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Original Article

Abstract
We constructed a simulated spiking neural

network model to investigate the effects of ran-
dom background stimulation on the dynamics
of network activity patterns and tetanus
induced network plasticity. The simulated
model was a “leaky integrate-and-fire” (LIF)
neural model with spike-timing-dependent
plasticity (STDP) and frequency-dependent
synaptic depression. Spontaneous and evoked
activity patterns were compared with those of
living neuronal networks cultured on multi-
electrode arrays. To help visualize activity pat-
terns and plasticity in our simulated model, we
introduced new population measures called
Center of Activity (CA) and Center of Weights
(CW) to describe the spatio-temporal dynam-
ics of network-wide firing activity and network-
wide synaptic strength, respectively. Without
random background stimulation, the network
synaptic weights were unstable and often
drifted after tetanization. In contrast, with ran-
dom background stimulation, the network

synaptic weights remained close to their val-
ues immediately after tetanization. The simu-
lation suggests that the effects of tetanization
on network synaptic weights were difficult to
control because of ongoing synchronized spon-
taneous bursts of action potentials, or “bar-
rages.” Random background stimulation
helped maintain network synaptic stability after
tetanization by reducing the number and thus
the influence of spontaneous barrages. We used
our simulated network to model the interaction
between ongoing neural activity, external stim-
ulation and plasticity, and to guide our choice
of sensory-motor mappings for adaptive
behavior in hybrid neural-robotic systems or
“hybrots.”
Index Entries: Cultured neural network;
spike-timing-dependent plasticity (STDP);
frequency-dependent depression; multi-elec-
trode array (MEA); spatio-temporal dynam-
ics; tetanization; model; plasticity; cortex;
bursting; population coding.
(Neuroinformatics DOI: 10.1385/NI:3:3:263)
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Introduction

In vitro model systems are helpful to under-
stand brain functions because they reduce the
brain’s overwhelming complexity. For example,
cultured networks have been used to study the
nervous system because the external inputs are
well controlled and do not compete with the
behavioral drives of an intact animal, such as
thirst and attention. Added advantages include
high accessibility to microscopic imaging and
pharmacological manipulation. Cultured net-
works express many aspects of the neural
dynamics observed in animals while providing
a much simpler network to study. By applying
multi-electrode array (MEA) technology,
researchers have recorded and electrically stim-
ulated cultured networks at multiple spatial
locations (Gross et al., 1993b; Tateno and Jimbo,
1999; Shahaf and Marom, 2001). We developed
a closed-loop paradigm (Potter et al., 1997;
DeMarse et al., 2001; Potter et al., 2004) consist-
ing of a sensory-motor loop between a cultured
network and a robot or animat (Meyer and
Wilson, 1991) in order to study sensory pro-
cessing, memory formation, and behavioral con-
trol. We call this embodied hybrid neural-robotic
system a “hybrot” (Fig. 1) (Potter et al., 2004).

Left to themselves in culture medium, dis-
sociated neurons spontaneously grow and
form synapses with neighboring neurons,
developing complex patterns of activity that
suggest an intrinsic drive to form a network
and share information. Little is understood of
this activity or how its plasticity relates to adap-
tive behavior in animals. By embodying an in
vitro model in an environment with chosen
physical associations, we hope to discover how
it could learn these associations. We have used
cultures on MEAs in several hybrots (Bakkum
et al., 2004) for studying sensory-motor dynam-
ics in cultured networks, but in order to study
learning behavior, we need a better under-
standing of plasticity at the network level. Here
we applied a neural network simulation

approach to investigate the interactions
between ongoing network activity, external
stimulation, and network plasticity to better
choose the mappings from neural activity to
hybrot behavior and from environmental feed-
back to neural stimulation.

Activity-dependent modification of synap-
tic strength plays a central role in the learning
and memory processes in the central nervous
system (Bliss and Collingridge, 1993). Two

