Publications

2025

  • Khayaz, U., Dahal, A., Kumar, A., 2025. A comparison of phase field models of brittle fracture incorporating strength: I—Mixed-mode loading. Submitted. (pdf)

2024

  • Liu, C., Kumar, A., 2024. Emergence of tension-compression asymmetry from a complete phase-field approach to brittle fracture. International Journal of Solids and Structures, 309, 113170 (pdf)
  • Kamarei, F., Kumar, A., Lopez-Pamies, O., 2024. The poker-chip experiments of synthetic elastomers. Journal of Mechanics and Physics of Solids, 188, 105683. (pdf)

2023

  • Kumar, A., Zakoworotny, M.J., Balta, J., Aw, J.E., Tawfick, S.H., Sottos, N.R., Geubelle, P.H., 2023. A thermo-chemo-mechanical model for the material extrusion of frontally polymerizing thermoset polymers. Additive Manufacturing, 103972. (pdf)
  • Zakoworotny, M.J., Balta, J., Kumar, A., Tawfick, S.H., Sottos, N.R., Geubelle, P.H., 2023. Rheological modeling of frontal-polymerization-based additive manufacturing of thermoset polymers. Computer Methods in Applied Mechanics and Engineering, 418, 116565 (pdf)
  • Kumar, A., Liu, Y., Dolbow, J.E., Lopez-Pamies, O., 2023. The strength of the Brazilian fracture test. Journal of the Mechanics and Physics of Solids. (pdf)
  • Kumar, A., Yavari, A., 2023. Nonlinear mechanics of remodeling. Journal of the Mechanics and Physics of Solids, 181, 105449. (pdf)

2022

  • Kumar, A., Dean, L.M., Yourdkhani, M., Guo, A., BenVau, C., Sottos, N.R., Geubelle, P.H., 2022. Surface pattern formation induced by oscillatory loading of frontally polymerized gels. Journal of the Mechanics and Physics of Solids, 168, 105055. (pdf)
  • Kumar, A., Ravi-Chandar, K., Lopez-Pamies, O., 2022. The revisited phase-field approach to brittle fracture: application to indentation and notch problems. International Journal of Fracture, 237, 83-100. (pdf)

2021

  • Ghosh K., Shrimali B., Kumar, A., Lopez-Pamies O., 2021. The nonlinear viscoelastic response of suspensions of rigid inclusions in rubber. I — Gaussian rubber with constant viscosity. Journal of the Mechanics and Physics of Solids, 154, 104544. (pdf)
  • Gao Y., Dearborn M.A., Vyas S., Kumar A., Hemmer J., Wang Z., Wu Q., Alshangiti O., Moore J.S., Esser-Kahn A.P., Geubelle P.H., 2021. Manipulating Frontal Polymerization and Instabilities with Phase-Changing Microparticles. The Journal of Physical Chemistry B, 125 (27), 7537-7545. (pdf)
  • Gao Y., Shaon F., Kumar, A., Bynum S., Gary D., Sharp D., Pojman J., Geubelle P.H., 2021. Rapid frontal polymerization achieved with thermally conductive metal strips. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(7), 073113. (pdf)
  • Kumar, A., Gao Y., Geubelle P.H., 2021. Analytical estimates of front velocity in the frontal polymerization of thermoset polymers and composites. Journal of Polymer Science, 59(11), 1109-1118. (pdf)
  • Kumar, A., Lopez-Pamies O., 2021. The poker-chip experiments of Gent and Lindley (1959) explained.  Journal of the Mechanics and Physics of Solids, 150, 104359. (pdf)

2020 and before

  • Kumar, A., Bourdin B., Francfort G.A., Lopez-Pamies O., 2020. Revisiting nucleation in the phase-field approach to brittle fracture. Journal of the Mechanics and Physics of Solids, 142, 104027. (pdf)
  • Kumar, A., Lopez-Pamies O., 2020. The phase-field approach to self-healable fracture of elastomers: A model accounting for fracture nucleation at large, with application to a class of conspicuous experiments. Theoretical and Applied Fracture Mechanics, 107, 102550. (pdf)
  • Kumar, A., Ravi-Chandar K., Lopez-Pamies O., 2018. The configurational-forces view of the nucleation and propagation of fracture and healing in elastomers as a phase transition. International Journal of Fracture 213, 1-16. (pdf)
  • Kumar, A., Francfort G.A., Lopez-Pamies O., 2018. Fracture and healing of elastomers: A phase-transition theory and numerical implementation. Journal of the Mechanics and Physics of Solids 112, 523-551. (pdf)
  • Kumar, A., Aranda-Iglesias D., Lopez-Pamies O., 2017. Some remarks on the effects of inertia and viscous dissipation in the onset of cavitation in rubber. Journal of Elasticity 126, 201-213. (pdf)
  • Kumar, A., Lopez-Pamies O., 2016. On the two-potential constitutive modeling of rubber viscoelastic materials. Comptes Rendus Mecanique 344, 102-112. (pdf)