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Collective clog control: Optimizing
traffic flow in confined biological and
robophysical excavation
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M. D. Betterton5, M. A. D. Goodisman6, D. I. Goldman2†

Groups of interacting active particles, insects, or humans can form clusters that hinder the
goals of the collective; therefore, development of robust strategies for control of such
clogs is essential, particularly in confined environments. Our biological and robophysical
excavation experiments, supported by computational and theoretical models, reveal that
digging performance can be robustly optimized within the constraints of narrow tunnels by
individual idleness and retreating. Tools from the study of dense particulate ensembles
elucidate how idleness reduces the frequency of flow-stopping clogs and how selective
retreating reduces cluster dissolution time for the rare clusters that still occur. Our results
point to strategies by which dense active matter and swarms can become task capable
without sophisticated sensing, planning, and global control of the collective.

D
iverse living (1) and artificial (2) active ma-
terials (3) and swarms spontaneously form
clusters that can persist for long durations.
However, for tasks that demand steady
flow, such formations can be disadvan-

tageous: Confined active systems such as pedes-
trian or vehicular traffic jams (4), competing
bacterial biofilms (5), high-density migrating
cells (6), jammed herds (7), and robot swarms
(8) can produce high-density clogs that read-
ily form glasslike arrests of flow (9). In such
systems, the ability to dissolve clusters and pre-
vent their formation (9), particularly in the ab-
sence of global knowledge of the state of all
elements, is crucial.
Social insects (10) perform many tasks that

demand clog minimization and mitigation. Sub-
strate excavation specialists such as fire ants
(Solenopsis invicta) cooperatively create nests
of complex subterranean networks (Fig. 1A)
consisting of tunnels in soil that support bi-
directional traffic without lanes (11). Our pre-
vious laboratory experiments (12) revealed that,
in the early stages of nest construction, the few-
millimeter-long ants construct vertical tunnels
approximately one body length in diameter (13).
These narrow tunnels benefit the climbing ants
as they transport bulky pellets, because close
proximity to walls allows limbs, body parts, and
antennae to aid slip recovery (12). But although

the structure of the tunnels seems to benefit
individuals, physical-model experiments make
it clear that excavation can suffer as a result of
clogging during high-traffic conditions [e.g., (14)
and Fig. 1C]. Here we use biological, theoretical,
computational, and robophysical systems to
show that counterintuitive behaviors—individual
idleness and retreating—help optimize tunnel
density by limiting the severity and prevalence
of clogs, thereby enabling rapid excavation by
the collective.
In laboratory experiments, we monitored the

activity of fire ants as they excavated a cohesive

granular medium. Groups of ~30 workers were
placed in transparent containers containing
particle-water mixtures (13) consisting of 0.25-mm-
diameter glass particles (Fig. 2A) with a soil
moisture content, defined as the ratio of total
water weight to total solid weight, of 0.01 or
0.1 (three trials each) (13). Ants excavated for
48 hours, with individual ants entering and exit-
ing the tunnel hundreds of times. As in our pre-
vious study (12), ants constructed narrow vertical
tunnels by means of a stereotyped process of
grain and multigrain (pellet) removal and trans-
port, followed by tunnel ascent and substrate
deposition upon exit (13). A camera mounted
to a motorized linear stage tracked a region
within about three body lengths from the tun-
nel face (Fig. 2A and supplementary materials).
We distinguished individual ant activity by mark-
ing ant abdomens with different colors (Fig. 1B).
We recorded tunnel length over time (Fig. 2B),
and the presence of each worker was logged
when in the camera’s view (Fig. 2C).
Ants exhibited a variety of behavioral tasks

during collective excavation. A large fraction
(0.22 ± 0.1 for soil moisture content of 0.01 and
0.31 ± 0.13 for soil moisture content of 0.1) of
ants never entered the tunnel to excavate during
the 48-hour period of observation; we refer to
these as “nonvisitors.” As seen in Fig. 2C, ants
that visited the tunnel face (“visiting” ants) varied
in activity level. Inspired by work in honey bees
(15), we quantified activity inequality among vis-
itor ants using Lorenz curves. Points on the
Lorenz curves in Fig. 2D link the cumulative
fraction of workers in the population to the cumu-
lative share of activity by that fraction. Although
visitor ants’ trips did not always result in the ex-
traction of a pellet (see movie S1 and discussion
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Fig. 1. Confined and crowded
biological and robotic excava-
tors. (A) X-ray reconstruction
of S. invicta fire ant excavation
in a large container (25 cm
wide) filled with 240- to
270-μm-diameter glass particles
(supplementary materials).
(B) Painted S. invicta workers
excavating a single tunnel along
the wall of a transparent con-
tainer with 0.25-mm-diameter
wet glass particles. (C) Auton-
omous robotic diggers excavat-
ing in a simulated environment
with cohesive granular media
(diameter of 1.8 cm). The inset
shows the number of pellets
(defined as a cohesive group of
grains) deposited versus time
(T) by a robot excavating alone
(red dots) and the net excava-
tion of four robots (blue
circles), whereby each robot
attempts to excavate maxi-
mally. Orange dashed line indi-
cates the hypothetical performance of the group of four robots in the absence of confinement.
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below), we included these “reversals” in the Lorenz
curve calculations because these animals expended
energy in a trip to the tunnel face and contributed
to tunnel traffic.
To characterize the Lorenz distributions, we

calculated the Gini coefficient, G, defined as
the ratio of the area between the Lorenz curve
and the line of equality to the area under the
line of equality (15). G is a measure of the de-
viation of the workload from perfectly shared
(G = 0, all workers work equally) to completely
unshared (G = 1, a single worker performs all
work). Lorenz curves were characterized by
G = 0.75 ± 0.10 and displayed similar func-
tional forms across a variety of experimental
conditions (see Fig. 2D and fig. S2).
In the presence of competing tasks, like

foraging or brood care, task allocation in ants
can change depending on colony needs (16). To
investigate temporal variation in ant excavation
workload, we divided 48-hour experiments into

12-hour “epochs” (time periods). Although indi-
vidual activity varied among epochs (Fig. 2C
and fig. S3), the cumulative workload distri-
bution was independent of epoch [one-way
analysis of variance (ANOVA) F3,20 = 0.85, P =
0.48] and soil moisture content (one-way ANOVA,
F1,23 = 2.54, P = 0.13) (Fig. 2D, figs. S1 and S2, and
table S1). Furthermore, when themost active excava-
tors were removed from the group, remaining
workers increased their activity and compensated
for the loss, preserving the shape of the Lorenz
curve and therefore producing similar Gini co-
efficients (one-way ANOVA, F1,4 = 1.13, P = 0.35)
(Fig. 2D, inset; table S2; and supplementary
materials). Thus, given the consistency of the
workload distribution, we hypothesize that var-
iations in idleness (low activity levels) within a
population may play an adaptive role in mod-
ulating the crowded conditions of confined
tunnels and could have been important in the
earliest social insect colonies (17).

Reversal behaviors were characterized by ants
entering the tunnel and returning to the exit with-
out carrying soil pellets. During the first 3 hours of
the experiments, reversals occurred for 26 ± 13%
of trips for soil moisture content of 0.01 and 18 ±
3% of trips for soil moisture content of 0.1. These
events were often associated with local crowd-
ing at the excavation face (Fig. 2E) (16 ± 12% of
trips for soil moisture content of 0.01 and 10 ±
2% of observations for soil moisture content of
0.1). Reversal behaviors in crowded conditions
occur on foraging trails (18), and similar phenome-
na have been observed in swarming bacteria (5).
The incidence of this seemingly unproductive
behavior increased with increasing overall ac-
tivity of ants (Fig. 2F), suggesting that this be-
havior serves as a feedback mechanism for
mitigating clogs during excavation.
To systematically examine the effects of idle-

ness and individual retreating behaviors on ex-
cavation performance, we developed a cellular
automata (CA) excavation model (Fig. 3A and
supplementarymaterials). Suchmodels are use-
ful in elucidating the dynamics of biological and
vehicular traffic (9, 19). The model consists of a
lattice (the “tunnel”) with a width of two cells
[similar to S. invicta tunnel widths (20)] occu-
pied by soil, empty space, an ascending CA “ant,”
and/or a descending CA ant (Fig. 3A). The CA ants
can move, change directions, excavate, deposit a
pellet, or rest. As in the biological experiments,
activity for the workload distribution in the CA
model was measured by counting instances
when CA ants visited the tunnel within three
body lengths (cells) of the excavation site.
We simulated the behavior of CA ants using

both equal workload distributions (which we
refer to as “active” CA ants) and unequal work-
load distributions (which we refer to as “Lorenz”
CA ants) with identical reversal probabilities
(movie S2). In unequal workload distributions,
individual CA ants were assigned individual
“entrance probabilities” defined as the prob-
ability that a CA ant will enter the tunnel. The
initial entrance probability distribution for the
30 CA ants was taken from the biological dis-
tribution. Output workload distributions of CA
simulations closely matched the input entrance
probability distributions (as measured by the
Gini coefficient, fig. S25). During a time-step, if
its path toward the excavation area was blocked,
a CA ant would reverse direction toward the exit
with a probability, R, of 0.34 (supplementary
materials); R was set by the proportion of total
reversal events observed for 0.01 soil moisture
in the biological experiments.
The CA model that used unequal workload

