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Abstract—The study of nonlinear long-term correlations in
neuronal signals is a central topic for advanced neural signal
processing. In particular, the existence of long-term correlations
in neural signals recorded via multielectrode array (MEA) could
provide interesting information about changes in interneuron
communications. In this study we propose a new method for
long-term correlation analysis of neuronal burst activity based
on the periodogram slope estimation of the MEA signal. We
applied our method to recordings taken from cultured networks of
dissociated rat cortical neurons. We show the effectiveness of the
method in analyzing the activity changes as well as the temporal
dynamics that take place during the development of such cultures.
Results demonstrate that the parameter is able to divide the
network development in three well-defined stages, showing pro-
nounced variations in the long-term correlation among bursts.

Index Terms—Long-term correlations, multielectrode array
(MEA), periodogram.

I. INTRODUCTION

I N last decade the mammalian cortex has been deeply
studied in vitro in the form of dissociated neuro-glial cul-

tures implanted on multielectrode arrays (MEAs) [1]–[10]. One
of the fundamental features of neuronal networks that is often
investigated through MEA devices is “spontaneous activity”
[11]–[13]. It refers to the activity that the network shows in
absence of any external stimulation. It is well known that this
behavior, also reported in in vivo studies, is characterized by
periodic synchronization episodes, usually called bursts (as
reported, e.g., in [14]–[17]). Moreover it was observed that both
single electrode [18] and multielectrode [19]–[21] neuronal
recordings exhibit nonlinear long-term characteristics [22].

The study of nonlinear long-term correlations in neuronal sig-
nals is a central topic for advanced MEA signal processing. In
particular, the existence of long-term correlations (LTC) in such
a signal could provide interesting information about changes in
interneuron communications (e.g., LTP or LTD) correlated with
the administration of neuroactive drugs or with the development
of the network itself.

In this study we propose a method based on a calculation of
coefficient in the power-law fitting of the experimental data
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Fig. 1. Graphical representation of the burst detection algorithm (for simplicity
three channels only are represented in figure).

in long-term correlation analysis of neuronal burst activity of
dissociated cortical neurons studied through MEA recordings.
Further, we study the changes in the LTC behavior induced by
the network development.

II. MATERIALS AND METHODS

A. Cell Cultures, MEA Recordings, and Spike Sorting

In the present study we employed MEA data collected
and described by Wagenaar et al. in [17]. In particular, we
employed 12 30-min-long recordings classified as “dense” and
12 classified as “small” in [17]. In brief, these recordings were
performed on cultures of E18 rat cortical neurons (plus glia)
with a density of cells/mm and
cells/mm at the first day in vitro (div), respectively, recorded
longitudinally from the 6th to the 35th div with 59 electrode
MEAs with a diameter of 30 m, purchased from Multi-
Channel Systems (Reutlingen, Germany). The electrodes were
organized in a square grid with the corners missing, spaced
200 m center-to-center. Spike sorting was performed with the
MEABench software [23], using a threshold based detector.
Spikes were detected as upward or downward excursions
beyond 4.5 (estimated rms noise), as described in [17]; in the
same reference, details about dissections, cultures, recordings
and spike detection, may be found.

B. Analysis Procedure

As expected, the recordings showed spontaneous activity
characterized by periodic synchronization episodes, usually
called population bursts. In order to approach an intraburst
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Fig. 2. Graphical example of the role of the arrangement algorithm � and the Space-Amplitude Transform method, ���� � �� ��, at work with a nine channel raster
plot. The transform joins together the raster plot, ���� �� ��, and the arrangement vector, �, creating a lookup table in which to each spike is associated one amplitude
value. The final output signal, ���� ��, is obtained by merging the spatial/amplitude information deriving from the lookup table and the temporal information from
the original raster plot.

analysis, we proposed and employed a frequency-based burst
detector algorithm. Fig. 1 represents how the algorithm works:
all MEA channels are merged forming a single series, showing
on the x axis the recording time and on the y axis the spiking
activity of all channels. Along this series the starting point
of a burst is detected comparing the merged series with a
frequency threshold fixed at 10 Hz. Frequency is computed as
the inverse of the interspike interval (ISI) of the merged series.
The reference duration of a burst is chosen to be 200 ms. Such
parameters were chosen by training the algorithm on the exper-
imental dataset. 10 Hz demonstrated as the most performing
frequency threshold for the burst detection algorithm and 200
ms was the average maximal length of the burst we detected in
the recordings.

