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Abstract

We study same-day delivery systems by formulating the Dynamic Dispatch Waves Problem (DDWP),
which models an order dispatching problem faced by a distribution center, where orders arise dynam-
ically throughout a service day and must be delivered by day’s end. At each decision epoch (wave),
the system’s operator chooses whether or not to dispatch a single vehicle loaded with orders ready for
service, to minimize vehicle travel and penalties for unserved requests. We formulate an arc-based inte-
ger programming model and design local search heuristics to solve a deterministic DDWP where order
arrival times are known in advance, use this variant to design an a priori solution approach, and provide
two approaches to obtain dynamic policies using the a priori solution. We test and compare solution
approaches on two sets of instances with different settings of geography, size, information dynamism,
and order timing variability. The computational results suggest that our best dynamic policy can reduce
the average cost of an a priori policy by 9.1% and substantially improves the fraction of orders deliv-
ered (order coverage), demonstrating the importance of reactive optimization for dynamic short-deadline
delivery services. We also analyze the tradeoff between two common SDD objectives: total cost mini-
mization versus order coverage maximization. We find structural differences in the dispatch frequency
and route duration of solutions for the two different objectives, and demonstrate empirically that small
increases in order coverage may require substantial increases in vehicle travel cost.

1 Introduction

Same-day delivery (SDD) is increasingly being offered by retailers and logistics service providers to expand

e-commerce. The internet sector represented over 7% of the U.S. retail industry and was expected to grow

14% annually in 2015 [19, 30]. We define SDD as a distribution service that prepares, dispatches and

delivers orders to the customer’s location on the same day the order from the customer is placed. Amazon, a
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provider of SDD, has implemented the service in more than 25 U.S. metropolitan areas as of October 2016,

and has also piloted “Prime Now,” an even faster one-hour delivery service. These services are designed to

satisfy demand for instant gratification when ordering consumer products and at the same time to discourage

physical store visits [27, 41]. Like all urban delivery operations, same-day delivery operations can be costly

due to small order sizes to be delivered to many geographically-dispersed locations, and they are additionally

challenged by less time to consolidate orders into effective vehicle routes.

A core logistics process within any delivery system is order distribution from stocking locations to

delivery locations. Distribution decisions can be divided into dispatch decisions which select the dispatch

times and the orders to be delivered in each delivery vehicle trip, and routing decisions which sequence the

delivery locations for each dispatch. Dispatch time selection for same-day services is often more challenging

than traditional distribution, since vehicles may not be dispatched simultaneously at the beginning of the

operating day and may also be reused during the day. At a dispatch time, it may also be sensible in a same-

day service to not send some ready orders if there is reasonable likelihood that later (unknown) orders may

arrive that consolidate well with them. In this research, we will explicitly consider these challenges. We

will only consider problems where dispatch times are selected from a fixed and finite number of candidates,

both for simplicity and to maximize compatibility with warehouse processes such as order picking.

In [27], we defined the Dynamic Dispatch Waves Problem (DDWP) for a simplified SDD distribution

system with delivery locations on the one-dimensional line. The DDWP is an order delivery problem with

dynamic dispatch and routing decisions for a single vehicle during a fixed-duration operating period (i.e., a

day) partitioned in W dispatch waves. Each wave is a time point (decision epoch) when picking and packing

of a set of orders is completed, and a vehicle (if available at the depot) can be loaded and dispatched from

the depot to serve a subset of open delivery orders, or wait for the next wave. Open orders are defined as

those ready to be dispatched and not previously served. After the vehicle completes a dispatch route, it

returns to the depot and is ready to be dispatched again. At each wave, complete information is known for

all open orders, and probabilistic information is available describing potential future orders. The objective

is to minimize vehicle operating costs and penalties for open orders that remain unserved at the end of the

operating period.

The DDWP captures two fundamental and important tradeoffs in same-day distribution. First, there is a
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tradeoff between waiting and dispatching a vehicle at a wave. When a vehicle is dispatched, the set of open

orders is reduced, but the opportunity to observe and serve future orders near ones in the current route is lost.

Conversely, when the vehicle is not dispatched, the time remaining to serve the set of open and future orders

is reduced. Second, there is a tradeoff between dispatching a long route that serves many orders versus a

short ones with fewer orders. The former consumes more time and keeps the vehicle away from the depot

longer, but requires less time per customer visited due to routing economies. A shorter route requires more

time per customer, but enables the vehicle to be reused sooner.

1.1 Contributions

In this paper, we formulate the single vehicle DDWP in a general network topology, and provide a better

model of same-day delivery operations in a typical road network. We capture fundamental tradeoffs in dy-

namic dispatch decision-making, and model a canonical prize-collecting version of the DDWP. We consider

the following to be our primary contributions.

1. We formulate a MIP model for a deterministic variant where all order arrival times are known in

advance, which we leverage to provide lower bounds for the stochastic-dynamic case via information

relaxation and simulation.

2. We use the deterministic model to find an optimal a priori solution to the stochastic variant, by

showing that the a priori optimization problem is equivalent to an instance of the deterministic variant

with an expanded customer set and adjusted penalties. To our knowledge, this is the first time an

optimal a priori policy is presented for a model that includes route sequencing decisions in the same-

day delivery distribution literature. We also design construction and local search heuristics based on

the prize-collecting Traveling Salesman Problem to complement commercial MIP solvers and speed

up the identification of solutions to problem instances.

