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Abstract

We describe an algorithm for suppression of stimulation artifacts in extracellular micro-electrode array (MEA) recordings. A

model of the artifact based on locally fitted cubic polynomials is subtracted from the recording, yielding a flat baseline amenable to

spike detection by voltage thresholding. The algorithm, SALPA, reduces the period after stimulation during which action potentials

cannot be detected by an order of magnitude, to less than 2 ms. Our implementation is fast enough to process 60-channel data

sampled at 25 kHz in real-time on an inexpensive desktop PC. It performs well on a wide range of artifact shapes without re-tuning

any parameters, because it accounts for amplifier saturation explicitly and uses a statistic to verify successful artifact suppression

immediately after the amplifiers become operational. We demonstrate the algorithm’s effectiveness on recordings from dense

monolayer cultures of cortical neurons obtained from rat embryos. SALPA opens up a previously inaccessible window for studying

transient neural oscillations and precisely timed dynamics in short-latency responses to electric stimulation. # 2002 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Micro-electrode arrays (MEAs) (Thomas et al., 1972;

Gross, 1979; Pine, 1980) and related technologies such

as tetrode probes (Gray et al., 1995), silicon probes (Bai

and Wise, 2001) and multi-wire probes (Nicolelis et al.,

1998) offer great promise to record action potentials

extracellularly from a large number of cells simulta-

neously (Meister et al., 1994; Potter, 2001), in cell

culture, in slice or in vivo (Bragin et al., 2000). In

addition, electrical stimulation through such arrays has

been reported in a wide variety of preparations, such as

murine spinal cord (Gross et al., 1993), rat cortex

(Jimbo et al., 1999), cat sciatic nerve (Branner and

Normann, 2000) and rabbit retina (Grumet et al., 2000).

Simultaneously stimulating and recording through a

single MEA is attractive for the study of input-output

relationships (Novak and Wheeler, 1988; DeAngelis et

al., 1998), but poses technical difficulties because the

stimuli employed are often four or five orders of

magnitude greater than extracellularly recorded action

potentials (‘spikes’). These may be as low as 10 mV

(shown below), while stimuli are typically on the order

of a volt (Pancrazio et al., 1998; Jimbo et al., 1999),

causing substantial stimulation artifacts that corrupt the

data or saturate the recording electronics.

Several factors contribute to these artifacts (Grumet,

1999). The stimulus induces pickup on other electrode

channels by a combination of capacitive crosstalk

between leads and conduction through the tissue or

recording medium, saturating the amplification system.

The non-linear behavior of saturated amplifiers, to-

gether with the properties of the filters used for noise

reduction, make this artifact last much longer than the

stimulus that caused it, sometimes up to 100 ms (Maeda

et al., 1995), even on channels not used for stimulation.

In some cases this problem can be reduced by physically
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separating the recording site from the stimulation site

(Grumet et al., 2000), or circumvented by using non-

electronic means for either stimulation or recording,

such as photo-uncaged glutamate (Wang and Augus-
tine, 1995), optical recording (Obaid et al., 1996; Maher

et al., 1999) or muscle twitch response (Branner and

Normann, 2000). In all other cases, careful design of the

electronics is required to minimize pickup of stimulation

artifacts.

One would like to stop large artifacts from entering

the recording system in the first place. To do so, Jimbo

and Kawana (1992) recorded differentially between
pairs of electrodes spaced at 10 mm, while stimulating

between a similar, distant pair of electrodes. Sample-

and-hold circuitry has also been used to prevent

amplifier saturation (Novak and Wheeler, 1988; Jimbo

et al., 1998; Grumet, 1999), but with mixed results.

Jimbo et al. (1999) were able to record 5 ms after

stimulation, even from the stimulated electrode, but the

implementation details are not described. In contrast,
Grumet (1999) reports little or no reduction of artifacts

with a sample-and-hold approach. Presently commer-

cially available electrophysiology equipment for elec-

trode arrays does not employ this strategy.