Fig. 1. Hybrot, the embodied hybrid neural-robotic
system: A hybrot consists of a cultured neuronal 
network,a robot,and a feedback loop.Network activ-
ity recorded from the cultured network is transferred
into the robot’s motor commands.This transfer func-
tion is the gray circle marked with “N→M.” The inter-
action between the robot and its environment is
detected by the robot’s sensors and transferred into
an electrical stimulation fed back to the cultured net-
work.This transfer function is the gray circle marked
with “S→E.” The feedback affects the network activ-
ity and thus future motor commands.The MEA is capa-
ble of both recording and stimulating the cultured
network at multiple locations simultaneously.
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important cellular mechanisms of synaptic mod-
ification, long-term potentiation (LTP) (Bliss and
Lφmo, 1973) and long-term depression (LTD)
(Linden, 1994), have been studied mainly as
changes in the response of single neurons or in
local field potentials at single sites. Those changes
in response have been experimentally induced
by a strong electrical stimulation called a tetanus.
Jimbo and co-workers have shown that these cel-
lular plasticity mechanisms scale to the network
level, studied in cultured neurons on MEAs
(Jimbo et al., 1999). In their study both LTP and
LTD were observed, though the change could
not be predicted or controlled. This lack of pre-
dictability and controllability makes it difficult
to create effective learning protocols for hybrots.
We hypothesize that the effects of a tetanus on
network synaptic weights are difficult to control
because the synaptic weights are driven to other
attractors by the synchronized spontaneous
bursts of action potentials, or “barrages,” which
are the most prominent feature of the electrical
activity of dissociated cortical cultures (Gross
et al., 1993a; Wong et al., 1993; Kamioka et al.,
1996; Gross and Kowalski, 1999). Our simulation
compared the relative contributions of ongoing
spontaneous activity and input tetanization on
network plasticity.

Methods
Living Cultured Neuronal Network Model

Cell Culture, Recording, and Stimulation
System

Dense cultures of dissociated neocortical neu-
rons were prepared as described before (Potter
and DeMarse, 2001). Briefly, embryonic rat cor-
tices were dissected and dissociated using papain
and trituration. Cells were densely plated (2500
cells/mm2) on MEAs (MEAs; MultiChannel
Systems, Reutlingen, Germany) precoated with
polyethyleneimine and laminin. Cultures were
allowed to mature for 3 wk in serum-containing

Dulbecco’s Modified Eagle Medium (DMEM)-
based medium before experiments were per-
formed. Stimuli (biphasic, 600 mV x 400 µs) were
delivered using our custom-made stimulator
(Wagenaar and Potter, 2004). Responses were
recorded using MultiChannel Systems hard-
ware and our publicly available acquisition and
analysis software, Meabench.1

Stimulation Protocol

Random background stimulation was per-
formed on one cultured network. For all 53 usable
electrodes, 53 trains of 1/53 Hz stimulation gen-
erated by a Poisson process were applied.

Artificial Neural Network Model

The Neural Circuit Simulator (Natschlager
et al., 2002) was modified to produce five artifi-
cial neural networks with the following features.
1000 leaky integrate-and-fire (LIF) neurons
with a total of 50,000 synapses were placed ran-
domly in a 3 mm × 3 mm area (see Fig. 2A). All
synapses were frequency-dependent(Markram
et al., 1998; Izhikevich et al., 2004) to model
synaptic depression; the synaptic efficacy was
determined by the probability of release of neu-
rotransmitters depending on the mechanism of
frequency dependence, which recovered with
a time constant of 12 ms. Seventy percent of the
neurons were excitatory, with STDP (Song 
et al., 2000) at all excitatory synapses. The other
neurons were inhibitory (30%) (Marom and
Shahaf, 2002). The distribution of the synaptic
connection distances followed the distribution
found by Segev and Ben-Jacob (Segev and Ben-
Jacob, 2000): neurons tend to make many short
synaptic connections but a few long ones as
well. The number of synaptic connections per
neuron followed a Gaussian distribution and
each neuron had 50 ± 33 synapses onto other
neurons. The conduction delay was propor-
tional to the synaptic connection distance, and
the conduction velocity was set to be 0.3 m/s

1http://www.its.caltech.edu/~wagenaar
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on nearby neurons’ “cell bodies;” an electrode
affected about 76 neurons. However, electrical
stimulation applied to our cultured neurons by
an MEA could also evoke action potentials on
axons (McIntyre and Grill, 2002; Wagenaar et al.,
2004), generating spikes on neurons that may
be far from the electrode, directly without
synaptic transmission. Unfortunately, little
experimental evidence exists for the number
of neurons or the range that one stimulus elec-
trode could affect in cultured living networks.

Artificial Neural Network Initialization
and Stimulation Protocol

All excitatory synaptic weights were initially
set to 0.05 and could vary between zero and 0.1
owing to STDP. At the maximal weight, each
spike would have a 50% probability of evoking

Fig. 2. Simulated network structure and positions of stimulation electrodes: Simulated neural network and
stimulation electrodes were constructed to mimic the dissociated cultured network and MEA setup. (A)
Structure of the simulated model network. One thousand LIF neurons are located in a 3 mm × 3 mm region,
the circles indicate the neurons, the light-gray lines represent the excitatory synapses and the dark-gray lines
represent the inhibitory synapses.All neurons are shown but only 15% of the synaptic connections are shown
for clarity.Thick black lines emphasize the connections from a particular randomly selected neuron. It had
both long-range and local connections. (B) The locations of 64-electrodes are shown in circles, and marked
with column-row numbers (tetanization channels 33 and 66 are emphasized).The connections of the neuron
highlighted in (A) are depicted in light gray.

