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ABSTRACT

We have designed and built a CCD camera capable of producing movies at over 1000 frames per second. For
maximum frame rate, we have incorporated the ability to digitize only the pixels of interest, user-selectable
from a custom LabView interface. With a resolution of 64x64 pixels, the system is intended to bridge the gap
between fast, small photodiode arrays, and slow, high-resolution scientific CCD cameras. The system was
designed for imaging neurons labeled with voltage-sensitive dyes, to allow the simultaneous recording of
neural activity in a large number of neurons, or to probe the membrane voltage at many different points of a
single neuron.

Keywords: Potentiometric probe, voltage-sensitive dye, optical recording, high-speed programmable CCD,
neural imaging.

1. INTRODUCTION

The brain is probably the most complex structure we know of, with on the order of a trillion neurons, each
with hundreds or thousands of connections (synapses) to other neurons. There are major gaps in our
understanding of how a structure that fits inside a skull and consumes only about 100 watts can have huge
memory capacity and very rapid recall. This amazing organ effortlessly provides creativity, emotions,
language., and many other brain activities that vex artificial intelligence researchers trying to emulate them
with digital computers. We hope that with further study of living neural systems, we will begin to unravel
the mysteries of neural information processing, and perhaps we can borrow some clever ideas from Mother
Nature in the design of artificial computing systems.

There is increasing evidence that much of neural information processing is a result of the collective activity of
large ensembles of neurons (e.g., Cochin et al., 1994; Wu et al., 1994). Neural cell cultures provide a convenient
and accessible system to study this activity. Microelectrodes are the standard tool of neurophysiology. They
allow one to record signals from only a tew cells at a time, since each electrode requires a micrornanipulator,
and impaling the cells is a tedious and invasive procedure. For over two decades (Davila el a!., 1973), it has
been possible to record neural activity optically, by monitoring the fluorescence (or absorption) of neurons
stained with voltage-sensitive dyes. These potentiometric probes sense the voltage across the cell membrane,
which changes from about -60 mV to about +40 mV during an action potential (the signal that causes
neurotransmitters to be released at the synapse). By shifting the charge on a dye molecule in the membrane,
the electric field changes the optical properties of the dye (Loew, 1993). This process occurs much faster than
the voltage transient of an action potential, which is typically a couple milliseconds in vertebrate neurons.
Unfortunately, the change in fluorescence during an action potential is only a couple percent of the resting
fluorescence level, per 100 mV change in membrane potential. This, and the rapidity with which neural
signals come and go, has made optical recording of neural activity a daunting task.

Until recently, only photodiodes have proven to be sensitive and fast enough for imaging of voltage-sensitive
dyes. Most studies to date have used 10x10 or 12x12 monolithic photodiode arrays, although arrays of
discrete diodes have also been used (Chien and Pine, 1991). Systems with larger photodiode arrays are quite
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expensive. Inexpensive charge-coupled device (CCD) imagers have greatly expanded our capabilities for
scientific i m a g i n g . 'These offer high quantum-efficiency, low noise, excellent linearity, and wi th new
ampl i f ie r and A/L) conversion technology, high-speed readout of the CCD.

We created a relatively inexpensive high-speed CCD (HSCCD) movie camera with a resolution greater
than that of commonly used photodiode arrays, for imaging the dynamics of neural activity at speeds
substantially faster than CCDs commonly used for biological microscopy. We accomplished readout of more
than 1000 frames per second (fps) by incorporating a novel digi t iz ing scheme, in which only pixels of interest
are digitized.

2. HSCCD SYSTEM

Our high-speed CCD camera system (Figs. 1 & 2) consists of a headboard mounted on the side port of a
fluorescence microscope, a rack of electronics for control l ing the camera and amplifying the image pixel
signals, a Macintosh computer wi th interface boards (more below), and a LabView user interface for setting
camera operating parameters and displaying image data. Also connected to the microscope is an inexpensive
CCD camera (Sony SSC-M350) for taking still phase-contrast images of neural networks at 640x480 pixel
resolution. The total system, excluding the microscope, cost about $20K.