When artifacts cannot be entirely prevented in hard-

ware, various forms of digital filtering can be used to

reduce them. For example, if artifacts are the same

across trials, template subtraction can be employed:
Jimbo and Kawana (1992) estimated artifacts in stimu-

lus responses by scaling the artifact recorded under sub-

threshold conditions. Unfortunately, due to hysteresis at

the electrode interface or in the electronics, artifact

shapes often do vary between trials. Alternatively,

Okajima et al. (1995) manually subtracted a linear

baseline from recordings of muscle action potentials.

This is too labor-intensive for multi-channel recordings,
and certainly cannot be applied in real time as the data

come in. As a last resort, blanking (digitally setting the

signal to zero) can be used to eradicate any artifacts

(O’Keeffe et al., 2001). Any action potentials occurring

within the duration of the artifact are lost, so if one is

interested in the early part of stimulus response, this is

not an option. Our solution, which works in real time, is

SALPA, an algorithm for Subtraction of Artifacts by
Local Polynomial Approximation. We show that its

performance is superior to some possible alternatives:

two simple high pass filters and one linear phase filter

(see e.g. Jackson, 1996).

2. Methods

2.1. Cell culture and MEA preparation

Dense cultures of dissociated rat cortical cells were

grown on MEA dishes and maintained for several

months. Culture methods have been detailed elsewhere

(Potter and DeMarse, 2001). Very briefly, cortex from

E18 Wistar rats was dissected under sterile conditions

and dissociated using papain. MEA dishes from Multi-
Channel Systems (Reutlingen, Germany, http://

www.multichannelsystems.com) with sixty 10 mm dia-

meter electrodes arranged in a rectangular array with

200 mm interelectrode spacing were coated with poly-

ethylene imine (PEI) and laminin. A 15 ml droplet of

neurobasal medium containing 50 000 cells was applied

to the electrode area, and the dishes were sealed with

FEP Teflon† lids (Potter and DeMarse, 2001). After 30
min, 1 ml of medium was added, and the dishes were

transferred to an incubator (35 8C, 5% CO2, 9% O2 and

65% humidity). After 1 day, and thereafter every 4 days,

the medium was replaced entirely by the medium

adapted from Jimbo et al. (1999). Electrical activity of

these cultures was recorded through the MEA, amplified

and sampled with 12 bits resolution at 25 kHz (Multi-

Channel Systems). One electrode was used for stimula-
tion, while all the others were used for recording. The

data presented below were obtained by stimulating 5-

months-old cultures through one electrode with single

biphasic voltage pulses of 9/600 mV, lasting 400 ms per

phase, positive phase first.

2.2. Artifact suppression

SALPA works by locally fitting (Hastie and Loader,
1993) a function to the recorded trace that has enough

degrees of freedom to accurately model the artifact, but

not enough to represent individual action potentials. By

subtracting this fitted function from the recording, the

artifact-free signal remains, and action potentials can be

detected by setting a voltage threshold. We observed

considerable variability in artifact shapes between

electrode channels, and even on individual channels
between trials of the same stimulus. Therefore, we chose

not to make assumptions about regularities in artifact

shapes, and instead fit independent functions to each

individual artifact.

For every timepoint nc in the recording from a given

electrode, a third degree polynomial is fitted to a

segment of 2N�/1 samples centered around nc. The

segment half-length N is experimentally tuned for
optimal performance, as discussed below (see Results).

The fitted value at the central point nc is subtracted from

the raw recording at that point to yield a cleaned signal.

The rest of the fitted curve is discarded; to estimate the

cleaned signal at nc�/1, a new polynomial is fitted to the

segment of 2N�/1 samples centered around nc�/1.

The fitting process is different for the first N points of

the raw data, starting when the stimulus-induced
saturation of the electronics ends (‘depegging’; satura-

tion of the electronics is determined by the digital signal

having its minimum or maximum possible value).
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A polynomial is fitted to the data centered on the (N�/

1)-th point after depegging, and the artifact up to the

center of that window is estimated using that single

third-degree polynomial, as illustrated in Fig. 1.
The raw electrode signal is represented as a sequence

of sampled voltages, Vn , where n is the ordinal number

of the sample (we sample at 25 kHz, so the unit of n is

40 ms in real time). We decompose this raw signal into an

estimated artifact, An , and a cleaned signal, vn , by

assuming that in the vicinity of some central point nc, we

can approximate the artifact by a cubic polynomial

expressed in terms of the distance (n�/nc) from the
central point1:

