surface wave and explains its origin from the fundamental differential equations. Theoretically, the
leaky surface wave arises from the complex conjugate roots of the Rayleigh equation. The complex
conjugate roots give rise to a wave that propagates along the surface and is coupled to a plane shear
wave in the medium. Due to the coupling, the surface wave leaks energy into the medium and is
highly inhomogeneous. Its particle motion at the surface is prograde in nature, distinguishing it from
the well-known Rayleigh surface wave which causes a retrograde particle motion. ©2001
Acoustical Society of America.@DOI: 10.1121/1.1419085#

PACS numbers: 43.20.Bi, 43.35.Pt, 68.35.Ja@ANN#
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I. INTRODUCTION

Elastic surface waves have been the subject of exten
research, since Lord Rayleigh first discovered the existe
of elastic waves confined to the superficial region of an in
nite homogeneous isotropic solid more than a century a1

Elastic surface waves play an important role in vario
fields. In seismology, surface waves have been found to c
the bulk of the energy among the waves excited by an ea
quake. In electroacoustics, surface waves are utilized
make filters and resonators. In geoscience, the propaga
characteristics of surface waves are used to obtain infor
tion about the physical properties of the ground. In this
per, the theory of elastic surface waves is revisited.

A point source placed on the surface of a homogene
isotropic medium excites five different kinds of waves:
pressure wave and a shear wave propagating in the med
a Rayleigh surface wave that is confined to the surface of
medium, a lateral wave that is induced by the pressure w
at the surface, and a leaky surface wave that travels along
surface with a wave speed smaller than the pressure wav
larger than the shear wave. The first four of these wave ty
are well-known and have been treated extensively in the
erature. However, the existence and theoretical foundatio
the leaky surface wave has not been discussed as much

The leaky surface wave arises from the complex con
gate roots of the Rayleigh equation. The leaky surface w
is an inhomogeneous wave that propagates along the su
with a phase velocity larger than the shear wave but sma
than the pressure wave. It couples into a plane shear w
that propagates in the medium. Due to the coupling, the
face wave loses energy and, thus, decays in its propaga
direction.

The leaky surface wave has been observed by var
authors in experimental and numerical studies. For exam

a!Electronic mail: christoph.schroeder@ece.gatech.edu
b!Electronic mail: waymond.scott@ece.gatech.edu
J. Acoust. Soc. Am. 110 (6), December 2001 0001-4966/2001/110(6)/2
ve
ce
-
.

s
ry
h-
to
on
a-
-

s

m,
e

ve
he
but
es
t-
of

-
e
ce

er
ve
r-
on

us
le,

Roth et al. noticed a rapidly decaying seismic surface wa
in an environment with a very high Poisson ratio that ha
phase velocity larger than the Rayleigh wave, but sma
than the pressure wave.2 Smithet al. identified prograde and
retrograde surface wave modes in a geologic study c
ducted on the shore of the gulf of Mexico.3 Glass and Ma-
radudin found a leaky surface wave to exist in the fl
surface limit of a corrugated crystal surface.4 And Phinney
provides a theoretical study of the leaky surface wave, wh
he calls aPseudo-Pmode.5 Although not all of these author
explicitly describe a leaky surface wave, their observatio
are consistent with the results presented in this paper.

In this paper, the theoretical derivation of the leaky s
face wave is described in some detail. In Sec. II, the gove
ing equations are briefly outlined, leading to the Raylei
equation. In Sec. III, the various roots of the Rayleigh eq
tion are discussed. It will be shown that for materials with
high Poisson ratio a leaky surface wave exists, due to
complex conjugate roots of the Rayleigh equation. In S
IV, the waves excited by a line source on the surface
derived analytically. The method of steepest descent is
plied to obtain closed-form expressions for the vario
waves in the far field.

II. THE RAYLEIGH EQUATION

The elastic wave fields at the surface of a semi-infin
isotropic, lossless, homogeneous half space are to be d
mined. The half-space is bounded atz50 by a free-surface
boundary. The fields are assumed to be invariant in
y-direction and nonzero only in thex-z plane ~plane-strain
case, uy5]/]y50). Thus, the originally three-dimensiona
problem reduces to a two-dimensional one. The elastic w
fields in a medium may be expressed in terms of their pot
tial functions:6

u5¹F1¹3H, ~1!

whereu is the displacement vector,F is a scalar potentia
describing the longitudinal pressure wave, andH is a vector
2867867/11/$18.00 © 2001 Acoustical Society of America
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potential describing the transverse shear wave. The poten
satisfy the wave equations

¹2F5
1

cP
2

]2F

]t2
, ~2!

¹2H5
1

cS
2

]2H

]t2
, ~3!

for the pressure and shear wave, respectively, with their
responding wave speeds,cP andcS . In theplane-straincase,
the only nonzero vector potential component isHy and the
only nonzero displacement components areux and uz . The
only independent stress components aretxx , tzz, andtxz .

