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RECISELY TIMED SPATIOTEMPORAL PATTERNS OF NEURAL

CTIVITY IN DISSOCIATED CORTICAL CULTURES
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bstract—Recurring patterns of neural activity, a potential
ubstrate of both information transfer and transformation in
ortical networks, have been observed in the intact brain and
n brain slices. Do these patterns require the inherent cortical

icrocircuitry of such preparations or are they a general
roperty of self-organizing neuronal networks? In networks
f dissociated cortical neurons from rats—which lack evi-
ence of the intact brain’s intrinsic cortical architecture—we
ave observed a robust set of spontaneously repeating spa-
iotemporal patterns of neural activity, using a template-
atching algorithm that has been successful both in vivo and

n brain slices. The observed patterns in cultured monolayer
etworks are stable over minutes of extracellular recording,
ccur throughout the culture’s development, and are tempo-
ally precise within milliseconds. The identification of these
atterns in dissociated cultures opens a powerful method-
logical avenue for the study of such patterns, and their
ersistence despite the topological and morphological rear-
angements of cellular dissociation is further evidence that
recisely timed patterns are a universal emergent feature of
elf-organizing neuronal networks. © 2007 IBRO. Published
y Elsevier Ltd. All rights reserved.

ey words: multielectrode array, activity pattern, neural net-
ork, spontaneous activity, attractor, synfire chain.

he means by which information is reliably stored, propa-
ated, and processed within biological neural networks is
nknown, though several candidate mechanisms exist
Vogels et al., 2005). Of these theories, perhaps the most
nfluential is that of Donald Hebb, who proposed informa-
ion storage and processing via dynamically linked assem-
lies of cells, formed through simple activity-dependent

earning rules (Hebb, 1949). Spontaneously recurring spa-
iotemporal patterns of neuronal action potentials, vari-
usly referred to as “motifs” (Ikegaya et al., 2004), “se-
uences” (Nadasdy et al., 1999), “synfire chains” (Abeles,
991), and “information trains” (Frostig et al., 1984), might
e an observable and quantifiable instantiation of Hebb’s

Corresponding author. Tel: �1-404-385-2989.
-mail address: steve.potter@bme.gatech.edu (S. M. Potter).
bbreviations: CI, confidence interval; DIV, days in vitro; ISI, interspike
a
nterval; LFP, local field potential; MEA, multielectrode array; S.D.,
tandard deviation; STDP, spike timing–dependent plasticity.

306-4522/07$30.00�0.00 © 2007 IBRO. Published by Elsevier Ltd. All rights reser
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roposed cell assemblies. Such precisely timed patterns of
euronal action potentials are well-documented in vivo in
arious cortical structures (Abeles et al., 1993; Nadasdy et
l., 1999; Ikegaya et al., 2004; Luczak et al., 2006), and
ave also been shown in neocortical slices (Ikegaya et al.,
004). These preparations retain the brain’s inherent mi-
rocircuitry, comprised of a specific laminar and columnar
rchitecture ostensibly critical for normal function (Mount-
astle, 1998). But is such structure crucial for the brain’s
laboration of precisely timed activity patterns like those
bserved above?

Computational models of large-scale neuronal networks
uggest that spontaneously recurring patterns of action po-
entials, termed “polychronous groups” by Izhikevich (2006),
re an emergent property of loosely structured networks with
ealistic conduction delays governed by spike timing–depen-
ent plasticity (STDP), and thus are not reliant on the
rain’s intrinsic cortical circuitry (Izhikevich et al., 2004;
zhikevich, 2006). But to our knowledge, the modeling
ork’s conclusions have not been verified with unstruc-

ured networks in vitro. Is the Izhikevich model correct in
mplying that precisely timed spatiotemporal activity pat-
erns are produced independently of the brain’s inherent
ortical architecture?

To directly answer the above questions, we em-
loyed a well-established template-matching algorithm
Abeles and Gerstein, 1988) successfully utilized in two
f the abovementioned studies describing precisely

imed activity patterns, one in vivo (Nadasdy et al.,
999) and one in vitro in brain slices (Ikegaya et al.,
004). This algorithm was applied to recordings of spon-

aneous action potentials from highly interconnected
etworks of dissociated cortical neurons, cultured on
ultielectrode arrays (MEAs) (Gross, 1979; Pine, 1980;
aketani and Baudry, 2006). Such neuronal networks
re well studied and their constituent neurons physio-

ogically normal, but there is no evidence that dissoci-
ted networks retain or reestablish the brain’s laminar
nd columnar microstructure (Dichter, 1978; Banker and
oslin, 1998). The biological network’s size (�50,000
ells) and diameter (�5 mm) approximate that used in
he modeling study (100,000 model cells and an 8 mm
adius) (Izhikevich et al., 2004). Finding comparable
atterns in large networks of cultured dissociated corti-
al neurons to those found in vivo and in slices will
rovide strong evidence that such patterns are a general
roperty of self-organizing neural networks and not de-
endent on the brain’s intrinsic cortical microcircuitry, as

t is constructed through the organism’s development

nd experience.

