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Synopsis Epigenetic inheritance plays a fundamentally important role in mediating gene regulation and phenotypic

plasticity. DNA methylation, in particular, has been the focus of many recent studies aimed at understanding the function

of epigenetic information in insects. An understanding of DNA methylation, however, requires knowledge of its context

in relation to other epigenetic modifications. Here, we review recent insights into the localization of DNA methylation in

insect genomes and further discuss the functional significance of these insights in the context of the greater eukaryotic

epigenome. In particular, we highlight the complementarity of the eukaryotic epigenetic landscape. We focus on the

importance of DNA methylation to nucleosome stability, which may explain the context-dependent associations of DNA

methylation with gene expression. Ultimately, we suggest that the integration of diverse epigenetic modifications in studies

of insects will greatly advance our understanding of the evolution of epigenetic systems and epigenetic contributions to

developmental regulation.

Introduction

Epigenetic information influences organismal pheno-

types by making contributions to gene regulation

that are transmissible through cell division

(Bonasio et al. 2010). The two most widely studied

forms of epigenetic marks are the methylation of

DNA (Jaenisch and Bird 2003; Klose and Bird

2006; Zemach et al. 2010) and the posttranslational

modification of histone proteins (Kharchenko et al.

2011; Suganuma and Workman 2011), both of which

have been functionally implicated in the regulation

of gene expression in a variety of taxa.

Epigenetic marks can be influenced by environ-

mental variation and are capable of influencing post-

embryonic development (Jaenisch and Bird 2003).

Such a role for intragenic DNA methylation was re-

cently highlighted in the honey bee by Kucharski

et al. (2008), who documented a developmental

shift from the phenotype of workers to the pheno-

type of queens following the knockdown of DNMT3,

an enzyme essential to de novo DNA methylation

(Klose and Bird 2006). In light of this study, much

attention has been devoted to the study of DNA

methylation in insects (Elango et al. 2009; Foret

et al. 2009; Hunt et al. 2010; Lyko et al. 2010;

Xiang et al. 2010; Zeng and Yi 2010; Glastad et al.

2011; Park et al. 2011; Bonasio et al. 2012; Flores

et al. 2012; Foret et al. 2012; Herb et al. 2012;

Lockett et al. 2012; Patalano et al. 2012; Smith

et al. 2012; Weiner and Toth 2012; Glastad et al.

2013; Snell-Rood et al. 2013). These studies have

provided fundamental insights into the targets of

DNA methylation in insect genomes, as well as the

extent of differences in DNA methylation arising

among distinct insect morphs. A lingering question

remains, however: if DNA methylation plays a

fundamental role in developmental regulation,

why has it been lost in several lineages of insects?

(Urieli-Shoval et al. 1982; Zemach et al. 2010;

Glastad et al. 2011; Yi 2012).
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In this review, we highlight recent insights into

the localization of DNA methylation in insect

genomes and synthesize these results with insights

into the eukaryotic epigenome made in model

organisms (for a glossary of epigenetic terminology,

see Table 1). We highlight the complementarity of

the eukaryotic epigenetic landscape, which may be

relevant to understanding the evolutionary loss of

DNA methylation. We also discuss the importance

of DNA methylation to nucleosome dynamics,

which may explain the regulatory correlates of

DNA methylation.

Selective localization of DNA
methylation in insects

The localization of DNA methylation varies substan-

tially among taxa. For example, vertebrate genomes

are globally methylated (Suzuki and Bird 2008). In

contrast, the genomes of invertebrates exhibit rela-

tively sparse levels of DNA methylation, the majority

of which is present within genes (Suzuki and Bird

2008; Feng et al. 2010; Zemach et al. 2010). Recently,

the sequencing of single-base resolution profiles of

DNA methylation on a genomic scale (DNA methy-

lomes) has provided fundamental insights into the

localization of DNA methylation in several insect

taxa (Table 2).

Investigations of insect methylomes have demon-

strated that, although the levels of DNA methylation

in insect species vary substantially (Zemach et al.

2010; Sarda et al. 2012; Glastad et al. 2013; Hunt

et al. 2013), the patterns of DNA methylation in

insects with functional DNA methylation systems ex-

hibit remarkable conservation (Fig. 1) (Zemach et al.