Assuming harmonic time-dependence, the plane w
solutions forF andHy satisfying Eqs.~2! and~3! are given
by

F5Aej jx1 j az2 j vt, ~4!

Hy5Bej jx1 j bz2 j vt ~5!

and the wave numbers are defined by

a25v2/cP
2 2j2, ~6!

b25v2/cS
22j2, ~7!

j25v2/c2. ~8!

Using the well-known differential equations, the displac
ment and stress components are obtained:

ux5~ j j Aej az2 j b Bej bz!ej jx, ~9!

uz5~ j a Aej az1 j j Bej bz!ej jx, ~10!

txx5m~~2a22b22j2!Aej az12bj Bej bz!ej jx, ~11!

tzz5m~~j22b2Aej az22bj Bej bz!ej jx, ~12!

txz5m~22aj Aej az1~b22j2!Bej bz!ej jx. ~13!

At the surface, the normal stress vanishes, and t
tzzuz505txzuz5050. Using this condition, the ratio of th
coefficients is determined from Eqs.~12! and ~13! to be

A

B
5

2jb

j22b2
52

j22b2

2ja
. ~14!

Re-inserting the amplitude ratio into Eqs.~12! and ~13!, the
characteristic equation is obtained:

~j22b2!214j2ab50. ~15!
2868 J. Acoust. Soc. Am., Vol. 110, No. 6, December 2001
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Equation ~15! is commonly called theRayleigh Equation,
because it gives rise to the well-known Rayleigh surfa
wave.

Using Eqs.~6!–~8!, the characteristic equation can b
rewritten in terms of the wave speeds:

S 22
c2

cS
2D 2

14Ac2

cP
2

21Ac2

cS
2

2150. ~16!

By rationalizing, this equation may be expressed as

S c

cS
D 2S S c

cS
D 6

28S c

cS
D 4

1~24216~cS /cP!2!S c

cS
D 2

216~12~cS /cP!2!D 50. ~17!

Equation~17! always has three solutions forc2 ~when ne-
glecting the trivial solution!. Dependent on the Poisson Rat
n of a material, different kinds of roots arise. Forn
,0.263, Eq.~17! has three real roots. Forn.0.263, Eq.~17!
has one real root and two complex conjugate roots. In e
case, the real root that is smallest in magnitude gives ris
the Rayleigh surface wave, which propagates along the
face and decays into the medium. The other roots have o
been classified as erroneous or nonphysical roots of the R
leigh equation.6–8 However, it will be shown here that th
complex conjugate roots of the Rayleigh equation in f
give rise to aleaky surface wave.

III. THE ROOTS OF THE RAYLEIGH EQUATION

Let the roots of Eq.~17! be denoted byc. In general,c
will be complex:

c5cr1 jc i , ~18!

FIG. 1. Schematical arrangement of the roots in the complexj-plane.
TABLE I. Solutions to the Rayleigh equation.

~1! j r.0, j i50 a r50,a i.0 b r50,b i.0
F;e2ua i uzej ujr ux Hz;e2ub i uzej ujr ux

~2! j r.0, j i,0 a r.0,a i.0 b r,0,b i,0
F;e( j uar u2ua i u)ze( j ujr u1uj i u)x Hz;e(2 j ubr u1ub i u)ze( j ujr u1uj i u)x

~3! j r.0, j i.0 a r,0,a i.0 b r.0,b i,0
F;e(2 j uar u2ua i u)ze( j ujr u2uj i u)x Hz;e( j ubr u1ub i u)ze( j ujr u2uj i u)x

~4! j r.0, j i,0 a r,0,a i,0 b r.0,b i.0
F;e(2 j uar u1ua i u)ze( j ujr u1uj i u)x Hz;e( j ubr u2ub i u)ze( j ujr u1uj i u)x

~5! j r.0, j i.0 a r.0,a i,0 b r,0,b i.0
F;e( j uar u1ua i u)ze( j ujr u2uj i u)x Hz;e(2 j ubr u2ub i u)ze( j ujr u2uj i u)x
C. T. Schröder and W. R. Scott, Jr.: The leaky surface wave
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TABLE II. Solutions to the Rayleigh equation.

j5 a5 b5

~1! 2.5998kP j 2.3997kP j 0.8711kP

~2! (1.21842 j 0.2526)kP (0.40301 j 0.7636)kP (22.14482 j 0.1435)kP

~3! (1.21841 j 0.2526)kP (20.40301 j 0.7636)kP (2.14482 j 0.1435)kP

~4! (1.21842 j 0.2526)kP (20.40302 j 0.7636)kP (2.14481 j 0.1435)kP

~5! (1.21841 j 0.2526)kP (0.40302 j 0.7636)kP (22.14481 j 0.1435)kP
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wherecr is the real part andci is the imaginary part ofc. If
c is purely real (c5cr), j will be real @see Eq.~8!#. If addi-
tionally c is smaller than both the pressure wave speed
the shear wave speed, i.e.,c5cr,cS,cP , a andb will be
purely imaginary. For the solution to be physical, Im$a%
5a i.0 and Im$b%5b i.0, thus the waves described b
these wave numberspropagatein the x-direction anddecay
in the z-direction. This solution represents the well-know
Rayleigh surface wave, first explored by Lord Rayleigh mo
than a century ago.1 A solution of this form always exists
independent of the Poisson ratio of a material.