Some controls are implemented in order to verify the pres-
ence of a real burst. First, the number of channels involved has
to be more than the 15% of the total channel number. A channel
is considered as “firing” if it spikes at least three times in the
200 ms time window. Moreover, two detected bursts can not be
closer than 600 ms.

Thanks to the above procedure, we extracted the time-instants
in which bursts took place in the recordings. The application
of complex nonlinear signal processing methods for long-term
correlation estimation requires one to work with 1-D data. As
a matter of fact, most nonlinear signal processing methods are
designed for 1-D data only. For this reason we processed MEA
recordings (in particular, bursting epochs of the MEA raster
plots, extracted thanks to the burst detection algorithm) in order
to obtain 1-D signals. We applied the space amplitude transform
(SAT), originally introduced in our paper [24], in order to per-
form such a conversion.

The space-amplitude transform, , is a geometric
transform that executes a projection from a 2-D domain set

, e.g., the usual Raster plot, to a 1-D image set ,
exploiting an arrangement table as Fig. 2 describes in detail.

In the domain set , i.e., in the Raster plot, a spike
is coded in terms of 0 or 1 event. Each spike is characterized
by spatiotemporal coordinates correspond to a
specific MEA channel and ( ) identifies the time instant.

The transform codes the MEA channels thanks
to the arrangement table , that is a “correspondence table”
in which different amplitude values are univocally assigned to
each channel of . In this way, an amplitude value cor-
responds to just one channel, and vice versa. The output of

is a lookup table in which an amplitude value is as-
signed to each spike of the raster plot, as function of the channel
in which the spike takes place. Finally, a 1-D signal is
created; this signal combines the amplitude information that de-
rives from the above lookup table and the temporal information
that is preserved from the starting raster plot .

The final output of the transformation, , is a represen-
tation of the spatial and temporal activity of the whole network
(Fig. 3). In this process, no spatial or temporal information is
lost with respect to the starting raster plot. The possibility to
completely reconstruct the topological structure of the activity
is granted by the biunivocal correspondence of the space-ampli-
tude transform.

The method allows to approach an intrinsically 2-D plus time
dataset, i.e., the time recording deriving from a 2-D electrode
array, as a 1-D plus time signal. This transform speeds up and
makes simpler the data analysis allowing, as said, the applica-
tion of nonlinear signal processing techniques.
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Fig. 3. Example of the projection obtained by the SAT on a real burst. (a) The raster plot of a real burst displayed thanks to the NeuroExplorer commercial software
(Next Technologies, MA). On the � axis is reported the absolute time of the recording (seconds); on the y axis are listed the channel names. (b) The 1-D signal
resulting from the SAT (displayed in Matlab7.0, The Mathworks, MA). On the � axis is reported the frame number of the burst (being 0-time the burst onset and
0.1 ms the interframe time, hence, e.g., ��� � �� ms); on the � axis is the amplitude of the obtained SAT signal (arbitrary chosen between 100 and ����� ��,
being n the number of channels).

C. Long-Term Correlation Estimation

A signal displaying a power law spectral density near the
origin is called “one-over- ” noise. Such signals are commonly
observed in many different systems, including physical, biolog-
ical, physiological, economic, technological, and sociological
ones [22]. In particular, many classical observations reported
these kind of dynamics in neurophysiological signals, such as
[18], [25]–[29]. When , with the signal
power spectral density (PSD), for and some ,
it is often possible to define some sort of generalized correla-
tion function (such as, e.g., the autocorrelation function) which
is found to decay very slowly (hyperbolically).

The slow decay signifies that the current value of the series
is affected not only by its most recent values but also by its past
values. For this reason, such processes are often referred to as
“long-memory” or “long-range dependence” processes [22]. In
this specific case, we are interested in evaluating the presence
of long-term correlations in the global activity of the neuronal
network. The SAT signal, representing with no distortion the
spatial and temporal information of the raster plot, is a very good
candidate in showing long-term correlations.

As a matter of fact, other works report, while employing dif-
ferent methods, the presence of such a dynamics in neurophys-
iologic recordings (see, e.g., [19], [20], [30]).