2.1 CCD chip

We designed our camera around the Tektronix TK064 CCD chip, a 64x64 pixel array- This CCD has 27 urn
square pixels with 500,000 electron full-well capacity (1.7 mm square imaging area). It is backside-
illuminated and anti-reflection coated for a quantum efficiency >50% in the visible. It has two amplifiers,
for readout in either direction (only one is used) with a 0.5 uV/electron sensitivity and a specified readout
noise of 15 electrons at room temperature. It employs 3-phase clocking, with a 4th phase for on-chip binning
of pholoelectrons from adjacent pixels. The serial register pixels have twice the full-well capacity of the
image pixels. The chip's small size (and thus low parallel phase capacitance of 55 pF) makes it ideal for
high-speed readout of pixels.

2.2 Computer system

Our now-antique Macintosh IIx, r u n n i n g LabView 3.0 (National Instruments), controls the camera electronics
via a digital in ter face card (Nat ional Ins t ruments , NB DIO-32F). This has 35 two-way TTL channels, of
which 20 are used. The pixel data signal is digi t ized by an analog-to-digital card (National Instruments NB
A2000) at the m a x i m u m conversion rate of 1 Mpixel/sec. It is a 12-bit, track-and-hold A/D converter with a
+5V inpu t range, tr iggered externally by the CCD electronics. We also use an 8-bit frame grabber (Quick
Capture, Data Translation) for still images from the Sony CCD. The computer has 20 MB of RAM, enough for
a movie length of about 500 full frames, or several seconds of subregion images at 1000 fps (frames/sec).
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(soma) and larger neurites of a single neuron, or image the cell bodies {somata} of a number of neurons in a
cultured neural network (Figs. 5 & 6).

Our CCD control software also includes the ability to carry out on-chip binning of rectangular groups of pixels
to increase the signal when imaging dim specimens (Fig. 6c). This also speeds up frame readout, since there
are fewer pixels to digitize. The software control panel (Fig. 3, top) allows the user to adjust the integration
time to optimize signal level and frame rate.

Mac MX Computer HSCCD Camera

electronics Rack

Bus

HSCCD Program

Digital interface
(NB-DIO-32F)

A/D Converter

(NB-A2000)
Memory a Logic

Parallel Advance

(double sampling

Headboard
(Mounted on microscope sideport)

Microscope
(Nikon Diaphot epifluorescence)

Fig, 2. High-speed CCD system diagram.
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2.4 HSCCD electronics

The rack of camera electronics (Fig. 1) contains regulated power supplies and five modules: Main control,
Memory and Logic, Serial Advance, Parallel Advance, and Main Amplifier.

The Main Control module takes input from the digital interface card in the computer, and has several test
features for manual operation. It contains the master clock, a 10 MHz crystal oscillator, integration timer,
and frame counter.

The Memory and Logic module contains an 8K SRAM chip (Micron Technology MT5C6408) that is programmed
by the computer before a movie is taken. Each pixel on the CCD chip is associated with a word in memory,
containing a command telling the electronics what to do with that pixel. The bits 0-5 stand for (0) Serial
Advance, (1) Serial Binning, (2) Digitize, (3) Parallel Advance, (4) End of Frame, and (5) Integrate. Bits 6
and 7 are not used. There is a memory address counter that is incremented in sync with the clocking of the
pixels. The output of the memory, the current pixel command, is interpreted by a TTL circuit that controls the
other modules. For example, the pixels of interest all have bit 2 set high, which pauses the clock for one
microsecond and triggers the A/D converter, and the last pixel of each row has bit 3 set high, which causes a
parallel advance.

The Serial Advance and Parallel Advance modules contain pulse shapers, adjustable pulse height power
supplies, and output buffers that send the 3-phase pulses to the headboard. We use 50 ns serial pulses
(FWHM, 15 ns rise and fall times, -5 to +5 V), and 100 ns parallel pulses (FWHM, 15 ns rise and fall times, -8
to +2.3 V). There is a fourth serial phase that is held high when binning columns. Otherwise, it is clocked as
if it were phase 3. Binning of rows is done by executing more than one parallel advance without reading out
the serial register.