For n,0.263, two more purely real roots of the Ra
leigh equation exist. It can be shown that for these roots
wave speed is always larger than the pressure wave sp
cP . These two roots describe the angles of incidence
which complete mode conversionoccurs. In the case of com
plete mode conversion an incident shear wave, for exam
is completely reflected as a pressure wave, without induc
a reflected shear wave component. Complete mode con
sion is physically possible only for materials with a Poiss
ratio smaller than 0.263 and occurs at two distinct angle
incidence, defined by the two roots of the Rayleigh equat
~see also, for example, Graff6!.

If n.0.263, one real root and two complex conjuga
roots of the Rayleigh equation arise. The real root ag
gives rise to the Rayleigh surface wave. For the comp
conjugate roots, the wave speed is complex,c5cr1 jc i , and
consequently also the wave numbers are complex:j5j r

1 j j i , a5a r1 j a i and b5b r1 j b i . It can be shown tha
for the complex conjugate roots the real part of the wa
speed is always smaller than the pressure wave speed
larger than the shear wave speed,cS,Re$c%,cP .

Although c may be a solution to Eq.~17!, it does not
necessarily follow that also Eq.~15! is fulfilled. This is due
to the manipulation of Eq.~15! to arrive at Eq.~17!. In fact,
the complex conjugate roots of Eq.~17! do not represen
solutions to Eq.~16!. It can be shown, however, that they d
represent solutions to Eq.~15!, if the signs of the wave num
bersa and b are picked correctly. It may be recalled th
according to Eqs.~6! and~7! the wave numbersa andb are
functions of the square root ofc2,

a56
v

cAc2

cP
2

2156~a r1 j a i !, ~19!

b56
v

cAc2

cS
2

2156~b r1 j b i !. ~20!

The sign in front of the square roots must be chosen acc
ing to physical and causal constraints of the underlying pr
, Vol. 110, No. 6, December 2001
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lem. To obtain Eq.~16!, the positive sign has been assum
for botha andb. However, it turns out that Eq.~15! is only
satisfied if, for the complex conjugate roots, both the r
part and the imaginary part ofa andb have opposite signs
i.e., sign(a r)Þsign(b r) and sign(a i)Þsign(b i).

Figure 1 shows schematically the arrangement of
roots in the complexj-plane. The possible solutions of th
Rayleigh equation are summarized in Table I, giving all po
sible combinations ofj, a andb. Only waves propagating
in the positivex-direction are considered. Five possible s
lutions arise.

The first solution describes the Rayleigh surface wa
For the second solution, both the pressure wave potential
the shear wave potential,F andHy , propagate and increas
in the positive x-direction (j r.0, j i,0!. However, F
propagates and decays in the positivez-direction (a r.0,
a i.0), whereasHy propagates and decays in the negat
z-direction (b r,0, b i,0). For the third solution, the poten
tials decay in thex-direction (j i.0). F now propagates and
increases in the negativez-direction (a r,0, a i.0),
whereas Hy propagates and increases in the posit
z-direction (b r.0, b i,0). For the fourth and fifth solution
the signs ofa andb are reversed.

The behavior of the five possible solutions is best de
onstrated by calculating the wave fields for a medium with
specific value of Poisson’s ratio. Assuming Poisson’s ratio
be n50.4, the elastic wave fields are computed using E
~9!–~13!. The amplitude of the shear wave potential is ch
sen to be unity, and the amplitude of the pressure wave
tential is computed with Eq.~14!. For n50.4, the pressure
wave speed exceeds the shear wave speed by a fact
about 2.45:cP52.4495cS . The roots of Eq.~17! in terms of
the shear wave speedcS are

c5H 0.9422cS

~1.92761 j 0.3996!cS

~1.92762 j 0.3996!cS.
~21!

The resulting wave numbers are shown in Table II. All wa
numbers are expressed in terms of the longitudinal w
number,kP5v/cP .

In Fig. 2, the displacements according to the five so
tions of the Rayleigh equation are plotted versusx andz. The
distance on the axes is normalized to the wavelength of
Rayleigh surface wave,lR . The two columns show the hori
zontal and vertical displacements,ux and uz . Pseudo-color
plots are used to display the wave fields, employing a lo
rithmic scale with a dynamic range of 50 dB. Superimpos
with the horizontal displacement component is the real p
2869C. T. Schröder and W. R. Scott, Jr.: The leaky surface wave
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ion
of the complex Poynting vector, thus indicating the directi
of the energy flow. The upper edge of each plot correspo
to the free surface.