(Kawaguchi and Fukunishi, 1998). Gaussian
random noise was introduced into each neuron
independently as fluctuations in membrane
voltage: 30% of the neurons (“self-firing neu-
rons”) had variance at a high enough level to
initiate spikes (Latham et al., 2000), whereas the
rest exhibited only subthreshold fluctuations.
An 8 × 8 grid of electrodes with 333 µm inter-
electrode spacing was included. All electrodes
could be used for stimulation, and 60 of these
(except corner electrodes 11, 18, 81,and 88) were
used for recording (Fig. 2B). One stimulation
electrode stimulated 76 ± 12 (n = 5 simulated
networks) of the closest neurons.

Some differences between our artificial neu-
ral network and our living network should be
noted. In our artificial neural network, exter-
nal stimulation was set to generate activity only
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a spike in postsynaptic neuron, owing to its sum-
mation with intrinsic noise. The synaptic weights
for the inhibitory connections were fixed at –0.05.
The networks were run for 2 h in simulated time
until the synaptic weights reached the steady
state. Most of the excitatory synaptic weights
(93 ± 2%) in five simulated networks were less
than 0.01 or greater than 0.09. This bimodal
steady-state distribution of weights arose from
the STDP learning rule, as previously observed
by Song et al. (2000), and Izhikevich and Desai
(2003). The set of synaptic weights after 2 h, which
stabilized without external stimuli, was used for
the subsequent simulation experiments as the
initial state. Some of the parameters in our sim-
ulated network were approximated from stud-
ies of acute slices (Markram et al., 1998; Song
et al., 2000) and from the simulation of neo-
cortical networks (Izhikevich et al., 2004).

Two types of electrical stimuli were deliv-
ered to the simulated networks, tetanization and
background stimuli. Tetanization was applied
simultaneously at two stimulation electrodes
(electrode 33 and 66, see Fig. 2B) at 20 Hz for
either 10 s or 5 min; tetanization was used to
induce change in the network synaptic weights.
The background stimuli were applied to all 64
electrodes, one at a time, with random inter-
vals generated by Poisson process, at an aver-
age rate of 1/64 Hz per electrode. Thus, each
electrode stimulated the simulated network
with different random sequences, at an aver-
age of one pulse per second for the whole array.

Four experiments were performed on each
of five simulated networks to investigate how
the tetanization and the random multisite
background stimulation affected the network
synaptic weights:

“Short”: Spontaneous activity was recorded
for 10 min (pretetanization period), before a short
tetanization was applied for 10 s. After tetaniza-
tion, spontaneous activity was recorded for an
additional 50 min (posttetanization period).

“Long”: Same as “Short,” but the tetaniza-
tion period was 5 min instead of 10 s.

“Short+Background”: Same as “Short,” but
with random multisite background stimula-
tion turned on during the whole simulation.

“Long+Background”: Same as “Long,” but
with random multisite background stimula-
tion turned on during the whole simulation.

Measures of Network Activity 
and Network Synaptic Weights

To help visualize activity patterns and plas-
ticity in the artificial neural network, we intro-
duce the Center of Activity (CA) and Center of
Weight (CW) (analogous to center of gravity)
to describe the spatio-temporal dynamics of
the network-wide firing activity and network-
wide synaptic strength in our simulated net-
works, respectively.

Calculation of CA

The spatio-temporal patterns of network-
wide population activity is described by CA
trajectories in this study. The CA indicates the
magnitude of total activities and the “inho-
mogeneity” of the spatial activity distribution.
That is, if the network is firing “homoge-
neously” the CA will be at the center of the
dish, whereas if the network fires mainly in one
corner then the CA will move to that direction.

Assume A is a 1 by 1000 vector which rep-
resents the number of spikes at 1000 neurons
in the interval [t, t+TW], where TW is a small
time window. To maintain a sufficient amount
of spikes and high temporal resolution, TW was
chosen as 10 times the integration time step of
simulation. Let X(i) and Y(i) indicate the hori-
zontal and vertical distances from the ith neu-
ron to the center of the 3 mm × 3 mm dish,
respectively. Then the CA at time t is a two
dimensional vector

(1)CA t
A i X i Y i

A i

i

i

→
=

=

=
⋅[ ]∑
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The CA trajectory from time t0 to t1 with time
step ∆t (set to 1/5 th of TW) is defined as

(2)

The CA is related to the population vector
description (Caminiti et al., 1990), in that both
are vector summations of activity, but it is dis-
tinct. The population coding principle seems
to be widespread in the brain, since it has been
found in the motor cortex (Georgopoulos,
1994), premotor cortex (Caminiti et al., 1990)
and other cortical areas. It demonstrates how
the firing rates of a group of broadly tuned (e.g.,
to a direction of arm movement) neurons taken
together provide an accurately tuned repre-
sentation. Instead, the CA depicts the “popu-
lation activity flow” in the neuronal circuitry
space on a much quicker time scale.

