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Experimental Validation of an Individual-Based Model
for Zooplankton Swarming
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11.1 Introduction

The ecology of marine planktonic assemblages depends, in essential, intricate ways, on the behavior of
individual zooplankters. Swarming behavior is among the most crucial, and also least charted, of the
territories that span population and organismal biology in this way. On large scales in the ocean, and
possibly in some small-scale environments like frontal zones, aggregation into patches is probably a
physics-driven, passive process. At the same time, active swarming behavior — that is, a type of motion
that resists dispersion without orienting or distributing animals in an organized way — is well known,
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and controls small-scale zooplankton distribution in the ocean to an unknown extent. Passive and active
aggregations are essential for setting encounter rates between predators and prey, between grazers and
patchily distributed food sources (Lasker, 1975; Davis et al., 1991) and between conspecifics in search
of mates (Brandl and Fernando, 1971; Hebert et al., 1980; Gendron, 1992).

Swarming differs from schooling (which is known but rare among the zooplankton; Hamner et al.,
1983) in that it is stochastic, unarrayed, and largely uncoordinated between individuals. At the same
time swarming differs from truly random motion — that is, Brownian motion or diffusion — in that a
swarm does not spread out over time and disperse as does a cloud of molecules or drifting particles.
Behaviors that maintain swarms against diffusion may be either social and density dependent or nonsocial
and density independent; we consider each category briefly in turn.

A variety of models for social swarm maintenance have been proposed, centered on mechanisms in
which, for example, animals seek a target density (Griinbaum, 1994) or correlate their motion with their
neighbors’ motion (Yamazaki, 1993). The possibilities for such mechanisms in a given species are
strongly constrained by sensory ability. Perhaps the most fundamental constraint is that the majority of
zooplankton lack image-forming eyes (Eloffson, 1966) and, accordingly, do not appear to orient to their
conspecifics visually. Long-distance interactions along scent trails have been observed in copepod swarms
(Katona, 1973; Weissburg et al., 1998), and similar interactions are possible along trails in the shear or
pressure fields (Fields and Yen, 1997), as has been observed in schools of Antarctic krill (Hamner et al.,
1983). Nevertheless, most intraspecies communication in zooplankton appears to be local and intermit-
tent, as opposed, say, to the long-range and constant visual coordination that gives fish schools their
character. Leising and Yen (1997), for example, found five copepod species to be insensitive to the
proximity of their conspecifics except at nearest-neighbor distances of a few body lengths. Swarms of
this density are rarely found in nature (Alldredge et al., 1984). It is important to note that even intermittent
social interactions may play a large role in swarm dynamics. Leising and Yen argue that the number
density of the laboratory swarms they observe is controlled by avoidance reactions to chance close-range
encounters in the swarm center.

A number of nonsocial aggregative behaviors have also been observed in sifu. Phototaxis maintains
swarms of the cyclopoid copepod Dioithona oculata in shafts of light between mangrove roots (Ambler
et al., 1991), and similar responses to light gradients are known in several other species (Hamner and
Carlton, 1979; Hebert, 1980; Ueda et al., 1983). Attraction to food odors, and increased turning in food
patches, which aids foraging and increases forager density, have also been observed in a number of
species (Williamson, 1981; Poulet and Ouellet, 1982; Tiselius, 1992; Bundy et al., 1993). Some zoo-
plankton in fact may respond directly to water temperature and salinity (Wishner et al., 1988; Gallager
et al., 1996).

This enormous range of social and individual behaviors does not consolidate readily into a simple,
general account of zooplankton swarming. Still, a unifying thread runs through them: whatever the
driving behavioral mechanism, the tendency that counters dispersion in a swarm is not just a collective,
statistical property, but rather must be observable in each swarmer’s individual motion as a hidden
regularity. This is an experimentally powerful notion, for it suggests that we may be able to apprehend
the dynamics of a large, observationally unwieldly aggregation by studying the behavior of a few typical
individuals. Indeed, in a dynamic, rather than statistical (one could also say ethological, rather than
ecological) approach to animal swarming, the larger aggregation may often be close to irrelevant. Writes
Okubo (1986):

There is an interesting observation by Bassler that a swarm could be reduced to a single individual
of mosquito, Culex pipiens which yet continued to show the characteristic behavior of swarming
dance [Clements, 1963]. Also Goldsmith et al. [1980]... noted that a single and a few midges
did show movements characteristic of swarming by a large number of animals.

Provocatively, many zooplankton may behave like mosquitoes and midges in this respect, and form
swarms in which interaction between individuals plays at most a secondary role. Yen and Bundock
(1997), for example, found no social interaction within phototactic laboratory swarms of the harpactacoid
copepod Coullana canadensis.
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When interaction does occur, as noted above, it is generally chemical or rheotactic, rather than visual,
and thus occurs slowly, along spatially torturous paths. These paths are very difficult to observe or map,
and in a large aggregation, especially outside the laboratory, would not easily be differentiated from a
diffuse, continuous sensory cue. Indeed, if such interactions are fundamental to the dynamics of a swarm
(as opposed to simply being facilitated by the swarm, as mating encounters might be), then their
importance is not particular but cumulative, statistical, parameterizable. While the details of social
communication are crucially relevant to swarming biology on one level, for analyzing balances between
dispersion and counterdispersion — for understanding the kinematics of an individual swarmer — it
seems more apt to average over many encounters, and to model social effects as a net dispersive or
concentrative tendency in each individual.