First, the Rayleigh surface wave is shown. For the R
leigh surface wave, the energy flow is seen to be paralle
the surface. Both the horizontal and the vertical displa
ments decay away from the surface. The second solu
describes a shear wave in which energy is carried toward

FIG. 2. Horizontal and vertical displacements according to the five solut
of the Rayleigh equation.
2870 J. Acoust. Soc. Am., Vol. 110, No. 6, December 2001
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surface. Close to the surface, the energy flows parallel to
surface. The waves grow exponentially in thex- and
z-direction. The third solution is the converse of the seco
one. This time, the energy flows from the surface into
medium, and the waves decay in thex-direction. Again, close
to the surface the energy flow is parallel to the surface. T
fourth and fifth solution are similar to the second and thi
However, now a pressure wave propagates in the med
and the energy flows at a different angle with respect to
surface. Also, the exponential growth is enhanced.

All of the five possible solutions described above can,
certain cases, represent physical solutions. For example
field distribution is created on the surface that matches
field distribution of Solution~5! on the surface, waves simi
lar to the ones described by Solution~5! would be induced in
the medium. If a field distribution is generated within th
medium that is equal to the field distribution of Solution~2!,
waves propagating toward the surface would be excited
perfectly couple into a surface wave. Of course, the soluti
as described here would require an infinite medium and w
fields of infinite extent that are nonzero at infinity, whic
violates physical as well as causal constraints. However, o
a finite range all of these solutions can be excited with
appropriate field distributions.

IV. WAVES DUE TO A LINE SOURCE ON THE
SURFACE

In the previous section, the solutions to the wave eq
tion at a free-surface boundary have been described in a
eral form. In this section, the wave fields due to a spec
excitation, a line source on the surface, are determined.

s

FIG. 3. Line source on the surface.

FIG. 4. Location of the poles and branch cuts in the complexj-plane for the
line-source problem.
C. T. Schröder and W. R. Scott, Jr.: The leaky surface wave
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analysis presented here is largely based on the general m
ematical description of Felsen and Marcuvitz.9

Figure 3 shows the underlying geometry. A line source
placed on the surface atx50 and extends into the
y-direction. The line source excites the normal stress com
nenttzz. If harmonic time dependence is assumed, the
placement fields due to a line source can be written in fo
of an integral equation:6

ux~x,z!52
j

mpEP8

j

F0~j!

3@22abej bz1~b22j2!ej az#ej jx dj, ~22!

uz~x,z!52
j

mpEP8

a

F0~j!

3@2j2ej bz1~b22j2!ej az#ej jx dj, ~23!

where

F0~j!5~j22b2!214j2ab ~24!

is the Rayleigh equation. The amplitude of the excitation
assumed to be unity.

A. General considerations

The integrals in Eqs.~22! and ~23! each represent a
inverse Fourier transform from the wave number dom
into the spatial domain. The integrands contain poles
branch points. The poles are due to the roots of the Rayle
equation in the denominator. The branch points arise bec
of the square root dependence ofa and b on j. They are
located at the roots ofa and b, at kP56(v/cP)2 and kS

56(v/cS)2 @see Eqs.~6! and ~7!#.
To compute the integrals, contour integration in t

complexj-plane must be applied. The integration must
performed along the realj-axis. Figure 4 shows the locatio
of the poles and branch points in the complexj-plane. To
determine the waves propagating in the positivex-direction,
Eqs.~22! and~23! must be integrated along the pathP8. The
contour is closed at infinity. Only the poles and branch c
for Re$j%.0 are included in the integration contour~indi-
cated by the indentations ofP8), whereas the poles fo
Re$j%,0 are excluded and, therefore, do not contribute
the integral.

