<u>RESOURCE</u>

Molecular Ecology Resources (2011) 11, 219-222

PERMANENT GENETIC RESOURCES NOTE

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2010 – 30 September 2010

MOLECULAR ECOLOGY RESOURCES PRIMER DEVELOPMENT CONSORTIUM, RAMESH K. AGGARWAL,¹ JOEL ALLAINGUILLAUME,² M. M. BAJAY,³ SANTAN BARTHWAL,⁴ P. BERTOLINO,^{5, 6, 7} PRITI CHAUHAN,⁴ SOFIA CONSUEGRA,² ADAM CROXFORD,² DESIRÉ L. DALTON,^{8,9} E. DEN BELDER,¹⁰ E. DÍAZ-FERGUSON,¹¹ M. R. DOUGLAS,¹² MICHAEL DREES,¹³ J. ELDERSON,¹⁰ G. D. ESSELINK,¹⁰ J. F. FERNÁNDEZ-MANJARRÉS,^{5,6,7} N. FRASCARIA-LACOSTE,^{5,6,7} STEFFI GÄBLER-SCHWARZ,¹⁴ CARLOS GARCIA DE LEANIZ,¹⁵ H. S. GINWAL,⁴ MICHAEL A. D. GOODISMAN,¹⁶ BAOLING GUO,¹⁷ M. B. HAMILTON,¹⁸ PAUL K. HAYES,¹⁹ YAN HONG,²⁰ TADASHI KAJITA,²¹ STEVEN T. KALINOW-SKI,²² LAURENT KELLER,²³ BEN F. KOOP,²⁴ ANTOINETTE KOTZÉ,^{8, 9} ALBERT LALREMRUATA,¹ FLORIAN LEESE,²⁵ CHUNHONG LI,²⁰ W. Y. LIEW,²⁶ S. MARTINELLI,²⁷ EMILY A. MATTHEWS,¹⁶ LINDA K. MEDLIN,^{28, 29} AMBER M. MESSMER,²⁴ ELISABETH I. MEYER,¹³ M. MONTEIRO,³ G. R. MOYER,³⁰ R. JOHN NELSON,³¹ THUY T. T. NGUYEN,^{32,33,34} C. OMOTO,³⁵ JUNYA ONO,²¹ V. A. C. PAVINATO,³⁵ MORGAN PEARCY,²³ J. B. PINHEIRO,³ L. D. POWER,¹⁸ ANITA RAWAT,⁴ THORSTEN B. H. REUSCH,³⁶ DAN SANDERSON,²⁴ J. SANNIER,^{5,6,7} SANTOSH SATHE,³⁷ C. K. SHERIDAN,¹⁸ M. J. M. SMULDERS,¹⁰ A. SUKGANAH,²⁶ KOJI TAKAYAMA,^{21,38} MARIKO TAMURA,²¹ YOICHI TATEISHI,³⁹ DELPHINE VANHAECKE,² NINH V. VU,²² R. WICKNESWARI,²⁶ A. S. WILLIAMS,³⁰ G. M. WIMP,¹⁸ VOLKER WITTE,⁴⁰ and M. I. ZUCCHI⁴¹

