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A Finite-Difference Model to Study the Elastic-Wave
Interactions with Buried Land Mines

Christoph T. Schröder and Waymond R. Scott, Jr.

Abstract—A two-dimensional (2-D) finite-difference model for
elastic waves in the ground has been developed. The model uses
the equation of motion and the stress-strain relation, from which
a first-order stress-velocity formulation is obtained. The resulting
system of equations is discretized using centered finite-differences.
A perfectly matched layer surrounds the discretized solution space
and absorbs the outward traveling waves. The numerical model is
validated by comparison to an analytical solution. The numerical
model is used to study the interaction of elastic waves with a buried
land mine. It is seen that the presence of an air-chamber within
the mine gives rise to resonant oscillations that are clearly visible
on the surface above the mine. The resonance is shown to be due to
flexural waves being trapped within the thin layer between the sur-
face of the ground and the air chamber of the mine. The numerical
results are in good qualitative agreement with experimental obser-
vations.

Index Terms—Acoustic, elastic wave, FDTD, finite-difference,
land mine.

I. INTRODUCTION

I N A NEW technique, elastic and electromagnetic waves are
used in a synergistic manner to detect buried land mines [1],

[2]. Within this technique, elastic waves interact with a mine and
cause the ground above the mine to vibrate. A radar detects these
vibrations and, thus, the mine. To explore the mine–wave inter-
actions, a numerical finite-difference model for elastic waves in
the ground has been developed.

The equation of motion and the stress–strain relation, together
with a constitutive relation, form a set of first-order partial dif-
ferential equations that completely describe the elastic wave
motion in a medium. Introducing finite differences, this set of
equations can be discretized and adapted to the finite-differ-
ence time-domain modeling scheme, obtaining a second-order
accurate stress-velocity formulation. Assuming that the field is
known at one initial time , this numerical scheme provides
the field values at any later time . The finite-difference
model has been implemented in two dimensions. The solution
space is discretized and a staggered finite-difference grid is in-
troduced. The grid is surrounded by a perfectly matched layer,
that absorbs the outward traveling waves. The numerical model
has been validated by comparison to an analytical solution. The
analytical solution for elastic waves in a homogeneous semi-in-
finite half-space is obtained in the form of an integral equation.
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Fig. 1. Finite-difference model.

Excellent agreement is seen between the numerical model and
the analytical solution.

By using the numerical model, the interaction of elastic waves
with a buried antipersonnel mine is explored. Results for two
simple models of a TS-50 antipersonnel mine are presented in
this work: one containing an air-filled chamber and one without
an air-filled chamber. The air-filled chamber is introduced to ap-
proximate the complex structure of a real mine, which contains
explosives as well as chambers bearing the triggering mecha-
nism etc. The results obtained with the numerical model are
in remarkably good agreement with experimental observations
even though the model is 2-D, whereas the experimental set-up
is 3-D. In both experiments and numerical simulations, a strong
resonance is observed at the mine. This resonance is shown to
be due to flexural waves being trapped within the thin layer be-
tween the surface of the ground and the air chamber of the mine.
In the experiments, the Rayleigh surface waves are seen to dis-
perse while traveling along the surface. Assuming a depth-de-
pendent shear wave speed, this effect can be also modeled nu-
merically.

II. TWO-DIMENSIONAL (2-D) NUMERICAL MODEL

A. Finite-Difference Model

Fig. 1 shows the 2-D finite-difference model. The ground
is modeled as an isotropic, lossless semi-infinite half-space.
A normal point source is located on the free surface, exciting
longitudinal (pressure) and transverse (shear) waves in the

- -plane. The wave fields are invariant in thedirection. At
0, a free surface bounds the solution space. A perfectly

matched layer (PML) terminates the solution space at the
remaining edges, absorbing all outward traveling waves. The
space is discretized using a staggered finite-difference grid.