3. We develop two approaches to obtain dynamic policies using the a priori model. The first uses a

rollout scheme to dispatch according to an updated a priori solution, and the latter relies instead on

fast heuristic modifications to the initial a priori solution.

4. We prove that the expected cost of the rollout policy is no higher than the optimal a priori policy
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cost. We later confirm the benefits of dynamic policies with computational experiments. Experiments

show that the percentage reductions in optimality gap and operating cost from an a priori policy to

a dynamic rollout policy average 47.6% and 9.1%, respectively, while the order fill rate improves

by 4.6%. The marginal benefits of dynamic policies increase for instances with greater order arrival

variability and less information disclosed before the start of the operation. Performance measures for

dynamic policies also exhibit less variability across instances.

5. Finally, we analyze the tradeoff between two common objectives in SDD: minimizing total costs

(including vehicle travel time) versus maximizing order coverage in an empirical study. One might

suppose that these two objectives would lead to similar solutions, since low-cost routes create more

available vehicle time to serve additional orders. In contrast, we instead find fundamentally different

solution structures for the two cases in terms of number of vehicles dispatched, route length and initial

wait at the depot. Results indicate that one should expect significant sacrifices in vehicle routing

efficiency in order to maximize the order fill rate, and the cost of an additional customer covered

becomes more expensive as order coverage increases.

The remainder of the paper is organized as follows. A literature review is presented in Section 1.2.

Section 2 defines notation and formulates the DDWP, Section 3 covers the deterministic problem, and Sec-

tions 4 and 5 respectively cover a priori and dynamic policies. Finally, Section 6 outlines the results of a

computational study, and we conclude with Section 7.

1.2 Literature Review

The DDWP can be classified within the broad family of stochastic vehicle routing problems (VRP) that are

extensions of the deterministic VRP [22, 38]. The simplest models for this problem family are a priori

optimization models [15, 18, 21, 26], where an initial solution is designed before the operation starts and

then pre-defined recourse rules, i.e., simple plan corrections, are used to (potentially) modify it during

operation as information is disclosed. More complex models for dynamic-stochastic VRPs are dynamic

policies that adapt to revealed information during the operating period, and allow for re-optimization of

structural routing and scheduling decisions; see [12, 29, 31, 36]. A restricted case of dynamic policies are a

priori rollout policies that proved succesful for the VRP with stochastic demands [23, 24]. Such approaches
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recompute an a priori policy at each decision epoch for the remaining operating period using the current

system state as starting point.

A problem related to the DDWP is the VRP with probabilistic customer arrivals (PC-VRP) where cus-

tomer orders arrive over time with uncertainty; see [16, 20, 26, 28, 40] for examples of a priori models and

[2, 3, 4, 5, 12, 42] for dynamic models for such problems. Our problem differs from those considered in

this literature, which are designed primarily for pick-up operations. In pick-up operations, a vehicle route

may be modified after dispatch, both by re-routing currently planned deliveries and adding new customers.

In contrast, our order delivery model assumes customized delivery orders; it is not possible to add new

customers to a route that has been previously dispatched without returning the vehicle to the depot.

Another closely-related problem is the Dynamic Multiperiod Routing Problem (DMPRP) [2], which

models a depot with a fleet of vehicles executing delivery operations over a time horizon partitioned into

days. Dynamic requests with service time windows are disclosed over time, and each day the decision maker

chooses which customers to serve or postpone, and the corresponding vehicle routes. This model assumes

daily decision epochs, and that a vehicle is always available for dispatch at each epoch. In SDD operations,

it may be sensible to dispatch a vehicle on a route that spans multiple decision epochs; in this case, if a

vehicle is dispatched at time t on a route of duration x to serve a set of orders, it cannot be dispatched again

until a time after its return to the depot at t + x.

A deterministic order delivery problem related to the DDWP is the VRP with release dates (VRP-rd)

[7, 17] that considers dispatching orders with known release times. A feasible solution of the VRP-rd

serves all orders. In addition to ignoring the stochastic and dynamic nature of customer delivery orders, this

problem does not consider the decision to reject requests, which is important when a system operates with a

fixed fleet of vehicles and delivery deadlines.

Perhaps the closest problem in the literature to the DDWP is the Same Day Delivery Problem for Online

Sales (SDDP) [41], which considers an order delivery model with dynamic request arrival and a fleet of

vehicles, each performing multiple trips per day. However, there are fundamental differences in assumptions

and solution methodologies between this setting and the DDWP. The model assumes narrow request service

time windows, i.e., one or two hours within a 10-hour day operating period; these tight time constraints

correspond to rapid delivery settings, like Amazon’s “Prime Now” service. Serving customers is set as
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objective, while ignoring vehicle travel costs. Solutions are found by adapting a scenario-based-planing

heuristic (see [12]) which relies in part on simulation. The work of [39] extends on the SDDP by allowing

preemptive returns to the depot to pick-up newly realized demand before delivering all packages currently

loaded in the vehicle. Besides practical implementation issues, our preliminary computational evidence

suggests that preemptive returns many only offer small marginal benefits, especially if alternatively returns

are planned before each vehicle dispatch based on available probabilistic information.