¹Centre for Cellular and Molecular Biology (CSIR), Hyderabad 500007, India; ²Aberystwyth University, Institute of Biological, Environmental & Rural Sciences, Aberystwyth SY23 3DA, UK; ³Departamento de Genética, Universidade de São Paulo-USP, Av. Pádua Dias, 11, Vila Independência, C.P. 83, Piracicaba, SP 13400-970, Brazil; ⁴Division of Genetics and Tree Propagation, Forest Research Institute, P.O.I.P.E Kaulagarh Road, Dehradun 248195(Uttrakhand) India; ⁵CNRS, UMR 8079, Orsay, F-91405, France; ⁶AgroParisTech, Paris, F-75231, France; ⁷Université Paris-Sud, UMR 8079, Orsay, F-91405, France; ⁸National Zoological Gardens of South Africa, PO Box 754, Pretoria, 0001, South Africa; ⁹Genetics Department, University of the Free State, PO Box 339, Bloemfontein, 9300 South Africa; ¹⁰Plant Research International, Wageningen UR, PO Box 16, NL-6700 AA Wageningen, The Netherlands;¹¹223 Bartram Hall, Department of Biology, University of Florida, Gainesville, FL 32611, USA;¹²Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA; ¹³Department of Limnology, University of Muenster (WWU) – Institute for Evolution and Biodiversity, Huefferstr. 1, 48149 Muenster, Germany;¹⁴Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany; ¹⁵Department of Pure & Applied Ecology, Swansea University, School of the Environment and Society, Singleton Park, Swansea SA2 8PP, UK;¹⁶School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA;¹⁷Institute of Medical Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, China;¹⁸Department of Biology, Georgetown University, Reiss Sciences Building 406, 37th and O Streets NW, Washington, DC 20057, USA; ¹⁹Faculty of Science, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK; ²⁰Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; ²¹Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; ²²310 Lewis Hall, Department of Ecology, 310 Lewis Hall, Montana State University, Bozeman, MT 59717, USA; ²³University of Lausanne, Biophore, 1015 Lausanne, Switzerland;²⁴Centre for Biomedical Research, PO Box 3020 STN CSC, University of Victoria, Victoria, B.C., V8W 3N5, Canada; ²⁵Animal Ecology, Evolution and Biodiversity, Ruhr University, 44780 Bochum, Germany; ²⁶School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia;²⁷Monsanto do Brasil Ltda. Av. Nações Unidas, 12.901 - 7º andar - Torre Norte, São Paulo, SP 04578-000, Brazil; ²⁸UPMC Univ Paris 06, UMR 7621, LOMIC, Observatoire Océanologique, F-66651 Banyuls/mer, France; ²⁹CNRS, UMR 7621, LOMIC, Observatoire Océanologique, F-66651 Banyuls/mer, France; ³⁰Warm Springs Fish Technology Center, Conservation Genetics Laboratory, US Fish and Wildlife Service, 5308 Spring Street, Warm Springs, GA 31830, USA; ³¹Institute of Ocean Sciences, PO Box 6000, 9860 West Saanich Road, Sidney, B.C., V8L 4B2Canada; ³²Network of Aquaculture Centres in Asia-Pacific PO Box 1040, Kasetsart Post Office, Bangkok 10903, Thailand; ³³School of Life and Environmental Sciences, Geelong Campus at Waurn Ponds, Geelong, VIC 3217, Australia; ³⁴Victorian AgriBioSciences Centre, 1 Park Drive,

Correspondence: Molecular Ecology Resources Primer Development Consortium, E-mail: editorial.office@molecol.com

220 PERMANENT GENETIC RESOURCES NOTE

Bundoora, VIC 3080, Australia; ³⁵Departamento de Entomologia e Acarologia, Universidade de São Paulo-USP, Av. Pádua Dias, 11, Vila Independência, C.P. 83, Piracicaba, SP 13400-970, Brazil; ³⁶Leibniz-Institut for Marine Sciences IFM-GEOMAR, Evolutionary Ecology of Marine Fishes, Duesternbrooker Weg 20, 24105 Kiel, Germany; ³⁷Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India; ³⁸Department of Plant Systematic and Evolutionary Botany, Institute of Botany, University of Vienna, Rennweg 14, A-1030 Wien, Austria; ³⁹Faculty of Education, University of the Ryukyus, 1 Senbaru, Nakagami-gun, Okinawa 903-0129, Japan; ⁴⁰Department Biologie II, Ludwig-Maximilians-Universität, Munich, Germany; ⁴¹Agência Paulista de Tecnologia dos Agronegócios, Pólo Centro Sul, CP28, Rodovia SP 127, Km30 Bairro:Vila Fátima, Piracicaba, SP 13400-970, Brazil

Abstract

This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis × Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.

This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Table 1 contains information on the focal species, the number of loci developed, any other species the loci were tested in and the accession numbers for the loci in both the Molecular Ecology Resources Database and GenBank. The authors responsible for each set of loci are listed in the final column. A full description of the development protocol for the loci presented here can be found in the Molecular Ecology Resources Database (http:// tomato.biol.trinity.edu/).