0196–2892/00$10.00 © 2000 IEEE
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A first-order velocity–stress formulation is used for the finite-
difference model [3]–[5]. Here, the equation of motion and the
stress–strain relation are discretized, leading to a system of first-
order partial differential equations. Since only field components
in the - -plane are excited, the only nonzero field components
are the three unknown stress components, , , and the
two unknown particle velocities and . Due to the invariance
in the -direction, all derivatives with respect tovanish. The
wave motion is then completely described by a system of the
following five partial differential equations:

(1)

(2)

(3)

(4)

(5)

where is the material density, and and are Lame’s con-
stants. These equations are discretized using centered finite dif-
ferences. By introducing the finite differences in spaceand

and in time , (1) and (3), for example, can be discretized
as

(6)

and

(7)

Here, the capital letters mark the numerical value of the
correspondent field component at a discrete location in
space and time. For example, stands for the
numerical value of the particle velocity at the position

at the time .
Knowing , , and , (6) can be solved for ,
i.e. at the incremental time

(8)

Fig. 2. Portion of the finite-difference grid. The field components are not
known at the same locations but are offset by�x=2 and�z=2.

Similarly, is obtained from (7)

(9)

In the same manner, discretized equations can be obtained for
all field components.

The discretization leads to the characteristic staggered finite-
difference grid. Fig. 2 depicts the position of the field com-
ponents in the finite-difference grid. In this grid, the velocity
components and the stress components are not known at the
same position in time and space but are offset by in time
and by and in space. The offset in time leads to
the so-called leapfrog scheme. In the leapfrog scheme, the field
components are updated sequentially in time. The velocity com-
ponents are calculated first, then the stress components from the
velocity components, the velocity components again using the
stress components, and so on. Thus, knowing the field compo-
nents throughout the entire space at the time and

, respectively, the field components can be determined for all
later times .

When implementing the finite-difference scheme, boundary
conditions must be treated in a special manner. Three different
kinds of boundaries arise: the source point, the internal bound-
aries (i.e., boundaries within the medium marked by a change in
material properties), and the external boundaries (i.e., the grid
edges).

A normal point source is implemented on the free surface.
The normal stress component is excited by a differentiated
Gaussian pulse. An additive source is used. For each time step,
the value of the excitation is added to the value calculated with
the finite-difference scheme.
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The conditions at internal boundaries (i.e., at the interfaces
between different media) are usually satisfied implicitly. How-
ever, to ensure numerical stability, the material properties must
be averaged for components on the boundary. While the ma-
terial density , appearing in the equation of motion, is aver-
aged directly, the inverse of Lame’s constants. For transitions
between similar materials, the averaging may be omitted. How-
ever, it is necessary at an interface between media with greatly
different material properties (for example, at an air–solid inter-
face) in order to maintain stability [3].

Four external boundaries arise at the four outer grid edges. At
its upper edge, the half-space is bounded by a free surface. Due
to the continuity of normal stress, the normal stress components
vanish at a free surface. In order to satisfy this condition, an
extra row must be inserted into the finite-difference grid one
step beyond the free-surface boundary. By using this extra row,
all stress components are forced to zero on the free surface [3].

In order to model the semi-infinite half-space, all waves
that are reaching the three remaining outer grid edges must be
perfectly transmitted and absorbed. The boundary condition
that does this most accurately is the PML boundary condition,
first introduced by Berenger [6] and adapted to elastodynamics
by Chew and Liu [7]. In continuous space, a nonphysical
splitting of the wave fields allows the introduction of a lossy
boundary layer that is perfectly matched to the solution space.
It has been shown that an arbitrarily polarized wave incident
on this PML is perfectly transmitted. The wave experiences
the exact same phase velocity and wave impedance as in the
solution space, while rapidly decaying along the axis normal
to the PML/medium interface. However, in discrete space, the
lossy layer will not be perfectly matched to the solution space,
and slight reflections occur at the interface. To keep these
reflections small, a tapered loss profile is chosen within the
PML

(10)

where 2.1 and ; is the thick-
ness of the PML in basis cells, and indicates the posi-
tion within the PML. This loss profile (with a slightly different

) has been found to yield good performance in electromag-
netic finite-difference modeling [8]. For this work, a thickness
of ten cells has been found sufficient, yielding an attenuation of
the incident waves of more than 70 dB.

B. Validation of Finite-Difference Results

An analytical solution for the particle displacement fields in
a semi-infinite homogeneous half-space subjected to a normal
harmonic line-load of finite width can be derived [9], [10].
Using a Fourier transform method, the particle displacement
is obtained as an integral equation and can be computed using
numerical integration [3].