ved.
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EXPERIMENTAL PROCEDURES

ell culture

he data analyzed in this paper are from Wagenaar et al. (2006b),
hich is accompanied by a large publicly available dataset of

ecordings from dissociated embryonic day 18 (E18) rat cortical
ultures. No additional experiments using animal cells were con-
ucted for the present study.

xtracellular recording

pproximately 50,000 cells were plated in a 5 mm diameter drop-
et on top of an MEA containing 59 electrodes arranged in a
ectangular grid with 200 �m spacing. The MEA’s signals were
mplified and sent to a data acquisition computer, using a Mul-
iChannel Systems MEA60 preamplifier and MC_Card analog-to-
igital board (MultiChannel Systems, Reutlingen, Germany), sam-
ling at 25 kHz. Data acquisition and visualization was performed
y our laboratory’s custom-written software package, MeaBench
http://www.its.caltech.edu/�pinelab/wagenaar/meabench.html)
Wagenaar et al., 2005a). Extracellular recordings were obtained
rom 59 electrodes on each MEA and action potentials (i.e., spikes)
ere detected using a threshold-based detector as upward or down-
ard excursions beyond 4.5� the estimated root mean square
oise (Wagenaar et al., 2005a). Spike waveforms were stored and
sed to remove duplicate detections of multiphasic spikes. A
ariety of spike waveform shapes was observed on many elec-
rodes, but distinct clusters in waveform space, as determined
sing the wavelet-based method of Quiroga et al. (2004), were
ypically not seen, presumably because many cells contributed to
he spike train at each electrode in these dense cultures, espe-
ially during bursts. Also during bursts, overlapping waveforms
ere a common occurrence, making spike sorting problematic.
hus, all results in this paper are based on unsorted multiunit data.
ecordings were ultimately reduced to a series of ordered pairs,
onsisting of the precise time of each detected action potential’s
eak and the electrode on which it occurred.

emplate-matching algorithm

he template-matching algorithm used here is identical to that in
kegaya et al. (2004) and Nadasdy et al. (1999) and based on that
f Abeles and Gerstein (1988). Briefly, a 200 ms template is
onstructed for each detected action potential. For the dataset’s
th spike occurring at time ti on electrode ei, a template tempi is
onstructed as a vector containing the latencies and electrode
umbers of all spikes occurring within 200 ms of ti. That is,
empi��tj�ti, tk�ti, . . .; ej, ek, . . . �, where tj, tk, . . . are less than
i�200 ms but greater than ti. Each template from a spike detected
n electrode ei is then compared with all other templates from the
ame electrode. A match is declared when two latency/electrode
airs are identical within some specified precision (e.g., 1 ms),
eaning that at least three matching spikes have recurred with a

ariation in firing times more tightly bound than the specified
recision. These matches are later sorted into sequence families
see below). The matching process is repeated for all templates
n all electrodes, resulting in the analysis of all the dataset’s
pikes (�10,000/min of recording). It should be noted that tem-
lates with reference spikes occurring within the specified preci-
ion of a prior template’s reference spike (on the same electrode)
re not included in the analysis, since this would result in many
rivial matches.

The method, as described, would overestimate the number of
equences present in each dataset. As an example, say that a
emplate consisting of spikes on electrodes 5, 10, 34, 7, and 8
ecurs in a precise temporal order five times. The first run of the
emplate-matching algorithm would find four matches (i.e., repe-
itions) of the pattern as it serially searched through the data.
hen the algorithm eventually repeats with the second instance of p
he pattern as its reference template, it will find an additional three
atches, and so on. Moreover, the algorithm would experience

he same problem as it searched through subsets of the pattern’s
epetitions (e.g., {10, 34, 7, 8} and {34, 7, 8}). To alleviate this
vercounting and to exactly replicate previous studies’ implemen-
ations of the template-matching algorithm, matched spikes are
emoved from the dataset during each iteration of the algorithm,
hile mismatched spikes are retained, as in Ikegaya et al. (2004).
vercounting is thus prevented, while every spike is still analyzed
t least once. As an added benefit, such spike removal results in
significantly faster implementation by reducing the dataset dur-

ng each cycle of the algorithm. It took roughly 30 min to analyze
min of multielectrode data on a standard desktop computer with
ATLAB 7.2 (MathWorks, Natick, MA, USA).