A(nc)
n �a

(nc)

0 �a
(nc)

1 (n�nc)�a
(nc)

2 (n�nc)
2�a

(nc)

3 (n�nc)
3:

The fit parameters ak are found by minimizing the

function

x2
(nc)�

Xnc�N

n�nc�N

(Vn�A
(nc )

n )2

with respect to those parameters. We then estimate the

corrected voltage at the central point nc as:

vnc
�Vnc

�A(nc)
n�nc

�Vnc
�a(nc)

0
:

Next, we obtain a new fit centered around nc�/1 to
estimate vnc�1�Vnc�1�a

(nc�1)

0 ; and so on.

Fitting a new polynomial for every single datapoint

might seem to be computationally very expensive, but it

is not, because the fit parameters can be calculated

recursively, as follows. Let us introduce the shorthands

Tk�
Xnc�N

n�nc�N

(n�nc)
k; for k�0 . . . 6;

and

W
(nc )

k �
Xnc�N

n�n
c
�N

(n�nc)
kVn for k�0 . . . 3;

and the (4�/4)-matrix S with entries Skl �/Tk�l (for k ,

l�/0. . .3). The parameter values that minimize x2 can

then be written as

a
(nc)

k �
X3

l�0

S�1
kl W

(nc)

l ; for k�0 . . . 3;

which can be computed cheaply once the Wl
(nc) are

known, since the entries of S�1 are constants depending

only on N . The complexity is further reduced because
Tk is identically zero for odd values of k .

A recursion relation for Wk
(nc) is obtained by straight-

forward algebraic manipulation of the expressions for

Wk
(nc�

/
1) and Wk

(nc):

W
(nc�1)

k �
Xk

l�0

(�1)k�lk!

l!(k � l)!
W

(nc)

l �NkVnc�N�1

�(�N�1)kVnc�N :

It is the existence of this closed-form expression that

makes the method viable for real-time operation.

As noted above, at the beginning of the recording, just

after a channel depegs, we are forced to use a fit based

on a window centered N samples ahead in time. Such a
non-central window is likely to give a less accurate fit to

the artifact, so it is important to assess the quality of the

fit before trusting it. This assessment can be based on

the deviation :

D(nc)�
X(nc�N)�(d�1)

n�nc�N

(Vn�A(nc)
n );

where the width of the estimator, d, can be chosen to be

some fixed fraction of N, e.g. d�/N /10. For good fits,

D(nc) is normally distributed with zero mean, and
variance s2

D�/b2dsV
2 , where sV

2 is the variance of the

recording, and b is a correction factor larger than unity

if the noise in the recording is not white. For our

1 The notation [ � ](nc ) will be used throughout to represent the

quantity [ �/] evaluated for the fit centered around nc.

Fig. 1. Illustration of the fitting method used by SALPA. The first fit

after depegging that has acceptable deviation (see text) is used to model

N�/1 samples (bottom-most curve). Thereafter, each fitted polynomial

is used to model one sample only (other dashed curves). The thin solid

curve is the raw recording. For visual clarity, only one in ten fits is

shown, and they have been vertically displaced. The thick solid curve is

the resulting model of the artifact. Circles mark the centers of each fit.

The dotted vertical lines indicate which parts of the fitted polynomials

are used for modeling the artifact.
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equipment, b2:/5. We advance nc until D(nc) attains an
acceptably small (see below) absolute value relative to
sD, before declaring the artifact successfully suppressed.

The following results were obtained with N�/75

(corresponding to 3 ms at 25 kHz sampling rate),

d�/5 and by rejecting fits after depegging until D2 no
longer exceeds 32�/5�/sV

2 . Spikes were identified by

thresholding at five times RMS noise, and validated

based on a test of their waveform shape: spikes were

rejected if there were any peaks of either polarity larger

than 90% of the main peak within 9/1 ms (P.P. Mitra,

personal communication).

Our C�/�/ implementation of SALPA is capable of

processing 60 channels of MEA data at 25 kHz in real-

time on an AMD Athlon 1.33 GHz processor, using just

75% of CPU time. This allows online spike detection

entirely in software on an inexpensive PC system. The

C�/�/ source code is available upon request.