Due to the branch points, the integrands are not sin
valued. To make the integrands unique, a Riemann sur
for the j-plane is necessary, with branch cuts providing
transition from one Riemann sheet to the other.9 The location
of the branch cuts in general is arbitrary, but defines
disposition of those regions in the complexj-plane in which
for example Re$a%.0 or Re$a%,0. Figure 4 shows the top
Riemann sheet for Eqs.~22! and~23!. The signs of the wave
numbers on the top Riemann sheet must be chosen acco
to physical and causal reasons. The integration along the
axis determines the shear and pressure waves excited b
line source. For the shear and the pressure waves to
causal, they must propagate away from the source and va
at infinity. For this to be true, the wave numbers along
J. Acoust. Soc. Am., Vol. 110, No. 6, December 2001
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real axis must be chosen such that Re$a%.0, Im$a%.0,
Re$b%.0 and Im$b%.0. It can be easily shown that in thi
case the wave numbers in the entire second and fourth q
rant must behave in the same way. In the first and th
quadrant, the branch cuts must then be chosen such
Re$a%,0, Im$a%.0, Re$b%.0 and Im$b%,0. This is true
becausea and b must be continuous across the real ax
Thus, in the first and third quadrant, the pressure wave
tential propagates and increases in the negativez-direction,
whereas the shear wave potential propagates and increas
the positivez-direction. It is evident that in the first quadran
of the top Riemann sheet the wave numbers behave as
scribed for Solution~3! of the Rayleigh equation as indicate
in Table I. The poles on the top Riemann sheet correspon
physically existing waves and, therefore, the pole associa
with Solution ~3! of the Rayleigh equation represents
physical solution to the line-source problem. The pole in
third quadrant is the equivalent to the pole in the first qu
rant, but describes a wave traveling in the negat
x-direction. The two poles on the realj-axis are present on
all sheets and, consequently, also represent physical wa
All other poles of the Rayleigh equation lie on differe
sheets and, thus, are nonphysical for the line-source cas

It can be seen in Fig. 4 that four poles and four bran
cuts exist on the top Riemann sheet. The poles at6jR on the
real j-axis give rise to the well-known Rayleigh surfac
wave. The complex poles at6jLS in the first and third quad-
rant describe leaky surface waves propagating to the r
and left, respectively. As described earlier, the leaky surf
wave couples into a plane shear wave. Both the leaky sur
wave and the shear wave that is fed from the surface w
are inhomogeneous, which is indicated by the pole be
complex.

B. Steepest-descent approximation

To evaluate the integrals asymptotically in the far fie
the method of steepest descent shall be applied. To simp
the procedure, the two terms of the integral are treated s
rately. Dividing the integrals each into a pressure wave te
and a shear wave term, Eqs.~22! and ~23! are rewritten as

ux
S~x,z!52

j

mpEP8

j

F0~j!
~22ab!ej bzej jx dj, ~25!

ux
P~x,z!52

j

mpEP8

j

F0~j!
~b22j2!ej azej jx dj, ~26!

uz
S~x,z!52

j

mpEP8

a

F0~j!
2j2ej bzej jx dj, ~27!

uz
P~x,z!52

j

mpEP8

a

F0~j!
~b22j2!ej azej jx dj. ~28!

The total displacements equal the superposition of the p
sure wave component and the shear wave component:

ux~x,z!5ux
S~x,z!1ux

P~x,z!, ~29!

uz~x,z!5uz
S~x,z!1uz

P~x,z!. ~30!
2871C. T. Schröder and W. R. Scott, Jr.: The leaky surface wave



FIG. 5. Location of the poles and branch cuts~a! in the complexwS-plane and~b! in the complexwP-plane.
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To facilitate the evaluation of the integrals, the compl
j-plane is transformed into the complexwS-plane for the two
shear wave terms, and into thewP-plane for the pressure
wave terms:

j5kS sin wS, ~31!

j5kP sin wP. ~32!

These transformations are single-valued.9 From the periodic-
ity of sin wS and sinwP it is evident that multiple values fo
wS and wP correspond to a single value ofj. Thus, the
transformations can be used to map the entirej-plane with
its multiple Riemann sheets into adjacent strips of widthp
in the wS- or wP-plane. The arrangement of the poles a
branch cuts of the top Riemann sheet in the comp
2872 J. Acoust. Soc. Am., Vol. 110, No. 6, December 2001
x

wS-plane andwP-plane are shown in Fig. 5. Here, the to
Riemann sheet is mapped into a strip reaching from2p to p
in the complexwS-plane for the shear wave terms, and sim
larly for the pressure wave terms in the complexwP-plane.
The positions of the transformed Rayleigh wave pole and
leaky surface wave pole in the complexwS- and wP-plane
are indicated bywR

S , wLS
S , andwR

P , wLS
P , respectively. The

transformed integration paths are denoted byPS andPP.
The separate transformations for the shear wave te

and the pressure wave terms become necessary, bec
when the method of steepest descent is applied, the diffe
terms will give rise to different steepest-descent paths.
applying the different transformations, the steepest-des
paths will have a rather simple shape for both the shear w
FIG. 6. Steepest-descent paths for~a! the shear wave terms in the complexwS-plane and~b! the pressure wave terms in the complexwP-plane.
C. T. Schröder and W. R. Scott, Jr.: The leaky surface wave
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terms and the pressure wave terms, thus, making
steepest-descent approximation considerably easier.

Applying the transformations, two of the branch cuts a
eliminated in each of the integrals in Eqs.~25!–~28!. For the
shear wave terms the branch cuts at6kS vanish, whereas for
the pressure wave terms the branch cuts at6kP are removed.
For the shear wave terms,b then reduces to

b5kS coswS, ~33!

and for the pressure wave termsa becomes

a5kP coswP. ~34!