When several sequences match a given reference template, it
s unclear a priori whether identical or different subsets of the
emplate’s spikes are matched. Due to this limitation of the algo-
ithm, matches to one template form a collection of distinct sub-
ypes or sequence families (e.g., one set of matches may be to
pikes 2–5, while another may be to spikes 6–9, leaving only one
pike, the trigger spike, in common between the two subtypes).
ecause we wish to identify repeating sequences of action poten-

ials, and not repeating abstract templates, we conservatively
ollected instances of each sequence family separately by assign-
ng a different sequence identification number to each family.
enceforth, sequence family will refer collectively to all instances
f the same identified recurring spatiotemporal pattern of neural
ctivity (i.e., all matches of a given subtype), and sequence rep-
tition will refer to the individual occurrences of these families.

huffling

o evaluate the significance of our results, we ran the template-
atching algorithm on shuffled versions of the same 1-min data-

et and compared the number of identified sequences obtained
rom each. Two methods of shuffling were used, spike swapping
nd spike jittering (Fig. 1). Spike swapping can be thought of as
xchanging the electrode numbers of two randomly selected
pikes, and repeating this process throughout the entire dataset.
ormally, spike swapping takes the length N vector of electrode
umbers from the dataset, where N is the total number of spikes,
nd then assigns a new electrode number from this vector by
ampling without replacement. Thus, the dataset retains identical
pike times after shuffling and an identical distribution of spikes
er electrode per recording, but presumably lacks any biologically

nduced correlations between spike times.
While spike swapping preserves the number of spikes per

lectrode and the overall timing of spikes, it fails to preserve each
ell’s interspike interval (ISI) distribution, thereby distorting its
ring rate. Shuffling methods that fail to respect local firing rate
uctuations may in some cases lead to an overestimation of the
ignificance of observed patterns (Oram et al., 1999), so in addi-
ion to spike swapping, we employed spike jittering, wherein each
pike’s time was perturbed by a random amount drawn from a
aussian distribution with mean zero and a small standard devi-
tion (S.D.) (this paper used 2 and 20 ms, depending on the
xperiment). Because the perturbing Gaussian distribution has a
ean of zero, the ISI distribution for each cell remains closely
reserved. Similarly, population modulations in firing rate are on
verage unchanged and the number of spikes per cell remains

dentical to the unshuffled data.

attern persistence

o determine the persistence of observed sequences, spike trains
ecorded in the 10 min following the previously analyzed episodes
ere scanned exhaustively for a subset of the most frequently

ecurring patterns discovered in the original data. Unlike the tem-

late-matching algorithm above, this round of pattern finding did

http://www.its.caltech.edu/pinelab/wagenaar/meabench.html
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ot discard matched spikes. The number of observed sequence
epetitions in actual data at subsequent times was compared with
he number of repetitions observed in shuffled versions of the
ame data. Twenty shuffles were used for each dataset: if the
ctual data contained more sequence repetitions than all 20 shuf-
ed datasets, we concluded that these sequences occurred sig-
ificantly more often than chance with P�0.05.

tatistical methods

he Wilcoxon signed-rank test was used to calculate significance
y comparing the number of detected sequence families in each
ctual dataset to the number of detected sequence families in a
ingle shuffled version of the same dataset. This captures the
ikelihood of all 10� cultures having more sequence families than
heir shuffled counterparts, which is not expected by chance.
urther, P-values were calculated directly for the three most fre-
uently recurring sequence families in each culture by generating
ultiple shuffled datasets (see Pattern Persistence section
bove). When multiple comparisons were necessary, the Bonfer-
oni adjustment, the most stringent correction for multiple compar-
sons (Bland and Altman, 1995), was used to protect against type
errors.

RESULTS

hirty minutes of spontaneous activity was recorded from
ach of 12 cultures, aged 21 days in vitro (DIV), derived

rom four separate platings (Wagenaar et al., 2006b). From
hese datasets, 1 min (arbitrarily the 16th minute of record-
ng time) was examined with a template-matching algo-
ithm (see Experimental Procedures) to determine the
umber of repeating sequences. The algorithm used a
recision of 1 ms and a window size T�200 ms, following
adasdy et al. (1999). On average, 2993�1077 unique

ig. 1. Shuffling methods. (Top) Spike swapping preserves the datase
e pair-wise (i.e., between two electrodes, as demonstrated with the tw

o the right). (Bottom) Spike jittering preserves population modulatio
ataset’s electrode distribution exactly.
equence families were found in each recording, repeating t
.01�0.11 times/min (range 2 to 6), consisting of 4.3�6.3
pikes (range 3 to 475) and spanning 125�55 ms. Several
xample sequences are shown in Fig. 2.