2.3. Analysis

To assess the quality of the algorithm, we compared

its output on typical artifact-corrupted data with the

output of three alternative filters: a three pole Butter-

worth high-pass filter with 400 Hz cutoff (BW-H),

subtraction of the output of a three pole Butterworth

low-pass filter with 600 Hz cutoff (BW-L), and a 39 pole

linear phase high-pass filter with 500 Hz cutoff, designed

using cosine expansion (LPC) (Jackson, 1996). The order

of this filter was chosen such that we could compute it in

real-time using a simple C�/�/ program. The Butter-

worth filters were chosen because they are a computa-

tionally inexpensive simple alternative.

Two performance measures were used: Lost time , the

latency after depegging of the electronics at which the

artifact is successfully suppressed, and PNR loss , the

reduction of the ratio of action potential peak amplitude

Fig. 2. An example of an artifact in electrode recordings with the output of various filters (left) and the effect on spike waveforms (right). Notice the

difference in scales between left and right: the artifact in the raw data is an order of magnitude larger than the spikes. Thin curves are raw data; thick

curves are filter output. From top to bottom: SALPA, subtraction of low-pass Butterworth (BW-L), high-pass Butterworth (BW-H), and 39 pole linear

phase filter (LPC). Notice SALPA’s blanking of the output during saturation of the electronics. The Butterworth filters induce significant phase

distortion while leaving much more lost time than SALPA. Even the linear phase filter leaves some echo of the artifact. The spike waveforms shown are

from the same recording as the artifacts, but at longer latency to allow direct comparison with non-corrupted raw data.
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to noise (PNR) induced by the filter. Lost time was

determined by computing 5 ms wide box-car averages of

the signal, and rejecting data until the box-car average

no longer exceeded the RMS noise. PNR loss was
measured relative to raw data filtered through a single

pole high-pass filter at 150 Hz, which, before developing

SALPA, we used routinely to clean the data of DC drift

and any low frequency local field potentials for the

purpose of spike detection in recordings of spontaneous

activity. In general, artifact suppression filters will

reduce the ratio of spike amplitude to RMS noise,

because there is substantial spectral overlap between
artifacts and spike waveforms.

3. Results

Rat cortical cultures were stimulated with 600 mV

biphasic pulses. Large dish-wide artifacts were observed

in the resulting recordings. Fig. 2 shows how SALPA and

the other filters act on these stimulation artifacts and on
action potential waveforms. Aside from reducing spike

amplitudes, filters may distort spike waveforms in more

subtle ways, exemplified by the positive ‘ghost’ phases

induced by BW-L and BW-H. These may hamper sub-

sequent spike sorting, and may even lead to spurious

detection of non-existent upgoing action potentials.

Fortunately, SALPA*/being a linear phase filter (except

in the initial N samples after depegging)*/is free of such
phase distortions.

All filters used in this comparison have parameters

that can be tuned to trade off lost time against PNR

reduction. For SALPA, this is the segment half-width N ;

for the other filters the cut-off frequency plays this role.

Fig. 3 presents the trade-off for SALPA. The optimal

choice of N depends on the kind of experiment one is

doing. In Fig. 4, the performance of SALPA at N�/75 (3
ms) is compared with the other filters (at the frequencies

specified above).

Features of SALPA that give it an edge over the

alternatives, are that it explicitly recognizes saturation of

recording electronics, outputting zeros whenever the

digital values of the recording are at the extreme ends of

their range, and that it incorporates a statistic to test

goodness of fit for the earliest timepoints, as detailed in
Methods. As a result, SALPA performs well on a wide

range of artifact sizes and shapes (Fig. 5).

The ultimate test for an artifact suppressor is whether

it allows reliable detection of spikes at short latencies.

Fig. 6 shows detectable spikes on two electrodes in

different MEA dishes containing mature cultures, using

SALPA, using only a 150 Hz high-pass filter, and using

each of the other filters mentioned above. SALPA reveals
a structure of oscillations and very precisely timed spikes

in the early response that would otherwise go unde-

tected.