Fig. 4 summarizes the different physical properties that long-
term correlated signals exhibit as a function of the slope value
their PSD assumes. near 0 indicates the presence of a sta-
tionary process with zero correlation, i.e., a white noise. An
between 0 and 1 indicates a long-range positively correlated sta-
tionary signal. An between 1 and 2 indicates a long-range
negatively correlated non-stationary signal and, finally, an be-
tween 2 and 3 indicates a long-range positively correlated non-
stationary signal. If , the process is classified as Brownian
motion.

Fig. 4. Graphical representation of the physical meaning of the � parameter.

We recall that, both white noise and Brownian motion signals
are characterized by zero correlations among samples, but while
white noise is a stationary signal (hence produces oscillations
around a fix mean value), Brownian motion is a nonstationary
signal, resulting in strong trends. One of the simplest method for
the estimation is the log-periodogram regression, or simply,
the periodogram analysis [22], [31], [32]. This method estimates

as the linear slope of the periodogram (a discrete Fourier trans-
form spectrum), in a log–log plot, close to the zero frequency
axis. As a matter of fact, being , for and
some . Fig. 5 shows an example
of the coefficient estimation in the periodogram of a burst
taken from the experimental dataset (estimated on
points). The range of periodogram plot regression was chosen
in the two lowest decades of frequencies ( Hz),
i.e., considering samples occurring from one to every 200 ms to
one to every 10 ms, considering a sampling resolution of 0.1 ms.
These values were chosen by considering as minimal frequency
value (1 event over 200 ms) the maximal window length consid-
ered for a single burst (see Section II-B) and, as minimal value (1
event over 10 ms), a signal window that, on average, could con-
tain at least 25 spikes (evaluated on the experimental dataset).

We applied the above described methods (burst detection,
SAT, and Periodogram analysis) to 12 “dense” and 12 “small”
longitudinal recordings from [17], ranging from the 6th to the
35th div. Each recording contained hundreds of bursts.
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TABLE I
AVERAGE � TREND, REPRESENTED DIV BY DIV, OBTAINED AS AVERAGING OF ALL THE 12 “DENSE” CULTURES (TOP ROW)

AND THE 12 “SMALL” CULTURES (BOTTOM ROW): ��� � ���)

Fig. 5. Example of a� estimation from a single 24-div burst Periodogram. The
straight line represents the interpolation used for the estimation of the � slope
parameter. (Periodogram estimated on� � �		 samples from 
��	 ��	
Hz). The same estimation is performed for all the bursts present in each one of
the recordings.

III. RESULTS

We obtained 12 plots for each one of the two datasets (“dense”
and “small”) showing, on the axis, the mean value
of all bursts versus the number of days in vitro (on the axis).
All plots showed a similar trend, exemplified in Fig. 6. The av-
erage trends, obtained as averaging of all the 12 cultures for the
two populations, are reported in Table I. We found that the
coefficient is close to 0.5 in the first two weeks in vitro (wiv)
(indicating a positive long-term correlation in a nonstationary
time series). suddenly grows to 1.5 circa around the 17th div
( div) and then irregularly grows till 2 in the following 20
days. The same trend is advisable in both the datasets.

IV. DISCUSSION

The behavior of the exponent across the culture develop-
ment can be divided in three stages, which are well represented
in Fig. 6. The first stage essentially coincides with the first two
wiv. In this period is , representing a condition in which
the SAT signal is stationary (over the 200 ms long burst time
window) and presents a positive correlation. It is known that in

Fig. 6. An example of� estimation results in a longitudinal “dense” rat cortical
neuronal MEA recording. The � axis represents the number of day in vitro (div);
the � axis shows the corresponding � value. The scatter bars represent the �
variations ���� � ���� among all the bursts that take place in a recording at
a specific div.

the first one or two wiv the network is poorly bursting and the
spiking activity can be classified as “global,” i.e., bursts usually
involve almost the whole neuronal network [17], [33]–[35].

The presence of slow trends in the SAT-transformed signal
that derives from the global structure of the activity, accounts
for this topological characteristic.