In this modeling approach, then, whether a swarm is socially or nonsocially driven, we regard it
as an interaction not between animals, but between each animal and its local stimulus field. This
approach has the advantage of generality. While one can parameterize a social, density-dependent
response — a series of avoidance reactions, for example, or motion through a network of pheromonal
trails — as an individual response to a steady cue, it is hard to imagine modeling, say, phototaxis by
reversing the analogy.

Attempts to produce a general quantitative description of zooplankton swarming have been frustrated
by a lack of marine observations. Okubo and Anderson (1984) present a simple and general individual-
based model of steady-state swarming (see also Okubo, 1980, 1986), but write that for purposes of
model verification, “no such data really exist in the marine field.” They proceed, with reservations, by
examining data from “aeroplankton,” midges swarming in a forest clearing. Since the time of their
publication, optical and acoustic technologies for observing and recording in situ zooplankton distribution
and behavior have become available (Alldredge et al., 1984; Schultze et al., 1992; Smith et al., 1992;
Davis et al., 1992). These and laboratory methods have occasionally been applied to the problem of
aggregation dynamics. McGehee and Jaffe (1996), for example, examine the relationship between path
curvature and swimming speed in a zooplankton patch observed through acoustic imaging; Buskey et al.
(1995) used three-dimensional imaging in the laboratory to analyze the phototactic formation of a swarm
in Dioithona oculata.

Still, no dynamic account has been given of the swarming motion of individual animals followed for
sustained periods. In the present study we use optical methods developed by Strickler (1998) to evaluate
Okubo and Anderson’s model — the “aggregating random walk” (Yamazaki, 1993) — in the case of
two species of zooplankton, the calanoid copepod Temora longicornis and the cladoceran Daphnia
magna, swarming phototactically in the laboratory.

11.2 Theory

In this section we derive quantitative predictions of the aggregating random-walk model, which we
can directly compare with data, beginning from kinematic first principles, following Okubo and
Anderson (1984). ’

11.2.1 Differentiating between Swarming and Diffusion

Assume for simplicity that the swarming motion is one dimensional, in the x direction — we generalize
to two and three dimensions later — and assume that the swarm has reached a steady state and is
isotropic. If all the swarmers are responding to the attractive stimulus in the same way, then their paths
will be centered on the same point: call this the origin. Then the spatial variance x* of an individual’s
path also measures the size of the swarm.

__A standard result in the theory of diffusion (Okubo, 1980) is that under these assumptions, for large 7,
x* increases as

x> > 2Dt (11.1)
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FIGURE 11.1 Schematic representation of the distinction in velocity autocorrelations between swarming and diffusion.
The shaded area in each case is equal to the diffusion coefficient D.

where D is the diffusivity. D can be written as
D=u? _[ R(t)dx (11.2)
0
where u = dx/dt. R is the Lagrangian velocity autocorrelation coefficient, a function of time lag T:

R(%) = —u(D)u(t +7) (113)

Eventually any individual’s velocity decorrelates from its earlier values, since no animal, swarming,
diffusing, or otherwise, moves in the same pattern forever, and so R(t) — O for large 1. The shape of
R(7) as it tends to this asymptotic limit, however, is variable. In the case of simple diffusion, R(T) decays
exponentially. Its integral is a positive number, so that D, by Equation 11.2, is a positive number, and
x*, by Equation 11.1. increases linearly. In the case of swarming, in which trajectories do not spread
over time, however, x> remains constant; D must then be zero; and R(7) oscillates about the axis in such
a way that its area converges likewise to zero (Figure 11.1).

Thus the shape of R(T) — specifically, the presence or absence of an axis crossing — is the key to
distinguishing kinematically between swarming animals and diffusing ones. R(T) can be calculated
directly from position and velocity data by Equation 11.3.

11.2.2 Diffusion in an Aggregative Force Field

We can recast the problem in dynamic Newtonian terms, again following Okubo and Anderson, as a

balance between diffusion and a deterministic concentrative force. In this model the concentrative force,

an inward acceleration that grows with distance from an attractor at the swarm center, keeps the swarmers

from dispersing, while diffusive motion keeps the swarmers from collapsing onto the central attractor.
The resulting equation of motion can be written:

du/dt = A —ku—o>x (11.4)

The first two terms on the right-hand side constitute a standard “random-flight” model of diffusion: & is
a frictional coefficient in a Stokes model of drag, and A(?) is a random acceleration, some sort of white
noise, with a delta-function autocorrelation and finite power B= Au. Note that we can interpret this
random excitation and frictional damping either as true external, turbulent forces acting upon a passive
particle, or simply as accelerations that express behavior patterns.

The third term on the right-hand side, the concentrative force, can be interpreted either as a harmonic
(linear) restoring force, such as the force that gravity exerts on a pendulum, or as a local approximation
to a more complicated, anharmonic restoring force. Okubo and Anderson suggest anharmonicity as a
mechanism for maintaining a uniform, rather than Gaussian, density distribution through the swarm
center. Our experiment neither confirms nor refutes this idea, and so in the interest of empiricism we
have retained only the harmonic concentrative term. We view our dynamic model (Equation 11.4) as a
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first-order approximation to a behavior that may well involve a number of unmodeled, higher-order
effects, such as advection of momentum, in both the diffusive and concentrative motions. Higher-order
models may be necessary to parameterize the effects of foraging, mate-finding, escapes, and other
behaviors simultaneous with swarming.