distribution and reversals reproduced experi-
mentally observed biological ant digging rates
(Fig. 2B). To determine if these rates represented
an optimal workload distribution, we used a ge-
netic algorithm (GA) (fig. S24) to select for
entrance probability distributions (supplemen-
tary materials) that maximized excavated tun-
nel length within a given duration. Regardless
of the initial population distribution (either
similar to the ants or highly unequal), within a
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Fig. 2. Biological
observations reveal
workload inequality
and reversal behaviors
in ants. (A) Experimen-
tal apparatus to track
ant excavation; the inner
diameter of the con-
tainer is 5.21 cm. (B) The
growth of tunnel length
over time. Shown are
average experimental
results ± SD/2 for
S. invicta workers (black)
and simulations for
groups with equal (pur-
ple) and unequal (green)
workload distribution.
Error bars denote 1 SD in
each direction. (C) “Visi-
tation” map derived from
experimental data. Each
point in the map indi-
cates the presence of a
particular ant (out of
30 ants), ordered from
most active to least
active (y axis) in the
tunnel at a time t [soil
moisture content (W) of
0.1]. (D) Lorenz curves
for workload distribu-
tions obtained in wet
0.25-mm-diameter glass particles with soil moisture content of 0.1 (blue) and 0.01 (red) and a CA
model (green) whose excavation rate was optimized with a GA. Shaded areas correspond to
standard deviation from three experiments. cum., cumulative. The inset shows average Lorenz
curves ± SD/2 for a workload distribution within the group before (control, purple) and after
(removal, blue) the most active diggers are removed from the group. Error bars correspond to
standard deviations from three experiments. (E) Illustration of observed reversal behavior.
(I) Ant Y’s path to excavate is blocked by ant Z. (II) After Z collects a pellet, it reverses, (III) forcing Y
to reverse without excavating. (F) Total number of reversal events versus total ant visitors for the
first 3 hours of ant excavation (soil moisture content of 0.1). Each data point represents total reversal
events and total entries counted for 30-min segments collected from three experiments. Linear fit
(blue line) with coefficient of determination (R2) = 0.69.
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few generations, the GA simulation converged
to an unequal workload distribution (Fig. 3B,
for a 30-ant example), which was similar to the
experimentally observed biologicalworkload dis-
tributions (Fig. 2D, green).

The CAmodel also revealed the importance of
the reversal behavior in conjunctionwith unequal
workload distributions. Although the active exca-
vation could be improved by sufficient reversal
probability, only a small amount of reversal was

needed to increase the excavation performance
in the unequal distribution (Fig. 3D). Thus, in
addition to the benefits narrow tunnels provide
for climbing and pellet transport (12, 13), we hy-
pothesize that the ants benefit fromnarrow tunnels
by expending less energy to dig wider tunnels to
the same depth. Such benefits would be useful in
the early stages of new nest construction (e.g.,
after the colony is flooded out) during which
establishing the colony underground is critical.
To gain insight into other benefits and con-

straints set by such narrow tunnels, we simulated
30 CA ants with varied workload distributions
(characterized by distinct Gini coefficients) in
tunnels of different widths. These distributions
were created through a randomized Monte Carlo
process, such that the Lorenz curves resulted in
desired Gini coefficients. A peak in excavated
length, L, versus Gini coefficient was observed
in a tunnel two cells wide (Fig. 3C). Wider tun-
nels (three and four cells wide) resulted in
broader performance peaks, indicating a de-
creased sensitivity in performance owing to
workload distribution. This indicates that use
of a narrow tunnel necessitates the “discovery”
of the unequal workload distribution of ants.
We hypothesized that the unequal workload

distribution and reversals were linked to uniform
flow of CA ants in the tunnel. We therefore
measured the average flow rate of successful
excavators, �q, versus the average tunnel-width-
normalized occupancy of excavators, �l (the ratio
of average number of ants in the tunnel to tun-
nel width measured in ant body widths). To gen-
erate a wide range of average occupancies, we
varied the population size of the CA system.
The flow rate was optimal at an intermediate

occupancy (Fig. 3E). This nonmonotonic trend
in �q versus �l is characteristic of various multi-
agent systems, including bridge-building army
ants (21) and vehicle traffic (22, 23), and is
referred to in traffic literature as the “funda-
mental diagram” (24). Active ants, which do not
modulate their workload distribution, increase
tunnel occupancy with increasing population
and thus exhibit optimal flow rates for only a
few population sizes. By contrast, GA-optimized
Lorenz ants produced tunnel occupancies in the
ideal range by generating increasingly unequal
workload distributions for increasing CA ant
population sizes. Of particular importance, fire
ants produced tunnel densities in the ideal range
(Fig. 3E, orange-shaded region).
The ability of the ants to operate at the op-

timum in the fundamental diagram and the
rapidity by which the GA model converges
(Fig. 3B) indicate the existence of a simple gov-
erning principle for traffic control in confined
task-oriented systems. To elucidate this principle,
we formulated a minimal model of ant traffic in
the narrowest (single-lane) tunnel: the one-at-
a-time (OAT) model. This model, which builds
on recent work on traffic of motor proteins on
microtubules (25), allows us to estimate ana-
lytically how the excavation rate varies with the
rate of ants entering the tunnel (supplementary
materials) for various work-distribution strategies.
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Fig. 3. Models reveal optimized traffic flow in narrow tunnels by means of selective retreating
and workload inequality. (A) Schematic showing the main components of the CA model. Cell
colors denote soil (light gray), tunnel (white), ants moving toward the excavation site (orange), and
ants exiting the tunnel (dark gray). T, simulation time-step. (B) Gini coefficient over time under GA
optimization for groups started with a completely equal (purple), completely unequal (blue), and
random (green) workload distribution. Lorenz curves (inset) for groups that begin with complete
equality or inequality rapidly reach a similar workload distribution. (C) Excavated tunnel length, LT,
after 24-hour simulation time versus Gini coefficient for tunnels of different widths, WT, for a 30–CA
ant population. BL, body length; BW, body width. (D) Excavated tunnel length after 24-hour
simulation time versus reversal probability for equal and unequal (optimized for 30 CA ants)
workload distributions. (E) Simulated traffic flow (q, number of ants divided by time in seconds times

tunnel width) versus CA ant occupancy (l, number of ants divided by tunnel width, measured in
excavator body widths) for groups of equally (squares) and unequally (circles) active ants. Color
bar indicates the size, n, of the excavating group. The theoretical fundamental diagram of the OAT
model (yellow curve) illustrates the need to limit tunnel traffic to one worker per body width of tunnel
width to optimize flow and prevent deleterious clogs. Experimental ant observations reveal an
average occurrence around this density (orange-shaded region, where the orange centerline is the
mean and the extents are one standard deviation away from the mean).
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In the OAT model, ants enter the tunnel and
move toward its face; descending ants reverse
direction if they either reach the end of the tun-
nel or collide with an ant moving in the other
direction (supplementary materials). We ini-
tially modulated occupancy by varying the en-
trance probability of all ants equally; as in the
CA model, the flow rate of the OAT model was
optimal at an intermediate width-normalized
ant occupancy (Fig. 3E, yellow curve, and sup-
plementary materials)—in particular, one exca-
vator for every excavator that can fit along the
width of the tunnel. Although the peak in the
fundamental diagram has been associated with
the transition between steady flow and prop-
agating traffic jams (24), the OAT model high-
lights a key feature of confined tunnel excavation:
Traffic dynamics are driven by tunnel width.
Given the task-oriented nature of the system,
successful traffic flow is only possible if a worker
can travel the entire length of the tunnel and
back. Thus, if there are enough workers in the
tunnel to clog the path to or from the excavation
site, traffic is likely to slow down. The OAT
model highlights this scenario, as such clogs
are unavoidable if more than one ant is in the
single-lane tunnel. Because ants cannot pass each
other or change lanes, only the first ant to enter
can reach the end to excavate, whereas other
workers collide with the first worker, reverse,
and impede traffic.
Mechanisms that target a specific number

of excavators occupying the tunnel given the
tunnel’s width promote ideal traffic flow. When
individual ants in the OAT model were pro-
grammed to modulate their rate of reentry
according to how often they reversed without
excavating, the OAT model rapidly converged
to Lorenz curves similar to the biological and
GA-optimized CA ants (supplementary materials
and fig. S23). Such rapid convergence highlights
the benefit of targeting a specific number of ants
(in this case, by establishing unequal workload
distributions) in narrow tunnels.
We next used a system of excavating robots