Fig. 3. Lost time (left, solid; results are shown for four dishes

separately) and PNR reduction (right, dashed) can be traded off by

varying SALPA’s filter length, measured here in milliseconds. Note that

the left-hand axis increases downwards, so ‘up’ means ‘better’ for both

axes. Artifact sizes and duration vary by almost an order of magnitude

between dishes, depending on electrode impedances (nominally 300 kV
at 1 kHz). This is reflected in SALPA lost time, shown here for four

different dishes. PNR drops dramatically when the filter half-width N

approaches the duration of action potentials. The optimal choice of N

must depend on the application, and on the PNR in the raw

recordings. The results in the rest of this article were obtained with a

filter half-length of 3 ms. PNR change is measured relative to single

pole high-pass filtering at 150 Hz (see text). The sample period, tsample,

was 40 ms.

Fig. 4. Comparison of various filter methods. PNR change is

measured relative to a single pole high-pass filter at 150 Hz (see text).

Notice that the reference 150 Hz filter also reduced spike amplitudes by

a small fraction, so relative PNR gain resulted in some cases.

Restricted SALPA is SALPA without the third degree term. Lost time

does not include the duration of amplifier and ADC saturation (1.049/

0.02 ms). Charted values are mean and standard deviation of the data

collected from 55 electrodes.
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4. Discussion

We have presented an algorithm for stimulus artifact

suppression that can be applied to 60-channel MEA

recordings in real time on inexpensive PC hardware.

SALPA does not cause phase distortion of spike wave-

forms unlike simple high-pass filters, and it is less

computationally intensive than straightforward imple-

mentation of a generic linear phase filter of equivalent

length. Perhaps more importantly, the algorithm covers

the first few milliseconds of the artifact naturally,

because it takes amplifier saturation into account

explicitly. Other filters tend to suffer from ringing as a

result of the sharp transient at the time of amplifier

depegging.

In the bulk of the data, local regression of the form

used in SALPA is just a special case of linear phase

filtering. SALPA effectively functions as a high pass filter

with �/3 dB cut-off frequency f0�/0.6 fs/N , i.e. f0�/200

Hz for N�/75 and sampling frequency fs�/25 kHz. This

is sufficient, since a spectrogram of the stimulation

artifacts would reveal that high frequency power is

mostly concentrated in the first few milliseconds*/

beyond that, the tail of the artifact is reasonably well

spectrally separated from spike waveforms. Simple

filters would have to find a difficult compromise

between preventing ringing from the initial sharp

transient of artifacts, and preserving signal shape.

SALPA surmounts this problem by not using any samples

from the sharp transient in its estimate of the shape of

the tail, through the use of asymmetric fitting windows

shortly after depegging (as illustrated in Fig. 1).

One could attempt to improve the performance of

the algorithm by increasing the order of the poly-

nomials used. The computational expense of the

algorithm would increase, more dramatically than

one might expect, because the higher powers of (n�/nc)

in the equations would make representation of

these numbers as 32-bit integers impossible. The

main effect of increasing polynomial order is an increase

of cut-off frequency, which can be achieved

more economically by decreasing N . In any event, it

remains desirable to use odd order, because this

gives the fit at the beginning of the trace one

more degree of freedom than in the bulk, further

improving the response to sharp transients without

compromising signal shapes.

With current commercially available hardware, SALPA

is less well suited for recordings from the stimulated

electrode, because saturation on that channel lasts

beyond the duration of the early phase of the response.

Improvements in hardware, for example using sample-

and-hold based artifact reduction, might bring the

stimulated channel within SALPA’s domain.

SALPA opens up a new window on very short latency

multi-neuronal responses to electrical stimulation.

The early post-stimulus neural dynamics comp-

rise oscillations and action potentials timed with

a precision not observed before. We are currently

using SALPA to investigate the nature of these re-

sponse components and their role in stimulus-

induced plasticity. The precisely timed responses

can be used to drive ‘behaviors’ in a neurally-

controlled animat (DeMarse et al., 2001).

Fig. 5. For widely different artifact waveforms (shown in insets), SALPA yields usable output as early as 2 ms post stimulus (less than 1 ms after

depegging). Faint traces are raw data with two different vertical offsets added to show details. Bold is SALPA output. Notice the spikes riding on the

slopes of the artifacts which cannot be deleted by thresholding the raw data.
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