Another set of related work is presented in [8, 10], where a deterministic VRP model with time windows

having multiple delivery routes per vehicle is developed. Medium and large sized instances are solved with

an adaptive large neighborhood search (ALNS) heuristic. The optimization model objective is to maximize

the number of served orders and travel costs in hierarchical order, while multiple trips per vehicle are induced

by the inclusion of a route duration limit; experiments show that this constraint leads to short routes, with an

average of four customers served per route. In [9], the authors extend this model to a dynamic setting where

online requests arrive and the decision maker instantaneously accepts or rejects them for service. Each time

a new request arrives, acceptance decisions are made based on an insertion policy using scenario-based

planning heuristics.

2 DDWP problem formulation

We formally define the DDWP as a Markov Decision Process (MDP); see the text [33] for a reference on

MDPs. We start by describing the notation and elements of our model:

1. Operating period. Let W := {1, . . . ,W} be the set of waves (decision epochs) and let ` be the time

interval between two consecutive waves. The number w ∈ W represents the “waves-to-go” before

w = 0, the deadline for the vehicle to finish all deliveries and return to the depot.

2. Customer orders and geography. Let N := {1, . . . ,n} be the set of all potential customer orders.

Since each potential order is associated with a delivery location, let N and a single deport (i = 0)

be the nodes of a complete, undirected graph G = (N ∪ {0},E), where E is the set of edges. We

assume that a delivery vehicle requires te time and incurs cost ce to traverse an edge e ∈ E, and for

simplicity that time and cost values are proportional to each other (ce = γte), non-negative, and satisfy
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the triangle inequality.

3. Order ready times. Each order i ∈ N is ready for dispatch at a random wave τi ∈W , drawn from an

order-dependent distribution. It is possible that order i does not arrive at all; we represent this case

by setting τi = −1, therefore τi ∈ W ∪{−1}. We assume that ready times for different orders are

independent, and that the initial set of open orders {i ∈ N : τi ≥ w} is known at wave w.

4. Penalties. Each order i has a penalty βi > 0, to be paid if the order arrives and is not served by a

vehicle by w = 0.

We now are ready to formulate an MDP model for the DDWP. If the vehicle is available at the depot at

wave w, the system state is (w,R,P), where R⊆N is the set of open orders and P⊆N is the set of remaining

potential orders with an unknown random arrival time (τi < w). An order i cannot be simultaneously open

and potential, so that R and P must be disjoint. Orders in N \ {R∪P} are closed, meaning that they were

already served before wave w. The maximum number of waves W and three possible states for each order

(open-closed-potential) define an O(3nW ) bound on the cardinality of the state space.

An action at any non-terminal state (w,R,P) : w≥ 1 is defined as a vehicle dispatch that serves a subset

of open orders S⊆ R; S = /0 represents is the decision for the vehicle to wait at the depot. A vehicle dispatch

action for a non-empty S implies that the vehicle is away from the depot for t(S) time, where t(S) is the

minimum time required by any tour to visit S and return to the depot (a Traveling Salesman Problem (TSP)

tour visiting nodes S∪{0}); define t( /0) = 0. Given decision S at wave w, the vehicle is not available for a

next possible dispatch until wave w−S := w−max{1,dt(S)/`e}. Note furthermore for feasibility that S must

be constrained such that w−S ≥ 0, to ensure the vehicle returns to the depot by the end of the day.

All potential subsets of R imply O(2n) possible actions. Selecting an action S in state (w,R,P) produces

a transition to state
(

w−S ,R\S∪Fw−S
w ,P\Fw−S

w

)
where Fw′

w := {i ∈ N : w > τi ≥ w′} is the random set of

newly arriving orders at waves w−1, . . . ,w′, and R\S is the set of orders in R left open by action S.

Let Cw(R,P) be a set function representing the minimum expected cost-to-go at state (w,R,P), so that

CW
(
R̂,N \ R̂

)
is the minimum expected cost at the start of the operation, given an initial set of open orders

R̂. The dynamic program defined in equation set (1) computes CW
(
R̂,N \ R̂

)
recursively over w. The

cost C0(R,P) of terminal state (0,R,P) is equal to the sum of penalties of unserved open orders R, and

subsequently, for each w∈W the cost-to-go at state (w,R,P) is equal to the minimum cost of the wait action
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or any feasible dispatch action. Define an optimal action as a subset Sw(R,P) ⊆ R that attains Cw(R,P) at

a given state (w,R,P), and an optimal policy as a vector of optimal actions for each possible state of the

system:

C0(R,P) = ∑i∈R βi, ∀(R,P) ∈ Ξ (1a)

Cw(R,P) = min
S⊆R:w−S ≥0

{
γt(S)+E

F
w−S
w

[
Cw−S

(
R\S∪F

w−S
w ,P\F

w−S
w

)]}
, ∀w ∈W ,∀(R,P) ∈ Ξ. (1b)

Finding an optimal policy directly with (1) is difficult; the state space is exponential in n (O(3nW )),

the action space for each state is exponential in n (O(2n)), and the expectation expressions contain an

exponential number of terms (O(2n)). Moreover, simply evaluating the cost-to-go for a state-action pair is

NP-hard, since computing t(S) is the TSP optimization problem on S∪{0}. Given these difficulties, we

focus on finding good heuristic policies for the DDWP.