Spontaneous Barrage Detection 
and Clustering of Barrage CA Trajectories

Spontaneous barrages in simulated networks
were classified into different clusters according
to their CA trajectories. A firing rate histogram
was obtained by counting the number of spikes
network-wide in 10 ms bins. Bins with more than
20 spikes were considered a part of a barrage.
The length of the barrage was defined as the time
span of consecutive bins with a number of spikes
over this threshold. CA trajectories were calcu-
lated for each barrage and aligned to each other
at the peaks of the corresponding firing rate his-
tograms. This alignment had similar results but
operated more efficiently compared with shift-
ing the lag on one trajectory to gain the highest
cross-correlation with another. The beginnings
and/or the ends of the CAtrajectories of shorter
than maximum length were padded with zeros.
Each same-length CA trajectory was then
reshaped into a one-dimensional vector by
appending the y values of its CAtrajectory to the
x values. Clustering was performed with the 
k-means algorithm, run multiple times for dif-
ferent k values. The best of the clustering results

trajectory

 

→ → →

→

= +( , ) [ ( ), ( ),t t CA t CA t t

CA

0 1 0 0 ∆

(( ),....... ( )]t t CA t0 12+
→

∆

was selected by choosing the k value with best
Davies–Bouldin validity index (Davies and
Bouldin, 1979).

Calculation of CW

Plastic changes in the simulated networks’
functional architecture can be represented by the
trajectory of the CW. Let W be a 1 by N vector,
where Nis the total number of excitatory synapses,
representing the weights of every synapse at
time t. Let X(i)and Y(i) indicate the horizontal and
vertical distances from the postsynaptic neuron of
the ith synapse to the center of the dish. Then, the
CW of time t is a two dimensional vector

(3)

The CW trajectory from time t0 to t1 with time
step ∆t is defined as

(4)

Note that while the CAtrajectory describes the
spatio-temporal patterns of signal propagation
in typically brief time intervals, the CW tra-
jectory shows the dynamics of connection
strengths changing over a typically larger time
scale. In our case, the CA represented the neu-
ral activity flowing during a barrage whereas
the CW described the network’s plasticity over
the duration of a simulation.

Results

We first compared our simulated neural net-
work with living networks of rodent cortical
neurons. Our LIF model and the living networks
expressed similar spontaneous activity pat-
terns. Raster plots and firing rate histograms of
spontaneous activity and evoked responses
obtained from both in vitro and simulated net-
works are shown together for comparison and
a remarkable similarity was achieved (Fig. 3).

trajectory  

 

→ → →
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CW
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Fig. 3. Comparison of the network activities from experimental data and simulation: Simulated spontaneous
activity and evoked responses resemble the experimentally recorded data.One minute of spontaneous activ-
ity was recorded from a living network by a 60-channel MEA (A), and in simulation (B) for comparison.The
upper panels are spike raster plots.The lower panels are firing rate histograms, with bin sizes of 100 ms Also,
50 trials of evoked responses recorded by one electrode in a living network (C), and in simulation (D) are
shown for comparison.The upper panels are spike raster plots.The lower panels are firing rate histograms,
with the bin size of 0.1 ms.The timings of stimuli for each trial were aligned at time zero. In the simulation,
each electrode recorded the activities occurring within 100 µm.

For spontaneous activity, the barrage rates
were 0.70 Hz and 0.73 Hz, and the proportion
of spikes in barrages were 76% and 71%, in
living and simulated networks, respectively
(Fig. 3A,B).

In order to investigate the effects of tetaniza-
tion on patterns of spontaneous activity, the

CA trajectories were calculated for every spon-
taneous barrage in the artificial neural networks.
Figures 4 and 5 depict 2387 barrages detected
in the “long” experiment. The CAtrajectories of
these barrages were calculated and classified by
the k-means clustering algorithm (see Methods),
and 11 clusters were found (Fig. 4A).
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The simulated network’s spontaneous
activity was changed by tetanization (Fig. 4B).
Some types of barrages happened mostly in
the 10-min pretetanization period, such as
clusters 5, 9, and 11, whereas different bar-
rages happened in the posttetanization period,
such as clusters 1, 3, 7, 8, and 10. Most of the
clustered barrages ceased to occur for some
minutes after tetanization and reappeared
later. For example, cluster 2 reappeared
around t = 25 min, sooner than cluster 4, which
reappeared around t = 40 min. Some clusters
were transient, such as cluster 1 being highly
concentrated around t = 30 min.