The Main Amplifier contains filters and a two-stage low-noise high-speed amplifier. Gains from 80x to
1280x can be selected with a front panel switch.

The headboard contains the CCD chip itself, cooled by a Peltier thermoelectric device, amplifiers for the
serial and parallel phases, and a low-noise preamplifier for the pixel signals.

2.5 Mechanical and optics

The headboard is mounted in a light-tight box with micrometer screws for precision CCD chip alignment.
The microscope image is focused on the CCD chip with a Fujinon video zoom lens (F 1.2,12.5 to 75 mm) with +4
close-up lens kit, and an AR-coated transport lens. The zoom can be adjusted to match the specimen size to the
CCD imaging area, with no vignetting or distortion.

We use a Nikon Diaphot inverted epifluorescence microscope, with phase contrast optics. The output of the
100 W mercury lamp is stabilized by an optical feedback system (Chien and Pine, 1991). A fiber optic
placed in the i l lumina t ion path carr ies l ight to a photodiode, which controls a current shunt that modulates
the power to the lamp to keep intensi ty f luctuations below 0.1% RMS. We use a Nikon rhodamine filter cube,
and Nikon Fluor 20x/0.75 numer ica l aper ture and 40x/0.85 numerical aperture objective lenses. The
microscope is set up with standard electrophysiology equipment to allow comparison of optical signals with
those recorded by conventional microelectrodes. The electrophysiology, the camera, and the illumination
shutter are all triggered by the computer at the click of a mouse.
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Fig. 3. HSCCD Main Control Panel (top) and
Pixel Selector Panel (bottom). An example of the
pixel selection process is presented, with a frame
from the r e s u l t i n g high-speed movie at bottom
l e f t .
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3. SYSTEM PERFORMANCE

3.1 Movie speed

The HSCCD takes 400 us to clock out a f u l l f rame, without digitizing any pixels. Since each pixel that is
digitized pauses pixel readout for 1 us, the frame rate is a function of the number of pixels selected, as well as
the integration time selected. Thus, when the integration time is set to half of the readout time, we can make
movies at >1000 fps for 200 pixels or fewer, as shown in Fig. 4. Vertical smearing from light collected during
frame readout is usually tolerable with this scheme.

The software cu r ren t ly instructs the camera to clock each pixel in the CCD array out through the serial
register, at either 10 MHz or 1 MHz, depending on whether it is being digitized or not. We plan to attain
further speedup by executing just paral lel advances (no serial advances) in situations where groups of adjacent
rows have no selected pixels. The last unwanted row will be fast-clocked through the serial register, so the
serial register wells w i l l be empty and ready to accept charge from the next row, which contains selected
pixels. This scheme will save approximately 6.4 us per unselected row (dashed curve, Fig. 4). Thus, if one
selected a 20x20 region, 43 rows would be fast erased. This saves 275 us per frame, boosting the frame rate,
from 770 to 1130 fps, if the integrat ion time equals half the readout time. Our pixel command array memory
allows us to try out new clocking schemes easily, jus t by altering the Lab View program. No hardware changes
are necessary.

Fig. 4. Frame rates were measured
with an oscilloscope, for a variety
of pixel selections, using integration
times equal to the frame readout
time (open circles), or equal to ha l f
the frame readout time (f i l led
circles). Top curve (dashed line) is
the calculated best-case readout
rate, for a single square region
selected, after implementation of
parallel fast erasing of unwanted
rows (see text).