2010). In insects investigated to date, DNA methyl-

ation is highly biased to exons (Fig. 1b), highlighting

the potential role of DNA methylation in exon

definition and splicing (Feng et al. 2010; Lyko

et al. 2010; Bonasio et al. 2012). DNA methylation

in insect genomes is also primarily localized to the

50-region following the translation start site of genes

(Fig. 1a) (Zemach et al. 2010; Bonasio et al. 2012).

In contrast to insects, in a basal chordate, Ciona

intestinalis, intragenic DNA methylation is present

throughout the length of gene bodies (Fig. 1a)

(Zemach et al. 2010). This suggests that the con-

servation of DNA methylation in the 50-region

of genes may be particularly important in insects.

It is noteworthy, however, that the localization

of DNA methylation is unknown for many insect

orders, including those most basal to the diversifi-

cation of Insecta (Glastad et al. 2011). Thus, a full

understanding of the targets of DNA methylation in

insects requires further investigation of DNA meth-

ylation in a greater diversity of insect taxa.

In invertebrates, DNA methylation largely targets

phylogenetically conserved genes (Hunt et al. 2010;

Lyko et al. 2010; Sarda et al. 2012) that are consti-

tutively expressed (Foret et al. 2009; Hunt et al.

2010). It is possible, however, that the inferred con-

stitutive expression and phylogenetic conservation

of methylated genes has been influenced by the use

of whole bodies for assessing DNA methylation in

insects (Table 2), and that data on DNA methylation

Table 1 Glossary of epigenomic terminology

Term Definition

Chromatin The packaged form of the eukaryotic genome. The fundamental unit of chromatin is the nucleosome, but

chromatin also encompasses other DNA-binding proteins and protein complexes that bind nucleosomes.

DNA methylation The addition of a methyl group to DNA. In animals, DNA methylation primarily affects cytosines occurring in a

CpG context (cytosine followed by guanine in 50–30 orientation).

Epigenome A broad term used to describe contributors to genome structure and function that are transmissible through

cellular division, other than the DNA sequence itself.

Histone modification One of many posttranslational alterations to a histone residue (e.g., methylation and acetylation). Distinct histone

modifications exhibit distinct associations with genomic elements and gene regulation.

Histone variant A histone encoded by a non-canonical histone gene. Many histone variants are incorporated into the nucleosome

in a manner independent of replication, unlike canonical histones, and thus can replace canonical histones

throughout the cell cycle.

Nucleosome The fundamental, repeating unit of chromatin, comprised by �147 base pairs of DNA wrapped around a histone

octamer, each normally composed of two copies of the histone proteins H2A, H2B, H3, and H4.

Nucleosome positioning The patterning of nucleosome occupancy along DNA and the extent to which this patterning is consistent

among cells.

Nucleosome turnover The eviction and replacement of the nucleosomes at a given position over time. A high degree of nucleosome

turnover is associated with accessibility of DNA to protein binding and the incorporation of specific histone

variants.
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Fig. 1 Selective localization of DNA methylation in insect genomes. (a) The spatial profile of DNA methylation in genes greater than

4 kb in length in the silk moth Bombyx mori (Zemach et al. 2010), the carpenter ant Camponotus floridanus (Bonasio et al. 2012), and the

honey bee Apis mellifera (Lyko et al. 2010; Zemach et al. 2010) exhibit preferential targeting of DNA methylation to the 50-region of

genes, immediately downstream of the translation start site (ATG). In contrast, DNA methylation in the genome of the invertebrate

chordate Ciona intestinalis (Zemach et al. 2010), which diverged from arthropods roughly 900 million years ago (Hedges et al. 2006), is

targeted throughout the length of gene bodies. The grey line connects mean fractional CpG DNA methylation values at each position

and a smoother curve is shown in black. (b) DNA methylation is also preferentially targeted to exons (versus introns) in the insect taxa

investigated; means with 95% confidence intervals are shown.

DNA methylation and insect epigenomics 321
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from individual cell types will reveal the presence of

DNA methylation in tissue-specific genes. Regardless,

insects with available methylomes also possess fewer

methylated genes than do the highly diverged nonar-

thropod invertebrates, Nematostella vectensis and

C. intestinalis (Sarda et al. 2012). Moreover, methyl-

ated genes in insects represent a subset of methylated

orthologs identified in N. vectensis and C. intestinalis

(Sarda et al. 2012). Likewise, DNA methylation tar-

gets largely overlapping sets of orthologs in the silk

moth, the honey bee, and the fire ant (Sarda et al.