3 The Deterministic DDWP

Suppose the wave τi at which order i ∈ N is ready for dispatch is known at the beginning of the operating

horizon. Then, the sets of orders ready at each wave w ∈W are known in advance, but it remains infeasible

to serve an order i with a vehicle dispatch prior to τi. Let Nw := {i ∈ N : ai ≤ w ≤ τi} be the set of orders

ready and feasible to serve at wave w ∈ W , where ai defines the latest wave to feasibly serve order i, i.e.,

ai :=
⌈
2t{0,i}/`

⌉
. Problem 3.1 states the deterministic DDWP.

Problem 3.1 (Deterministic DDWP). Find a collection of vehicle dispatches represented by mutually dis-

joint subsets of orders {Sw ⊆ Nw : w ∈W } that minimize ∑w∈W
{

t(Sw)−∑i∈Sw βi
}

, where the dispatches Sw

for each wave w ∈W satisfy the following two conditions:

• Returns before the end of the day: w−Sw
≥ 0

• Does not overlap another vehicle dispatch in time: if Sw 6= /0, then Sv = /0 for all v ∈ {w−Sw
, . . . ,w−1}.

Property 3.2 is originally shown for the simpler deterministic DDWP with delivery locations on the half-

line extending from the depot in [27], and its shifting arguments can be trivially generalized to the problem

in this paper.
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Property 3.2 (No wait after a dispatch). There exists an optimal solution to Problem 3.1 in which the vehicle

does not wait after the first dispatch has occurred.

We now formulate the deterministic DDWP as an Integer Program (IP). Define Ew := {e ∈ E,ae ≤

w ≤ be} ⊂ E for each w ∈ W as the set of feasible edges for a vehicle dispatch at wave w, where a{i, j} =⌈(
t{0,i}+ t{i, j}+ t{0, j}

)
/`
⌉

and b{i, j} = min{τi,τ j}, for each {i, j} ∈ E. Also, define the cut set Ew(V ) =

{{i, j} ∈ Ew : i ∈V, j 6∈V}, for any subset V ⊆ (Nw∪{0}). Problem 3.1 is equivalent to the IP

C∗(τ) = min
{x,y,v,z} ∑

i∈N:τi>0
βi

(
1−

τi

∑
w=ai

yw
i

)
+ γ ∑

w∈W
∑

e∈Ew

texw
e (2a)

s.t.
τi

∑
w=ai

yw
i ≤ 1, ∀i ∈ N (2b)

∑
e∈Ew({0})

xw
e ≤ 2, ∀w ∈W (2c)

∑
e∈Ew(S)

xw
e ≥ 2yw

i , ∀w ∈W ,∀S⊆ Nw,∀i ∈ S (2d)

∑
e∈Ew

texw
e ≤ ` ∑

k<w
(w− k)vw

k , ∀w ∈W (2e)

∑
k<W

zk + ∑
k<W

vW
k = 1 (2f)

∑
k<w

vw
k = ∑

k>w
vk

w + zw, ∀w ∈W \{W} (2g)

vw
k ∈ {0,1}, ∀w ∈W ,∀k ∈W ∪{0} : k < w (2h)

zk ∈ {0,1}, ∀k ∈W ∪{0} : k <W (2i)

yw
i ∈ {0,1},∀i ∈ Nw, and xw

e ∈ {0,1,2},∀e ∈ Ew. ∀w ∈W (2j)

Variable yw
i is equal to 1 if a dispatch at wave w serves order i, and 0 otherwise; xw

e is equal to m∈{0,1,2}

if the vehicle traverses edge e m times during a dispatch at wave w, and 0 otherwise; vw
k is equal to 1 if a

dispatch at w returns at wave k, and 0 otherwise; and zk is equal to 1 if the vehicle waits at the depot until

wave k, and 0 otherwise (z0 = 1 implies no dispatch throughout the horizon).

Constraints (2b) guarantee serving each order i exactly once at wave w (yw
i = 1) or, alternatively, leaving
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it unserved (yw
i = 0, w = ai, . . . ,τi). Constraints (2c) - (2d) guarantee that vector xw = {xw

e : e ∈ Ew} defines

a feasible tour only visiting orders selected by {yw
i : i∈Nw}. Constraints (2e) force routes to satisfy duration

limits determined by vw
k . Finally, constraints (2f)-(2g) enforce vehicle conservation throughout time.

We solve instances of (2) using a standard Branch & Cut approach equipped with dynamic generation

for subtour elimination cuts based on approaches for the TSP; see [6]. We start with singleton constraints

(2d), i.e., S = {i}. If we find an integer vector xw for wave w at any given node in the Branch & Bound tree,

we check if it has a subtour in O(n) time and add the corresponding cut. Alternatively, if xw is fractional, we

check if it violates 2-connectivity by solving a Minimum Cut problem, and if so we add the corresponding

cut from (2d) and repeat.

Consider again the stochastic DDWP defined in Section 2. We can estimate a lower bound on the

optimal expected cost of (1) using a Perfect Information Relaxation (PIR) cost CPIR =Eτ(C∗(τ)), computed

by disregarding the “non-anticipative” dynamics of the problem and solving for the optimal value C∗(τ) for

each possible realization τ [14, 34]. To estimate the PIR, we create a random sample of M realizations,

{τm}, find C∗(τm) for each m ∈ {1, . . . ,M}, and compute the sample average ∑
M
m=1C∗(τm)/M.