3.2 Sensitivity and noise

For a typical 1000 fps movie of cu l tu red hippocampal neurons stained with RH237 (Molecular Probes), we
integrate for 300 us/frame (Fig 6d)). Using the 20x/0.75 NA microscope objective and the full intensity of the
mercury lamp, we get approximately 20,000 photoelectrons/pixel/frame from the cell soma pixels. The
complete image of the neuron's soma (from which voltage sensitive dye signals arc traditionally obtained)
provides about 300,000 photoelectrons/frame. The shot noise from this number of photoelectrons is about 550
electrons, or about 0.2%. This will allow detection of fluorescence changes of 1% or more with a good signal-
to-noise ratio. Unlike with slow-scan CCDs that use long (several second) integration times, dark signal is
negligible for us. From the CCD specifications, dark current noise for a 300 us integration time is expected to
be only 5 electrons. We are in the process of implementing a noise-reduction circuit that is a var iat ion of
correlated double-sampling. We estimate the total noise through all the electronics wi l l be 16 electrons rms
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(referred to the CCD input, 1 MHz bandwidth) . Thus, for the above example, and even for f a r fewer
photoelectrons, the photon shot noise will be the dominant noise source.

Fig. 5. Embryonic rat h ippocampus
neuron, cultured for one month, stained
wi th voltage-sensitive dye R11237. A.
Phase con t r a s t image f rom video
camera. B. F u l l - f r a m e HSCCD
f l u o r e s c e n c e image, wi th 10 ms
integration l ime (~ 70 fps), wi th 0.6
neutral dens i ty excitat ion filter. C.
Same image, a f t e r resizing with a
bicubic s p l i n e in t e rpo la t ion in
Photoshop, showing de t a i l s not
apparent in the more pixelated original.
D. Subregions covering the cell soma and
a major dendrite, imaged at -900 fps,
with 300 us integrat ion time, at f u l l
lamp intensity.

Fig. 6. Neural network of embryonic ra t
hippocampus neurons, a f t e r 1 week in
culture, stained with RH237. A. Phase
contrast image from video camera. B.
Full-frame fluorescence HSCCD image,
with 15 ms integration t ime (-50 fps),
with 1.6 neutra l density e x c i t a t i o n filter.
C. Same field of neurons imaged with 2x2
binning, which reduces readout time to
one ms, and boosts the s igna l level by a
factor of four . A surpr is ing amount of
image de ta i l is retained, even at 32x32,
which can he noted by viewing the image
from a distance. D. Subregions covering
four neuron somata were imaged wi th no
binning at 1000 fps (300 us integrat ion
time), using full lamp intensi ty .
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4. DISCUSSION

4.1 Related systems

A few groups have conducted voltage-sensitive dye recordings using commercially available CCD cameras.
The Photometrics CH220 is a computer controlled, cooled 12-bit CCD camera that has been sped up with a
custom command set (Lasser-Ross et al., 1991) to allow imaging of an 18x18 pixel region at 100 fps, or a 50x50
pixel region at 40 fps. When used with the intracellularly-injected potentiometric dye JPW1114, it was
necessary to average 16 trials to observe clear optical signals at 50 fps (Kogan et al., 1995). The same camera
was used to image activity in slug procerebral lobe labeled with Di-4-ANEPPS (Kleinfeld et al., 1994), at 9
fps (full-frame) or 27 fps for a 30x100 pixel binning scheme. The Cohu 6510 CCD has been used to image
activity waves in cardiac tissue labeled with Di-4-ANFPPS at 60 fps, full-frame. (Cabo et al., 1994). An 8-bit
frame-grabber was used in this study, providing sufficient dynamic range to observe the relatively large (3%)
change in fluorescence of activated cardiac tissue. None of those systems permit the selection of arbitrary
groups of pixels as with our system, and attain their modest speedup by binning of rectangular regions,

Slow-scan CCD cameras (several-second frame readout) have also been used in voltage-imaging experiments
that discarded temporal information but showed differences between stimulated and non-stimulated trials
(Yae et al., "1992; Ioew, 1993; Gogan et al., 1995) . This is equivalent to taking a two-frame movie, which
would miss many of the interesting dynamics of neural ensembles.