We studied the changes in synaptic weights
that might underlie the differences in sponta-

neous barraging activity before and after
tetanization. The CW trajectory of the simulated
synaptic weights, shown in the “Long” exper-
iment in Fig. 5B, was calculated and sampled at
2 Hz over the entire 67 min simulation. The tra-
jectory was divided into four periods (Fig. 4B).

Pretetanization (P): from t = 0 min to t = 10
min, the CW trajectory remained within a local-
ized area we termed a “steady state.”

Tetanization (T): from t = 10 min to t = 15
min, the CW was driven away from the steady
state of period P. No spontaneous barrages
occurred during this period.

Posttetanization drifting (D): from t = 15
min to t = 60 min, after the tetanization, the 
CW drifted for about 45 min without external
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Fig. 4. CA trajectory of spontaneous barrages in a “Long” experiment in one network: Different kinds of spon-
taneous barrages occurred in different periods. (A) Different classes of CA trajectories of spontaneous bar-
rages.A total of 2387 barrages were detected.The CA trajectories of these barrages were classified by the
k-means clustering algorithm, and eleven classes were found.The CA trajectories for different clusters were
plotted separately.The coordinate shown in the lower-left corner represents the 3 mm × 3 mm area of the
“dish”.The trajectories belonging to the same cluster are overlaid together.The averaged trajectories of each
cluster are shown by a trace of circles, dark and large for the start of the trajectory, lighter and smaller toward
the end. (B) The occurrences of different types of spontaneous barrages.The x-axis represents time in min-
utes, and the y-axis indicates the cluster index that corresponds to the index shown in (A).The shading rep-
resents the frequency of occurrences of the spontaneous barrages measured in every 10 s; the corresponding
grayscale is shown at right. Notice that there is no spontaneous activity during tetanization (from 10 to 15
min).Marked periods are: P,Pretetanization;T,Tetanization;D,Posttetanization (drifting) and S,Posttetanization
(steady) (see Results and Fig. 5B).
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Fig. 5. Comparison of CW trajectories from four experimental conditions on each of five networks: Random
multisite background stimulation maintained the network synaptic stability by reducing the “turning-back”
and “drifting-away” of the CW trajectories after 10 s and 5 min tetanizations, respectively. CW trajectories,
sampled at 2 Hz, are shown for one of the five networks for the “Short” experiment (A), the “Long” experi-
ment (B), the “Short+Background” experiment (C) and the “Long+Background” experiment (D).The light-
gray circles, mid-gray triangles, dark-gray diamonds, and black squares represent the pretetanization period,
tetanization period, posttetanization drifting period (in A and B only) and posttetanization steady period,
respectively.The turn-off points of tetanization are marked with “X.” Notice that with the random background
stimulation, the CW trajectory stayed near the point where the short tetanization was turned off without
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stimulation. As shown in Fig. 4B, different types
of spontaneous barrages gradually appeared
and disappeared during this period.

Posttetanization steady-state (S): after t = 60
min, the CW arrived at a new steady state where
it remained.

Fig. 5. (Continued) turning back toward the pretetanization steady state (compare A and C). For long tetanizations,
the random multisite background stimulation kept the CW trajectory near the point where the tetanization was
turned off without drifting away (compare B and D).
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We compared the effects of 10 s and 5 min
tetanizations by investigating the CW trajectories
between the “Short” and the “Long” experiments
(Fig. 5A,B), and the “Short+Background” and
the “Long+Background” experiments (Fig.
5C,D). All drove the CW away from the prete-
tanization steady state. The CW distance
between the centroid of the pretetanization
steady state and the tetanization end point was
used to quantify the effects of tetanization in
changing network synaptic weights. This distance
and standard error of the mean (SEM) (n = 5 sim-
ulated networks) was 79.5 ± 6.0 µm in the “Long”
experiments, significantly greater than 28.9 ±
2.5 µm in the “Short” experiments (p < 10–4,
two-tailed t-test); and was 75.7 ± 5.2 µm in the
“Long+Background” experiments, signifi-
cantly greater than 32.8 ± 2.8 µm in the “Short+
Background” experiments (p < 10–4) (Fig. 6A).

In previous studies to model the restoration
of sensory input to our living in vitro networks,
we applied multisite background stimulation.
This decreased or eliminated the occurrence of
spontaneous barrages (Madhavan et al., 2003;
Wagenaar et al., 2003, 2005). Here, using our
simulated networks, we investigated the influ-
ences of simulated random multisite back-
ground stimulation on the short and long
tetanizations by quantifying the differences in
CW trajectories with or without random low-
frequency 64-electrode stimulation (averaging
1 Hz) (Fig. 5). With background stimulation,
the CW did not move back to the pretetaniza-
tion steady state even after only 10 s of tetaniza-
tion, unlike without background (Fig. 5C). The
CW distance between the centroids of pre- and
posttetanization steady states was used to
quantify the difference between the “Short”
and the “Short+Background.” The distance was
7.17 ± 1.01 µm (n = 5 simulated networks) in
the “Short” experiments, much shorter than
56.2 ± 10.5 µm in the “Short+Background”
experiments (p < 0.001) (Fig. 6B).