4 A priori policies

In this section, we develop a procedure to compute an a priori policy, in which a schedule specifying the

waves at which to dispatch the vehicle and the routes serving ordered subsets of delivery orders (locations)

at each dispatch is determined using only information disclosed before the operation begins at wave W .

The expected cost of such a policy can be computed easily when schedules and routes are not modified

during operations. In this case, the only uncertain costs are associated with penalties for unserved orders.

Let P(τi = w) be the probability that order i becomes ready first at wave w. To simplify notation, let these

probability values include all information regarding the initial set of orders R̂, i.e., P(τi = W ) = 1 if i ∈ R̂,

and 0 otherwise. It can be shown that this a priori problem is equivalent to solving a deterministic DDWP

instance in which each order i ∈ N is duplicated W times within its geographic location and each copy

is assumed to be ready at each wave w ∈ W , with an adjusted penalty for not serving the order equal to

βiP(τi = w).

We note that there exists an optimal solution to this a priori model visiting the same geographic location

10



at most once. To see why, note that a solution without this property can be transformed into another feasible

solution with no greater cost by removing all visits to a location except the latest one in time; dispatch

and routing costs are not increased, and the same set of orders remain served. This observation allows us

to define an IP model for the a priori problem where planning to serve order i at wave w indicates that

order i is covered if it arrives during any wave v ∈ {w,w+1, . . . ,W}; this action thus reduces the expected

penalty by βiP(τi ≥ w). Define the expected penalty to be paid if no vehicle dispatches are planned as

β 0 := ∑i∈N βiP(τi ≥ 1), the earliest wave that a vehicle can serve order i as bi := max{w : P(τi = w)> 0},

and redefine the sets Nw and Ew accordingly. Then, the a priori DDWP is given by

C∗AP(R̂) = min
{x,y,v,z}∈ (2c) - (2j)

β
0−∑

i∈N

bi

∑
w=ai

βiP(τi ≥ w)yw
i + γ ∑

w∈W
∑

e∈Ew

texw
e (3a)

s.t.
bi

∑
w=ai

yw
i ≤ 1, ∀i ∈ N, (3b)

Note that (3) has a similar feasible region to (2), but now with an expected value objective function. When

the solution does not serve order i, we pay a penalty discounted by the arrival probability P(τi ≥ 1), and

when the solution serves i at wave w, we pay the penalty discounted by the probability of a later arrival,

P(1≤ τi < w).

We can improve the performance of the a priori policy during execution by skipping planned visits to

orders that are not ready on time from a route dispatched at wave w; the triangle inequality guarantees this

can only reduce costs. We define by Qw(xw) the expected duration of a dispatch at wave w given by xw;

[26] provides a closed form expression to compute this expected cost for a given route in O(n2) time. The

expected cost of such a policy for a given a priori feasible solution is equal to

β
0−∑

i∈N

bi

∑
w=ai

βiP(τi ≥ w)yw
i + ∑

w∈W
Qw(xw). (4)

We could design an a priori solution that considers order-skipping recourse proactively when planning

a solution with an extension of the L-shaped method described for the Probabilistic Traveling Salesman

Problem (PTSP) in [28]. We implemented and tested this approach but were only able to solve small in-

stances to optimality (n = 25, W = 3). Moreover, the benefits in cost savings over (3) were small (under
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2%), and we postulate that such small savings are intuitive. If arrival probabilities are high, the probabilistic

routing cost in the objective collapses to a deterministic routing cost, similar to the PTSP. However, this is a

prize-collecting problem, which is fundamentally different from the PTSP, and if the arrival probabilities are

small, the probabilistic routing cost must be balanced with the expected penalty cost in the objective. Thus,

it becomes more important to make good order dispatch selections and less important to route effectively.

We leave the design of efficient heuristic procedures that minimize (4) to future research efforts; see e.g.,

[13, 35] for related work.

4.1 Practical considerations when solving the a priori model

We propose an improvement local search heuristic (LS) that exploits structure of the a priori model and

complements a MIP solver. Specifically, we use this heuristic in two phases when solving problem (3).

First, we run LS for each new feasible solution s identified during the branch-and-bound tree search, and

update the incumbent if LS produces a solution with lower cost. Second, we use the heuristic during a

solution construction phase to generate a good initial feasible solution for the MIP solver.

Our LS procedure uses three separate neighborhood searches given solution s: (1) intra-route local

search (IntraLS), i.e., single route node selection and re-sequencing; (2) inter-route local search (InterLS),

i.e., node exchanges between routes and re-sequencing; and (3) dispatch profile local search (DPLS), i.e.,

search over the subsets of dispatch waves selected by the operation. Each search procedure is described in

Appendix 8.1. We execute the three-level search until no improving solution is found.

5 Dynamic Policies

A priori policies, particularly when adjusted via recourse actions, may yield reasonable solutions to many

problems. However, even in the one-dimensional case [27], there exist instance families for which an optimal

a priori policy with recourse is arbitrarily worse than an optimal dynamic policy, i.e., C∗AP(R̂)/C∗(R̂)→ ∞.