Laser-scanning systems for voltage-sensitive dye recording have been developed by two groups (Morad et al.,
1986; Saggau, 1994). These employ acousto-optic deflectors to rapidly steer a laser excitation spot to user-
selectable regions in the specimen. Fluorescence is detected by a single photodiode. The first system can
record signals from 128 sites on cardiac muscle labeled with potentiometric dye VVW781 (in a 128x128 grid)
every 4 ms, or 250 fps (Morad et al., 1986). The second system employs a reference photodiode in addition to
the signal photodiode., to reduce noise due to laser fluctuations (Saggau, 1994). This system can record from, up
to 100 user-selectable spots (20 um diam. with a 20x objective) at a maximum of 2000 fps. Saggau
demonstrated fast optical signals evoked in a guinea pig hippocampal slice labeled with potentiometric dye
RH-414 that matched extracellular field recordings. The main disadvantage of this approach is the cost and
technical difficulty ot setting up a fast, low-noise laser-scanning system.

A large monolithic a r r a y camera (128x128) has been developed by Ichikawa et al, (Ichikawa et al., 1993)
that can image full-f ield at 1666 fps. This has successfully imaged waves of neural activity in rat
hippocampal slices labeled with fluorescent potentiometric dye KH-795 and absorption potentiometric dye
RI1-155(Iijima et al., 1996). To our knowledge, it has not been used for imaging activity in cultures of
dissociated neurons.

4.2 Future improvements

We look forward to an improvement in the readout noise level of our system when our correlated double-
sampling amplifier is complete. This should give us the signal-to-noise ratio necessary to see small voltage-
induced changes in fluorescence in a single t r ia l . Then, spontaneous electrical activity of a cultured neural
network could be observed. Spontaneous activity is likely to be more physiologically relevant than
artificially evoked ac t iv i ty .

A fu tu re version of the camera might employ an additional RAM chip to hold a digitized background image,
to be converted back to analog and subtracted from each image of the movie, pixel by pixel, before A/D
conversion. This would subtract the large background fluorescence of voltage-sensitive dyes, so that more of
the A/D converter's dynamic range could be devoted to the small changes of interest. Such a scheme has been
successfully implemented in the 128x128 pixel camera described above (Ichikawa et al., 1993).
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The software that controls our HSCCD is always being improved, We will write routines for automated
analysis of movies, including averaging of trials, background subtraction, and dye blenching correction, and
digital summing of groups of pixels. We also wish to overlay fluorescence movies on the high-resolution
phase-contrast stills, as done by Senseman, et al. (Senseman et al., 1990).

4.3 We need better potentiometric probes

The calcium ion is an important intracellular signal, and the invention of calcium-sensitive fluorescent dyes
has created a booming field of calcium imaging, that hopes to gain insight into the inner workings of neurons
and other physiologically active cells. There are conferences and journals devoted to calcium imaging, yet
none for the imaging of voltage-sensitive dyes. This is because calcium signals are generally 10-100 times
slower than vol tage signals, and calcium-sensitive dyes undergo a large change in fluorescence upon binding
calcium (an order of magnitude larger than voltage-sensitive dye changes). Thus, standard video-rate
cameras can be used for calcium imaging. New high-speed imaging technologies will do much to advance the
field of voltage imaging. But we probably will not catch up with the calcium imaging field until more
sensitive indicators of membrane potential are developed. One promising new technique employs fluorescence
resonance energy transfer (FRET) between two different fluorophores (Gonzalez and Tsien, 1995). Applying
the FRET approach to na tura l ly fluorescent proteins, such as Green Fluorescent Protein and its variants,
might provide us with cells tha t come with their own sensitive potentiometric probes bu i l t into their
membrane.

5. ACKNOWLEDGMENTS

We thank the Kosen Foundation and the Beckman Institute Biological Imaging Center for f inanc ia l support.
We thank Prof. Scott Fraser for his enthusiastic support and encouragement. We thank Morley Blouke and
Jim Janesick for providing prototype CCD chips and advice. Finally, we thank Sheri McKinney for her
expert technical assistance with cell cultures.