As shown by Okubo (1986), Equation 11.4 does indeed yield a velocity autocorrelation of the form
required by Kinematic considerations, as discussed above and illustrated in Figure 11.1:

_ k.
R(t)=e k’/z(coswlt - Esmmlt] (11.5)

1

where
ol =0’ -k*/4 (11.6)

The integral of R(7) is identically zero. Note that as the attractive forcing weakens — that is, as ® — 0
— Equations 11.4 and 11.5 both approach the results for simple diffusion:

du/dt = A—ku (11.7)

R(z)= e (11.8)

In practice, we necessarily calculate the autocorrelation R(7) on discrete time series, either from
experiment or from numerical simulation, and such a discrete autocorrelation is not fully equivalent to
Equation 11.5, derived from continuous dynamics. Yamazaki and Okubo (1995) show that the discrete
autocorrelation does not integrate to zero, i.e., that discretization introduces an apparent (but artificial)
net diffusion rate. This mathematical inconsistency is potentially a limit on the precision with which we
can determine k and ® from observations.

11.2.3 Further Model Predictions

In this model, a swarm is characterized primarily by position variance P (a measure of the size of the
swarm), velocity variance u* (a measure of the kinetic energy of its members) and by k, ®, and B
(measures of the strength of the damping, attractive, and excitational forces). We can derive from
Equation 11.4 some useful and experimentally verifiable relationships between these parameters.
Multiplying Equation 11.4 by u and taking the time average, we obtain
u® =l 0+ Au (11.9)
dt

Au is the power of the random forcing, or B. Since we assume the swarm is in a steady state, both
u(du/dt) and x(dx/dt) are zero. Thus, Equation 11.9 becomes

u=— (11.10)

Note that this relationship is independent of ® and therefore true of purely diffusive motion as well.
Thus the attractive force has no bearing on the kinetic energy of a swarm. Nor does it influence the
speed distribution of the swarmers: an individual subject to Equation 11.3 follows the Maxwellian speed
distribution for free particles (like gas molecules):

2
plu) = L em{—%) (11.11)

2mu® u

where p(u) is the fraction of a statistical ensemble found between velocities u and u + du (Okubo and
Anderson, 1984).
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The strength of the attractive force does, however, have a very direct bearing on the steady-state swarm
size x2. For large #, x* approaches the value

~_ @
Tz — (11.12)

e

(Uhlenbeck and Ornstein, 1930). Thus swarm size is inversely proportional to the strength of the attractive
forcing. When o is large — that is, when the attractive tendency increases rapidly with distance from
the swarm center — the swarm is concentrated tightly. As ® approaches zero — the case of pure diffusion
— the swarm’s limiting size increases toward infinity.

11.2.4 Swarming in Two and Three Dimensions

These results can easily be generalized to more than one dimension. Assume, for example, that the same
forces that act in the x direction act in the y. Because our model involves no coupling of motion along
different axes, the results so far derived still hold, and y* and v (where v =dy/dr) are related to k and
o by expressions analogous to Equation 11.10 and 11.12. We can then write expressions for the two-
dimensional parameters of interest:

(11.13)

S 7
rex’+y’=— (11.14)
()]

The generalization to three dimensions is analogous.
Velocity distributions for two- and three-dimensional swarms are simply the two- and three-dimensional
Maxwellian distributions. In two dimensions,

2
p(V):%Vexp[—%] (11.15)

Note that animals swarming in a three-dimensional ocean are not necessarily engaged in three-
dimensional swarming. The number of dimensions in which the swarming model applies depends on
the symmetries of the attractor. If the attractor is planar (for example, a front or thin layer containing
high food concentrations: Yoder et al., 1994; Hanson and Donaghay, 1998), then the swarming forces
do indeed act in only one dimension, the vertical, and motion in the two horizontal dimensions, in which
the attractor is isotropic, is likely to be diffusive. If the attractor is one dimensional (for example, the
light shaft in our experiment, or a light shaft through mangrove roots: Ambler et al., 1991), then we
might expect swarming motion in two dimensions and diffusive motion in the third. Only if the attractor
is a point or spherically symmetrical (for example, a diffusing chemical signal in an isotropic environ-
ment) does the swarming model apply to three dimensions.

11.2.5 The Acceleration Field

Finally, returning to the one-dimensional case, we can derive predictions about the mean and variance
of the spatially varying acceleration field.
Taking the mean of Equation 11.4, holding x constant, we obtain

a(x)=-0’x (11.16)

where a =du/dt. Thus, the mean acceleration field consists of the center-directed concentrative force alone.
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Fluctuations about this mean consist of the random-flight accelerations A(7) — ku. Okubo (1986) derives
an expression for the expected variance of these fluctuations, a’. The quantity we actually calculate
from data, however, is not acceleration but a finite-difference approximation to acceleration:

Au_ u(ty + At)—u(t,)

11.17
At At ( )

where At is the sampling period, and the theoretical variance of Au/At is not the same as that of the
acceleration itself. (Note that the distinction does not affect the predicted mean acceleration field, or the
predictions concerning the velocity field given above.) Without loss of generality, set 7, = 0. Then the
finite-difference acceleration variance can be written

£=Lut+ t)—u(t, Jlult, + At)—ulz,
AP Azz[(" &) ()][( &) ()] (11.18)

= ﬁ(zu_2 +2u(t, Jult, + At))

since the velocity variance is assumed constant in time. The second term can be evaluated using the
definition of the autocorrelation (Equation 11.3) and the diffusive result (Equation 11.8), so that

A2y e
AP AP

predicts the variance about the mean acceleration a(x) for a time series sampled with a time step Az.
Just as the acceleration field has a finite variance about the mean, so does the autocorrelation curve

R(1). Only the mean autocorrelation was derived above. Because of the complexity of the problem,

however, in the data analysis below we estimate the theoretical variance of the autocorrelation numeri-

cally, through direct integration of the equation of motion (Equation 11.4), rather than deriving an

expression for it analytically.