(fig. S9) to test if the above theoretical strategies
could improve traffic in confined experimental
situations with more complex, unpredictable
interactions. Because, presently, robot mobility
in real-world environments is poor relative to
biological systems and because real collisional
interactions not modeled in CA and OAT are
typically neglected in swarming robot studies
(2), such robophysical (26) studies can aid ro-
bot design and control for real-world robot
swarms, as well as suggest hypotheses for
studies of ant traffic (18), adaptive behaviors,
and morphological features for crowded exca-
vation and movement.
Groups of roughly elliptical robots (movie S3)

with similar aspect ratios to the biological ants
were tasked with excavating a model cohesive
granular medium of hollow plastic spheres con-
taining loose magnets; this design allows clumps
of media to be formed, analogous to the pellets
of cohesive soil formed by the biological ants
(13). Our robots followed simple instructions

triggered by onboard sensory feedback of the
surrounding environment (supplementary ma-
terials). Previous work in swarm robotics (27)
used similar decentralized strategies in conjunc-
tion with collision-avoidance schemes (2, 28)
to produce emergent flocking behavior. By con-

trast, our robots detected collisions with push
switches on their outer shell, which triggered
navigation strategies such as steering away and
readjusting to promote clog resolution (movie S4).
To challenge the robots, we constructed a

tunnel (Fig. 4A) with a width of three robot

Aguilar et al., Science 361, 672–677 (2018) 17 August 2018 4 of 6

Fig. 4. Traffic flow and local dynamics during robot excavation. (A) Schematic of the
excavation arena indicating the tunnel length, LT (excluding the excavation area); robot width,
WR; robot length, LR; and tunnel width, WT. A pink centerline along the tunnel was monitored by
the robots’ onboard cameras, enabling them to follow the tunnel path. (B to D) Experimental
space-time overlap heat maps of robot positions (x axis) for four-robot trials of (B) active
digging, (C) Lorenz digging, and (D) reversal digging. Color indicates the number of robots
occupying a particular space and time: one (purple), two (orange), three (yellow), and four
(white) robots. Histograms above the graphs show the frequency of occurrence of clusters with
two or more robots at different lateral positions. (E) Average flow rate, q, ± SD measured in
deposits per minute versus number of robots in the experiment, N, for active (green), Lorenz
(light blue), and reversal (maroon) strategies. (F) Illustration of various collision scenarios
encountered by robots owing to movement toward guide trail (top), turning (middle), and
forward-backward translation (bottom). Orange starbursts indicate collisions. (G to I) Relaxation
times for all strategies: active (green), Lorenz (light blue), and reversal (maroon). (G) Relaxation
time versus cluster size, Nc, for three-robot (solid) and four-robot (dashed) trials. The inset shows
sample average correlation curves, Q(τ), that measure how Nc = 1 (purple), 2 (orange), 3 (yellow),
and 4 (white) robot clusters dissolve over time during four-robot reversal trials; shaded region
indicates average curves ± SD/2 (standard deviations for τ* range from 100 to 500 s).

(H) Relaxation times versus linear aggregation density, lc, for four-robot trials and (I)
corresponding number of cluster occurrences, Ic, versus linear aggregation density.
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widths (or 1.5 robot lengths), which, combined
with the oblong robot shape, forced a challenge
of turning around in confined spaces. We tracked
the positions (supplementary materials and
fig. S10) of the robots in the main tunnel area
(i.e., excluding the excavation site) to generate
space-time overlap maps of robot positions (see
Fig. 4, B to D), which give visual insight into robot
flow during excavation.
We first examined systematically how exca-

vation performance changed as numbers of
robots increased for our active protocol (as in
Fig. 1C and fig. S6), which assigned equal work
“desire” to all diggers: After soil deposition, each
robot immediately returned to the tunnel to ex-
cavate. Despite constraints on maneuverability,
sensing, and morphology, the robophysical ex-
periments demonstrated qualitatively similar per-
formance to the ants and the computational
and theoretical models. For example, measure-
ment of the average flow rate, �q, of successful
excavators (which we quantify here as the num-
ber of deposits per minute) revealed that excava-
tion performance increased with an increasing
number of robots in the trial (N) until the sys-
tem became sufficiently crowded (Fig. 4E).
To characterize how clustering led to per-

formance degradation in the active protocol,
we measured the frequency of cluster occur-
rences, denoted Ic. Here we defined clusters as
groups of robots of number Nc, whose center
positions were within a robot length of each
other (supplementary materials). Such clusters
occurred most frequently at the excavation site
(histograms in Fig. 4, B to D), yielding phase
separation (29) in the system, whereby a portion
of robots were jammed at high density, whereas
others moved smoothly through the tunnel at
low density.
As in (9), we also measured the character-

istic “relaxation” times for clusters using a tool
from the study of glassy systems, the density over-
lap correlation function Q(t). Q(t) compares the
spatial overlap of a cluster at a specific time
to the overlap of the cluster’s original lateral
segment at a later time, t. Assuming a one-
dimensional tunnel, we calculated the spatial
overlap of robots by tracking their centroid po-
sition laterally (along the tunnel) and assigning
intensity potentials in space, summing over-
lapping potentials of adjacent robots (fig. S12A).
From these curves (Fig. 4G, inset; fig. S12; and
supplementary materials), we calculated the
relaxation time, t*, for clusters of different
Nc, by fitting a stretched exponential function,

QfðtÞ ¼ exp � t
t�
� �bn o

, to a Q curve averaged

over clusters of the same Nc, where b is a fitting
parameter that is of order unity.
The relaxation time analysis highlighted how

sufficient numbers of active robots (N = 4)
resulted in clustering cascades. For example,
Nc = 2 robot clusters could be sufficiently dif-
ficult to resolve before a third robot joined the
cluster, which in turn led to catastrophic Nc =
4 robot jams that spanned the tunnel width.
Such clogs were then difficult to resolve with the

robots’ limited sensory and motor capabilities
and were likely exacerbated by the robots’ rigid
oblong shape (Fig. 4F). A sharp increase in t*
for clusters with a linear density, �lc ¼ Nc=Lc ,
where Lc is cluster length in body lengths, greater
than unity (multirobot clusters) during four-robot
active trials (Fig. 4H, green curve) revealed how
this cascading scenario is reminiscent of glassy
arrest in particulate systems (30, 31).
To discover how the strategies of idleness

distributions and reversals affected clustering
and traffic dynamics in the robots (movie S5),
we implemented two protocols inspired by the
biological observations and theoretical models.
As in the CAmodel, in the Lorenz protocol (fig. S8),
we implemented an unequal probability to
enter the tunnel derived from experimental ant
workload inequalities. We also implemented a
separate robot reversal protocol (fig. S7), which
produced selective retreats, whereby the robots
were programmed to immediately resume exca-
vation after deposition but reversed after not
successfully reaching the excavation site within
a given time. These strategies led to different
excavation performances as N increased; but
most importantly, both strategies outperformed
the active protocol at N = 4 (Fig. 4E).
The relaxation times and cluster analysis re-

vealed the mechanisms by which the different
protocols mitigated clogging, particularly in the
distinct ways in which they reduced the dura-
tion of clusters and thus optimized the average
occupancy of excavators, thereby improving traf-
fic flow. For trials with up to three robots, all
strategies produced a relatively low t* (Fig. 4G)
and frequency of cluster occurrence regardless
of the number of robots in a cluster. However,
for N = 4, the Lorenz and reversal protocols
mitigated the clogging effects associated with the
aggressive excavation in the active protocol.
The Lorenz and reversal protocols provided

distinct forms of mitigating the catastrophic
cascades of clogs found in the active protocol:
Unequal workload distributions reduce the oc-
currence of clusters, and selective retreating
limits the duration of clogs. Selective retreating
in the reversal strategy limited the duration of
clogs. Thus, instead of the glass-forming char-
acteristics of active robots, clusters dissolved
after some time, yielding low t* (Fig. 4, G and
H). The unequal workload distributions of the
Lorenz strategy reduced the occurrence of clus-
ters, especially the highest-density four-robot
clusters (Fig. 4I), where glasslike clog forma-
tion is most likely to occur, resulting in fewer
catastrophic clogs at the excavation site. We
found similar evidence for clog mitigation in
the analysis of clusters in the CA model (fig. S26
and supplementary materials), whereby clog miti-
gation was further found to be most effective
when both strategies (reversals and unequal en-
trance probabilities) were used in combination.
To close, we return to the traffic aspects of

the confined system: As in theory, traffic flow
of robotic ants (which dominates the excava-
tion performance) was maximal at an intermediate
occupancy of excavators, �l ¼ NT=WT, where NT is

the number of robots in the main tunnel area
averaged across all frames of video andWT is the
width of the tunnel, followed by a gradual de-
cline at higher �l (fig. S11A). However, unlike the
theoretical models, peak flow rate in robotic sys-
tems occurred at a�l of approximately 0.25, which
corresponds to less than one robot traversing
the tunnel at a time, despite a tunnel width of
about three robot widths, or 1.5 robot lengths.
We hypothesize that the underperformance

of our robots relative to the biological and the-
oretical systems is a consequence of our robots’
limited mobility in confined spaces, indicating
that deformable bodies (32) and novel locomo-
tor mechanisms (12) will be important in con-
fined real-world robot collectives. That said,
given these strategies are robust to the vagaries
of real-world interactions, we posit that other
engineered systems—including robot swarms in
disaster rubble, nanorobots surging through the
bloodstream (33), and task-capable active ma-
terials (3)—could benefit from simple strategies
that involve labor inequality, particularly in cre-
ative combinations (34).
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Materials and Methods 

1.  Ant Experiments 

Ten S. invicta nests were collected during the spring, summer and autumn of 2014, 2015 and 

2016 at the Research and Education Garden of the University of Georgia, GA, USA, and the 

Chattahoochee-Oconee National Forest, GA, USA. Nest collection and colony extraction were 

performed according to methods found in (35). Ants were housed in plastic bins for 2–3 months at 

an ambient room temperature of 23±3°C with a relative humidity of 30±2%, and fed Vespula larvae 

and supplied with tap water twice a week. 