6. REFERENCES

Cabo, C, Pertsov, A. M., Baxter, W. T., Davidenko, J. M., Gray, K. A. and Jalife, J. (1994) Wave-front
curvature as a cause of slow conduction and block in isolated cardiac-muscle. Circulation Research 75: 1014-
1028.

chien, C. B. and Pine, J. (1991) An apparatus for recording synaptic potentials from neuronal cultures using
voltage-sensitive fluorescent dyes. J Neurosci Methods 38: 9.1-105.

Davila, H. V., Salzberg, B. M., Cohen, L. B. and Waggoner, A- S. (1973) A large change in axon fluorescence
that provides a promising method for measuring membrane potential. Nature 241: 159-160.

Gochin, P. M., Colombo, M., Dorfman, G. A., Gerstein, G. L. and Gross, C. G. (1994) Neural ensemble coding in
inferior temporal cortex. /, Neurophysiol. 71: 2325-2337.

Gogan, P., Schmiedeljakob, I., Chitti, Y. and Tycdumont , S. (1995) Fluorescence imaging of local membrane
electric-fields during the excitation of single neurons in culture. Biophys. J. 69: 299-310.

Gonzalez, ]. F. and Tsien, R. Y. (1995) Voltage sensing by fluorescence resonance energy transfer in single cells.
Biophys. J. 69: 1272-1280.

1997 SPIE Proceedings 2869: 243-253. 



Ichikawa, M., lijima, T. and Matsumoto, G. (1993), Real-time optical recording of neuronal activities in the
brain. In Brain Mechanisms of Perception and Memory: From Neuron to Behavior. Eds. L. R. Squire & T. Ono.
Oxford. pp. 639-648.

lijima, T., Witter, M. P., Ichikawa, M., Tominaga, T., Kajiwara, R. and Matsumoto, G. (1996) Entorhinal-
hippocampal interactions revealed by real-time imaging. Science 272: 1176-1179.

Kleinfeld, D., Delaney, K. R., Fee, M. S., Flores, J. A., Tank, D. W. and Gelperin, A. (1994) Dynamics of
propagating waves in the olfactory network of a terrestrial mollusk - An eleetrical and optical study. J.

l. 72: 1402-1419.

Kogan, A., Ross, W. K., Zecevic, D. and Lasser-Koss, N. (1995) Optical-recording from cerebellar purkinje-
cells using intracellularly injected voltage-sensitive dyes. Brain Res. 700: 235-239.

Lasser-Koss, N., Miyakawa, H., Lev-Ram, V., Young, S. R. and Ross, W. N. (1991) High time resolution
fluorescence imaging with a CCD camera. J. Neurosci. Meth. 36: 253-261.

Loew, L. M. (1993), Potentiometric Membrane Dyes. In Fluorescent and Luminescent Probes for Biological
Activity. Ed. W. T. Mason. London, Academic Press, pp. 150-160.

Morad, M., Dillon, S. and Weiss, J. (1986) An acousto-optically steered laser scanning system for measurement
of ac t ion potential spread in intact heart. Soc. Gen. Physiol Ser 40: 211-26.

Saggau, P. (1994). Optical recording from neural populations in vitro: Application of laser scanning
microscopy. In Enabling Technologies for Cul tured Neural Networks. Eds. T. M. McKenna, D. A. Stenger. San
Diego, Academic Press, pp. 187-205.

Senseman, D. M., Vasquez, S. and Nash, P. L. (1990). Animated pseudocolor act ivi ty maps (PAM's);
Scientific v i sua l iza t ion of brain electrical a c t i v i t y . In Chemosensory Information Processing. Ed. D. Schild.
Berlin, Springer-Verlag. pp. 329-347.

Wu, J.-Y., Cohen, L.. B. and Falk, C. X. (1994) Neuronal-act ivi ty during d i f fe ren t behaviors in aplysia - A
distributed organization. Science263: 820-823.

Yae, H., Elias, S. A. and Ebner, T. J. (1992) Deblurring of 3-dimensional pat terns of evoked rat cerebellar
cortical ac t iv i ty : A s tudy using voltage-sensitive dyes and optical sectioning. J Neurosci Methods 42: 195-209.

1997 SPIE Proceedings 2869: 243-253. 