(11.19)

L}
11.3 Experiment

Data were collected for homogeneous groups of two species, the freshwater cladoceran Daphnia magna
(Hussussian et al., 1993) and the calanoid copepod Temora longicornus. In each experiment the animals
were placed in a small (10 X 10 x 15 cm) Plexiglas tank, a light down the center axis of the tank turned
on, and the trajectories of the animals swarming to the light recorded on videotape and then digitized.

The geometry of the tank-and-light system is shown in Figure 11.2. Description of the optical methods
employed can be found in Strickler and Hwang (1998) and Strickler (1998); digitization methods are

N/

FIGURE 11.2 Geometry of the tank and light system.
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described in Doall et al. (1998). The light source in the Daphnia experiment was a 3-mW argon laser
(wavelength 488 and 514.5 nm), which produced a collimated beam 4 mm wide throughout the water
column. The Temora experiment used a 2-mm-diameter fiber-optic light guide, projecting light from a
halogen lamp at the top of the tank. This produced a narrow cone-shaped beam with more attenuation
through the water column, although the beam reached clearly to the bottom of the tank.

All three axes of motion were captured for the Temora experiment, using a pair of orthogonal
projections. One camera recorded motion in the x—z plane, and a second, motion in the y—z plane, so
that by matching z motions one could recover full three-dimensional trajectories. The Daphnia experi-
ment was recorded with an earlier generation of the optical system and thus contains only a single x—z
projection. Because of the radial symmetry of the light source, and the fact that our model predicts no
coupling of motion between orthogonal axes, the lack of a third dimension in the Daphnia data does
not hinder the statistical analysis.

Phototaxis in marine and freshwater macrozooplankton is well known, primarily in the context of
light-gradient-driven diel migration (Russell, 1934; Stearns, 1975; Bollens et al., 1994). The behavioral
significance of the strong positive phototaxis that zooplankters often show in the laboratory, however,
is poorly understood. Some animals placed in the tank showed no attraction to the light, and the response
of other animals was intermittent. Some of the Temora simply remained at the bottom of the tank, while
others collected at the surface, where the fiber-optic illumination was intensified. Flux between these
subpopulations and the swarm in the mid-water column was continual. Trajectories for analysis were
taken from the animals that remained in the swarm for longer than one sample period.

These swarms tended to be small, generally consisting of fewer than ten animals, so that mean nearest-
neighbor distances were many body lengths. This low density is consistent with our treatment of
swarming behavior not as a density-dependent, social interaction, but rather as an individual response
to a sensory cue. The simultaneity or nonsimultaneity of the swarmers’ motions does not enter into the
analysis, because each animal is in effect swarming alone.

L]
11.4 Analysis

11.4.1 Constructing a Statistical Ensemble

Trajectories were sampled at 1-s intervals. This time step was chosen both to resolve the fundamental
timescales of motion (the damping time //k and the attractive force period 27m/®, which were estimated
by an initial calculation of the velocity autocorrelation) and simultaneously to filter out higher-frequency
behaviors such as avoidance reactions and trail following (Weissburg et al., 1998). Long-time step
sampling is an unrefined method for low-pass-filtering a trajectory record; but a test performed on Temora
data sampled at 0.2 s suggested that the choice of this method over tapered low-pass filtering of a higher-
resolution data set had a negligible effect on the analysis. Longer-time step sampling makes the digiti-
zation of trajectories (which was done by hand here rather than by computer program to ensure accuracy)
far less labor intensive.

Recorded trajectories were divided into uniform 20-s segments for the analysis. This length of time
was chosen to balance two considerations. The segments had to be long enough to resolve the inherent
dynamic timescales mentioned above, and at the same time as short as possible — i.e., as close to the
autocorrelation timescale as possible — to ensure uniformity of behavior within each record. They thus
become independent samples in the statistical sense. Within each 20-s segment, velocities and acceler-
ations were calculated using the finite-difference equations

x(#) — x(t — Af)
At

u(t) ~ (11.20)

alt) = ult +At)—u(t) _ x(r+Ar) - 2x(2t) + x(t - Ar) (11.21)
At At
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Even among the animals that remained suspended in the water column, not all were engaged in
swarming behavior. A few simply drifted through the swarm without, in a kinematic sense, being part
of it, like waiters carrying trays across a lively ballroom. The shape of the velocity autocorrelation, as
illustrated in Figure 11.1, quantitatively distinguishes swarmers from drifters, i.e., slow diffusers. As our
goal is not to test a hypothesis about the phototactic behavior of Daphnia and Temora, but rather to
describe the swarming that a light gradient can evoke in these animals, we winnowed the trajectory set
to remove those animals who were not participating. (Because this winnowing eliminated only a small
number of candidate trajectories, as described below, it is fair to assume that the swarming dynamics
thus described account for the bulk of the animals’ response to this stimulus.) We eliminated from both
the Daphnia and Temora data sets trajectory samples whose velocity autocorrelation did not cross the
time axis, as well as samples whose mean position lay more than two standard deviations from the
zaxis, the swarm center. These criteria eliminated 4 of 24 Temora trajectories and 2 of 60 Daphnia
trajectories. Some diffusers were also eliminated by eye before digitization of trajectories began. Lateral
projections of all remaining Daphnia and Temora trajectories are shown superimposed in Figure 11.3A
and Figure 11.4A, B.