 

1.1 Primary Ant Digging Experiments 

Small groups of 30 ant workers from the laboratory-housed colonies were isolated in 

transparent containers filled with simulated cohesive soil made of 0.25 mm diameter wetted glass 

spheres (Ballotini glass particles). The experiments were conducted for 48 hours in W=0.01 and 

W=0.1 wet soils (3 trials for each soil moisture). All the experiments were repeated for 3 different 

colonies. The abdomens of the workers were marked in different colors. A plastic insert separated 

ants from cohesive soil and featured a single entry point next to the transparent wall of the 

container. A small (~ 5 mm) indentation was made next to the transparent wall of the container to 

prompt excavation. In each experiment, ants constructed a single tunnel. The top portion of the 

container was used by the ants for excavated soil deposition.  

The container was fixed on the motorized stage and the camera was focused on the first 2 cm 

of the tunnel at a distance of approximately 3 ant body lengths. As the tunnel grew in length, the 

relative positions of the tunnel and the camera were adjusted such that the tip of the tunnel was 

always visible. The camera was streamed, during which real-time processing detected the presence 

of ants based on pixel intensity. When an ant entered the camera's field of view, the camera was 

triggered to record 60 seconds of video at 15 fps.  

Work among excavators was characterized by manually counting the number of occurrences 

in which an ant visited the tunnel. Ants were classified as visitors if they appeared within the 

camera’s view of the tunnel at any point within the duration of the experiment. Non-visitors were 

those ants that were never detected by the camera. Lorenz curves described the workload 

distribution by linking the cumulative share of visiting workers in the population (ranged from the 

least to the most hardworking individuals) to the cumulative share of work performed by the 

excavating group.  

The Gini coefficient (a measure of statistics dispersion) (15) derived from the shape of the 

curve reflected the inequality in the workload distribution within visiting group. In general, when 

the Gini coefficient is close to 0, the effort of the ants during the excavation is nearly equal. In 

contrast, a Gini coefficient close to 1 indicates highly unequal workload distribution with a few 

active diggers in the visiting group carrying out the bulk of the workload. To calculate the Lorenz 

curves and Gini coefficients of the 48-hour experiments, the only ants that were included were 

those that were detected as having visited at least once during those 48 hours. To calculate the 

Lorenz curves and Gini coefficients for 12-hour epochs within those 48-hour experiments, we only 

considered the ants that visited within those 12-hour time-frames. This ensured that the calculated 

workload distributions only ever considered the working population of that measured time-period. 

Note that visitors, which did not successfully dig and reversed without a pellet were also counted 

in the excavation effort, because non-excavating visitors still expend energy in an excavation 

attempt and contribute to tunnel traffic. The 48 hour experiments revealed no significant effects of 

epoch (1-way ANOVA F3, 20=0.85, p=0.48) or soil wetness W (1-way ANOVA, F1, 23=2.54, p=0.13) 
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on the Gini coefficients obtained from Lorenz curves. Similar workload inequality characteristics 

are observed from the first 3 hours, by which point the tunnel length has typically not yet exceeded 

2 cm. A summary of Gini coefficients extracted from the experiment is provided in Table S1. 

 

1.2 Active Removal Ant Experiment 

To determine how the removal of top 5 most active diggers from the colony affects the 

workload distribution and efficiency of tunnel construction, groups of 30 ants were set to excavate 

cohesive granular media. Rarely, an ant would lose its colored marker during the experiment, 

appearing indistinguishable from the black marked ant in the camera. Thus, to avoid 

misidentification, instead of tracking all 30 ants, we omitted the ant marked black from analysis. 

The excavation process was recorded for 3 hours. The ants were removed from the container and 

set to rest for at least 12 hours. The recorded data was analyzed to determine the 5 excavators that 

most contributed to tunnel construction. These active excavators were removed from the group 

and the experiment was repeated for an additional 3 hours. The rates of tunnel construction and 

the Gini coefficients were measured and compared for the first (before removal) and the second 

(after removal) parts of the experiment. The results were obtained in the experiments with three 

different colonies and averaged.  

Tunnel construction rates varied little between the two phases of the experiment. In fact, the 

individual growth rate increased slightly: 0.58 ± 0.2 mm/ant within the first part of the experiment 

versus 0.67±0.3 mm/ant in the second part. The workload distribution also did not change and the 

Gini coefficient was 0.73±0.15 for control (first phase of experiment) and 0.62±0.06 for active 

removal (second phase), see Table S2. After the most active excavators from the first part were 

removed, several idle diggers increased their contribution to the excavation task. The contribution 

of the most active excavators within the first and the second parts of the experiment was 

comparable: 74±21% versus 74±5% of all observations in the tunnel. The most active diggers of 

the second part of the experiment had contributed to only 10±11.4% of total observations 

(546±65.8) during the first part of the experiment. Thus, individual ants were able to modify their 

behavior in response to the changing traffic dynamics of the tunnel. 

 

 

1.3 Calculation of tunnel-width normalized ant occupancy 

The control experiments from the active removal experiments were used for calculating tunnel-

width normalized ant occupancy, λ̅ ((average number of ants in the tunnel)/(tunnel width)). Each 

frame in the video (15fps*(60*60*3s) = 162000 frames) was analyzed in MATLAB to identify 

each colored ant using image processing techniques. The number of color blobs identified in each 

frame was representative of the number of visiting ants in that particular frame. The tunnel width 

was approximated to be 2 ant body widths (BW) following results from a previous study (20).  The 

occupancy was then temporally averaged over 3 minutes chunk (15fps*(60*3s) =2700 frames) at 

3 different time points in the experiment. This was repeated for 3 different experiments and the 

average experimental ant occupancy across these experiments is projected on the fundamental 

traffic diagram in Fig. 3E with shaded areas representing standard deviation from 3 experiments. 

1.4 X-Ray reconstruction of ant nest 

A colony of S. invicta fire ants excavated a 3D nest in a 25 cm wide cylindrical container 

filled with 240-270 𝜇m glass beads over the course of a week. The nest was then X-ray scanned 

(135 keV, 2.5 mA) and CT reconstructed in 3D (Fig. 1A). 
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2. Cellular automata model 

We used a cellular automata model to elucidate the effects of collective actions on traffic 

during tunnel construction. In a rectangular tunnel lattice, each cell could take one of four possible 

states: soil, empty/excavated space, ascending excavator, and descending excavator. The initial 

conditions of the simulation included the number (𝑛) of ants excavating in a group each with body 

length, BL, and body width, BW , as well as the width of the tunnel (𝑊𝑇),  the initial length of the 

tunnel, and the protocol of social organization of the group. At every simulation step, the ant was 

characterized by its 2D position (x,y), the direction of motion, whether or not they were carrying a 

pellet, and probability P to return back to the tunnel after pellet deposition. 

The state of the cells in the model changed by a discrete time step according to a simple set of 

rules. At each iteration step, a CA ant located in the tunnel moved one CA cell forward or 

diagonally forward (“walked”) with a probability p unless the destination cell was occupied. This 

probability affected the duration of ant clusters and was chosen from experimental observations 

(9). Also, when in a cluster, a descending ant had a probability to turn back and exit the tunnel 

without excavation (“reversal”). Due to the geometrical constraints of the CA model, the reversal 

behavior was an essential to prevent jamming for infinitely long times for populations 𝑛 > 2 ·
𝑊𝑇/ 𝐵𝑊. In the absence of the reversal behavior, unresolvable clogs consisting of 𝑛 ≥ 2 ·
𝑊𝑇/𝐵𝑊 ants may form which span the width of the tunnel and disrupt the excavation process. 

Thus, reversal behavior was implemented for all CA simulations regardless of workload 

distribution. 

When the ant reached the tip of the tunnel, it spent several time steps excavating. The excavated 

pellet was transported to the entrance of the tunnel and expelled from the tunnel (“pellet 

deposition”). After a predefined number of pellets were collected the tunnel grew in length by 1 

cell. After pellet deposition, the ant would return to the tunnel with probability P or switch to 

resting mode. During the pellet deposition or resting mode, the ant was neither contributing to the 

excavation, able to cause clogs, nor increasing tunnel density. The exit from the resting mode was 

also defined by probability P. 

The unequal workload distribution was achieved by introducing the probability, P, to return to 

excavate in the tunnel after a pellet deposition. To simulate fully active ants, workers attempted to 

reenter the tunnel immediately after pellet deposition (𝑃 = 1). In groups with unequal workload 

distributions, the probability of the ant to return to try and return to the tunnel was unique, fixed 

and derived from the experimental ant workload distribution measurements as 𝑃(
𝑛𝑖

𝑛
) = 𝑓 (

𝑛𝑖

𝑛
) −

𝑓(
𝑛𝑖−1

𝑛
), where 𝑛𝑖 was the number of ants in a sequence from the least to the most active; n was 

the excavating group size, and 𝑓 was a Lorenz function. 