Table 1 Information on the focal species, the number of loci developed, any other species the loci were tested in and the accession numbers for the loci in both the Molecular Ecology Resources Database and GenBank. The authors responsible for each set of loci are listed in the final column

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors
Acacia auriculiformis × Acacia mangium hybrid	20	Acacia peregrinalis, Acacia crassicarpa	44734–44741, 44812–44823	HQ110862-HQ110881	Sukganah, A; Liew, W.Y.; Wickneswari, R.
Alabama argillacea	10	n/a	44502–44508, 44510–44512	GF102184-GF102193	Pavinato, V.A.C.; Bajay, M.M.; Martinelli, S.; Monteiro, M.; Pinheiro, J.B.; Zucchi, M.I.; Omoto, C.
Anoplopoma fimbria	13	n/a	44824–44836	GO616605.1, GO616986.1, GO617191.1, GO618107.1, GO618227.1, GO618807.1, GO618865.1, GO619216.1, GO620444.1, GO620529.1, GO629344.1, GO638529.1, GO646855.1	Messmer, Amber M.; Sanderson, Dan; Nelson, R. John; Koop, Ben F.
Aplochiton zebra	13	n/a	44587–44599	НМ997136-НМ997140, НМ997142-НМ997148, НQ003931	Vanhaecke, Delphine; Croxford, Adam; Allainguillaume, Joel; Garcia de Leaniz, Carlos; Consuegra, Sofia

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors
Brevicoryne brassicae	9	n/a	44548-44556	FN820283-FN820291	Esselink, GD; den Belder, E; Elderson, J; Smulders, MIM
Bruguiera gymnorhiza	14	B. cylindrica	44644–44654, 44656–44658	AB571659–AB571669, AB571671–AB571673	Takayama, Koji; Tamura, Mariko; Ono, Junya; Tateishi, Yoichi: Kajita, Tadashi
Bucorvus leadbeateri	12	n/a	44565-44567,	HM590197–HM590203, HM590206–HM590210	Dalton, Desiré L; Kotzé, Antoinette
Delphacodes detecta, Tumidagena minuta	10,7	Delphacodes detecta, Tumidagena minuta	44673–44693	HM626384-HM626400	Sheridan, C. K.; Douglas, M. R.; Power, L. D.; Wimp, G. M.; Hamilton, M. B.
Dictyostelium giganteum	12	Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum	44709, 44710, 44712–44721	GU904555, GU904556, GU904559, GU904560, GU904562–GU904565, GU904567–GU904569, GU904573	Sathe, Santosh; Lalremruata, Albert; Aggarwal, Ramesh K.
Echinogammarus berilloni	11	n/a	44600-44610	HQ185684-HQ185694	Drees, Michael; Reusch, Thorsten B. H.; Meyer, Elisabeth I.
Epimedium sagittatum	8	Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese	44557–44564	HM623765-HM623772	Li, Chunhong; Guo, Baoling; Hong, Yan
Fraxinus excelsior	15	Fraxinus angustifolia	44694-44708	FR635387, FR636736, FR637753, FR638723, FR639294, FR639485, FR639792, FR640915, FR642190, FR644535, FR644953, FR645030, FR645771, FR645842, FR646655	Sannier, J.; Bertolino, P.; Frascaria-Lacoste, N.; Fernández-Manjarrés, J. F.
Labeo chrysophekadion	9	n/a	44578–44586	HM641012–HM641020, AJ291680, AJ507524	Nguyen, Thuy T. T.
Oncorhynchus clarki lewisi	12	n/a	44536-44547	HM153812-HM153823	Vu, Ninh V.; Kalinowski, Steven T.
Paratrechina longicornis	15	n/a	44611–44625	HM210893–HM210895, HM210900, HM210909, HM210910, HM210912, HM210913, HM210915–HM210917, HM210919–HM210921, HM210929, HM210934, HM210935, HM210937, HM357722	Matthews, Emily A.; Pearcy, Morgan; Witte, Volker; Keller, Laurent; Goodisman, Michael A. D.
Phaeocystis antarctica	8	n/a	44636–44643	HQ132752-HQ135759	Gäbler-Schwarz, Steffi; Leese, Florian; Hayes, Paul K.; Medlin, Linda K.

Table 1 Continued

222 PERMANENT GENETIC RESOURCES NOTE

Table 1 Continued

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors		
Pinus roxburghii	19	n/a	44793–44811	See text for details.	Chauhan, Priti; Ginwal, H.S.; Rawat, Anita; Barthwal, Santan		
Potamilus capax	12	n/a	44661–44672	HM991151, HM991153–HM991163	Díaz-Ferguson, E.; Williams, A.S.; Moyer, G.R.		