In addition to preventing “turning-back” of
the CW after a 10 s tetanization, background

stimulation also reduced “drifting-away” of
the CW after a 5 min tetanization. CW trajec-
tories of a “Long” and “Long+Background”
experiment from the same network are shown
in Fig. 5. With random multisite background
stimulation, the CW stayed near its value
immediately after tetanization (Fig. 5D).
Without random multisite background stim-
ulation, the CW drifted and came to rest at a
new steady state (Fig. 5B). The CW distance
between the centroid of the posttetanization
steady state and the turn-off point of the
tetanization was used to quantify the drifting
of the CW after the tetanization. This distance
was 77.6 ± 15.2 µm (n = 5 simulated networks)
in the “Long” experiments, much longer than
24.0 ± 7.1 µm in the “Long+Background”
experiments (p < 0.01) (Fig. 6B).

Although, background stimulation stabi-
lized the network against large CW drift,
small CW variations in the pre- and postte-
tanization steady states were higher with the
background stimulation than those without
background stimulation (Fig. 5). The mean dis-
tance of individual CWs in the pretetaniza-
tion steady state from their centroids was used
to quantify the spread of the CW. The spread
was 2.9 ± 0.2 µm (n = 5 simulated networks)
without background stimulation, smaller
than 9.8 ± 0.8 µm with background stimula-
tion (p < 10–4). This spread was compared with
the change of CW caused by tetanization,
which was quantified by the CW distance
between the centroid of the pretetanization
steady state and the tetanization end point.
Without background stimulation, the spread
was significantly smaller than the short
tetanization-induced change (p < 10–6) and
significantly smaller than long tetanization-
induced change (p < 10–6). With background
stimulation, the spread was significantly
smaller than the short tetanization-induced
change (p < 10–4) and also significantly smaller
than long tetanization-induced change (p <
10–5) (Fig. 6A).
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Discussion

Effects of Random Multisite Background
Stimulation in Simulated and Living
Networks

Random background stimulation helped
maintain the stability of network synaptic
weights after tetanization in simulated

networks. The CW plots (Fig. 5) showed that
the network synaptic weights tend toward a
localized set of values, and that tetanization
moves the network synaptic weights away. In
the absence of background stimulation, the CW
returned to its previous locus after a short
tetanization, suggesting this locus served as an
attractor. After a long tetanization, the CW

Fig. 6. Statistics of CW trajectories: Random background stimulation did not affect the amount of CW change
induced by tetanization, and had a stabilizing effect on CW trajectory after tetanization. (A)The change of CW
after tetanization was significantly greater than the spread of CW in pretetanization period.The spread of CW
without background stimulation was significantly smaller than with background stimulation (marked,* n = 5 sim-
ulated networks,p < 10–4).This spread was compared to the change of CW caused by tetanization (see Results).
Without background stimulation,the spread was significantly smaller than both the tetanization-induced changes
in the “Short” experiments (p < 10–6) and the “Long” experiments (p < 10–6).With background stimulation, the
spread was significantly smaller than both the tetanization-induced changes in the “Short+Background” exper-
iments (p < 10–4) and the “Long+Background” experiments (p < 10–5).The CW change induced by long tetaniza-
tion was greater than that induced by short tetanization, both without background stimulation (p < 10–4) and
with background stimulation (p < 10-4).Vertical bars represent significant differences between values (marked,*
p < 10–4).(B)The CW distance between centroids of pre- and posttetanization steady states was used to quan-
tify “turning-back” of the CW trajectory after 10-s tetanization (Fig. 5A).With random background stimulation,
the CW of the Posttetanization steady state stayed significantly farther from the pretetanization steady state
after the short tetanization (marked,** p < 0.001). The CW distance between the centroid of the postte-
tanization steady state and the turn-off point of the tetanization was used to quantify the “drifting-away” of the
CW after the 5-min tetanization (Fig. 5B).With random background stimulation, the CW of the posttetaniza-
tion steady state drifted significantly less after the long tetanization than without (marked *, p < 0.01).
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drifted for some time before settling on a new
attractor, suggesting the tetanization effect is
not stable. With background stimulation, a
short tetanization can change the network
synaptic weights (Figs. 5 and 6); to use a
mechanical analogy, the ‘elastic’ change
becomes a ‘plastic’ change. A long tetaniza-
tion will drive the network to a new locus,
where it remains without drifting. The obser-
vation of CW attractors suggests that a form
of self-organization or homeostasis exists in
the interaction of synaptic weights and network
activity; however, much remains to be studied
about the mechanisms of this interplay.