 

 

All parameters describing ant behaviors were found via experimental observation; the only 

parameter varied to allow the system to match experiment was the excavations to grow tunnel size 

by 1 cell. The rates were calculated from the slope of the tangential lines fitting the initial portion 

of the tunnel growth curve. The tunnel excavation rates in simulations differed greatly depending 

on excavation scenario. In general, the groups of active diggers (𝑃 = 1) were most efficient when 

the number of excavators in the group was small. The increase in the number of active excavators 

led to the formation of ant clusters, which eventually slowed the nest construction down. The 

unequal workload distribution 𝑃(
𝑛𝑖

𝑛
) in large groups of excavators allowed for reduction of ants 

density in the tunnel throughout the experiment and, thus, produced high nest construction rates 
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even when the number of diggers in the excavating group was large. In large groups of diggers 

with unequal workload distributions, the excavation rates were insensitive to the addition of 

excavators.  

 

2.1 Occupancy and flow in CA model 

The CA simulations were carried out for ant groups of different sizes. The width-normalized 

ant occupancy and the flux were measured in LT = 5 cell long tunnel (~2.5 cm actual length). The 

flux and occupancy were measured at 𝑖 = floor (
𝐿𝑇

2
) + 1 position in the simulated tunnel (Fig. 

S4). We calculate ant occupancy as the time-averaged number of ants in the tunnel divided by the 

tunnel width, WT, in ant body widths, BW: 

𝜆̅ =
1

𝑇
∑ 𝑛𝑖(𝑡)𝑇

𝑡=1 /𝑊𝑇       (1) 

where 𝑛𝑖(𝑡) = 1 if the site is occupied at time 𝑡 and 0 otherwise.  Occupancy at a fixed site 𝑖 
was averaged over a time period 𝑇=3 hours. The average bi-directional flux 𝑞̅𝑇 between site 𝑖 and 

neighboring sites 𝑖 + 1 and 𝑖 − 1 was defined as 

𝑞̅ =
1

𝑇
∑ [𝑛𝑖,𝑖+1(𝑡) + 𝑛𝑖,𝑖−1(𝑡)]𝑇

𝑡=1 /𝑊𝑇     (2) 

 

where 𝑛𝑖,𝑖+1(𝑡) = 1, if the ant moved between sites 𝑖 and 𝑖 + 1, and 𝑛𝑖,𝑖−1(𝑡) = 1 if the motion 

occurred between 𝑖 and 𝑖 − 1, and zero if the motion was not detected. The flux was averaged over 

time T corresponding to 3 hours of experiment. The flux was normalized by the tunnel width. 

We introduced these definitions to compare traffic in groups of different sizes governed both 

equal and unequal workload distributions. The fundamental flow diagrams (tunnel flow 𝑞̅ vs 

occupancy, λ̅) for each experimental condition are provided in the main text. 

 

2.2 Clustering characterization in CA model 

The implementation of unequal workload distribution reduces the immediate density of the 

ants in the tunnel in simulations. As a result, the number of clusters (𝐼𝑐), their spatial extension 

(an) and time duration (𝑇𝑐), as well as the number of ants involved in the jams 𝐶 decrease, allowing 

for stable traffic formation (Fig. S5). 

To analyze traffic, the jam was defined as agglomerations of 2 or more ants located in the 

neighboring cells at a simulation step k. The number of clusters was defined as the total number 

of agglomerations observed over 50,000 simulation steps. Each simulation step was considered 

independently. The site occupancy time 𝑇𝑐 was defined as the time it takes for a particular cell 

occupied by an ant involved in a jam to change its value from “occupied” to “vacant”. The average 

spatial extension of the jam was defined as the number of cells occupied by the ants sequentially 

along the tunnel length.  The number of ants involved in a cluster, the cite occupancy time and the 

spatial extension of a jam were averaged over all simulation steps and results are reported on Fig. 

S5. 

 

2.2.1 Cluster Size and Frequency Dynamics in CA model 

We characterized how cluster severity was affected by reversals and unequal workload 

distributions through an analysis of cluster formation. Clusters in 30-ant simulations were 

identified at each simulation time point and categorized by the number of CA ants that comprised 

the cluster. Any group of ants that blocked the entire tunnel width was considered a cluster. We 
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found a prevalence of large clusters for extremely low reversal probabilities in both equal (Fig. S26 

A) and unequal (Fig. S26 B) workload distributions. A minimal increase in reversal probability 

reduced the prevalence of the largest clusters from forming. However, even accounting for higher 

reversal probabilities, equal workload distributions resulted in wider distribution of cluster sizes, 

whereas the optimized workload distribution produced a sharper concentration of small clusters, 

which were more easily dispersed. Thus, cluster mitigation is most effective using both reversals 

and unequal work probabilities in combination. 

 

 

2.3 Optimal distributions CA using a genetic algorithm 

A genetic algorithm (GA) was used to search for entrance probability distributions that 

produced optimal digging rates. The GA is a biologically inspired optimization technique used 

typically to find solutions where the parameter space is large. GAs modify or evolve populations 

of solutions at each generation, through processes known as reproduction and mutation, towards 

the optimal solution. Each probability distribution for a single simulation is known as a 

“chromosome”, and each probability for a single ant are called “genes”. The set of all 

chromosomes at each generation is called a population. The reproduction phase requires each 

chromosome to be run, and depending on the on the output of the objective function, the metric by 

which each chromosome is measured, certain chromosomes are selected to be parents for the next 

generation. Our implementation used the digging rate as the objective function. The best 

performing chromosomes, known as the elite percent go unchanged to the next generation. The 

rest of the chromosomes are paired up, and a percentage, known as crossover percentage, are 

crossed over. Crossover is where a random site is chosen along the length of a chromosome and 

the genes of the paired chromosomes are switched around that point. After crossover, all genes 

belonging to the non-elite group of chromosomes have a chance, known as mutation probability, 

to be assigned a new random value. This helps to mitigate chances of becoming stuck in local 

minima (or maxima) of the optimized quantity. 

We used MATLAB’s genetic algorithm toolbox (36). Our selection type was the default used 

in MATLAB’s GA toolbox, stochastic uniform. The specific values for our reproduction and 

mutation rates were as follows: 5% for the elite selection, 0% for the crossover fraction, and a 

variable number of gene was subjected to mutation according to an adaptable mutation rate, the 

default option for MATLAB. We used a population size of 200 probability distributions per 

generation, and ran 50 generations. 

 

2.4 One at a Time (OAT) Model 
2.4.1 Introduction 

We model a tunnel as a one-dimensional lattice of 𝑍 sites; an ant occupies one lattice site. The 
tunnel has an open boundary at the left (site 0) where ants can enter and exit, and a closed boundary 
at the right (site 𝑁) that represents the end of the tunnel. Note that for simplicity we keep 𝑁 fixed: 
in this model, the tunnel does not change length in time.  

Each ant can move toward to the next site at rate 𝑣. Ants enter the tunnel at rate 𝛼𝑣, which may 
be the same for each ant or variable. Once an ant enters the tunnel it moves to the right at rate 𝑣, 
but can reverse and move to the left. If an ant is blocked by another ant in front of it, it cannot 
move. Ants reverse at rate 𝑆 either when they reach the end of the tunnel, or when they are adjacent 
to another ant going the opposite direction. At site 0 in the tunnel, ants moving to the left exit with 
rate 𝛽𝑣.  

Once an ant reaches the end of the tunnel (site 𝑍), reverses, goes back, and exits the tunnel, it 
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completes one cycle of digging. Since the model only allows one ant to occupy a given site (ants 
sterically exclude each other), the ant that completes a digging cycle is the first ant to enter the 
tunnel when it is empty. The ants that follow only hinder the digging process. We call this the One-
at-a-Time (OAT) model (Fig. S13).  

We define excavation rate in this model as the number of completed digging cycles over a certain 
time. We used kinetic Monte Carlo (kMC) simulation (see section 2.4.4 for details) methods 
developed in our previous work (25) to do simulations of this model. In simulations, we measure 
the total number of ants, and count events in which the tunnel has no ants in it. Model parameters 
that produce higher excavation rate lead to more events during which the tunnel is empty (Fig. 
S14).  

If the inward flux leads to a time between ants entering the tunnel that is longer than the time for 
an ant that has already entered to reach the end of the tunnel and exit, then increasing 𝛼 increases 
the excavation rate. However, if the time between ants entering is shorter than the digging time, 
most ants that enter the tunnel create traffic jams that block the digging ant from retreating. This 
decreases the excavation rate. Simulating the OAT model at different values of 𝛼 (whereby all ants 

in a simulation are given an identical 𝛼) results in an intermediate peak in excavation rate as a 
function of 𝛼 (Fig. S15). Giving all excavators an identical 𝛼 is akin to the equal workload 
distribution in Active ants of the CA model, whereby varying 𝛼 modulates the overall level of 
activity of all ants. 