MOLECULAR ECOLOGY RESOURCES

New microsatellite markers in the longhorn crazy ant, Paratrechina longicornis

Journal:	Molecular Ecology Resources
Manuscript ID:	MER-10-0276.R1
Manuscript Type:	Permanent Genetic Resources Note
Date Submitted by the Author:	n/a
Complete List of Authors:	Matthews, Emily Pearcy, Morgan Witte, Volker Keller, Laurent Goodisman, Michael; Georgia Institute of Technology, Biology
Keywords:	Behavior/Social Evolution, Population Genetics - Empirical, Insects, Invasive Species

New microsatellite markers in the longhorn crazy ant, Paratrechina longicornis

Emily A. Matthews¹, Morgan Pearcy², Volker Witte³, Laurent Keller², Michael A. D. Goodisman¹

¹School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA

² University of Lausanne, Biophore, 1015 Lausanne, Switzerland.

³Department Biologie II, Ludwig-Maximilians-Universität, München, Germany

Correspondence: M. Goodisman, School of Biology, Georgia Institute of Technology, 310 Ferst Dr., Atlanta, GA, USA. 30332; michael.goodisman@biology.gatech.edu; phone, 1-404-385-6311; fax, 1-404-894-0519

Keywords: Hymenoptera, inbreeding, invasive species, parthenogenesis, polygyny

Abstract

We report the development of 15 microsatellite markers in the longhorn crazy ant, *Paratrechina longicornis*. The loci displayed modest levels of variation (mean of 2.16 alleles per locus) in workers sampled from 14 invasive populations. In addition, almost all loci displayed levels of observed heterozygosity greatly exceeding Hardy-Weinberg proportions, suggesting that *P. longicornis* possesses a nonstandard breeding system. Finally, populations displayed significant genotypic differences. Consequently, the microsatellite markers should prove useful in charting the invasion history and breeding biology of this introduced pest.

sta. nces. story and b.

Main Text

The longhorn crazy ant, *Paratrechina longicornis*, is one of the most broadly distributed invasive social insects (Wetterer 2008). However, little is known about its breeding biology or patterns of invasion. Molecular genetic markers can provide considerable insight into these basic issues (Avise 2004). Here we report the development of microsatellite markers for *P. longicornis* and document intriguing results arising from analyses of genetic variation.

We constructed a *P. longicornis* genomic DNA library by extracting genomic DNA from ~50 fresh, adult workers using the DNeasyTM kit (Qiagen). DNA was partially digested with the enzyme Tsp509I (New England Biolabs). Fragments 500-1500 bps in size were selected using agarose gel electrophoresis and then purified using the Prep-A-Gene® (Bio-Rad) system. The fragments were then ligated into pBluescriptTM II plasmid (Stratagene). Plasmids were then transformed into XL10 GoldTM (Stratagene) competent cells producing a library of ~571,000 cfus.

We screened 960 clones from the library for of DNA microsatellites using the method of Gaublomme *et al.* (2003). Briefly, PCRs conducted in Eppendorf Mastercycler® PCR machines were carried out on individual clones using either the T3 or T7 primer in conjunction with all of the following primers: $(CT)_{10}$, $(TG)_{10}$, $(GAA)_8$, $(TAA)_8$, and $(TGTA)_6(TG)$. The presence of a smeared PCR product visualized on an agarose gel suggested that a microsatellite was present in the clone. PCRs contained a final concentration of 1X PCR buffer, 0.2 mM dNTPs, 1.5 mM MgCl₂, 0.5 U Taq DNA polymerase (Fisher, HotMasterTM), and 0.5 μ M of each primer, in addition to 1 μ L of template DNA obtained from a bacterial colony resuspended in 1000 μ L of water, in a final volume of 10 μ L. PCRs consisted of 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 2 min. In total, 80 clones appeared to contain a microsatellite. These clones were sequenced. The program PRIMER 3 (Koressaar& Remm 2007) was then used to design PCR primers for 29 high-quality loci.

We conducted initial assays of these primers using PCRs that contained a final concentration of 1X PCR buffer, 0.2 mM dNTPs, 1.5 mM MgCl₂, 0.5 U Taq DNA polymerase, 0.5 μ M of each forward and reverse primer, and 1 μ L of genomic DNA extracted from ethanol-preserved workers using the Chelex® protocol (Crozier *et al.* 1999) in a final volume of 15 μ L. PCR cycling was as described above except that the annealing temperature was locus-specific (Table 2).