The integral to be solved contains two poles and four branch
cuts. Furthermore, the integration range is infinite and extends
from to . While the branch cuts do not impose a problem
during numerical integration, the poles cannot be integrated nu-
merically. To account correctly for the pole contributions, the

Fig. 3. Plot of the magnitude of the elastic waves in a half-space subjected to
a normal line-load att = 10 ms.

poles must be subtracted from the integral and integrated an-
alytically. To accelerate the integration, the infinite integration
range may be truncated. However, for this to be possible, the in-
tegrand has to converge sufficiently fast to zero. In order to ac-
celerate the convergence of the integral, an asymptotic approx-
imation for the tails of the integrals is derived. This asymptotic
approximation is subtracted from the integrals and integrated
analytically.

To obtain the particle displacement in the time-domain, the
displacement field must be Fourier-transformed. Since the ana-
lytical solution is to be compared to the finite-difference result,
where the particle velocity is determined, the particle displace-
ment is differentiated with respect to time, and the particle ve-
locity is obtained.

The integral is computed on a 600 600 grid with a grid
spacing of 0.53 cm. Noting that the wave fields are symmetric
to the vertical axis passing through the source, this yields an
effective solution space of 6.37 m 3.18 m. The finite-dif-
ference simulation is performed using a grid with 1239620
nodes, incorporating a PML layer with a thickness of 20 cells.
The finite-difference grid has the same dimensions and the same
spacing as the grid used for the analytical result but does not ex-
ploit the symmetry and is consequently twice as big. The time
step is chosen to be s, and 1200 time steps are
needed to calculate the wave fields up to 10 ms. The com-
putations for the analytical solution took about 24 times longer
than those for the numerical simulation.

In Fig. 3, the elastic waves due to a normal line-load on a
free surface are shown. A differentiated Gaussian pulse with
a center frequency of 400 Hz is launched at 0 s1 from a
source located on the free surface. In the upper half of Fig. 3, the
magnitude of the particle velocity field at 10 ms is shown.
A pressure, a shear, and a surface wave are seen to propagate.
The pressure wave is the fastest of the three. The surface wave

1The center of the pulse is located att = 0 s.
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Fig. 4. Simple model of the TS-50 antipersonnel mine (a) with and (b) without
an air-filled chamber.

is propagating slightly slower than the shear wave and contains
the most energy. A plane shear wave arises at the free surface,
induced by the pressure wave. This wave is called a head wave.
Head waves are downwardly directed shear waves generated by
the passage of bulk waves along the free surface. Two more
plane waves can be seen, which propagate at a steeper angle
than the head wave induced by the pressure wave.

In Fig. 3, the particle velocity components and , ac-
cording to the numerical and analytical solution, are plotted
along the three section lines through the ground, denoted by A,
B, and C. The agreement of numerical and analytical solutions
is excellent. It can be seen that the finite-difference model pre-
dicts waves that travel slightly slower than those of the analytical
solution. This is due to the well-known fact that the numerical
phase velocity in the discrete finite-difference grid will come
out to be slightly smaller than in continuous space [11].

The head waves obtained both with the finite-difference
model and in the analytical solution have also been observed
experimentally by the authors and others. In [12], a seismic
field survey in a region with extremely high Poisson’s ratio is
described. In these measurements, head waves are detected that
are very similar to the head waves observed here.

III. I NTERACTION OF ELASTIC WAVES WITH A TS-50
ANTIPERSONNELMINE

The interaction of elastic waves with a TS-50 antipersonnel
mine, buried in sand, has been investigated. Two simple models
for the TS-50 mine are used. In the first model [Fig. 4(a)], a
small chamber filled with air is located on top of the mine’s
main chamber containing plastic explosives. The second model
does not contain an air-filled chamber [Fig. 4(b)]. By including
an air-filled chamber into the mine model, the effects of a real
mine are approximated. A real mine is a complex mechanical
structure with a flexible case, a trigger mechanism, air cham-
bers, etc. Fig. 5 depicts a simplified cross sectional drawing of
a real TS-50 antipersonnel mine. The elastic properties of the
materials used for the numerical simulation are summarized in
Table I. The parameters for the sand and for the plastic were
measured experimentally by the authors, whereas the properties
of the air are obtained from the literature.