We analytically derive the excavation rate by estimating the typical time of one digging cycle. 
The time to complete one cycle is the sum of (a) the time for the first ant to enter the tunnel, (b) 
the time it takes for the digging ant to walk to the end of the tunnel and back to the entrance, and 
(c) the time required for all ants in the tunnel to reverse their direction. The typical time to wait for 

the first ant to enter the tunnel is 1
𝛼𝑣⁄ , the inverse of the entry rate. The typical time for an ant to 

walk to the end of the tunnel and back is 
2𝐿𝑇

𝑣⁄ , where 𝐿𝑇 is the length of the tunnel. The additional 

time due to waiting for ants to reverse direction we estimate by noting that the typical reversal time 

is 1 𝑆⁄ . If the tunnel were infinitely long, then the typical distance between two ants in the tunnel 

would be the typical time between ants entering the tunnel times the typical speed of an ant, which 

is 1 𝛼𝑣⁄  × 𝑣 = 1
𝛼⁄ . However, because the tunnel is not infinite, this distance is reduced by the 

ants that change direction. The typical distance an ant moves during a switching event is 𝑣 𝑆⁄ . Thus, 

on average, the ant moving forward and the switching ant will meet when they each have traveled 

half of the distance between them, 1 2⁄ (1
𝛼⁄ − 𝑣

𝑆⁄ ). This is the typical distance that an advancing 

ant moves before switching because it hits another ant. This must be scaled by 𝐿 to account for all 

the ants in the tunnel, and an additional time of 1 𝑆⁄  must be added to account for the first ant to 

reverse at the end of the tunnel. The overall time of a digging cycle (Fig. S20) is thus: 
 

𝑇 =
1

𝑣𝛼
+

2𝐿𝑇

𝑣
+

1

𝑆
(

𝐿𝑇
1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1) . 

 (3)  
Note that disagreement between the theoretical curve and the kMC simulation (Fig. S15) occurs 

for relatively short tunnels when there are large jamming effects: in our model, we didn't consider 

the size of the ants and the longest distance an advancing ant could move. Note as well that our 

model becomes ill defined when 𝑣
𝑆⁄ > 1

𝛼⁄ , because the term in the denominator becomes 

negative. This occurs for small 𝑆, which physically occurs when reversal is so slow that the 
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excavation rate is dominated by waiting for reversals to occur. If the switching rate at the end of 

the tunnel has a unique rate, 𝑔, the rate at which an excavator completes an excavation, the overall 

time of a digging cycle becomes: 

 

𝑇 =
1

𝑣𝛼
+

2𝐿𝑇

𝑣
+

1

𝑆
(

𝐿𝑇−
1

2
(

1

𝛼
−

𝑣

𝑔
)

1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1) +
1

𝑔
 .  

 (4)  
 

2.4.2 Training an unequal workload distribution 

The above model assumes that every ant has the equal workload 𝛼, and demonstrates that the 
excavation rate actually deteriorates if ants are too diligent (large 𝛼). This suggests that system 
excavation rate might be sensitive to the workload distribution. We implemented a training 
algorithm with the following rules: 
 

1. The total number of ants is fixed.  
 

2. If an ant completes a digging cycle after it goes into the tunnel (in other words, it reaches the 
end of the tunnel), then it increases its workload, 𝛼, by a factor of 𝑞 (𝛼𝑛𝑒𝑤 = 𝑞𝛼).  

 
3. If an ant enters the tunnel but is hindered (i.e., it reverses before reaching the end), it decreases 

its workload by a factor of 𝑞 (𝛼𝑛𝑒𝑤 = 𝛼
𝑞⁄ ).  

 
4. There is a maximum workload 𝛼𝑚𝑎𝑥, which is necessary to prevent super-diligent ants from 

taking over all the work. 
 
In our simulation algorithm, each ant has equal probability to be selected to attempt to enter the 

tunnel, but the 𝑖th ant has its own probability 𝛼𝑖 to decide if it “wants” to enter or not. 
Using these above rules to train simulated ants in our model, we find nearly identical workload 

distributions (Lorenz curves), Gini coefficients (Fig. S16), and digging rate (Fig. S17), regardless 
of 𝛼𝑖 for the population. The workload distribution of the trained ants is unequal; the Lorenz curves 
reveal that only about half of the ants are working, while the others are idle. Further, the 
populations reliably converge to their final workload distribution rapidly (Fig. S23). Since traffic 
jams in the tunnel are controlled by the total number of ants, the model predicts that (a) a larger 
ant population results in a more idle ants and a higher Gini coefficient (Fig. S18), and (b) the higher 
the maximum workload 𝛼𝑚𝑎𝑥, the higher the Gini coefficient (Fig. S19). This occurs because the 
overall work has a maximum, and more working ants won't increase the work. Thus, the optimal 
scenario in this model is for one ant to do all the work by returning into the tunnel immediately 
once it goes out (i.e., 𝛼𝑚𝑎𝑥 = ∞). 
 

2.4.3 Occupancy and flow in the OAT model 

The time-and-spatial-average occupancy, λ̅, (average occupancy) and the time-average flow, 𝑞̅, 
(average flow) in the OAT model are similar to (23): 

𝜆̅ = 1

𝑇
∑ 𝑛𝑖(𝑡)∆𝑡𝑇

𝑡=1      (5) 

 𝑞̅ =
1

𝑇
∑ 𝑛𝑖,𝑖−1(𝑡)𝑇

𝑡=1 ,     (6) 

 

where 𝑛𝑖(𝑡) is 1 (or 0) if the site is occupied (or unoccupied) at time 𝑡 at site 𝑖, and 𝑛𝑖,𝑖−1(𝑡) is 

1 (or 0)  if the ant moved (or didn't move) between site 𝑖 to 𝑖 − 1. The parameter ∆𝑡 is 1 and 
∑ ∆𝑡𝑇

𝑡=1 = 𝑇. Measuring occupancy at the midpoint of the tunnel (𝑖 = 𝐿𝑇/2) yields:  
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λ̅ = 2
(

𝐿𝑇
2

1
2(

1
𝛼−

𝑣
𝑆)

+1)

𝑣
[

1

𝑣𝛼
+ 2𝐿𝑇

𝑣
+ 1

𝑆
(

𝐿𝑇
1
2

(
1
𝛼

−𝑣
𝑆

)
+ 1)]

−1

 or    (7) 

 

λ̅ = 2

(

𝐿𝑇
2

−1
2

(
1
𝛼−𝑣

𝑔)

1
2(

1
𝛼−

𝑣
𝑆)

+2)

𝑣
[

1

𝑣𝛼
+ 2𝐿𝑇

𝑣
+ 1

𝑆
(

𝐿𝑇−1
2(

1
𝛼−𝑣

𝑔)

1
2

(
1
𝛼

−𝑣
𝑆

)
+ 1) + 1

𝑔
]

−1

 ,  (8) 

 

where (
𝐿𝑇
2

1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1) is the number of ants that pass site 𝑖 = 𝐿𝑇/2. The term 
1

𝑣
 is due to the 

corresponding staying time of an ant that stays in the site 𝑖 (the length of an ant is the same as the 

length of a site). The last part of the equation is 1/𝑇, where 𝑇 is the digging cycle. The second 

equality of the equation is the scenario of the unique switching rate at the end of the tunnel. 
 

The average flow depends on the site as well. We defined it at the end of the tunnel, which is 
the same as the flow of the successfully working ant. The average flow is:  
 

𝑞̅ =
1

𝑇
= [

1

𝑣𝛼
+

2𝐿𝑇

𝑣
+

1

𝑆
(

𝐿𝑇
1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1)]

−1

 𝑜𝑟    (9) 

 

= [
1

𝑣𝛼
+

2𝐿𝑇

𝑣
+

1

𝑆
(

𝐿𝑇−
1

2
(

1

𝛼
−

𝑣

𝑔
)

1

2
(

1

𝛼
−

𝑣

𝑆
)

+ 1) +
1

𝑔
]

−1

 ,   (10) 

 
where the second equality of the equation is the scenario of the unique switching rate at the end of 
the tunnel. The numerator is 1 since there is only one successfully working ant in a digging cycle. 
Figures S21 and S22 show the occupancy-flow curves (fundamental diagram) when considering 
both a unique and identical switching rate for excavation at the end of the tunnel.  

Agreement was achieved between the OAT model and the CA simulation for the fundamental 
diagram. However, some parameter tuning and scaling was required to account for differences 
between the models. Namely, in the CA model, unlike in the OAT model, not only are there 
multiple lanes, but CA ants are able to switch lanes to resolve clogs, whereas an ant in the OAT 
model must exit the tunnel. Additionally, for the flow-rate calculation, the CA model considers 
the flow of a successfully excavating worker twice, once on the way to excavate and again on the 
return to deposit. Whereas, in the OAT model, the flow of an excavating worker is considered 
only once. For fundamental diagram calculations, a tunnel length of 5 was used, as in the CA 
simulations. 
 

2.4.4 The kinetic Monte Carlo simulation 
We performed kinetic Monte Carlo (kMC) simulations of a discrete model with the time step t 

and the following rules at each time step for a one-dimensional lattice with 𝑍 sites: 
 

1. Randomly choose a direction (towards the excavation site or towards the tunnel entrance) 
and site 𝑖.  
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2. If the site is occupied and the next site in both directions are empty, the ant steps forward 
with probability 𝑣∆𝑡. 