Eighteen loci produced consistent bands on agarose gels and were thus further analyzed for variability by labeling the forward primer for each locus with 6FAM and HEX dyes (Sigma-Genosys) and sizing the amplicons on an ABI Prism 3100 DNA Analyzer (Applied Biosystems). The variability of markers was assessed on workers obtained from several populations (Table 1). We used the program GENEPOP (Raymond& Rousset 1995) to determine observed and expected heterozygosities, inbreeding coefficients (F_{IS}), deviations of genotype frequencies from Hardy-Weinberg proportions (probability test), levels of gametic disequilibrium, and significance of differentiation among populations.

Three of the loci were monomorphic. The other 15 loci showed unusual patterns of genetic diversity. Almost all of the variable loci displayed significantly negative F_{IS} values, indicating an *excess of heterozygotes* in populations (Table 2). This pattern was associated with highly significant (P < 0.001) gametic disequilibrium among most loci.

To determine if these results arose as an artifact associated with primer development, we genotyped ants from the Oracle population (Table 1) with primers developed from two other species, *Camponotus festinatus* and *C. consubrinus*. The loci Cfes1, Cfes3 (Goodisman& Hahn 2005), Ccon12, Ccon20, Ccon42, and Ccon70 (Crozier *et al.* 1999) successfully amplified in *P. longicornis*. More importantly, *P. longicornis* workers displayed the same fixed heterozygous genotypes at all polymorphic loci (Cfes1, Cfes3, Ccon12, and Ccon70) consistent with findings from our Plon loci. Thus, the unusual patterns of heterozygosity were not an artifact of our development method. Detailed analyses indicate that the high observed heterozygosities in *P. longicornis* result from an unusual mode of reproduction. These results will be described elsewhere.

In addition to the unusual patterns of heterozygosity, most loci displayed relatively low levels of genetic diversity. This may be related to the fact that the ant is introduced in all sampled populations and thus may possess limited genetic diversity due to population bottlenecks. Regardless, significant (P < 0.05) genotypic differentiation was present among populations for all loci. Thus the markers will be informative for examining patterns of gene flow among invasive populations.

Acknowledgments

We thank J. K. Wetterer for providing biological samples and the Georgia Institute of Technology for financial support.

References

- Avise JC (2004) *Molecular markers, natural history, and evolution.* Sinauer Associates, Inc., Sunderland, MA.
- Crozier RH, Kaufmann B, Carew ME, Crozier YC (1999) Mutability of microsatellites developed for the ant *Camponotus consobrinus*. *Molecular Ecology* **8**, 271-276.
- Gaublomme E, Dhuyvetter H, Verdyck P, *et al.* (2003) Isolation and characterization of microsatellite loci in the ground beetle *Carabus problematicus* (Coleoptera, Carabidae). *Molecular Ecology Notes* **3**, 341-343.
- Goodisman MAD, Hahn DA (2005) Breeding system, colony structure, and genetic differentiation in the *Camponotus festinatus* species complex of desert carpenter ants. *Evolution* **59**, 2185-2199.
- Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. *Bioinformatics* **23**, 1289-1291.
- Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. *Journal of Heredity* **86**, 248-249.
- Wetterer JK (2008) Worldwide spread of the longhorn crazy ant, *Paratrechina longicornis* (Hymenoptera: Formicidae). *Myrmecological News* **11**, 137-149.

Table 1. Number (*N*) of *Paratrechina longicornis* workers sampled.

Population	Ν
Scotts Head, Dominica	8
Forres Park, Trinidad and Tobago	8
Port of Spain, Trinidad and Tobago	7
Jupiter, Florida, United States	8
Hamilton, Bermuda	9
Funchal, Madeira	8
Nananu-i-ra Island, Fiji	8
Bonaire, Netherlands Antilles	9
Dry Tortugas, United States	8
Mapusaga, American Samoa	9
Efate, Vanuatu	9
Arnos Vale, St. Vincent and the Grenadines	9
Oracle, Arizona, United States	82
Bangkok, Thailand	245