With this motivation, we develop dynamic policies.
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5.1 A Priori-Based Rollout Policy

A natural dynamic policy is to roll out the a priori policy [23, 24]. At each wave w ∈W when the vehicle

is available at the depot, we recompute an optimal a priori policy beginning at wave w using the current

system state (w,R,P) to define a new, reduced problem over the remaining operating period. If the policy

decides at wave w to dispatch a route serving customer set S ⊂ R, then this decision is implemented and a

new a priori policy is computed again at wave w−S ; otherwise, a new a priori policy is computed at w− 1

after waiting for one wave.

In Proposition 5.1, we claim that roll out of the a priori optimal solution guarantees nonnegative ex-

pected cost savings. The proof is provided in Appendix 8.2, and is based on results in [25].

Proposition 5.1. Let R̂ be the initial set of open orders available at w =W, let CAP(R̂) be the optimal value

of the a priori problem in Equations (3) and let CRP(R̂) be the expected cost of our policy that rolls out the

a priori optimal plan. Then CRP(R̂)≤CAP(R̂).

Computing such a rollout policy requires the solution of O(W ) problems, which is computationally

expensive for larger instances and may be impractical. However, there are multiple ways to improve compu-

tational performance. First, one can warmstart the solution of the a priori problem at wave w using the most

recently computed solution (from wave q > w), adjusted to skip all planned orders that are not ready yet and

then improved via the LS procedure. It is also not necessary to solve each a priori problem to optimality.

A more substantial simplification is to begin the rollout process only at the first wave where a dispatch

is planned in the initial a priori solution (computed at wave W ); we call this approach the restricted version

of the rollout policy. In preliminary experiments the restricted version performed similarly to a full rollout

policy in terms of expected cost, indicating that the AP policy is adequately choosing an initial dispatch. We

find this to be a useful insight for managers: assuming average behavior in the future appears to be sufficient

when making an initial dispatch decision. Conversely, once the AP policy recommends an initial dispatch,

a rollout policy performs better by incorporating newly arrived information.
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5.2 Greedy a priori-based Policy

We also propose simpler rollout strategies that do not rely on repeatedly solving the a priori problem.

One such approach takes advantage of the relationship between the DDWP and the prize-collecting TSP

(PCTSP). To initiate the approach, we solve the a priori problem at initial wave W . We then use this

solution to guide a rollout procedure that only solves PCTSP problems as follows. At each wave w < W

for which the a priori solution dictates a vehicle dispatch, we compute a maximum duration of the route

by ensuring that the vehicle returns to the depot by the next planned dispatch wave in the a priori solution

(or by the deadline). Then, we determine which open orders to serve and in which sequence by solving a

PC-TSP, where the input set of orders are all open orders that are not planned in the a priori solution for a

later dispatch wave. Appendix 8.3 describes this heuristic algorithm in detail.

This greedy policy only computes a solution to minimize expected cost once, at the beginning of the

horizon. Although the dispatch waves are not updated, the policy dynamically adjusts when orders that

were not planned to be served arrive, when orders arrive later than their planned service wave, and when

re-routing can improve transport time and cost. This last feature alone enables this approach to outperform

the simpler a priori policy with order-skipping recourse.

6 Computational Experiments

We now present a set of computational experiments designed using a family of randomly generated instances

with the objective of testing the quality of our heuristic policies, and to get qualitative insights regarding the

management of vehicle dispatches in a same-day delivery context. Table 1 summarizes the heuristic policies

computed for each instance. All heuristics were programmed in Java and computed using one thread of a

Xeon E5620 processor with up to 12Gb RAM, using CPLEX 12.6 when necessary as a MIP solver.

Table 1: Heuristic policies computed in our experiments

symbol strategy section

AP a priori policy + order-skipping 4
GP Greedy a priori-based policy 5.2
RP Rollout of a priori policy (restricted version) 5.1
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6.1 Design of data sets

We generated 240 data sets to evaluate our policies over different performance indicators. Each data set

has a specific geography of 50 orders, a known subset R̂ ⊆ {1, . . . ,50} of orders ready at the start of the

operating period, and a vector of ready wave probabilities for orders with unknown arrival waves.

The geography for each data set is defined by a random seed g ∈ {0, . . . ,4} used to assign 50 different

locations over a 51× 51 square subset of R2 following a discrete uniform distribution U(0,50) for each

component of the location’s coordinate and with the depot located at coordinate (25,25). We ruled out

repeated coordinates to have a more interesting geography. Travel times between locations are specified by

the `1-norm (Manhattan distance) between two locations, chosen to roughly model urban travel times. All

data sets share a common horizon with W = 6 possible dispatch waves, each with duration ` = 100 time

units. The duration of a round-trip visiting any single order is less than or equal to 100 time units, and thus

can be completed in a single dispatch wave; this implies that a single penalty can always be avoided.