 
3. If the chosen site is occupied with an ant moving towards the excavation site and the next 

site over is occupied (or the chosen site is at the excavation site), the ant switches direction 
with probability 𝑆∆𝑡. 

 
4. If site 1 in the excavation direction is chosen, and it is empty, the ant occupied the site with 

the probability 𝑣𝛼.  
 

5. If site 1 in the exiting direction is chosen and is occupied, the ant leaves with the probability 
𝑣𝛽 (we set 𝛽 = 1 in the simulations).  

 
6. Repeat steps 1-5 2𝑍 times total to sample all sites in both lanes.  

 
The tunnel length is 𝑍 = 20 in the simulations (unless otherwise stated). We typically choose 

∆𝑡 = 0.005 such that the speed of the ants is 𝑣∆𝑡 = 0.3125 sites per kMC cycle, and 𝑆∆𝑡 =
0.002175 per kMC cycles (unless otherwise stated). We ran 6 × 108 kMC cycles per condition 
(unless otherwise stated). The simulation reaches the steady state typically after 106 kMC cycles 
in the training simulations. We measured the data by averaging the last 3 × 108 kMC cycles. We 
started the simulations with empty tunnels. 
 
 
 

3. Robot Experiments 

Robophysical experiments were conducted to test the performance and clustering dynamics of 

robots following each of three different behavioral protocols. The first strategy (Active, Fig. S6) 

assigned equal maximal attempted activity to all diggers: after soil deposition, each robot 

immediately returned to the tunnel to excavate. In the second protocol (Reversal, Fig. S7) the 

robots were also programmed to immediately resume excavation after deposition but reversed after 

some time not being able to reach the excavation site. In the third protocol (Lorenz, Fig. S8), we 

implemented an unequal probability to excavate derived from experimental ant workload 

inequalities. 

Groups of robots operated in simulated environment that consisted of a table top testbed, 

featuring a quasi 2D tunnel and a pellet deposit area. The pellet deposit area was also used to 

accommodate inactive robots. The tunnel was partially filled with a cohesive simulated media 

made of loose rare-earth magnets (BYKES Technologies) contained in 3D-printed plastic shells 

1.8 cm in outer diameter. The width of the tunnel allowed for simultaneous side-by-side tunnel 

excavation by two robots. In our previous laboratory experiments (12), S. invicta constructed ~ 1.5 

body length wide tunnels  

3.1 Robot design 

Robots were designed to create an inexpensive yet functional robophysical system which could 

be used as a tool to study the effect of social protocols on collective excavation in confined spaces. 

The design of the robotic workers implements readily-available off-the shelf and open-source 

parts. A list of major components is shown in Table S4 [below, adopted from appendix B (37)]. 

Discussion of core components below provides insight into robot functionality and capabilities. A 

maximum of 4 robots was used in the experiments.   
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3.2 Microprocessors 

Each robot utilized an Arduino Due microcontroller to handle sensor I/O, computations, and 

logic. The microcontroller software was set up to have three user programmable behavioral modes 

described in the paper: Active (Fig. S6), Reversal (Fig. S7), and Lorenz (Fig. S8). Each item in the 

flow chart has low-level control schemes responsible for obtaining sensor data, performing state 

estimation, and controlling the actuators. An Arduino Fio microcontroller was also used to handle 

data logging. Current, voltage and the state of the behavior mode was recorded and stored on a 

micro SD card for post processing. 
 

3.3 Sensors 

3.3.1 Navigation sensors 

A low-cost camera system (Pixy CMUcam5) was used to accomplish most of the navigation. 

The camera located the simulated pink pheromone trail and supplied the Arduino Due with 

centroid coordinates and the size of the detected pheromone trail object. A lane following algorithm 

was used to guide the robot between the excavation and the deposit sites.  

A magnetometer further improved navigation. A robot could be pushed off course in the event 

of a collision with another robot and lose sight of a simulated pheromone trail. The magnetometer 

would be used to recover correct heading. A priori knowledge of the test bed layout was exploited 

and thus the robot knew in which direction it needs to orient itself to get towards a current goal. 

The magnetometer simulated the sense of gravity in animals. A magnetometer was also used in 

conjunction with a gyroscope to obtain turning feedback. Robots would alter their turning strategy 

if no progress was measured while attempting to turn around. 

 

3.3.2 Collision sensors  

Two short range (15cm) infrared sensors were used to detect objects and obstacles directly 

ahead. In the event of an obstacle detection, the robot would attempt to steer around. The robot 

could detect physical interactions with the other robots or the environment using mechanical 

switches embedded beneath a segmented robotic shell. Each shell segment rested on a mechanical 

switch which was triggered by physical contacts within the environment. Thus, not only the 

contact, but also its approximate direction was sensed.  

 

3.3.3 Environment manipulation sensors 

An infrared proximity sensor was mounted near the robotic gripper. The sensor was occluded 

in the event of a successful collection of model media making this event distinguishably 

recognizable.  The same sensor was also used to trigger excavation behavior.  

 

3.3.4 Power management sensors  

A bidirectional current sensor, along with a battery voltage level sensor were used to monitor 

power consumption. The robot relied on these sensors to determine if it needs to get to the charging 

station and recharge its single cell 3.7V Li-On battery.  

 

3.4 Actuators 

The robot locomotion was enabled by a differential wheeled drive system. The robot could 

drive with speeds up to 18cm/s. Two servo motors were used to operate a robotic arm used for 

manipulation of the simulated granular media. One servo motor actuated a robotic gripper while 

the other motor could raise or lower the pitch of the arm.   
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3.5 Mechanical Design  

Figure S9 illustrates mechanical design. The robot’s body was made with parts manufactured 

with a 3D printer. The design was modular, allowing easy access to and replacement of 

components. Most of the electronics (microcontrollers, power circuits, etc.) were safely hidden 

inside the robotic shell because the robots were expected to engage in many physical contacts.  

 

3.6 Robot Tracking 

The robots were tracked via an image intensity threshold routine (Fig. S10). For each 

experimental trial, an overhead camera recorded the tunnel area for about 30 minutes at 10 frames 

per second. For a given frame of video, the image was subtracted from an averaged background 

image. A threshold was then applied to identify pixels corresponding to the robots. Initial robot 

positions were manually approximated at the beginning of the video. The robot pixels were then 

divided into different regions using Voronoi cells generated with the initial robot position. The 

centroids of these regions were then used to recalculate the robot positions, which were 

subsequently used as approximations for the next frame.  

 

3.7 Global Traffic Analysis 

Excavation rate and energy expenditure where measured for excavation trials (3 trials of each 

experimental condition) of 2 to 4 robots and 3 different protocols as described in the beginning of 

supplemental Section 3. Each digging strategy produced distinct trends in tunnel density and 

energy expenditure (Fig. S12 B). The Reversal strategy exhibited peak excavation performance 

with two robots, and monotonically increasing density and energy cost for trials with more diggers. 

During Active strategy trials, robots would clog more frequently at the excavation site with edition 

of a fourth robot, resulting in a dramatic decrease in tunnel density and increase in energy 

expenditure. While dynamically allocating tasks through local feedback (38) or even controlling 

for equal workload (39) have proven useful in achieving robotic swarming goals such as foraging 

and construction, the simple Lorenz strategy was effective in lowering tunnel density and energy 

cost. Therefore, particularly for large populations, simply modulating the distribution of individual 

work effort and likelihood of giving up in the face of traffic jams are effective strategies in targeting 

optimal traffic densities. 

 

3.8 Local cluster relaxation times 

Tracking data was used to identify clusters of robots, defined as groups of robots whose center 

positions were within a robot length’s proximity of each other. Robot lateral positions were 

represented as intensity potentials in a space-time intensity map, I (Fig. S12 A). Each robot was 

given a lateral intensity potential function (a half-cycle sine wave with one body length half-period 

was chosen) centered at the robot’s lateral position. Clusters were identified as contiguous 

potentials. The local dynamics of these clusters were evaluated using a technique often used to 

study dynamic heterogeneities in non-biological active matter (40).  At each time step, clusters 

were identified and evaluated using a correlation function derived from PIV cross-correlation 

techniques (41): 

𝒒(𝝉) =
∑ (𝑰(𝝉,𝒙)−𝑰̅)(𝑰(𝟎,𝒙)−𝑰̅𝟎)

𝒙𝟐
𝒙𝟏

√∑ (𝑰(𝝉,𝒙)−𝑰̅)𝟐𝒙𝟐
𝒙𝟏 ∑ (𝑰(𝟎,𝒙)−𝑰̅𝟎)𝟐𝒙𝟐

𝒙𝟏

 .    (11) 

The correlation overlap function, 𝑄(𝜏) =  〈𝑞(𝜏)〉 (where the brackets indicate a time average 

from time, 𝑡 = 0 𝑡𝑜 𝜏, whereby t = 0 corresponds to the time step in which the cluster is identified), 
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compares the spatial overlap of an aggregation (or cluster) at a specific time to the overlap of the 

aggregation’s original lateral segment at a later time, 𝜏 (Fig. S12 B). 