Introducing polar coordinates,

x5R sin u, ~35!

z5R cosu, ~36!

Eqs. ~25!–~28! are rewritten as integrals in thewS- and
wP-plane:

ux
S~x,z!52

j

mpEPS

j

F0~j!
~22ab!

3ejkSR cos~wS2u!b dwS, ~37!

ux
P~x,z!52

j

mpEPP

j

F0~j!
~b22j2!

3ejkPR cos~wP2u!a dwP, ~38!

uz
S~x,z!52

j

mpEPS

a

F0~j!
2j2ejkSR cos~wS2u!b dwS,

~39!

uz
P~x,z!52

j

mpEPP

a

F0~j!
~b22j2!

3ejkPR cos~wP2u!a dwP, ~40!

whereu describes the polar angle measured from the sur
normal toward the propagation direction~see Fig. 3!. The
wave numbers in terms ofwS are

j~wS!5kS sin wS, ~41!

b~wS!5kS coswS, ~42!

a~wS!56AkP
2 2j~wS!2, ~43!

and in terms ofwP

j~wP!5kP sin wP, ~44!

b~wP!56AkS
22j~wP!2, ~45!

a~wP!5kP coswP. ~46!

The signs ofa(wS) andb(wP) must be chosen as describe
earlier for the complexj-plane. Thus, in the shaded an
nonshaded regions of Fig. 5,a behaves just as in the shade
and nonshaded regions of Fig. 4.

With the integrals transformed as described above,
relatively straightforward to apply the method of steep
descent. For the method of steepest descent, the integr
J. Acoust. Soc. Am., Vol. 110, No. 6, December 2001
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pathsPS andPP are deformed into new paths, thesteepest-

descent paths PS̄ andP̄P, respectively. The new path is cho
sen such that the dominant contribution to the integral ar
from only a small section of the path. To achieve this, t
path is deformed such that it passes through the saddle p
of the integrand. Away from the saddle point it follows th
direction in which the integrand decays most rapidly. Alo
this path, the integrand will then be negligible everywhe
but around the saddle point, and the integral can be appr
mated by the contribution from the integrand in the vicin
of the saddle point.

The path of steepest descent is a path of constant ph9

For integrals in the form of the ones in Eqs.~37!–~40!, the
steepest-descent path is given by

Re$wS,P%2u5cos21~sech~ Im$wS,P%!!. ~47!

The procedure is the same for the shear wave terms and
pressure wave terms. In Fig. 6, three steepest-descent p
are shown each for the shear wave terms in thewS-plane,
P̄1

S , P̄2
S , P̄3

S , and for the pressure wave terms in th
wP-plane, P̄1

P , P̄2
P , P̄3

P . Each steepest descent path cor
sponds to a different propagation~polar! angle. The saddle
point in each case is located at the intersection of
steepest-descent path with the realwS- or wP-axis, respec-
tively. Physically, the contributions from the saddle poin
describe the pressure and the shear waves in the far fie

When the original integration path is deformed into t
steepest-descent path, care has to be taken whether po
branch cuts are crossed during the deformation. Accordin
Cauchy’s theorem, if a singularity is crossed during the
formation from one integration path into another, the con
bution from the contour integral around the singularity mu
be included into the total integral. For example, whenPS in
Fig. 6 is deformed into the steepest-descent pathP̄1

S , no
singularities are crossed during the deformation. Howe
for P̄2

S , the integrals around the branch cut,P̄b , and around
the pole atwR

S must be included. ForP̄3
S , the branch cut

integral as well as the integrals around the poles atwR
S and

wLS
S contribute to the total integral.

The contour integrals around the singularities in both
wS- and thewP-plane give rise to different types of wave
The integral around the branch cut in thewS-plane describes
a lateral wave. The lateral wave is a plane shear wave
duced by the pressure wave propagating along the surfac
appears only if the polar angle exceedsuL

S5sin21(kP /kS),
because, mathematically, the branch cut integral contrib
to the total integral only foru.uL

S . It can be shown that the
integral around the branch cut in thewP-plane is approxi-
mately zero and, thus, it does not contribute to the total
tegral. The integrals around the poles give rise to the R
leigh surface wave and the leaky surface wave. They e
only for u.uR

S and u.uLS
S in the wS-plane, and foru.uR

P

andu.uLS
P in thewP-plane. The total Rayleigh surface wav

and the total leaky surface wave are comprised of the su
position of the contributions from the integrals around t
singularities both in thewS-plane andwP-plane. The angles
uR

S,P and uLS
S,P are easily obtained by insertingwR

S,P

5sin21(jR/kS,P) andwLS
S,P5sin21(jLS /kS,P) into Eq. ~47!.
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The integrals are now approximately determined us
the method of steepest-descent. Five separate wave t
arise: the bulk shear wave, the bulk pressure wave, the R
leigh surface wave, the leaky surface wave and the lat
wave. A detailed description of the steepest-descent me
is given, for example, by Felsen and Marcuvitz.9

Using the method of steepest-descent, the shear wav
the far field comes out to be

ux~R,u!uShear5
j

mp
A2p

kSR

ej ~kSR2p/4!