A differentiated Gaussian pulse with a center frequency of
450 Hz is launched at 0 s from a source on the free sur-
face. The left edge of the mine is located at a distance of 85 cm
from the source. Its upper edge lies 1.5 cm beneath the surface
of the ground. The space step within the finite-difference grid
is set to 0.5 cm. The time step is chosen to be

s and thus fulfills the

Fig. 5. Cross-sectional drawing of a TS-50 antipersonnel mine.

TABLE I
PARAMETERS USED FOR

FINITE-DIFFERENCESIMULATION

Courant condition. The elastic wave fields are computed on a
grid containing 350 200 cells, including a PML with a thick-
ness of ten cells and, consequently, yielding an effective solution
space of 165 cm 95 cm. The computation time was approxi-
mately 90 min for 22 000 time steps on a 450 MHz PC.

Fig. 6 shows the elastic wave fields on a cross section through
the ground for (a) the model with the air-filled chamber and (b)
the model without the air-filled chamber. The magnitude of the
particle velocity is plotted on a logarithmic scale. The particle
velocity field is shown at four different times: 4 ms, 10
ms, 11 ms, and 16 ms.

At 4 ms, a pressure wave (P), a shear wave (S), a Rayleigh
surface wave (R), and head waves (H) are seen to propagate. The
pressure wave, the fastest of the waves, just hits the mine. For
the mine with the air-filled chamber, some energy is seen to be
trapped between the surface and the mine, while for the mine
without the air-filled chamber, no strong interaction occurs. At

10 ms and 11 ms, the surface wave (S) hits the mine
and is partially transmitted (R) and partially reflected (rR). At

16 ms, the waves reflected from the mine are clearly seen
[these are reflected Rayleigh waves (rR), a reflected shear wave
(rS), and a reflected pressure wave (rP)]. For the mine without
the air-filled chamber, no energy is seen to remain at the mine.
However, for the mine with the air-filled chamber, energy is seen
to be trapped above the mine and to be radiating waves, even
though the incident wave has passed by.

In Fig. 7, waterfall graphs of the vertical particle velocity
at the surface are shown for (a) the mine with the air-filled

chamber and (b) the mine without the air-filled chamber. Here,
is plotted as a function of time and vertically offset by the

distance from the source. The slope of the traveling waves in
the graph indicates the wave speed. Thus, by looking at their
slope, the different waves can be distinguished. A Rayleigh sur-
face wave (R) and a pressure wave (P) are seen to be incident
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(a) (b)

Fig. 6. Interaction of elastic waves with a buried antipersonnel mine and pseudo-color plots of the magnitude of the particle velocity on a cross section through
the ground. (a) Mine with air-filled chamber. (b) Mine without air-filled chamber. R: Rayleigh wave; S: Shear wave; P: pressure wave; H: Head wave; rR:reflected
Rayleigh wave; rS: reflected Shear wave; rP: reflected pressure wave. The arrow in the upper two plots denotes the source location.

onto the mine. The pressure wave is reflected and transmitted by
the mine. It converts into a reflected pressure wave, a reflected
surface wave, a transmitted pressure wave (P), and a transmitted

surface wave (R). These waves are weak, due to the limited en-
ergy content of the pressure wave near the surface. The pressure
wave is seen to travel faster over the mine than in the sand.
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(a)

(b)

Fig. 7. Interaction of elastic waves with a buried antipersonnel mine and
waterfall graph of the vertical particle velocity at the surface. (a) Mine with
air-filled chamber and (b) mine without air-filled chamber. R: Rayleigh wave;
P: pressure wave; rR: reflected Rayleigh wave; rP: reflected pressure wave.
The gray box indicates the mine location.

This is due to the higher wave speed in the mine. The incident
surface wave gives rise to a reflected pressure wave (rP), a re-
flected surface wave (rR), a transmitted pressure wave (P), and
a transmitted surface wave (R). For the mine with the air-filled
chamber [Fig. 7(a)], a strong resonance can be seen at the mine
location. The resonance remains at the mine even after the in-
cident surface wave has passed by, and causes the mine to ra-
diate. This resonance is due to energy being trapped between
the mine and the surface. The nature of this resonance will be
explored further in Section III-B. For the mine without the air-
filled chamber [Fig. 7(b)], no resonance occurs.