Locus	Genbank ID(s)	Primers	T_a	Core repeat	\overline{A}^{2}	A_T^{3}	Size Range	\overline{H}_0^4	\overline{H}_{E}^{5}	\overline{F}_{IS}^{6}
Plon-1.B9 ⁷	HM210895	F: AACGGGAAGGAAGGTGAGAC	66	(GA) ₃ AC(GA) ₁₀	2.000	2	202 - 206	0.996	0.501	-0.991***
		R: AGGGAGAAACCACACACGAG								
Plon-1.H3	HM210893	F: TCAGTGCGATTCACAACCAT	61	(CT) ₁₆	3.308	14	195 - 225	0.898	0.64	-0.474***
	HM210894	R: TGTAAGTCCGACCCTCAACC								
Plon-3.C4	HM210900	F: CGTACATGCACTCATACAT	55	(CT) ₁₄	2.071	7	163 - 181	0.455	0.379	-0.190***
		R: GCGCTTCGCACTAGTTTC								
Plon-4.E6	HM210909	F: ACAACGTGCATAAATATCTC	61	(AC) ₇ (GC) ₆ AC(GC) ₄	2.357	6	116 - 129	0.934	0.575	-0.782***
		R: TAGAATTTTATGCGGAAAG								
Plon-5.C3	HM210912	F: GTAGGTCAAATCTCAGTGAA	61	(GA) ₄₃	1.857	8	157 - 193	0.216	0.312	0.333***
	HM210913	R: GTCATTTTAAGCGATACATT								

Page 7 of 8		M	olecula	ar Ecology Resources	5					
Plon-5.F7 ⁷	HM210910	F: TAAGAGGGGTCACAGCAT	59	(GA) ₁₀	2.000	2	160 - 172	0.996	0.501	-0.992***
		R: CTTTTTCATCATCCCTTC								
Plon-7.H4	HM210915	F: TGTCGACTACAGTTCACTATC	61	(CT) ₅ TT(CT) ₆	1.500	4	152 - 160	0.431	0.250	-0.771**
		R: GAACTTTAATTCGGTCATC								
Plon-8.A8	HM210916	F: TTCATCTTTCCGATAGTTC	55	(CT) ₁₁	2.000	7	162 - 190	1.000	0.556	-0.963***
		R: TCCTCTACACTCAGAGATTG								
Plon-8.F2	HM210921	F: AGCGACGATTCGCTTTTA	61	(AC) ₉	2.357	8	159 - 182	0.968	0.592	-0.769***
		R: CCTCTCTTTTCGATCACAAC								
Plon-8.G5 ⁷	HM210919	F: TAAGCTCTCGTCTTCATTAC	61	(CT) ₁₃	2.000	2	340 - 368	0.996	0.501	-0.992***
	HM210920	R: GCTTAAACGAAACTCACAC								
Plon-8.G7	HM210917	F: TATATAGCGATTCTGCTTTT	55	(CT) ₁₀	1.077	2	145 - 147	0.009	0.023	0.636
		R: CGTTAAGTTAAATGAAGCTC								

Molecular Ecology Resources Pa											
Plon-9.A4 ⁷	HM357722	F: AAGCGCAAAAGAGAGAGACTGC	65	(CT) ₁₂	3.000	3	159 - 175	1.000	0.627	-0.597***	
		R: GCGGGCGAGAAGTGCATC									
Plon-10.B7 ⁷	HM210934	F: ATCGTTAGTAAGGAAGGAAC	61	(CT) ₃₈	3.000	3	210 - 223	1.000	0.627	-0.598***	
	HM210935	R: GAGCAAAGATAGATGGATAG									
Plon-10.E7 ⁷	HM210937	F: TCGTTCCATGTAACACATA	59	(TA) ₇	2.000	2	183 - 195	0.996	0.501	-0.991***	
		R: GCATCAACCGTAATTTAGTA									
Plon-10.F11	HM210929	F: AGTAACTTAAGATCCTGACG	61	(AC) ₃ (AG) ₇ A(AG) ₇	2.000	2	226 - 228	0.970	0.532	-0.948***	
		R: AGAGAGTGTCAAAGGAGAGT									
 ¹ Annealing temperature. ² Mean numbers of alleles per population. ³ Total numbers of alleles in all populations combined. ⁴ Mean observed heterozygosity across all populations. ⁵ Mean expected heterozygosity across all populations. 											

⁶ Mean F_{IS} across all populations. Significance of deviation from Hardy-Weinberg proportions: ** P < 0.01, *** P < 0.001. ⁷ Measures of genetic diversity obtained from Bangkok population only.