2012; Hunt et al. 2013), indicating that similar genes

are methylated in distinct insect taxa. However, the

difference in DNA methylation levels (Fig. 1b) and

the number of genes targeted in insects, as compared

with N. vectensis and C. intestinalis, suggest that a

dramatic reduction in DNA methylation may have

occurred in the arthropod lineage (Sarda et al. 2012).

Although great progress has been made in

identifying the targets of DNA methylation, little is

known about the greater epigenetic context of DNA

methylation in insects. In the following sections,

we review insights into the epigenome of eukaryotes.

By synthesizing information on highly conserved

components of the eukaryotic epigenome with the

observed localization of DNA methylation in insect

genomes, we hope to advance an understanding of

the function of intragenic DNA methylation.

The epigenomic context of DNA
methylation in insects

Studies of model mammalian and plant systems have

provided great insight into understanding the

complexity and interactive nature of the eukaryotic

epigenome. For example, DNA methylation interacts

with histone modifications and is associated with

nucleosomes (Cedar and Bergman 2009;

Chodavarapu et al. 2010). The regulatory roles of

histone modifications are known to include media-

tion of the binding affinities of protein complexes,

such as those related to transcriptional and splicing

machinery (Luco et al. 2010; Bell et al. 2011; Luco

et al. 2011; Negre et al. 2011; Bintu et al. 2012), as

well as the direct alteration of local chromatin struc-

ture (Henikoff 2008; Bell et al. 2011; Bintu et al.

2012). Furthermore, several important histone mod-

ifications and structural variants show spatially het-

erogeneous patterns of enrichment within the bodies

of actively expressed genes and are themselves pre-

dictive of gene activity (Roy et al. 2010; Ha et al.

2011; Kharchenko et al. 2011; Bieberstein et al. 2012;

Bintu et al. 2012; Coleman-Derr and Zilberman

2012). Indeed, numerous empirical studies have

demonstrated that histone modifications and variants

influence transcriptional regulation (Henikoff 2008;

Luco et al. 2010; Bintu et al. 2012).

Great strides have been made in profiling the

chromatin landscape of the model insect,

Drosophila melanogaster (Celniker et al. 2009; Filion

et al. 2010; Roy et al. 2010; Kharchenko et al. 2011;

Negre et al. 2011). For example, it has been shown

that transcriptionally active, broadly expressed, genes

are associated with multiple, specific histone modifi-

cations (Filion et al. 2010; Roy et al. 2010;

Kharchenko et al. 2011). Similarly, DNA methylation

is known to target actively transcribed genes in

insects (Fig. 2a) (Foret et al. 2009; Zemach et al.

2010; Nanty et al. 2011). Moreover, the genomic

localization of many histone modifications is highly

conserved in diverse eukaryotic taxa (Bernstein et al.

2005; Feng and Jacobsen 2011; Woo and Li 2012;

Simola et al. 2013). Comparative analyses of DNA

methylation in non-model insects and histone mod-

ifications in D. melanogaster further suggest

that DNA methylation is highly colocalized with

several active histone modifications (Fig. 2) (Nanty

et al. 2011; Hunt et al. 2013)

The function of DNA methylation
in insects

The presence of DNA methylation in several insect

lineages (Glastad et al. 2011), despite the highly

Table 2 DNA methylomes from insect taxa

Species DNA methyltransferases Tissue

Apis mellifera (honey bee) DNMT1, DNMT2, DNMT3 Whole body (Feng et al. 2010; Zemach et al. 2010), brain (Lyko et al.

2010), head (Foret et al. 2012)

Camponotus floridanus (carpenter ant) DNMT1, DNMT2, DNMT3 Whole body (Bonasio et al. 2012)

Harpegnathos saltator (jumping ant) DNMT1, DNMT2, DNMT3 Whole body (Bonasio et al. 2012)

Solenopsis invicta (red imported fire ant) DNMT1, DNMT2, DNMT3 Whole body (Hunt et al. 2013)

Bombyx mori (silk moth) DNMT1, DNMT2 Whole body (Zemach et al. 2010), silk gland (Xiang et al. 2010)
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mutagenic nature of DNA methylation in animals

(Elango et al. 2008), suggests that the methylation

of DNA makes important functional contributions

to insect epigenomes. It has long been hypothesized

that one of the most important functions of DNA

methylation is to influence the interactions between

histones and DNA (Kass et al. 1997; Pennings et al.