To demonstrate that the finding of precisely timed se-
uences was not limited to dissociated cultures at a par-
icular developmental stage, we examined cultures aged
5 DIV as well. Using 11 cultures from three separate
latings (eight from the previously analyzed 21 DIV cohort
nd three additional cultures), we found similar patterns to
hose observed at 21 DIV. In 1 min of spontaneous activity,
here were 1312�341 unique sequence families per cul-
ure, repeating 2.1�0.4 times (range 2 to 62), consisting of
.0�36.3 spikes (range 3 to 1408) and lasting 122�61 ms.

Because of their precision and frequency of recur-
ence, it is appealing to interpret the observed precisely
imed sequences as evidence of spatiotemporal attractors.
ince sequences that recur frequently in our data are more

ikely to represent such attractors than those sequences
hat repeat only a few times, we can quantify this idea by
racking solely those sequences repeating three or more
imes, on the assumption that patterns recurring only twice
re likely to be spurious. At 21 DIV, there were 26.3�10.5
uch frequently recurring sequence families per culture,
epeating 3.1�0.4 times/min, consisting of 3.1�0.3 spikes
range 3 to 6) and spanning 105�63 ms. At 35 DIV, there
ere 36.7�14.1 sequence families per culture, repeating
.8�1.9 times, consisting of 3.1�0.4 spikes (range 3 to 6)
nd lasting 99�61 ms.

The average time between sequence repetitions was
3.7�13.0 s and many of the repetitions appeared to recur

n close succession (Fig. 3A, black bars). This tendency

-timing distribution and electrode distribution. Note that swapping can
to the left) or higher-order (as demonstrated with the three-wise swap
g rate and each electrode’s ISI distribution approximately, and the
t’s spike
o swaps
oward short inter-sequence intervals (the leftmost peak of
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ig. 3A) can be explained by cultured cortical networks’
requent display of brief, concerted increases in firing rate,
nown variously as “bursts,” “population bursts,” “bar-

ig. 2. Precisely timed sequences of neural activity repeat spontan
equence repetitions. Each gray dot represents an action potential d
equence are traced in dark blue lines, seven instances of a five-spike
nstances of a three-spike sequence in red (fewer instances may be
opulation bursts. In this panel, the ordering of electrodes is not related
B) Action potential waveforms for the 11 repetitions of the red sequen
olumn is one sequence repetition. Electrode labels indicate the co
ropagation of each sequence shown in A. Each electrode of the ME
ropagation of the dark blue sequence from A. The red dot-dashed arro
rrows represent the orange sequence depicted in panel A and the gree
rigin and direction of propagation. The empty space at column 1, row
he four sequence families, using the same color coding as panels A–C
ere detected with a template-matching algorithm using a window siz
ages,” and “network spikes” (Droge et al., 1986; Eytan 2
nd Marom, 2006; Wagenaar et al., 2006b), which may be
imilar to the UP states observed in vivo and in slices
Robinson et al., 1993; Steriade et al., 1993; Steriade,

networks of dissociated cortical neurons. (A) Raster plot showing
n a specific electrode. Sixty-two instances of a repeating four-spike
e in orange, four instances of a four-spike sequence in green, and 11
e to overlap when displayed at this resolution). Arrowheads indicate
eometry, but was chosen to avoid the overlapping of sequence traces.
ach row shows the waveforms recorded from one electrode and each
w location of the electrode on the MEA (see panel C). (C) Spatial
resented by a light gray circle. The dark blue solid arrows show the
sent the red sequence depicted in panels A and B. The orange dashed
arrows represent the green sequence. Arrows indicate the sequence’s
approximate location of the ground electrode. (D) The time course of
same line style as C. Electrode ordering as in panel A. These patterns
ms and a precision of 1 ms (see Experimental Procedures).
eously in
etected o
sequenc

visible du
to MEA g
ce in A. E
lumn, ro
A is rep

ws repre
n dotted
5 is the
and the
001). More than half of all sequence spikes occur during
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ursts, so it is not surprising that the time between se-
uences reflects this short length of bursts typical in cul-
ures at these ages (�200 ms; leftmost peak of Fig. 3A).
wo additional peaks around 14 and 23 s reflect the burst
attern of the most active culture we examined (which
ccounted for, among all cultures, 21% of sequence fam-

lies repeating three or more times). This particularly active
ulture had three bursts during the 16th minute, with inter-
urst intervals of 14.1 and 23 s. The histogram with this
ighly active culture removed is shown in gray in Fig. 3A.