The final step in creating a uniform statistical ensemble of trajectories is to verify that the process
captured is kinematically stationary. Figure 11.3B and Figure 11.4C show the means and standard
deviations of position and velocity for both data sets. Note that there are no strong outliers, and that the
variances of the ensembles are on the same order as the variances of individual trajectories within them.

11.4.2 A Procedure for Testing Model Consistency

We proceed as follows for both the Daphnia and Temora experiments.

1. Verify that the velocity distribution is Maxwellian. This confirms (in the absence of an independent
measure of the excitation variance B) the kinetic energy balance of Equation 11.10.

2. Calculate the velocity autocorrelation R(7), and verify that its form fits the kinematic requirement
illustrated in Figure 11.1.

Fit R(7) to find ® and . This is done by minimizing, by inspection, the square-error function:

J((D’k) = Z(Rabserved (T) - Rtheoretical (T))z (1 122)

T

With these parameters, directly integrate Equation 11.4 to create a simulated ensemble of
velocity autocorrelations, and thus a numerical prediction of the autocorrelation variance
(just as Equation 11.5 gives an analytical prediction for the autocorrelation mean).

3. With o from step 2, confirm the relation between swarm size and kinetic energy predicted by
Equation 11.12.

4. Compare the mean and variance of the spatial acceleration field with those predicted by
Equations 11.16 and 11.23.

5. Examine motion in the z (vertical, along-laser) direction, which we have not to this point
discussed. In this dimension the attractor is more-or-less isotropic and we might expect diffu-
sive, not swarming, dynamics. The animals’ vertical motion can be compared with theory under
the assumption that the diffusion-driven parameters u* B, and k will be the same in the
z direction as they are in the x and y (cross-laser, swarming) directions. Here we follow an
abbreviated version of the outline above.

Look for a Maxwellian velocity distribution, as in step 1.

Calculate the velocity autocorrelation, compare its ensemble mean with Equation 11.8, and
compare its ensemble variance with numerical results, as in step 2.

Calculate the mean and variance of the acceleration field as in step 4. We now expect the mean
to be zero (by Equation 11.16, with ® = 0) and the variance to be as predicted by Equation 11.19.
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FIGURE 11.3 (A) Superimposition of all 58 Daphnia trajectories included in the analysis, shown in x—z projection. Plot
boundaries indicate the edges of the tank, and the dotted line shows the position of the light shaft. (B) Position (horizontal
axis) and velocity (vertical axis) statistics for each trajectory sample. The crosshairs, each representing a single animal
trajectory, are centered on the mean horizontal position and velocity, and indicate standard deviations by their extent.

11.5 Results

Results for the Daphnia experiment are shown in Figure 11.5 and results for Temora in Figure 11.6. Note
that the calculations for the horizontal dimensions in the Temora data are two dimensional, as both horizontal
components of motion were captured and analyzed, and one dimensional for the Daphnia data. The
parameters k, ®, and B, derived from the horizontal analysis, along with rms velocity and position (which
represent > and x), are summarized for both species in Table 11.1. Also given are rms positions (i.e.,
swarm sizes) predicted by Equation 11.12 and the error between these predictions and the values observed.

11.5.1  Velocity Distributions

Figure 11.5A, B and Figure 11.6A, B show observed velocity distributions for the horizontal (swarming)
and vertical (diffusive) dimensions, along with theoretical curves based on Equations 11.11 and 11.15.
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FIGURE 11.4 (Superimposition of the 20 Temora trajectories included in the analysis, shown in (A) x—z and (B) y—z
projection. Plot boundaries indicate the edges of the tank, and the dotted line shows the position of the light shaft. (C) Position
(horizontal axis) and velocity (vertical axis) statistics for each trajectory sample. The crosshairs, each representing a single
animal trajectory, are centered on the mean horizontal position and velocity, and indicate standard deviations by their extent.

All velocity fields are close to stationary (ﬁz << u?). Velocity distributions for both species lie close to
the predicted Maxwellian curves, with 2 = 0.65 and 0.98 for the horizontal and vertical axes of the
Daphnia motion and r2 = 0.91 and 0.86 for the horizontal and vertical axes for Temora. The horizontal
Daphnia distribution is more platykurtic than predicted, and the horizontal Temora distribution more
sharply peaked, but these deviations could be either statistical artifacts or true dynamic effects related to
these species’ swimming styles, and are second-order effects in either case. The first-order match with
theory supports our assumption of a Stokes form for drag and a stochastic, spatially symmetrical excitation.

Note also that, with the exception of a possible upward drift along the laser axis in the Temora data
(Figure 11.6B), the velocity fields are very close to symmetrical, and that velocity variances are similar,
for each animal, in the horizontal and vertical dimensions. In_fact, velocity variances are indistinguish-
able for the two horizontal dimensions in the Temora data (u” = 16.7 mm?s?, v = 16.6 mm?s2). These
patterns support the spatial symmetries we have assumed and our supposition of dynamic consistency between
the along-laser and cross-laser diffusion processes. Note that an upward drift in the Temora experiment would
be consistent with a weak phototactic response to the attenuation of the light shaft through the water column.