2005). More recently, it has been demonstrated that

DNA methylation alters the nucleosome by increas-

ing the rigidity of histone-bound DNA, resulting in

tighter wrapping of DNA around histones and a

reduction in the linker DNA length between histone

octamers (Choy et al. 2010; Lee and Lee 2011).

The fact that DNA methylation can alter the

stability of the nucleosome has several important

implications for studies of epigenetic gene regulation.

For example, at high densities, RNA polymerase

(Pol) II’s traversal of the nucleosome can result in

eviction of the nucleosome (Kulaeva et al. 2010),

thereby exposing intragenic DNA-binding sites that

would otherwise be occluded (Henikoff 2008).

In this manner, eviction of nucleosomes can facili-

tate spurious initiation of intragenic transcription

(Carrozza et al. 2005; Lieb and Clarke 2005).

Should intragenic DNA methylation alter the poten-

tial for eviction of nucleosomes through its effects

Fig. 2 A model of insect DNA methylation and the greater eukaryotic epigenome. (a) Actively expressed and (b) repressed

(nonconstitutively expressed) genes exhibit distinct epigenetic profiles (Zilberman et al. 2008; Filion et al. 2010; Roy et al. 2010;

Zemach et al. 2010; Bell et al. 2011; Zhou et al. 2011; Coleman-Derr and Zilberman 2012). Note that the histone modification

H3K27me3 is largely limited to genes in regions of Polycomb-mediated repression, rather than in all nonconstitutive genes (Filion et al.

2010; Kharchenko et al. 2011). Model spatial profiles of enrichment signals for multiple epigenetic marks as visualized over (c) actively

expressed genes (Mito et al. 2005; Deal et al. 2010; Roy et al. 2010; Zemach et al. 2010; Bell et al. 2011; Kharchenko et al. 2011;

Yin et al. 2011; Adelman and Lis 2012; Bonasio et al. 2012) and (d) exons (Kolasinska-Zwierz et al. 2009; Schwartz et al. 2009;

Chodavarapu et al. 2010; Kharchenko et al. 2011; Yin et al. 2011; Bonasio et al. 2012). (a, c) The spatial profile of DNA methylation

targeting in constitutively expressed insect genes suggests DNA methylation may play a role in partitioning promoter regions and gene

bodies. TSS, transcription start site; TTS, transcription termination site. Note that these generalized representations of spatial profiles

are not meant to convey quantitative relationships between marks.
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on nucleosome stability, then DNA methylation may

play a role in suppressing recognition of spurious

intragenic DNA-binding sites (Zilberman et al.

2007; Maunakea et al. 2010; Jones 2012). In support

of this view, it is notable that genic regions exhibit-

ing strong enrichment of RNA polymerase II coin-

cide with regions of high density of DNA

methylation (Fig. 2c).

DNA methylation has been linked to the position-

ing of nucleosomes (Chodavarapu et al. 2010), which

has in turn been implicated in modulating intragenic

RNA Pol II kinetics (Újvári et al. 2008; Schwartz

et al. 2009; Luco et al. 2011; Luco and Misteli

2011; Bintu et al. 2012) that affect patterns of gene

splicing (de la Mata et al. 2003; Kornblihtt 2005;

Luco et al. 2011). Presumably, the positioning of

nucleosomes is associated with definition of exons

in invertebrates and vertebrates alike (Andersson

et al. 2009; Schwartz et al. 2009; Tilgner et al.

2009). Thus, by influencing nucleosome stability

and positioning, DNA methylation may contribute

to the definition of exons during the transcription

and splicing of mRNA.

These structural implications of DNA methylation

may help to explain its context-dependent effects

(Jones 1999, 2012). DNA methylation contributes to

silencing of genes when present in promoters (Kass

et al. 1997; Bird 2002; Pai et al. 2011; Zeng et al.

2012), but is associated with active expression when

present within genes (exonsþ introns) (Zemach et al.