Interestingly, the likelihood of a spike being part of a
equence appears to be roughly the same—or even a bit
ower—during bursts as outside of bursts, despite a burst’s
reater concentration of spikes: Using the SIMMUX algo-
ithm to detect population bursts (Wagenaar et al., 2005a),
e determined that 52% of the spikes that were part of

ig. 3. Properties of detected sequences. (A) Histogram of times betw
black bars). Sequences repeated with a mean interval of 13.7�13.0 s
requent occurrence of sequences in population bursts (see text). Addi
hich contained three bursts with inter-burst intervals of 14.1 and 23
f each electrode in sequences, data from one representative culture.
otal number of spikes detected on the same electrode that take part in
f the best-fit line through these points can be used to estimate the per
R2�0.93) (if every spike detected on an electrode participated in a s
etected sequence repetitions occurred during bursts at 21 c
IV, while of all spikes recorded at 21 DIV, 59% occurred
n bursts. At 35 DIV, these numbers were 79% and 87%,
espectively. These proportions—sequence spikes in
ursts over all sequence spikes, and spikes in bursts over
ll spikes—are very nearly the same, though there are
ewer sequence spikes in bursts at both developmental
tages. This finding is even more striking if the analysis is

imited to those sequence families repeating three or more
imes: at 21 DIV, 30% of sequence spikes occurred during
ursts and, at 35 DIV, 48% occurred during bursts. To
urther restrict the possibility of a causative role for culture-
ide bursting in the generation of sequences, we exam-

ned the relationship between each culture’s propensity for
equences (defined as the total number of sequence fam-

lies detected in a culture, divided by the total number of
pikes in the same recording) and the burstiness of each

ence repetitions from those sequences repeating three or more times
any occurred in close succession (left peak of histogram), due to the

ks at 14 and 23 s are due to bursts in the most active culture studied,
stogram with this culture excluded is shown in gray. (B) Participation
l number of spikes detected on an electrode (x axis) is plotted vs. the
uence (y axis). Each electrode is represented by one point. The slope
of spikes taking part in sequences on an electrode, 48% in this culture
, the best-fit line would have a slope of 1).
een sequ
, though m
tional pea
s. The hi
The tota
any seq

centage
ulture, quantified with the “burstiness index” of Wagenaar
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t al. (2005b). This analysis revealed no significant corre-
ations between a culture’s burstiness and propensity for
xhibiting precisely timed patterns (data not shown).

From looking at Fig. 2, it is unclear whether some
lectrodes participate more frequently than others in the
bserved sequences. To investigate this in more detail, we
ade scatter plots, with the number of action potentials
etected on each electrode as the abscissa and the num-
er of action potentials taking part in sequence repetitions
from any sequence family repeating three or more times)
s the ordinate, representing each electrode as a point
Fig. 3B). The slope of the best-fit line through these points
rovides an estimate of the percentage of each electrode’s
pikes that participate in sequences. If every spike de-
ected on each electrode took part in a sequence, these
oints should fall on a line with slope 1. In the data shown

n Fig. 3B (from one representative culture), this slope is
.48 (R2�0.93). No discernible patterns emerged from this
nalysis across cultures (the slope changes from culture to
ulture, but the best-fit curve is always linear), suggesting
hat electrodes participate roughly with a constant propor-
ion of their firing rates.

To determine the significance of detected sequences,
e compared the number of observed sequence families

o the number of observed sequence families in shuffled
ersions of the same data. Two shuffling methods were
sed, spike swapping and spike jittering (see Experimental
rocedures; Fig. 1). Spike swapping is a balanced rear-

angement of spikes over electrodes, leaving each elec-
rode with precisely the same number of spikes, but occur-
ing at different times. In essence, each spike’s electrode
umber is reassigned to that of another spike, though each
pike can give its electrode number to only one other
pike. This method preserves both temporal and spatial
opulation modulations, but fails to preserve the ISI distri-
ution of individual cells. Spike jittering randomly perturbs
he timing of each spike by an amount drawn from a
aussian distribution of mean zero and S.D. 2 ms. Be-
ause the perturbation has zero mean, the ISI distribution
f each electrode is closely preserved, along with modu-

ations in population activity. Additionally, the number of
pikes per electrode remains unchanged, making spike
ittering the more stringent of the two shuffling methods.
here were more observed sequence families (repeating

wo or more times) in the unshuffled data than in both
pike-swapped and spike-jittered data (P�0.05 and
�0.01, respectively; Wilcoxon signed-rank test), indicat-

ng that the high number of observed sequences did not
rise by chance.