11.5.2 Velocity Autocorrelations and Fit Parameters

Figure 11.5C, D show observed and theoretical velocity autocorrelations for the two dimensions of
Daphnia motion. The horizontal theoretical mean is a fit to the data shown, while the vertical theoretical
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FIGURE 11.5 Results for Daphnia. Velocity distributions (A, B), velocity autocorrelations (C, D), and acceleration fields
(E, F) for the horizontal (A, C, E) and vertical (B, D, F) axes of motion. In all panels, thick lines indicate means and shaded
areas and thin dotted lines indicate standard deviations. Full explanations of plotted quantities are given in the text.

mean is not a fit but a prediction based on Equation 11.8 with k from the horizontal analysis. Theoretical
standard deviations are calculated from numerical simulation. Figure 11.6C, D show autocorrelations
for Temora in the same format, except that here the observed horizontal velocity autocorrelation
(Figure 11.6C) is the average of the x and y autocorrelations, a quantity that is invariant under rotation
of the horizontal axes.

Horizontal autocorrelations for both species are fit very closely by theoretical curves (Daphnia, r* =
0.995; Temora, r* = 0.90). This match is a strong validation of the kinematic theory underlying our
analysis. Variance of individuals around the ensemble mean for each species is close to the level that
simulation predicts (Daphnia, r* = 0.95; Temora, r* = 0.71). Note that in contrast to the underdamped,
highly orbital trajectories of members of the midge swarm analyzed by Okubo and Anderson (1984),
both the Daphnia and Temora swarms appear to be near critical damping, with individuals’ velocities
decorrelating almost entirely in less than one period of the harmonic attractive force.

Values of k derived from the horizontal swarming motion suggest decaying autocorrelation curves for
the vertical motion that correspond well with observations (Figure 11.5D and Figure 11.6D), confirming
our supposition that motion along the laser axis is primarily random and diffusive, and that the same
damping force acts on horizontal and vertical swimming. The Daphnia vertical autocorrelation, however,
has a longer tail than predicted, suggesting that the animals tend to drift, actively or passively, along the
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FIGURE 11.6 Results for Temora. Velocity distributions (A, B), velocity autocorrelations (C, D), and acceleration fields
(E, F) for the horizontal (A, C, E) and vertical (B, D, F) axes of motion. In all panels, thick lines indicate means and shaded
areas and thin dotted lines indicate standard deviations. Full explanations of plotted quantities are given in the text.

laser axis, in combination with their diffusive behavior. The Temora vertical autocorrelation may or may
not indicate the same tendency.

Fitting the horizontal autocorrelations for k and ® lets us test the consistency of the theoretical
relationship (Equation 11.12) between swarm size, swimming speed, and the strength of the concentrative
force. Table 11.1 gives observed and predicted values of the swarm size for both species. They agree
— i.e., the relationship between parameters is consistent with theory — to 4% for Daphnia and 45%
for Temora.

11.5.3 Acceleration Fields

Figure 11.5E, F and Figure 11.6E, F show the observed acceleration fields with theoretical means and
standard deviations from Equations 11.16 and 11.19. The x and y acceleration fields for Temora
(Figure 11.6E) are superimposed.

The horizontal Daphnia acceleration field (Figure 11.5E) agrees well with theory in both its mean
slope (which is not significantly different from the predicted value of zero) and its mean standard
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TABLE 11.1

Dynamic and Kinematic Parameters along the Axes of Swarming Motion for the Daphnia and Temora
Experiments

Source Daphnia Temora
Damping coefficient k Fit to velocity autocorrelation  0.54 s 0.80 s
Concentration coefficient w Fit to velocity autocorrelation ~ 0.49 s~! 0.63 s
Power of excitation B Equations 11.10, 11.13 3.6 mm?s®  13.3 mm? s3
Kinetic energy I? Observed 2.6 mm s
. == i
(rms velocity) '\/u2 + V2 5.8 mm s
Swarm radius \[x;; Observed 5.5 mm
(rms position) \/;;z + yz 16.6 mm
Predicted swarm radius \/ 2 Equation 11.12 5.3 mm
. X pred
P + ;2_ Equation 11.14 9.1 mm
pred
Error in swarm size (observed—predicted) 4% 45%

deviation (error = 11%). The vertical Daphnia acceleration field (Figure 11.5F) shows similar agreement
(error in mean standard deviation = 8.9%), although superimposed on the diffusive field are an upward
mean acceleration near the bottom of the tank and a downward mean near the top. These perturbations
suggest that the animals feel the top and bottom boundaries of the domain, perhaps hydrodynamically,
and turn away from them. The vertical Temora acceleration field suggests the same behavior.