A. Comparison to Experimental Results

The results obtained with the numerical model are in fairly
good agreement with experimental results [2]. In the experi-
mental setup, an inert TS-50 antipersonnel mine (see Fig. 5) is
buried in sand. A differentiated Gaussian pulse with a center
frequency of 450 Hz is launched by an electrodynamic trans-
ducer placed on the surface of the ground, 85 cm away from

Fig. 8. Interaction of elastic waves with a buried antipersonnel mine
(experimental results) and waterfall graph of the vertical particle displacement
at the surface. R: Rayleigh wave; P: pressure wave; rR: reflected Rayleigh
wave; rP: reflected pressure wave. The gray box indicates the mine location.

the mine. Above the surface, a radar that detects the vibrations
of the surface is mounted. Fig. 8 shows a waterfall graph of
the vertical particle displacement2 on the surface as obtained
in measurements with an inert TS-50 antipersonnel mine. The
mine is buried 1.3 cm beneath the surface. The shear wave
speed and the pressure wave speed were measured to be 87 m/s
and 250 m/s, respectively. A pressure wave (P) and a Rayleigh
wave (R) are seen to propagate and to interact with the buried
mine. A resonance very similar to the one obtained in the
numerical simulation of the mine with the air-filled chamber
is observed. In the experimental model, the resonance appears
stronger than in the numerical model, whereas in the numerical
model, the reflections from the mine are much stronger. These
differences are mainly due to the numerical model being 2-D,
whereas the experimental model is 3-D. Furthermore, the
model for the mine used in the numerical simulation is very
simple and approximates the complex structure of a real land
mine only very coarsely.

In the experiment, the Rayleigh surface wave is seen to be dis-
persed as it travels along the surface. This is believed to be due
to the shear wave speed varying with depth. Due to increased
cohesion of the sand, the sand becomes stiffer if subjected to in-
creased pressure and thus, the shear wave speed increases with
depth [13]. Empirically, the depth dependence of the sand has
been estimated to be

m/s (11)

where is the depth in meters. Using this depth dependence
within the numerical model, the Rayleigh wave disperses in a
very similar manner as observed experimentally (Fig. 9).

B. Resonance

Both in the experiment and in the numerical simulation, a
strong resonance is seen at the mine location. Though the nu-

2Note that experimentally, the particle displacement is measured, whereas
the particle velocity is determined in the numerical model. Since the particle
velocity is just the time derivative of the particle displacement, both wave fields
bear the same characteristic behavior.
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Fig. 9. Interaction of elastic waves with a buried antipersonnel mine
(numerical simulation for a mine with air filled chamber) and waterfall graph
of the vertical particle velocity at the surface (mine with air-filled chamber).
The shear wave speed within the ground varies with depth and causes the
waves to disperse. R: Rayleigh wave; P: pressure wave; rR: reflected Rayleigh
wave; rP: reflected pressure wave. The gray box indicates the mine location.

Fig. 10. Model to determine the nature of the resonance (elongated mine).

merical model for the mine is very simple, the shape of the res-
onance in the experiment strongly resembles the resonance ob-
tained in the simulation. In order to explore the origin of the
resonance and its nature, the mine is elongated within the nu-
merical model, as shown in Fig. 10.

The resulting waves are shown in Fig. 11. The vertical par-
ticle velocity on the surface is depicted in a waterfall graph.
As before, the waves can be easily distinguished by comparing
their wave speeds. Pressure waves (P), Rayleigh waves (R), and
head waves (H) are seen to propagate. They hit the mine and
are partially reflected and partially transmitted. However, above
the mine, a complex pattern of propagating waves arises. This
can be explained as follows. First, the pressure wave hits the
mine. The pressure wave couples its energy mostly into three
different wave portions: reflected waves, waves that are trans-
mitted through the plastic body underneath the air chamber, and
waves that propagate within the thin layer between the surface
and the air chamber. Because the plastic body lies underneath
the air chamber, the wave portion transmitted through the plastic
is not visible on the surface. This is evident in Fig. 11, where a
transmitted pressure wave arises beyond the mine, apparently
without being caused by any wave visible on the surface above
the air chamber (the path the wave takes through the plastic is
indicated by Pm). The Rayleigh wave carries much more en-
ergy than the pressure wave. When the Rayleigh wave hits the

Fig. 11. Waves in the thin layer between the surface and the air chamber and
waterfall graph of the vertical particle velocity.