When our analysis was restricted to those sequences
epeating three or more times (those sequence families
ost likely to represent neural attractors), we found that

he number of such frequently repeating sequence families
n the actual data was significantly higher than in spike
wapped data (P�0.001 at 21 DIV; P�0.005 at 35 DIV).
urthermore, these positive results were not affected by

he choice of precision, 1 ms, as was determined by ex-
mining the data at various other precisions, from 2 to 20

s (Figs. 4A and 5A). Similarly, the number of detected c
equence families was higher in actual data than in spike
ittered data (P�0.01 at 21 DIV; P�0.005 at 35 DIV).
owever, unlike spike swapping, the results for spike jit-

ering were affected by precision. Specifically, at a preci-
ion of �5 ms, the results became non-significant at 21
nd 35 DIV (P�0.05; Bonferroni-adjusted Wilcoxon
igned-rank test). This is anticipated, however, because
he Gaussian distribution used in spike jittering has an S.D.
f 2 ms, meaning that �95% of jittered spikes are within 4
s (2 S.D.s) of their original, unshuffled times. When using
precision �5 ms, this jittering should not be apparent. To
ccount for this interplay between jittering and precision,
e used an additional spike jittering kernel with an S.D. of
0 ms. Surprisingly, a similar cutoff in precision was ob-
erved: at 21 DIV there were significantly more sequences

n the actual data than jittered data at 1, 2, or 5 ms, but not
10 ms (Fig. 4A; P�0.05 and P�0.28, Bonferroni-ad-

usted Wilcoxon signed-rank test) and at 35 DIV there were
ignificantly more sequences at 1 and 2 ms, but not �5 ms
Fig. 5A; P�0.05 and P�0.59, Bonferroni-adjusted Wil-
oxon signed-rank test). This implies that frequently recur-
ing sequence families in dissociated culture have an in-
erent precision of about or less than 5 ms, in agreement
ith the similar analysis of Beggs and Plenz (2004) on field
otential patterns recorded in cultured slices.

Since the template-matching algorithm allows multiple
pikes from a single electrode to occur within the same
emplate, it is possible that a single cell’s pattern of intrinsic
ursting could comprise a repeating sequence. For exam-
le, if a cell on electrode 12 fires several three-spike bursts
t 40 Hz, this three-spike burst would be detected as a
nique sequence family. To confirm that the significance of
ur sequence counts cannot be ascribed to such single-
lectrode sequences, we reanalyzed our data using a
odified version of our template-matching algorithm which
eclared two templates matched only if the matching
pikes came from at least three separate electrodes. With
his modification and a precision of 1 ms, there were still
ignificantly more sequence families repeating three or
ore times at both 21 DIV and 35 DIV than in shuffled
atasets: 21�9 unique sequence families per culture at 21
IV and 28�14 at 35 DIV (P�0.005 at 21 DIV and P�0.05
t 35 DIV using spike jittering and the Wilcoxon signed-
ank test).

Ideally, the choice of precision should only affect the
umber and not the character of detected sequences. We
herefore verified that the choice of precision did not affect
he average length of detected frequently recurring se-
uences (repeating three or more times) at either 21 or 35
IV (Figs. 4B and 5B). Consequently, we feel confident

hat these sequences are not an artifact of particular pre-
ision choices, but instead may reflect the ongoing attrac-
or-like dynamics of dissociated cortical networks.

Since the above data were taken from short, 1 min
egments of larger recordings, we decided to track the
etected patterns as they developed over longer times. To
his end, we counted how often the three most frequently
etected sequence families, from the original data, oc-

urred in each of the ten 1-min data segments following the
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riginal data and, as a control, the original data itself.
ecause this method does not discard matched spikes (in
ontrast to the template-matching algorithm above), its use
s a control helps verify that our discovered sequences
ruly occurred more frequently than they would by chance.

ith these data, we compared the number of times the
hree most frequently recurring patterns occurred in the

ig. 4. Sequences repeat more frequently in actual data from cultures
t various precisions (1, 2, 5, 10, and 20 ms) and the number of detecte
ersions of the same dataset. (A) The mean number of detected seque
S.E.M.), along with the mean percentage of these sequences expla

ernel, dark gray bars; jittered with 20 ms Gaussian kernel, light gray b
n shuffled data divided by the number detected in actual data, and th
f unshuffled data) with the ordinate, ranging from 0 to 100%, scaled t

ntervals for these minor axes. Significant differences are indicated by
imes at each precision. The similarity between lengths indicates that ou

ig. 5. Sequences repeat more frequently in actual data than in shuffl

hree separate platings, aged 35 DIV, instead of 21 DIV. The observation of s
rgues against any developmental transience of this phenomenon.
ctual data versus spike-jittered (2 ms Gaussian kernel)
ersions of the same datasets, shuffling each dataset 20
imes. Those cultures for which the actual data contained
ore sequence repetitions than all 20 shuffled versions of

he same data can be said to contain significantly more
equence repetitions with P�0.05. The number of cultures
atisfying this criterion was graphed as a function of time