The variances of the Temora acceleration fields are similar to those predicted by our random-flight
model (error in mean standard deviation 2.2% for the x direction, 30% for y, 11% for z), but the horizontal
mean field is much smaller than predicted. In the absence of other results this might be taken to mean
the absence of a concentrative acceleration and thus primarily diffusive behavior, but the horizontal
velocity autocorrelation (Figure 11.6C) suggests a swarming balance very strongly. Instead, we attribute
the poor definition of the mean horizontal Temora acceleration field to noise in the data, i.e., a combination
of sampling error and real, high-speed behaviors not accounted for by our model. There are several
reasons to suspect this type of error. The Temora, unlike the Daphnia, make their turns quickly, generally
in less than the sampling time step of 1 s. Their trajectories wobble and jitter at high (~10 Hz) frequencies,
in ways that may be related to the trail-following that Weissburg et al. (1998) observed in the same
series of Temora experiments. Furthermore, in general, successive derivatives of a data set (calculation
of the acceleration requires two) amplifies noise at the high-frequency end of a power spectrum. One
would expect a moderate level of noise in the acceleration field to wash out the small mean field but
have only a secondary effect on the field’s variance, as is observed.

|
11.6 Discussion

11.6.1 Model Consistency

Our goal here has been to provide an internally consistent model description of a steady-state zooplankton
swarm, by a method that could be applied generally to the problem of assessing physical and biological
controls on zooplankton aggregation. The analysis above verifies the suitability of the model presented
here to the artificially stimulated swarms we have described. It also suggests the level of quantitative
agreement we can expect for real organisms, which do not move like idealized particles and inevitably
are engaged in other behaviors at the same time they are swarming: errors up to a factor of two, with
closer correspondences in most measures. The median unexplained variance (1 — #2) for all theoretical
fits for which it was calculable was 11%.
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For many purposes, high-precision agreement with data may not actually make a descriptive model
any more useful than one with moderate-precision agreement. This is especially true for a problem like
zooplankton aggregation, in which the parameters of ultimate interest — number densities and encounter
rates — vary over several orders of magnitude. Nevertheless, higher-frequency sampling or more involved
frequency-domain filtering might reduce errors in laboratory results, by suppressing sampling error and
isolating swarming motion from other behaviors more precisely. It appears, however, that in the present
study — perhaps for models that entail strongly stochastic behavior in general — larger sample sizes
would not. Variations in individual behavior around the ensemble mean are substantial — this is most
visible in the velocity autocorrelations (Figure 11.5C and Figure 11.6C) — but this variation is not
significantly greater than what the model dynamics predict, suggesting that in a larger ensemble the
mean would be no more precisely defined.

Figure 11.7 shows individual velocity autocorrelations for 36 Daphnia trajectories, selected at random
out of the full set of 58 for illustrative purposes, and for comparison 36 autocorrelations numerically
that were simulated using the momentum Equation 11.4 and fit values of ® and k. Only a few of the
observed individual trajectories actually match the ensemble average (Figure 11.5C) in form; those that
do suggest orbital periods (i.e., values of ®) and decorrelation times (i.e., values of k) that vary by an
order of magnitude. Just as many records appear to decorrelate within a few seconds, suggesting no
easily describable kinematic pattern thereafter. What is significant here is that all these forms for the
autocorrelation appear among the simulated trajectories as well. Because of the inherent stochastic
element in this motion, a single dynamic balance with a single set of parameters can produce what
appears to be a wide variety of individual behaviors. Note also the common element in these variegated
trajectories: all satisfy the kinematic requirement for swarming, illustrated in Figure 11.1, that their
autocorrelations integrate to a value near zero.

11.6.2 Model Interpretation

A number of physical or biological interpretations are possible for each of the terms in our model
Equation 11.4, and thus we have so far left the meaning of these terms very general. Clearly, the strict
Newtonian interpretation — external forces incident upon a passive particle — is insufficient in our
experiment, although this interpretation might sometimes be appropriate for animals in a more energetic
and complex environment than our placid laboratory tank: plankton who live up to their Greek name
and simply drift. In general, however, each of the force terms in Equation 11.4 can be given either a
physical or a behavioral interpretation:

11.6.2.1 Damping — The damping —ku may represent viscous drag, here assumed to obey Stokes’
law to keep the model linear, although Okubo and Anderson (1984) note that this may not be the right
form of drag for large and fast-moving zooplankton. Alternatively, it could represent a decorrelative
behavior, akin to the tendency of many zooplankton to turn more often in a food patch (Williamson, 1981;
Buskey, 1984; Price, 1989; McGehee and Jaffe, 1996).

An estimate of hydrodynamic drag on the animals in our experiment suggests the behavioral inter-
pretation. Assume that the damping —ku is a linearization of a more realistic and more widely applicable
quadratic drag law, so that

C,p. Au?
—u~ %% (11.23)
P,
(Haury and Weihs, 1976) and
k~%CdB-W—%u (11.24)

4

Wwhere u is the velocity, V the volume, A the frontal cross section, p, the density, and C,, the drag coefficient
of a zooplankter moving through water of density p,,. We can assume that the ratio of water to animal
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FIGURE 11.7 Individual horizontal velocity autocorrelations, selected from the ensemble at random, for (A) Daphnia and
(B) numerically simulated Daphnia.

density is O(1), and estimate the ratio of volume to frontal area as body length . Drag coefficients are
a function of Reynolds number:

Re=— (11.25)

where v is the dynamic viscosity of seawater, ~10° m? s~!, and we have assumed that body length and
diameter are similar. For the animals in our experiment (Daphnia: u ~ 3 mm s, [ ~ 3 mm; Temora:
u~6 mm s, ] ~1 mm; Yen et al., 1998), Re is between 1 and 10, values for which observations of
zooplankton suggest C, ~ 10 or higher (Haury and Weihs, 1976). Thus, for both Daphnia and Temora,
a low estimate for the effective Stokes coefficient is k ~ 10 s71.