For each potential order i ∈ {1, ..,50}, its ready wave τi is a discrete random variable, independently

distributed with probability P(τi = W ) = pstart of being ready at the start of the operating period (the

order’s degree of dynamism); a conditional probability P(τi = −1|τi < W ) = pout of not arriving dur-

ing the operation period; and a conditional discrete uniform distribution with probability P(τi = w|1 ≤

τi < W ) = (min(W −1,µi +σ)−max(1,µi−σ)+1)−1 of arriving during the operation at any wave w ∈

{max(1,µi−σ), . . . ,min(W −1,µi +σ)}. The parameter µi represents the mean ready wave and is drawn

for each i with equal probability between 1 and W − 1, and σ represents variability. Each data set uses a

triple (σ , pstart , pout) : σ ∈ {Lo = 1,Hi = 6}, pstart ∈ {10%,15%,25%,50%}, pout ∈ {20%,40%}, and a

setting of the seed h ∈ {0,1,2} to draw the set R̂ of orders ready at the start.

We created M = 50 realizations of ready waves for each data set using the probabilistic model above.

These scenarios are used as a common sample to estimate a perfect information bound and the expected cost

of all policies. Each data set has a unique value of (g,σ , pstart , pout ,h), and all sets, including their simulated

realizations, are online at sites.google.com/site/maklappor/ddwp-data-sets.
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6.2 Set 1: Base experiments

For our first set of experiments, we build 3 instances by considering the first 25, 35 and 50 orders for each

one of the 240 data sets. This makes a set of 720 instances with 3 different problem sizes. The penalty

for leaving a realized order i unattended is set as the duration of a round-trip to order i from the depot,

βi := 2t{0,i}; this setting roughly models a system that serves all realized orders by outsourcing the service

of each order that remains open at the end of the day to a direct delivery service. Given this penalty structure,

there is always potential service profitability; in particular, there is an economic incentive to dispatch the

vehicle in the last wave if any order is open.

We compute the following metrics for each policy over each realization from each instance:

• Total cost (cost),

• gap: the percentage increase of the policy’s cost over the perfect information bound,

• fill rate ( f r): the percentage of orders served by the vehicle over all realized orders,

• duration/order: the routes’ travel time over the number of served orders,

• nRoutes: number of vehicle dispatches,

• nWaves: average dispatch length in waves used by each route,

• iWait and pWait: number of waves spent waiting at the depot before/after the initial dispatch,

• timeo f f : “off-line” solution time, i.e., before the solution is implemented,

• timeon: total “on-line” solution time during the operating period divided by the number of active

decision epochs, i.e., the number of waves in which the policy makes a dispatch decision (which

excludes all predetermined waits established by the initial a priori policy and dispatch waves jumped

by the vehicle routes).

These metrics are averaged for each instance over all M = 50 realizations. Table 2 presents average results

for each heuristic policy over all instances.

On average, the AP policy’s cost is 23.1% higher than the perfect information bound and, as expected,

the AP rollout (RP) significantly reduces the average gap by 47.7%, with an average cost reduction of 9.1%.
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Table 2: Average results of heuristic policies

metric policy AP GP RP

cost (decrease from AP %) 555 523 (5.8%) 505 (9.1%)
gap 23.1% 16.1% 12.1%

f r 81.6% 85.0% 86.2%
duration/order 11.0 11.2 11.2

nRoutes 2.49 2.47 2.55
nWaves 1.43 1.43 1.38
iWait 2.58 2.60 2.65
pWait 0.003 0.005 0.002

timeo f f 836.2s.
timeon 0.0001s. 0.08s. 85.8s.

The greedy heuristic GP achieves 63% of that cost reduction, suggesting that a simple but dynamic policy

can capture a significant amount of the benefits of dynamism.

Also, RP increases the order fill rate over AP by 5.6% by redesigning the solution at each decision

moment, which is crucial for logistics service providers interested in providing a better customer service; GP

achieves 75.2% of this fill rate increase. This is a tradeoff wherein dynamic policies significantly improve

order service, while incurring small increases in duration per order. We also see that dynamic policies

slightly increase the average number of dispatches; refer to Appendix 8.4 for more detailed analysis of

solution dispatch structure. Finally, note that it is rare for the vehicle to wait after its first dispatch (pWait);

it is better to keep the vehicle busy serving more orders after an initial wait for consolidation.

All policies require identical offline computing time (timeo f f ), but differ dramatically in on-line solution

time: AP and GP are almost instantaneous online policies, while RP requires more computational power.

In Figure 1, we observe the distribution of the gap over all instances for each heuristic policy. We

observe that RP not only outperforms AP on average, but is also less variable in solution quality, with 3.77%

deviation versus 7.43%; GP has an intermediate 4.87% deviation.

In Figure 2 we compare the average gap of our heuristic policies between instances sharing parameters

of size n, degree of dynamism pstart , probability of not showing up pout , and arrival variability σ . In the

first graph on the left we see how the average gap increases with the number of potential orders n; this

increase may be related to an increase in problem size and complexity, but also to the tightness of the lower

bound. Moreover we see that RP’s gap difference over AP increases as n grows, with GP in between. We
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Figure 1: Distribution of gap over all instances

also observe a significant gap reduction for the a priori policy (AP) as pstart increases. As expected, more

information available at the initial wave brings the problem closer to a deterministic problem which allows

us to optimize exactly. For dynamic policies, the gap is significantly smaller and tends to be stable over

different values of pstart , showing the benefit and importance of complex recourse actions when dealing

with higher degrees of dynamism. Figure 2 suggests that it may be harder to optimize instances with higher

values of pout and σ due to an increase in the problem’s uncertainty and/or possibly due to a deterioration of

our lower bound. Again, we see that the average gap reduction of dynamic policies over the a priori policy

is particularly valuable for instances with higher ready time variability.
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Figure 2: Average gap versus n, pstart , pout , and σ

Figure 3 presents the average fill rate as a function of the instance parameters; for reference, maximizing
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fill rate is the objective function of the model presented in [41]. We see that f r decreases as n increases

over all policies, which may indicate congestion related to available vehicle time. Interestingly, this fill

rate reduction is marginally decreasing with n, presumably through order consolidation; i.e., at N = 25, an

increase of 10 customers results in a larger fill rate decrease than an increase of 15 customers at N = 35.