DIV than in shuffled data. The template-matching algorithm was run
ces was compared with the number of sequences observed in shuffled
ilies repeating three or more times in the actual data (solid black bars,
huffled data (spike-swapped, white bars; jittered with 2 ms Gaussian
centages are calculated as the number of sequence families detected
S.E.M. of these ratios is plotted (light gray boxes next to black bars
ber of sequences detected in the actual data. Tick marks are at 20%

s. (B) Average length (�S.D.) of sequences repeating three or more
of precision does not affect the average length of detected sequences.

t 35 DIV. This figure mirrors Fig. 4, but uses 11 cultures derived from
aged 21
d sequen
nce fam

ined by s
ars). Per
e mean�

o the num
ed data a

ignificant precisely timed sequences at both stages of development
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egment (Fig. 6), showing that, in more than half of the
ultures, the three most frequently recurring sequences
ersisted for at least 10 min, and recurred frequently dur-

ng that time. Note that only one culture (at 21 DIV) failed
he control validation.

DISCUSSION

e have shown the presence of persistently recurring, pre-
isely timed sequences of action potentials in dissociated
etworks of cortical neurons, using an algorithm with noted
uccess both in vivo in the rat hippocampus (Nadasdy et al.,
999) and in vitro in neocortical slices (Ikegaya et al., 2004).
xamination of the persistence of these patterns suggests

hat the most frequently recurring sequences are maintained
or at least several minutes following their initial observation.
he patterns were observed throughout multiple develop-
ental stages and were found to occur both within and
utside network bursts.

Precisely timed sequences have a rich history of in-
uiry (Abeles, 1991; Herrmann et al., 1995; Aertsen et al.,
996; Bienenstock, 1996) and have been shown to be
seful as substrates for computational learning rules (Gu-
ig and Sompolinsky, 2006), suggesting that such se-
uences may fulfill the idea of dynamically linked cell as-
emblies postulated by Hebb (1949) decades ago. Re-
ently, precisely timed sequences of bursts of action
otentials were described and characterized in dissociated
ortical cultures grown on MEAs (Wagenaar et al., 2006a),
lthough these patterns were limited to a defined develop-
ental period, typically the second week in vitro. Also, the

equence of neural activation during bursts has been
hown to be non-random and repetitive (Segev et al.,

ig. 6. Persistence of detected sequences. The three most frequently
6th minute. The number of sequences observed in the actual data wa
sing the most stringent shuffling method (i.e., spike jittering with a 2

requently recurring sequences from the shuffled data were sought. If
as considered to contain significantly more of the three most frequentl
assing this test is shown for both 21 DIV (black bars) and 35 DIV da
IV, 12 of 12 at 35 DIV) passed this test at minute zero, even thoug
roviding a control for the template-matching algorithm. These result
inutes following their initial observation.
004; Eytan and Marom, 2006, Madhavan et al., submitted t
or publication). The idea that such patterns are a general
roperty of self-organizing networks, rather than being limited

o developmentally and anatomically structured networks, is
olstered by computational studies of loosely structured
odel neural networks of comparable size to our cultured
euronal networks (Izhikevich et al., 2004; Izhikevich, 2006).
hey found that recurring patterns of neural action potentials
pontaneously developed in simulated networks as a result of
he STDP learning rule (Dan and Poo, 2006), despite a wide
ange of parameters and varying degrees of thalamic affer-
ntation (Izhikevich, 2006).

While precisely timed sequences of action potentials
ave been observed repeatedly in vivo and in slices (Na-
asdy et al., 1999; Ikegaya et al., 2004; Shmiel et al., 2005,
006; Luczak et al., 2006), their existence remains contro-
ersial. In particular, the work of Oram et al. (1999), Baker
nd Lemon (2000), and Mokeichev et al. (2007) illustrates
ow more sophisticated methods of surrogate data genera-