This is fully an order of magnitude larger than the k values associated with swarming in our
experiment (Table 11.1). In other words, hydrodynamic drag appears to operate here at a timescale
1/k much shorter than the timescale of swarming motion, indeed much shorter than our sampling
interval of 1 s. While drag may well be important in the dynamics of avoidance reactions between
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the swarmers, trail-following, rapid changes of direction, and the like, it does not appear to have
explicit effects in the regime of motion we have been considering. Thus the damping of forward
motion that limits the energy and spatial extent of the Daphnia and Temora swarms appears to be not
passive and fluid mechanical, but rather active and behavioral, a tendency consistent with the classical
«area-restricted search” model of Tinbergen et al. (1967).

11.6.2.2  Excitation — The excitation A(f) clearly is behavioral in our experiment, since the
packground flow field is negligible, but one could also model turbulent dispersion through this term.
Indeed, the kinematic approach of our model does not differentiate between dispersion by behavior
and dispersion by the environment, and thus it lets one express observations of excitational behavior
in a form directly comparable with standard turbulence formulations. In the absence of an aggre-
gative tendency (that is, with ® = 0), Equations 11.2 and 11.8 predict that a swarm will disperse
with a diffusivity

2

D= u—z_[ Ry~ (11.26)

For our Daphnia and Temora swarms, for example, this (behavioral) diffusivity is 10 to 10~ m? s,
similar to background diapycnal diffusivities in the open ocean (Gregg et al., 1999). This comparison
is simply illustrative and is not meant to measure the ability of these animals to aggregate against
turbulence, as they do not appear to be swimming at capacity here: Temora, for example, have been
observed to lunge at speeds more than ten times the rms velocity of the swarmers we have described
(Doall et al., 1998). Yamazaki and Squires (1996) find that most zooplankton swim at speeds greater
than or comparable to the velocity fluctuations associated with upper-ocean turbulence.

11.6.2.3 Concentrative Force — The concentrative force —w?x represents phototaxis in our experi-
ments and, indeed, is likely to represent a behavioral response like phototaxis or chemotaxis in most
physical environments. There are important exceptions, however: fronts from river plumes (e.g., Mackas
and Louttit, 1988), Langmuir circulations (Stavn, 1971), and internal waves (Shanks, 1985) have all been
found to cause passive aggregation as well. These physical mechanisms, which generally consist of
advection by a convergent flow field, may not be represented well by the harmonic restoring force that
our model employs.

11.6.2.4 Physical-Behavioral Balances — In summary, these possibilities suggest three princi-
pal balances of physical and biological processes to which the “aggregating random-walk” model could
be applied:

1. Aggregative behavior, which maintains high animal concentrations against turbulent dispersion
(as, for example, Tiselius et al. [1994] observed in a thin layer at a sharp pycnocline)

2. Dispersive behavior, which limits animal concentrations in a region of convergent flow (perhaps
similar to the maintenance of nearest-neighbor distance by avoidance reaction observed by
Leising and Yen, 1997)

3. A pure balance of aggregative and dispersive behaviors in a quiescent environment

Note that while so far we have discussed the excitational and concentrative forces as separate
processes, we might also interpret them as mathematically paired components of a single swarming
behavior: a behavior better described as a spatial gradient in excitation. (Spatial variations in eddy
diffusivity are thought to cause anisotropic tracer distributions in the ocean [Armi and Haidvogel,
1982], and Mullen [1989] models fish dispersal and abundance using a variable diffusivity proportional
to saturation of local carrying capacity.) This interpretation allows the possibility of a conceptually
simple link between the gradient in stimulus (say, light intensity or chemical concentration) and a
gradient in the behavioral response.
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]
11.7 Conclusion

The members of phototactic swarms of Daphnia and Temora in the laboratory are found to follow, to
first order, the dynamics of randomly diffusing particles subject to a linear restoring force. This behavioral
model is found to fit the data to within ~10 to 20% overall. Larger errors, attributed to sampling method
and unmodeled behaviors, occur in some measures of the Temora acceleration field and spatial distri-
bution, but much closer matches (errors of 0.5 to 10%) are found in several fundamental kinematic
measures: most notably, the form of the velocity autocorrelation along the axes of swarming motion.

In these experiments the concentrative force and diffusive excitation are individual behavioral
responses to a stable environmental stimulus. In other circumstances, the same model dynamics could
represent a variety of balances of physical accelerations like turbulence, drag, and flow convergence;
individual responses to environmental cues; and interaction between swarm members.

The environmental and intraspecies cues that initiate individual swarming behaviors are varied and
not well understood. A natural continuation of the laboratory experiments described above would be to
investigate the effects of variations in the swarm stimulus (weaker and stronger light gradients, chemical
and hydrodynamic cues) and the swarm demographics (species, life stage, physiological state, presence
of predators, density, and so on.) One could also analyze in situ observations of zooplankton swarms in
similar terms, and through this model draw inferences, in both directions, between individual behavior
on the small scale and the dynamics of patches on the large scale.

Without further elaboration the model we have been considering makes no predictions about the
outcome of such a series of observations. The benchmarks this model proposes, however — the form
of the velocity autocorrelation and acceleration field; the parameters &, ®, and B, which index the strength
of the forces which must balance to produce a stable swarm — are likely to clarify the role of behavior
in maintaining zooplankton aggregations, as well as help identify the sensory pathways through which
swarming zooplankton organize their environment. Thus we propose the zooplankton-swarming model
discussed above not as a hypothesis concerning these problems, but as a mathematical language in which
to pose the specific behavioral questions that experiment and ethology can answer.
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