 

 

Fig. S1. Experimental Lorenz curves of ant workload distribution for individual 12-hour epochs 

of 48-hour trials. Error bars indicate standard deviation from multiple trials averaged over 6 trials 

(3 trials in ~0.25 mm diameter glass particles at W=0.1 moisture content and 3 trials in W=0.01). 
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Fig. S2. Log-Log plots of Lorenz curves representing workload distributions in ant experiments 

(A) for different moisture contents and (B) for active removal experiment. Black dashed lines are 

power-law curve

B 

A 
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Fig. S3. Dynamic activity pattern of individual ants over different time epochs. The ants are 

arranged by their overall activity for 48-hours descending from bottom upwards. Excavation 

activity, a(i,t) is the number of tunnel visits per 12-hour epochs for an ant i divided by the total 

number of tunnel visits within that epoch.  
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Fig. S4. Schematic of the tunnel in CA model. The occupancy of ants and the flux in the tunnel 

were measured at the highlighted cell i. The possible directions of ant motion are shown with red 

arrows. 

 

  

Exit 
Excavation area 

LT 

16



 

Fig. S5. Simulation results: Average number of ants involved in a jam 𝐶 (A), site occupancy time 

𝑇𝑐 (B), total number of jams Ic over 50000 simulation steps (C), and average spatial extension of 

the jam an (D) plotted versus the size of the group for groups governed by equal workload 

distribution (red) and unequal workload distribution protocols (magenta).  
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Fig. S6. Active logic flow chart. 
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Fig. S7. Reversal logic flow chart.  

  

19



 
 

 

Fig. S8.  Lorenz logic flow chart. Note that this logic is identical to Active if P=1. Otherwise the 

robot has a chance to enter resting mode outside the tunnel which last for a specified amount of 

time. 
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Fig. S9. Mechanical design of robots. Microcontroller and circuitry are inside the shell 
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Fig. S10. Robot tracking routine. (A) Initial position estimates. (B) Threshold of background-

subtracted image. (C) Voronoi divided robot regions. (D) Centroid calculated positions. 
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Fig. S11. Robot performance for 2 (smallest marker) to 4 (largest marker) robots using the Active 

(green), Reversal (maroon) or Lorenz (light blue) protocol. (A) Fundamental diagram; excavation 

rate, 𝑞̅, vs excavator occupancy, 𝜆̅, where Nt is the number of robots in the tunnel area and WT is 

the width of the tunnel area in robot body widths, RW. (B) Energy expenditure vs tunnel density. 
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Fig. S12. Analysis of local robot clusters. (A) Sample space-time intensity map. (B) The 

correlation function Q(t) is calculated from the 3 robot cluster in the first frame in (A) (top panel) 

using image correlation algorithms used in PIV (41). 
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Fig. S13. Schematic of the OAT model. The red circles indicate ants moving to the right, and green 
moving to the left. Only one ant can occupy each site. Red ants reverse (switch to green) if they 
meet another green ant in front of them in the direction they move, or if they reach the end of the 
tunnel. The inward flux is 𝛼, which controls the average occupancy at site 0, and 𝛽 is the exit rate. 
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Fig. S14. Results of a simulation showing the total number of ants in the tunnel as a function of 
time. In this portion of the simulation, three complete digging cycles occur, because the tunnel is 
empty four times). 
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Fig. S15. Excavation rate as a function of 𝛼. Simulation results use 𝑣 = 0.3125 sites per kMC 
cycles, and 𝑆 = 0.002175 per kMC cycles. The blue curve is the simulation (kMC) results, and 

the red curve is the theoretical prediction (1
𝑇⁄ , see Eq. (3)). The theory is valid if 1 𝛼⁄ − 𝑣

𝑆⁄ > 0, 

and the critical point in this case is 𝛼∗ = 0.00456. 
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Fig. S16. The Lorenz curves and Gini coefficients that result from training with different values 

for the population initial workload 𝛼𝑖𝑛𝑖. The training factor 𝑞 is 1/0.9, and the maximum workload 

is 0.01 (in the same units as 𝛼). The total number of ants is 30. 
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Fig. S17. Excavation rate after training. The final rate is independent of the initial population 

workload. 
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Fig. S18. The Gini coefficients with 60 ants total and 𝛼𝑚𝑎𝑥 = 0.02. The Gini coefficient is 

larger than that found in Fig. S18. 
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Fig. S19. Lorenz curves with different initial workload 𝛼𝑖𝑛𝑖. The maximum workload is 𝛼𝑚𝑎𝑥 =
0.1, where their Gini coefficients are approximately 0.93. 
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Fig. S20. Schematic of the number of ants versus time in a digging cycle. The y-axis is the overall 
number of ants in the tunnel, and T is the digging cycle. The delayed time d denotes the time of 
the first ant enter into the tunnel. The overall number of ants in the digging cycle is the area of the 
trapezoid, where 1=S denotes the time for the last ant to return its direction. 
  

32



 
 

 
 

Fig. S21. Fundamental diagram: Flow rate, 𝑞̅, vs linear density, ̅, where the switching rate at the 
end of the tunnel (rate of completing excavation) is identical to the rate of reversal when impeded 
by a retreating excavator. 
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Fig. S22. Fundamental diagram: Flow rate, 𝑞̅, vs linear density, ̅, with the unique switching rate 

at the end of the tunnel g = 0.005v. 
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Fig. S23. Gini coefficient vs. time for different initial values of α during kMC simulation of the 

OAT model in which α changes over time as individual ants increase or decrease their likelihood 
of reentering the tunnel depending if they reversed before successfully digging. 
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Fig. S24. Diagram illustration of genetic algorithm. 
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Fig. S25. Measured Gini vs. assigned Gini coefficient for system where initial tunnel length L=5 

BL, with 30 ants digging for 24 hours. Each point is mean of 5 simulations with error bars shown 
 

 

Fig. S26. Proportional number of CA ant clusters, 𝐼𝐶 = 𝐼𝐶/𝐼𝑡𝑜𝑡𝑎𝑙, of different sizes, C, measured 

over 24 hours for (A) equal and (B) unequal (optimized for 30 CA ants) workload distributions at 

different reversal probabilities (blue: 0.01, red: 0.2, yellow: 0.4, purple: 0.6, green: 0.8). Sample 

illustrations for different cluster sizes in (A) inset. 
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Table S1: Gini coefficients for primary ant digging experiment by epoch 

Colony Moisture Gini(0-12) Gini(12-24) Gini(24-36) Gini(36-48) Total 48h 

12 10 0.74 0.75 0.76 0.78 0.67 

12 1 0.53 0.71 0.77 0.70 0.58 

16 10 0.80 0.79 0.80 0.67 0.71 

16 1 0.85 0.82 0.83 0.87 0.81 

3 10 0.77 0.87 0.90 0.91 0.82 

3 1 0.62 0.79 0.70 0.67 0.56 

 

Table S2: Gini Coefficients for ant removal experiments 

Colony Moisture Removal Gini 

1 10 before 0.85 

1 10 after 0.57 

2 10 before 0.76 

2 10 after 0.69 

3 10 before 0.56 

3 10 after 0.62 

 

Table S3: Parameters for CA Simulation 

Time step, Dt 0.5 s 

Ant size 1 cell 

Tunnel width (𝑤) 2 

Reversal probability (𝑅) 0.34 

Sim length 172800 steps (24 hrs) 

Time to drop pellet 20 steps 

Probability to move sideways (p) 0.52 

Probability to move forwards 1 

Excavations to grow tunnel size by 1 cell 200  

Rest Time  600 steps 

 

Table S4: Robotic ant components 

Core components Purpose 

Pixy Camera Navigation 

Magnetometer Navigation 

Gyroscope Navigation 

DC gearmotors Locomotion 

IR Distance Sensors Obstacle avoidance 

Contact Switches Collision detection 

Servo Motors Environment manipulation 

Proximity Sensor Simulated media feedback 

Li-On Battery, Single cell Power source 

Voltage Sensor Power management 
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Current Sensor Power management 

Arduino FIO Data logging 

Arduino DUE Sensor I/O, robot control 
 

Supplemental Movie Captions  

 

Movie S1  

Ant activity experiments: Video of an ant (yellow-orange) giving up/reversing when faced with 

heavy traffic in tunnel. 

 

Movie S2 

Ant simulation: Animation of a Cellular Automata (CA) simulation of ants with Active protocol 

(equal workload distribution) vs. Lorenz protocol (unequal workload). Cell colors denote soil 

(light grey), tunnel (white). CA ants moving towards the excavation site (orange) and exiting the 

tunnel (dark grey). 

 

Movie S3 

Single robot excavation: Video of a robophysical excavator following a pink line (a guidance trail) 

and excavating model cohesive granular media; the plastic hollow shells are filled with loose 

magnets enabling clumps to form. 

 

Movie S4 

Collective clogging in robot excavation: Video of robophysical excavators encountering and 

resolving a clog while excavating model cohesive granular media. 

 

Movie S5 

Robophysical experiments comparing excavation protocols: Video comparing Active (top), 

Reversal (middle) and Lorenz (bottom) protocols implemented on excavating robots. Each Active 

robot exhibited maximum levels of activity. Reversal robots had a small probability to abandon 

the excavation attempt if the excavation area could not be reached within pre-defined time interval. 

Each Lorenz robot was assigned a distinct probability to re-enter tunnel after excavation. The 

proportion of idle and active robots is similar to observations of ant behavior. 
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