ion can often account for a significant portion of detected
recisely timed sequences. The specific methods of Oram et
l. (1999) and Baker and Lemon (2000) are not applicable to
ur data because, with our stimulus-free, single trial data, we
annot construct accurate peristimulus time histograms, nor
an each electrode’s ISI distribution be accurately modeled
ith a fixed order gamma process. We addressed the con-
erns raised by those studies by using spike jittering, wherein
ach cell’s firing rate modulation during the recording is pre-
erved, along with population-wide modulations. Mokeichev
t al. (2007) employed three advanced methods of surrogate
ata generation: time domain interval shuffling, phase ran-
omization, and Poisson simulation. All three methods rely
n continuous-time processes for their computations, rather

sequences were sought in actual data during the 10 min following the
ed with the number observed in 20 shuffled versions of the same data,
ssian kernel). When searching the shuffled datasets, the three most
al data had more observed sequences than any of the 20 shuffles, it
g sequences than shuffled data (P�0.05). The percentage of cultures
hite bars) for each minute. Most or all of the cultures (11 of 12 at 21
thod for tracking persistence does not discard matched spikes, thus
t that the most frequently recurring patterns are stable over several
recurring
s compar

ms Gau
the actu

y occurrin
tasets (w
h the me
s sugges
han the point process data used in our analyses. The third,
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istinctly, uses a computational model of a single compart-
ent neuron receiving Poisson inputs from three other neu-

ons (two excitatory, one inhibitory), then uses the generated
ubthreshold activity as a surrogate. Interestingly, Poisson
nput to artificial neurons is the exact tactic utilized by Izhikev-
ch et al. (2004) to generate a rich repertoire of precisely
imed sequences in a large, loosely connected neural net-
ork, although the formation of these neuronal groups was
nly possible when the neurons interacted via STDP.

It has previously been suggested, by examining local
eld potentials (LFPs) with MEAs, that the neural networks
f acute brain slices and organotypic cultures obey the
rinciple of self-organized criticality (SOC) (Bak et al.,
987; Bak, 1996; Beggs and Plenz, 2003). Moreover,
hese precisely timed sequences of LFPs spontaneously
ecur, like the sequences we observed above (Beggs and
lenz, 2004). Might sequences of action potentials in dis-
ociated cultures show similar behavior? One characteris-
ic of critical processes is that their event sizes obey a
ower law probability distribution, P(n)	n��, where n is

he event size and P(n) is the probability of observing a
ize n event. Fitting a power law to our distribution of
equence sizes, in terms of number of electrodes taking
art in a sequence, results in an exponent ���3.1�0.2
�95% confidence interval (CI)) using linear regression in
og–log space (R2�0.97; Fig. 7A). However, when the
ame procedure was done on spike-swapped and spike-
ittered data, similar fits were obtained (���3.2�0.2,

2�0.97 and ���3.3�0.2, R2�0.97 for electrode-shuf-
ed and spike-swapped data, respectively; Fig. 7B–C).
his suggests that the observed scale invariance of se-
uence sizes—in these data—does not prove anything

nherent to significant pattern generation (Reed and
ughes, 2002; Bedard et al., 2006).

Finding precisely timed sequences in cultures presents
hree important advances for the study of neural informa-
ion processing. First, the observation of such sequences
n dissociated cultures, combined with their illustration in

ig. 7. The distribution of sequence sizes obeys a power law probab
equence is graphed against its probability of occurrence, the distribut
ize, P(n) is its normalized frequency of occurrence in our datasets, and

aws appear linear, with slope �. For the observed sequences in the ac
nvariance in our spike-swapped (���3.2�0.2, R2�0.97; B) and spik
nvariance is important in explaining our significantly repeating pattern
ultiple in vivo preparations and in brain slices, argues for
heir robustness, as evidenced by their persistence in mul-
iple species and across various degrees of deafferenta-
ion, from simple anesthesia to surgical excision. Second, the
urther study of such sequences can now be performed in
issociated cultures, a simple preparation allowing de-
ailed control of the culture’s inputs and chemical environ-
ent, including relevant neuromodulators like dopamine

Lapish et al., 2007), as well as comprehensive long-term
orphological imaging (Potter, 1996, 2005), potentially
ranting us a window into the morphological substrates
nderlying the formation of precisely timed sequences.
astly, finding repeating sequences of neural action poten-
ials in dissociated cultures argues against the necessity of
nnate cortical structure in their formation—not only are the
equences robust in the sense of not requiring afferent

nput, just as in slices (MacLean et al., 2005), but they are
obust in the sense that the neural network spontaneously
elf-organizes in a way that generates them. While the
rain’s intrinsic organization is likely to add new subtlety to
hese patterns, their existence appears to be a general
eature of any self-organizing neuronal network. The rea-
ons for such robustness are still unknown, but present an

ntriguing avenue for further research into repeating spa-
iotemporal patterns of neural activity.
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