Fig. 12. Waves in the thin layer between the surface and the air chamber. The
waves are almost totally reflected at the edge of the air chamber and are thus
trapped within the thin layer above the air chamber.

mine, the same kinds of waves arise as for the incident pressure
wave: reflected waves (pressure and Rayleigh waves, marked by
rP and rR), waves transmitted through the plastic body (pM),
and waves propagating within the thin layer between surface
and air chamber. The waves through the plastic body behave as
described for the pressure wave. However, the Rayleigh wave
couples a significant amount of energy into the thin layer above
the air chamber. Two different kinds of waves arise within the
thin layer: a longitudinal wave and a transverse flexural wave.
The longitudinal wave is the faster one of the two. It propagates
within the thin layer between surface and air chamber (L), is re-
flected at the edge of the air chamber (rL), travels back within
the layer and is reflected again. The transverse flexural wave
also travels within the layer between surface and air chamber
(TF), is reflected (rTF), travels back, and is again reflected.
Note that the flexural waves are almost totally reflected at the
edges of the air chamber, and the energy remains within the thin
layer between surface and air chamber. Fig. 12 gives a schematic
drawing of the principle behavior of the arising waves.

Using this model, the resonant behavior of the mine in the nu-
merical model can be explained. When the waves hit the mine,
they are partially reflected and partially transmitted. However,
a large portion of the energy couples over into longitudinal and
transverse (flexural) waves propagating within the thin layer be-
tween the surface and the mine’s air chamber. Due to the short
length of the mine, these waves form standing waves.

From the slope of the traveling waves in Fig. 11, the wave
speeds of the longitudinal wave and the transverse flexural wave
are determined to be 160 m/s and 50 m/s, respec-
tively. A simple theory for waves propagating in a thin plate
predicts the wave speeds of the longitudinal wave to be [10]

(12)
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and the wave speed of the transverse flexural wave to be

(13)

where and are Young’s modulus and Poisson’s ratio, re-
spectively, is the material density, and is the thickness of
the thin plate. For the longitudinal wave, this yields a wave ve-
locity of 163 m/s. For a transverse flexural wave with a
center frequency 450 Hz and for a plate thickness of
2 cm, a wave speed of 52 m/s is predicted. This is in
good agreement with the wave speeds obtained from the nu-
merical simulation. Note that the wave speed of the transverse
flexural wave is dependent on frequency, while the speed of the
longitudinal wave is not. Thus, the transverse wave is strongly
dispersive. The dispersion of the transverse flexural wave can
be clearly seen in Fig. 11.

Note that the analysis of the resonant behavior of an actual
mine is much more complex, and the argument outlined here
gives only one possible cause for the occurring resonance. An
actual mine is 3-D, has a flexible case that can support both
flexural and longitudinal waves, and contains springs that can
also give rise to resonances. The authors believe that the reso-
nances observed in the experiments are due to flexural waves
being trapped in both the case of the mine and the layer of
soil above the mine. Experimentally, resonances are observed
in mines flush with the surface of the ground. The authors are
working to improve the model so that it more accurately pre-
dicts the mine–wave interactions.

IV. CONCLUSIONS

A finite-difference model has been developed and imple-
mented in 2-D. An analytical solution was used to validate
the finite-difference model. The finite-difference model was
used to investigate the interaction of elastic waves with a
buried antipersonnel mine. The TS-50 antipersonnel mine was
approximated by two different models: one with an air-filled
chamber and one without an air-filled chamber. Even though
the numerical model was very simple, the results from the
numerical model were found to be in good qualitative agree-
ment with experimental results. Both in the experiment and
in the numerical model containing the air-filled chamber, a
strong resonanance at the mine location occured, whereas the
model without the air-filled chamber did not show resonant
oscillations. The nature of the resonance was investigated by
slightly modifying the numerical model. If the air-chamber
is elongated, flexural waves are seen to be excited and to
propagate within the thin layer between the surface and air
chamber. These waves are almost totally reflected at the edges
of the air chamber and are thus trapped within the thin layer. In
these experiments, the Rayleigh wave was seen to disperse as it
travels along the surface. By assuming a depth-dependent shear
wave speed, this effect can be reproduced within the numerical
model.
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