We hypothesized that the network synaptic
weights drifted after a tetanization because of
the ongoing spontaneous activity, consisting
of mostly spontaneous barrages (Fig. 4B).
Spontaneous activity and network synaptic
weights interacted with each other until reach-
ing a stationary set of patterns in CAspace and
an attractor in CW space. With random back-
ground stimulation, spontaneous activity was
reduced, and so the network synaptic weights
were mainly affected by stimulus-evoked activ-
ity. Since background stimulation, and conse-
quently the evoked activity, was random
spatially and temporally, these stimuli had an
unbiased randomizing effect on changing net-
work synaptic weights. Thus, the size of CW
attractors was greater with the background
stimulation than without it (Figs. 5 and 6). In
summary, whereas the background stimula-
tion stabilized the network synaptic weights
by preventing the directional drift caused by
influences of transient spontaneous barrages
after tetanization, the randomizing effect also
increased the variation of network synaptic
weights isotropically.

In both simulated networks and living cul-
tured networks, spontaneous barrages were
reduced by random background stimulation
and stimulus-evoked activity became dominant.
Random multisite background stimulation was
applied to living neural networks also, and neu-

ral activity was recorded and compared with
that of the simulated neural network (Fig. 7). In
a typical 1-min recording, the ratio of the num-
ber of evoked barrages vs spontaneous barrages
was 41 : 1 in the living network compared with
42 : 3 in the simulated network. Moreover, the
spontaneous barrage rate was reduced from
0.70 Hz (Fig. 3A) to 0.017 Hz (1 barrage in 1 min)
in the living network and was reduced from
0.73 Hz (Fig. 3B) to 0.05 Hz (3 barrages in 1 min)
in the simulated network.

Stability in Other Systems

Long-term stability of spontaneous activity
patterns was found in cortical slice cultures
(Beggs and Plenz, 2004; Ikegaya et al., 2004),
suggesting these recurrent patterns could be
used by cortical circuits to store information for
memories. Our simulation results support this
hypothesis by showing that for an attractor in
CW space, a finite set of clustered CA trajecto-
ries recurs. The results also show that tetaniza-
tions changed the network to different attractors,
and random background stimulation eliminated
CW drift after a tetanization. This suggests the
tetanization altered the contents of the memory
stored in the network, and that the random back-
ground stimulation reduced spontaneous tran-
sients, allowing a greater control over network
plasticity. Preliminary results of tetanization on
living networks support this view (Madhavan
et al., 2005).

Control of Network Synaptic Weights 
and Implementation in Hybrots

The use of MEAs in hybrots provides a model
system to simultaneously study behavior and
detailed neuronal function, including plastic-
ity underlying adaptation or learning. In our
experiments, tetanus was used to induce plas-
ticity. By adding background stimulation, the
plasticity remained while the stability needed
for memory was provided.

We created motor mappings to control the
behavior of a robot based on the activity in a real
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neuronal network, and sensory mappings to
stimulate the network based on the sensory
input from a hybrot (Bakkum et al., 2004). The
first step to demonstrate learning behavior,
begun in this simulated modeling study, is to
search for the relationship between the network
synaptic weights and the network spatio-
temporal activity patterns. We demonstrated
that tetanization drives the network from one
attractor to another. This is promising for
hybrots, because if we can induce the network
synaptic weights to change, we can show the
behavior of a robot changing from one mode to
another mode to demonstrate adaptive learning.

A potential mapping for hybrot control is to
use the CA trajectory of the responses to the
random background stimulation as motor com-
mands (Fig. 8). Different forms of tetanization

have different effects on network synaptic
weights (such as long vs short tetanization, Figs.
5 and 6) and can serve as the feedback to a liv-
ing network representing different sensory
inputs. In this case, network synaptic weights
change during each tetanization and the
changes are stabilized by continuous random
background stimulation. Therefore, the behav-
ior pattern of the hybrot would change after
each sensory feedback and remain steady until
the next feedback. In this study, we used the CW
trajectories and the occurrence of spontaneous
barrages with different CA trajectories to illus-
trate network plasticity in model networks.
However, these two quantities cannot be easily
applied in living networks. First, the synaptic
weights of a living culture are not directly meas-
urable by the extracellular electrodes of our

Neuroinformatics_________________________________________________________________ Volume 3, 2005