The second stage is represented by a sudden change in the
exponent around the 17th div. As known from literature, in

a period comprised between the 6th and the 18th div, the net-
work reorganizes its synaptic connectivity through a process
called “pruning” [17], [34], [36], [37]. Through this remodeling,
the network sacrifices useless synapses and optimizes neuronal
links. At the same time, from the spiking activity viewpoint, the
network begins to produce a higher number of bursts character-
ized by a localized activity (i.e., bursts involve a limited number
of neurons). This is a typical sign of the creation of subnetworks
[34], [37]. In this stage, suddenly raises to a value close to 1.5
and remains at this value for 2–8 div. Such an indicates the
presence of a nonstationary signal with a strong negative corre-
lation.

The presence of localized activity produces pronounced dis-
continuities in the SAT signal, confirming the signal as a non-
stationary negatively correlated.
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The last stage involves (at least) the 15 div following the pre-
vious stage. This period is characterized by a slow increment
toward . This condition corresponds to a nonstationary
signal that exhibits a trend similar to a Brownian motion. This
state testifies an energetically stable system and this is probably
the reason why the activity in form of random oscillations can
be observed in neuronal subnetworks [17].

These observations are supported by the morphological and
temporal considerations obtained through the direct observation
of regular bursts [17]. The same results were obtained by ana-
lyzing the less dense cultures classified as “small” in [17].

As it can be seen by comparing the presented results with lit-
erature, e.g., [19], [38], the proposed simple method it is able to
obtain an estimation of the value identical to the one proposed
by that authors ( for a mature network) but using a very
limited burst population.

The request of a very small number of bursts allowed us to
obtain an estimation also for the scarcely-bursting immature
networks (less than 8 div) that is precluded to other methods.
This allowed to observe, for the first time, the sudden value
discontinuity presumably corresponding to the putative network
pruning [36].

It is furthermore interesting to note that, while in various in
vivo observations the coefficient is close to 1 [18], [27]–[29],
in many cultured neurons studies the occurrence of this value is
not statistically relevant (not in our work nor, e.g., in [19] and
[21]). The situation holds a central position in modern
nonlinear signal processing theory because it is the hallmark
of self-organized criticality (SOC) systems [39], [40]. SOC are
systems composed by a multitude of oscillators (such as neu-
rons) in which the dynamical attractors are critical points [39],
[40]. This kind of system works in an energetically unstable
condition, that lies at the “edge of a critical transition” (the
“basal-activity-to-burst” transition in neuronal networks), that
it is supposed to grant the best computational performance [41],
[42]. It is possible that external modulations keep the in in vivo
systems in this energetically unstable condition that we are (at
the moment) unable to reproduce in in vitro cultures. This could
be the rationale of the sudden transition between the two very
stable conditions of white noise and Brownian motion

we noticed on culture recordings.
Finally, we point out that the kind of analysis we employed

in this context seems to be able to highlight activity modifica-
tions that involve the whole neuronal network. The future de-
velopment of our work is to show the usefulness of this kind of
approach in analyzing other aspects of neuronal networks, e.g.,
in presence of chemical or electrical stimulation.

V. CONCLUSION

The results presented in this work suggest a simple method
for the analysis of the statistical characteristics of neuronal net-
work activity. This approach has the advantage to use a well-
standardized signal processing methods, such as periodogram,
for finally obtaining a power-law fitting with the experimental
data from the whole-network-activity. Previously, the whole-
network-activity nonlinear analyses required the creation of ad
hoc laborious and less repeatable methods.

Concerning the biological results, we were able to divide the
network development in three stages. A first stage (between the

6th and the 16th div circa) was characterized by a signal station-
arity together with a positive long-term correlation. The second
stage, corresponding to the network pruning, was characterized
by a sudden increment which indicates the nonstationarity of
the signal endowed with a long-term correlation behavior char-
acterized by negative correlations. This could be probably the
consequence of subnetworks creation, which is typical of the de-
velopment of self-assembling neuronal networks. Finally, net-
work maturity was accompanied by a progressive increment
toward , i.e., toward a Brownian motion-like process. In
general, this analysis suggests that networks spontaneously pro-
duce long-term correlated activity; a sudden transition between
white-noise-like behavior and Brownian-motion-like behavior
was noticed, while avoiding the energetically unstable condi-
tion , typical of numerous in vivo recordings.
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