F0~kS sin u!

•2AkP
2 2kS

2 sin2 u kS
3 sin u cos2 u, ~48!

uz~R,u!uShear5
2 j

mp
A2p

kSR

ej ~kSR2p/4!

F0~kS sin u!

•2AkP
2 2kS

2 sin2 u kS
3 sin2 u cosu. ~49!

For the pressure wave,

ux~R,u!uPressure5
2 j

mp
A 2p

kPR

ej ~kPR2p/4!

F0~kP sin u!

•@kS
222kP

2 sin2 u#kP
2 sin u cosu,

~50!

uz~R,u!uPressure5
2 j

mp
A 2p

kPR

ej ~kPR2p/4!

F0~kP sin u!

•@kS
222kP

2 sin2 u#kP
2 cos2 u. ~51!

The Rayleigh surface wave and the leaky surface w
are derived from the contour integral around the respec
poles of the Rayleigh equation. Using contour integrati
the Rayleigh wave is described by

ux~R,u!uRayleigh5
2jR

mF08ujR

@U~u2uR
S!

•~22aRbR!ej bRR cosu1U~u2uR
P!

•~bR
22jR

2 !ej aRR cosu#•ej jRR sin u, ~52!

uz~R,u!uRayleigh5
2aR

mF08ujR

@U~u2uR
S!•2jR

2ej bRR cosu

1U~u2uR
P!•~bR

22jR
2 !ej aRR cosu#

•ej jRR sin u, ~53!

where

F08ujR
54jR~jR

22bR
2 !18jRbRaR24jR

3S bR

aR

1
aR

bR
D .

~54!

F08ujR
is the derivative of the Rayleigh equation with respe

to j at j5jR , and U(u2uR
S,P) is the Heaviside unit step
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function;aR , bR , andjR describe the wave numbers of th
Rayleigh wave~see Table II!. The result for the leaky surfac
wave is determined in exactly the same way and is obtai
by simply replacinguR

S,P , jR , aR andbR by uLS
S,P , jLS , aLS

andbLS , i.e., inserting the wave numbers for the leaky-wa
pole instead of the Rayleigh wave pole.

The lateral wave is defined by the integral around

branch cut,P̄b in Fig. 6. Following Felsen and Marcuvitz,9

the integral is asymptotically approximated to become

FIG. 7. Waves due to a point source on the surface. From top to bot
shear wave, pressure wave, Rayleigh surface wave, leaky surface w
lateral wave.
C. T. Schröder and W. R. Scott, Jr.: The leaky surface wave
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ux~R,u!uLateral5U~u2uL
S!•

223/2/~mAp!

@kSRusin~u2uL
S!u#3/2

•

~sin uL
S!3/2~cosuL

S!5/2

~2 sin2 uL
S21!2

•ejkSR cos~u2uL
S

!1 j 3/4p, ~55!

uz~R,u!uLateral5U~u2uL
S!•

23/2/~mAp!

@kSRusin~u2uL
S!u#3/2

•

~sin uL
S!5/2~cosuL

S!3/2

~2 sin2 uL
S21!2

•ejkSR cos~u2uL
S

!1 j 3/4p. ~56!

C. Example

Equations~48!–~56! give the asymptotic far-field ap
proximations for the wave fields excited by a harmonic li
source on the surface. To determine the wave fields fo
specific excitation in the time domain, the results must
transformed from the frequency domain into the time dom

and convolved with the excitation function. The inverse
Fourier transform is given by

q.
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û~R,u,t !5E
v52`

1`

G~v!•u~R,u,v!•e2 j vt dv. ~57!

Here, G(v) represents the Fourier transform of the exci
tion function. To obtain the particle velocity rather than t
displacement, the displacement is differentiated with resp
to time:

v̂~R,u,t !5E
v52`

1`

G~v!•u~R,u,v!•~2 j v!e2 j vt dv.

~58!

In the following, a differentiated Gaussian pulse is used
excitation, with its Fourier transform

G~v!52 jA2pt0
2v•e0.520.5~vt0!2

, ~59!

where t0 describes the width of the pulse. The particle v
locity is determined here, because the analytical results a
be compared to numerical results, and the numerical fin
difference code that has been developed for this purp
computes the particle velocity rather than the particle d
placement.