Fig. 7. Comparison of network activity with random background stimulation in living and simulated networks:
In the presence of background stimulation, the network activity consisted mostly of evoked responses, both
in living networks and simulated networks.(A)A 1-min recording from a living network with background stim-
ulation by 60-channel MEA is shown in a rasterplot (upper panel, spikes recorded in the ith electrode were
randomly spread out in the interval [i – 0.5 i + 0.5] on the y-axis for clarity) and the corresponding firing rate
histogram (lower panel, bin size is 100 ms). (B) A 1-min simulation with background stimulation is shown as
a raster plot (upper panel) and the corresponding firing rate histogram (lower panel).The timings and chan-
nels of applied stimuli are shown as black dots in the raster plots and on the x-axis in the histograms.The ratio
of the number of evoked barrages vs spontaneous barrages was 41:1 in the living network compared to 42 : 3
in the simulated network. Moreover, the spontaneous barrage rate was reduced from 0.70 Hz (Fig. 3A) to
0.017 Hz (1 barrage in 1 min) in the living network and was reduced from 0.73 Hz (Fig. 3B) to 0.05 Hz (3 bar-
rages in 1 min) in the simulated network.
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MEAs. Second, background stimulation
reduces the frequency of spontaneous barrages
in living networks; thus, not enough sponta-
neous barrages occur to reliably cluster their
CA trajectories or to provide instant reaction
for generating motor commands. Thus, we
expect the responses to background stimuli to
be the better parameter for hybrot control.

CA and CW Trajectories
Finding structure in the complexity of mul-

tiple time-varying neural signals is difficult
and likely requires the creation of new math-
ematical tools (Pesaran et al., 2002; Baruchi and
Ben-Jacob, 2004; Beggs and Plenz, 2004; Brown
et al., 2004). The CAand the CW were designed
to map multiple spatio-temporal signals into

Fig. 8. A potential paradigm for hybrot control with random background stimulation and tetanization:Two and
a half command cycles are depicted above, separated by vertical dotted lines. Each cycle consists of tetanus
at two channels and continuous random background at all 60 channels.The CA trajectories of the responses
to the most recent background stimulus at each channel in one cycle could be transformed into motor com-
mands for a robot.The sensory feedback from the robot could be transformed into different forms of tetaniza-
tion in the next cycle (in this figure, two different tetanizations are applied at two different pairs of electrodes).
Based on our model, we expect the network synaptic weights to change in different ways depending on the
sensory feedback since different tetanizations could have different effects.The continuous random background
stimulation is expected to stabilize the weight changes (a series of hypothesized CW trajectories are shown
in the bottom row).As a result, the behavior pattern of the hybrot would change after each sensory feedback
and remain steady until the next feedback.
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a more comprehensible form whereas retain-
ing enough detail to discriminate network
states. The CA and CW trajectories give sum-
mary statistics about the network-wide prop-
erties as opposed to statistics on individual
neurons. Note that the shapes of the trajecto-
ries are independent of the selection of the tra-
jectory origin or of the spatial center of the
network since they are linear summations of
neural locations.

Most current methods for neural spike train
data analysis, such as the cross-correlogram,
cross intensity function, and joint peri-stimulus
time histogram, yield information only about
associations between pairs of neurons (Brown
et al., 2004). To give information on the whole
network, these methods would require large
computational power to go through every
possible pair of neurons and require further
statistics to compare more than two record-
ings. Although, a CA trajectory cannot pro-
vide detailed information about individual
neurons, it has the advantage of depicting
the spatio-temporal dynamics of the whole
network.

Conclusion

Using artificial neural networks to control
robots is an active area of research and, in addi-
tion to directing studies in living neural net-
works, holds the potential for many promising
products (Brooks, 1999; Krichmar and
Edelman, 2002; Schaal et al., 2004). Most work
in AI and robotic systems faces limitations in
the ability to adapt to novel situations in real-
time. By contrast, it is clear that biological neu-
ral systems excel at this. Much can be learned
from the activity, morphology, and connectiv-
ity of biological neural networks to inform the
design of future artificial networks. If future
research on living networks, demonstrate that
directed functional changes can be obtained by
stimulating the network, then we expect to find
corresponding morphological changes.
Imaging neuronal networks using time-lapse

multiphoton microscopy (Potter, 2005; Potter
et al., 2001) is compatible with many-neuron
electrophysiology. We are building a dedicated
2-photon/MEA microscope (Rambani et al.,
2005). The “brain” of the hybrot system, unlike
an animal’s brain, holds still during behavior,
and can be imaged in its entirety (Bakkum
et al., 2004).

We have only begun to explore the effects
of multisite background stimulation on net-
works (Wagenaar et al., 2005). We are apply-
ing a synergy of modeling simple networks,
and multiunit experimentation on substantially
more complex living ones. Simulated network
studies help suggest new experiments for study-
ing learning in vitro, while the experimentation
helps us come up with better-simulated mod-
els for the network-level properties of neural
circuits. By embodying in vitro networks with
hybrots in closed-loop systems, we can more
easily observe the cellular and network mech-
anisms of learning while it happens than with
in vivo models, and ensure that any changes
induced by the stimuli have functional conse-
quences on hybrot behavior.
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