2010; Jjingo et al. 2012). These divergent relationships

of DNA methylation with gene expression could be

driven by a common role of DNA methylation in

the stabilization of nucleosomes and in the occlusion

of the initiation of transcription. Likewise, the intro-

duction of a methyl group to DNA can directly alter

the binding of transcription factors (Bird 2002; Shukla

et al. 2011; Wang et al. 2012), further buffering against

recognition of intragenic DNA-binding sites in

actively expressed genes.

As discussed earlier, DNA methylation is primarily

localized to the 50-region of genes in the insect ge-

nomes studied to date (Fig. 1a) (Zemach et al. 2010;

Bonasio et al. 2012). This 50-region of the gene also

exhibits enrichment of specific histone modifications

(Roy et al. 2010; Henikoff and Shilatifard 2011;

Kharchenko et al. 2011), elevated RNA Pol II density

(Mito et al. 2005; Yin et al. 2011), and high rates of

nucleosome turnover (Mito et al. 2005; Deal et al.

2010), relative to downstream regions of the gene

(Fig. 2c). Together, these features may help to assign

molecular context and functional attributes to DNA

methylation in insect genomes, as described later.

Nucleosome turnover is elevated in actively

expressed genes and is associated with the incorpo-

ration of specific variants of histones (Mito et al.

2005; Henikoff 2008; Deal et al. 2010; Bell et al.

2011). Moreover, the turnover of nucleosomes may

be linked to increased accessibility to DNA-binding

proteins (Henikoff 2008). Intriguingly, DNA methyl-

ation is highest slightly downstream of peak turnover

of nucleosomes and maximum density of RNA Pol II

in Drosophila (Deal et al. 2010; Roy et al. 2010;

Zemach et al. 2010) (Fig. 2c). This spatial concor-

dance highlights the possibility that DNA methyla-

tion is important to partitioning gene bodies and

transcription start sites. Consistent with this hypoth-

esis, DNA methylation exhibits a spatially antagonis-

tic relationship with the histone variant H2A.Z in

diverse eukaryotes (Zilberman et al. 2008; Conerly

et al. 2010; Zemach et al. 2010; Coleman-Derr and

Zilberman 2012). H2A.Z enhances recruitment of

RNA Pol II at transcription start sites (Hardy et al.

2009), particularly in constitutively expressed genes

(Coleman-Derr and Zilberman 2012). It is feasible

that DNA methylation decreases intragenic transcrip-

tion initiation by increasing nucleosome stability and

by inhibiting the incorporation of H2A.Z (Talbert

and Henikoff 2010; Coleman-Derr and Zilberman

2012) in 50-regions of constitutively expressed

insect genes (Figs. 1 and 2).

The close spatial association of DNA methylation

and RNA Pol II in insect genomes (Figs. 2c and d)

provides insight into the link between DNA methyl-

ation and the regulation of alternative splicing.

Several studies in diverse eukaryotes have demon-

strated that experimental alteration of RNA Pol II’s

processivity has direct effects on the outcome of al-

ternative splicing (de la Mata et al. 2003; Kornblihtt

2005; Luco et al. 2011). This is presumably due to

the molecular splicing machinery’s variable recogni-

tion of splice sites, which depends upon both the

speed of elongation of RNA Pol II and the strength

of the signal of the splice site (Luco and Misteli

2011). DNA methylation may have a direct negative

effect on the speed and elongation efficiency of RNA

Pol II (Lorincz et al. 2004; Zilberman et al. 2007).

Moreover, DNA methylation has been shown to me-

diate the binding of proteins, including the transcrip-

tion factor CTCF (Wang et al. 2012). In humans, the

mediation of CTCF binding by DNA methylation has

been shown to affect the dynamics of RNA Pol II

and alternative splicing (Shukla et al. 2011). These

insights may be particularly relevant to transcrip-

tional regulation in insects, given that DNA methyl-

ation levels are highest in exons in insect genomes

(Feng et al. 2010; Lyko et al. 2010; Bonasio et al.
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2012) (Figs. 1b and 2d), and that an association has

been observed between DNA methylation and alter-

native splicing in insects (Lyko et al. 2010; Park et al.

2011; Bonasio et al. 2012; Flores et al. 2012; Foret

et al. 2012; Lockett et al. 2012).