The wave fields excited by a differentiated Gauss
pulse are computed for a material with a Poisson ratio on
50.4. The wave fields are calculated according to Eqs.~48!–
~56! and then transformed into the time domain using E

~58!. In Fig. 7, the separate wave fields throughout the half

-
FIG. 8. Finite-difference results; com
parison to asymptotic solution.
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ves

ver-
space are plotted for one instant in time, ten millisecon
after their excitation. The plots show, from top to bottom, t
shear wave, the pressure wave, the Rayleigh surface w
the leaky surface wave, and the lateral wave. A logarithm
color scale is used, ranging from dark red~0 dB! over yellow
and green to blue~240 dB!. The top of each plot coincide
with the surface of the medium. The source is located on
surface, at the center of each plot.

The shear wave and the pressure wave exhibit cylin
cal wave fronts. They both vanish at the surface. The R
leigh surface wave is confined to the surface and decays
thez-direction. The leaky surface wave propagates along
surface with a speed greater than the one of the shear w
but smaller than the speed of the pressure wave. It feed
inhomogeneous plane shear wave. The angle that the s
wave makes with the surface is approximately defined b

gLS5sin21~Re$jLS%/kS!. ~60!

Due to the coupling into the shear wave, the leaky wa
‘‘leaks’’ energy into the medium and decays in its propag
tion direction. The lateral wave propagates at an angle
approximately

gL5uL
S5sin21~kP /kS!. ~61!

The artifacts that are especially visible for the lateral wa
are due to the Fourier transform algorithm that is being us

Figure 8 shows the wave fields due to a line source
the surface at one instant in time as determined numeric
with the finite-difference time-domain~FDTD! algorithm.
The wave fields are plotted at the top on a logarithmic co
scale on a cross section through the half space and a
bottom on a linear scale along four radial lines, correspo
ing to four distinct propagation angles, as a function of
distance from the source. Again, a material with a Pois
ratio of 0.4 is assumed. With careful inspection, the five d
ferent wave types are distinguishable. The differences
tween the FDTD result and the asymptotic approximation
mainly due to the fact that the asymptotic approximat
describes the waves in the far field, whereas the FDTD c
putations show the waves in the near field. Results es
tially identical to the FDTD results have been obtained wh
integrating Eqs.~22! and ~23! numerically rather than ap
proximating the integrals asymptotically.10

To obtain a better picture of the behavior of the vario
waves at the surface, the particle motion due to the differ
surface waves is analyzed. For this, the wave fields of
Rayleigh surface wave, the leaky surface wave and the
eral wave are computed using Eqs.~52!–~56! for harmonic
time-dependence, and hodograms of the particle motio
the surface are generated. In these hodograms, the ve
displacement along the surface is plotted versus the hori
tal displacement. The hodograms are shown in Fig. 9. As
well-known, the particle motion due to a Rayleigh surfa
wave is retrograde~counterclockwise! in nature@Fig. 9~a!#.
This is caused by a phase shift between the horizontal
the vertical displacement component: the horizontal d
placement is lacking 90 degrees in phase behind.
hodogram also indicates that the Rayleigh wave does
decay as it propagates along the surface. The particle mo
2876 J. Acoust. Soc. Am., Vol. 110, No. 6, December 2001
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due to the leaky surface wave is prograde~clockwise!,
caused by the horizontal displacement being ahead in p
of the vertical displacement@Fig. 9~b!#. Clearly, the leaky
surface wave decays as it travels along the surface. For
lateral wave, the displacement components are in phase,
the hodogram shows a diagonal line@Fig. 9~c!#. The lateral
wave also decays as it propagates along the surface.
prograde and retrograde particle motions of surface wa

FIG. 9. Hodograms of the particle motion at the surface. Plots for the
tical displacement vs the horizontal displacement for~a! the Rayleigh sur-
face wave,~b! the leaky surface wave, and~c! the lateral wave.
C. T. Schröder and W. R. Scott, Jr.: The leaky surface wave
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have also been observed experimentally by, for exam
Smith et al.3

V. CONCLUSIONS

This paper gives a detailed theoretical description of
existence of a leaky surface wave in an isotropic homo
neous solid. The leaky surface wave is shown to arise fr
the complex conjugate roots of the Rayleigh equation. It
ists only for materials with a Poisson ratio larger than ab
0.263. The leaky surface wave propagates along the sur
with a wave speed smaller than the pressure wave, but la
than the shear wave. Due to matching tangential wave v
tors at the surface, it couples into a plane shear wave dire
into the medium. Both the surface wave and the plane sh
wave are, because of the coupling, inhomogeneous.
demonstrated that a normal line source on the surface o
infinite half-space in fact excites the leaky surface wave. T
far field expressions for the leaky surface wave are given
are compared to numerical results obtained by using
finite-difference time-domain method. The particle moti
on the surface due to the leaky surface wave is progr
~clockwise!, contrary to the well-known Rayleigh surfac
wave which induces a retrograde~counterclockwise! particle
motion.
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