Nevertheless, it is critical to note that DNA meth-

ylation is not the sole epigenetic contributor to the

mediation of alternative splicing (Luco et al. 2010,

2011; Luco and Misteli 2011). The ‘‘chromatin–

adaptor complex’’ model of the regulation of alter-

native splicing describes a mechanism whereby

several histone modification-binding proteins inter-

act with splicing factors to modulate the outcome of

alternative splicing (Luco et al. 2011). Notably,

several specific histone modifications are positively

correlated with the presence of DNA methylation

in insects (Hunt et al. 2013), suggesting that it may

be particularly challenging to disentangle the relative

contributions of histone modifications and DNA

methylation to patterns of alternative splicing.

Conclusions

DNA methylation and histone modifications exhibit

complementary, and potentially redundant, func-

tions, which may help explain the loss of DNA meth-

ylation in some insect lineages (Zemach et al. 2010;

Glastad et al. 2011). Nevertheless, the aforemen-

tioned links between DNA methylation and the

dynamics of nucleosomes suggest that DNA methyl-

ation makes important functional contributions to

the epigenome.

Many regulatory properties previously ascribed to

DNA methylation are potentially driven, at least in

part, by the association of DNA methylation with

conserved epigenetic and regulatory genomic

domains in insects, highlighting the role of DNA

methylation as a single component of a complex

epigenomic whole. This view leads to two fundamen-

tal unanswered questions about the regulatory roles

of intragenic DNA methylation in insects: (1) How

does the presence and absence of DNA methylation

affect chromatin structure and gene regulation? and

(2) Why are 50-regions of insect gene bodies prefer-

entially targeted by DNA methylation?

Insights into the regulatory significance of DNA

methylation, and its loss, stand to be gained on two

fronts. First, the loss of DNA methylation in some

insect lineages provides the opportunity to take a com-

parative genomics approach to explore differences in

chromatin structure and gene regulation between taxa

with and without functional DNA methylation sys-

tems. Second, the experimental knockdown of DNA

methyltransferase expression (e.g., Kucharski et al.

2008) can be used in conjunction with a comprehen-

sive profiling of various epigenomic modifications (in-

cluding histone variants, modifications, and

nucleosome positioning) in order to explore the

consequences of depletion of DNA methylation on

chromatin structure and gene regulation.

In this review, we have commented on the func-

tional significance of 50-proximal localization of

DNA methylation in the genes of insects. In partic-

ular, we have highlighted the proximity of DNA

methylation to the localization of histone modifica-

tions associated with active transcription, regions of

high nucleosome positioning, and presence of RNA

Pol II. Furthermore, we suggest that DNA methyla-

tion may play a role in partitioning gene bodies

and promoter regions of actively expressed genes

by limiting accessibility to transcription factors in

the 50-region of gene bodies.

Studies that take a comprehensive approach to the

insect epigenome, by profiling diverse components

of the epigenome, will provide further insight into

the importance of 50-proximal intragenic DNA meth-

ylation. We believe the restricted localization of

intragenic methylation in insects, coupled with the

observed variation in DNA methylation levels

among insect taxa (Fig. 1), make insects ideally

suited to provide fundamental insights into the func-

tional significance of intragenic DNA methylation.

Methods

Illumina reads from bisulfite-converted genomic

DNA from Apis mellifera (Lyko et al. 2010; Zemach

et al. 2010), Camponotus floridanus (Bonasio et al.

2012), Bombyx mori (Zemach et al. 2010), and

C. intestinalis (Zemach et al. 2010) were mapped to

reference genomes using Bismark (Krueger and

Andrews 2011). Information on accession of data

can be found in source publications. Fractional

methylation values were calculated for each CpG

site as mCG/CG, where mCG is the number of

reads with a methylated cytosine at a CpG site

(according to non-conversion) and CG is the total

number of reads mapped to the site. Fractional

methylation was calculated for specific genetic

elements as the mean of all values of CpG fractional

methylation within that element. Significantly meth-

ylated CpG sites were assessed using a binomial test,

which provided a significance value to each CpG site.

Resulting P-values were then adjusted for multiple

testing (Benjamini and Hochberg 1995). Only CpG

sites with false discovery rate (FDR) corrected bino-

mial P-values 50.01, and �3 reads, were considered

‘‘methylated.’’ Figure 1 includes only genes 4 kb or
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longer in length, with �3 CpG sites called as meth-

ylated (after FDR correction), in order to reflect only

those confidently targeted by DNA methylation.
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