Also, RP’s fill rate is consistently over AP by more than 4.2% regardless of n. The second graph from

the left shows how the average fill rate increases by 16.1% for AP and 11.2% for RP when pstart increases

from 10% to 50%, demonstrating that more information available at the start can significantly increase the

number of orders served, especially for the AP policy. The relative difference between AP and RP is higher

for instances with higher dynamism, showing again the additional value of dynamic policies. The third graph

from the left demonstrates that RP (and dynamic policies more generally) can be useful when opportunities

to increase fill rate are presented. While the a priori policy’s rate remains stable over values of pout , all

dynamic policies increase order fill rate, e.g., RP’s increases by 1.6%. This may be explained by the fact

that RP uses the time gained when initially planned orders do not arrive to serve unexpected and initially

unplanned orders that do show up. This effect is also observed when the fill rate is compared to σ .
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Figure 3: Average fill rate versus n, pstart , pout , and σ

The average solution times over all instances disaggregated by number of customers n and the probability

pstart are presented Table 3. The results on the left table show the off-line solution times shared by all

policies. As expected due to the nature of exact MIP models, this time increases exponentially with the

number of orders, but should not be problematic since this procedure is intended to run before the start

of the operating horizon. In addition, average times increase with pstart . The right-hand table shows the
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average online solution times per dispatch of GP and RP policies. We observe a similar increasing effect

over the number of customers.For even larger n, the GP policy is a simpler alternative to consider if RP

becomes inefficient; GP still takes less than 1 second per decision and generates better solutions than AP.

Another possibility would be to further exploit local search and meta-heuristic procedures; we leave these

ideas for future work.

Table 3: Average timeon and timeo f f versus pstart and n

Average time offline in secs.

pstart\n 25 35 50

10% 121 338 1689
15% 130 375 1870
25% 224 494 1886
50% 245 579 2084

Average time per decision in secs.

GP RP
pstart\n 25 35 50 25 35 50

0.10 0.06 0.10 0.16 3.4 16.5 147
0.15 0.05 0.12 0.14 4.1 16.1 186
0.25 0.04 0.05 0.07 4.3 32.8 256
0.50 0.03 0.03 0.06 4.7 51.9 305

6.3 Set 2: Route efficiency versus customer service

We now present a second set of computational experiments to study the tradeoff between two plausible

objective functions in same-day delivery: minimizing total cost and maximizing (weighted) order coverage;

in the DDWP setting this is equivalent to minimizing penalty costs. This coverage goal also matches the

objective in the models in [41]. We look for basic tradeoffs, performance of our heuristic policies, and

structural differences in our solutions to provide qualitative insights.

We build a new set of 720 instances by making 3 instances for each one of the 240 data sets with

35 orders each. Each instance has a different value of α ∈ {1,2,100} for the penalty setting βi = 2αd0i.

While the first set (α = 1) balances both vehicle traveling costs and penalty costs, the last one (α = 100)

hierarchically focuses on covering orders first with travel time minimization as a secondary objective; the

second set (α = 2) is an intermediate case.

Table 4 presents average costs of all heuristic policies and perfect information bound over all instances

under different settings of α . It also shows for each dynamic policy the average cost reduction percentage

over AP. We first observe that cost reduction percentages of dynamic policies substantially increase with

α; this is explained by the order coverage improvement that dynamic policies enjoy, discussed in the first

set of experiments. It may also occur because the cost savings from delivering an additional order become
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Table 4: Average cost and reduction percentage over AP for each policy under different settings of α

policy\objective α = 1 α = 2 α = 100

LB 441 546 9395

AP 541 760 18958
GP 511 (5.5%) 711(6.4%) 16402 (13.5%)
RP 493 (8.8%) 670 (11.8%) 13625 (28.1%)

more significant as the weight on penalty costs is bigger. For example, the cost reduction from serving one

more order when there are two left unattended is 50%. Second, we observe that RP becomes more attractive

compared to GP as the relative importance of penalty costs increases, suggesting that sophisticated dynamic

policies that get better fill rate improvements become more valuable as the focus shifts towards coverage.

metric α = 1 α = 2 α = 100

duration/order 11.1 12.8 16.7
f r 85.5% 88.2% 90.7%

nRoutes 2.48 3.25 4.77
nWaves 1.37 1.23 1.13
iWait 2.72 2.14 0.61

(a) Metrics for RP under different settings of α
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Figure 4: Average results for RP under different settings of α

The left table in Figure 4 presents results for RP averaged over all instances sharing the same settings

of α . The first two rows present the tradeoff between duration/order representing routing efficiency and

f r representing order satisfaction. These results are plotted in the graph on the right as a Pareto chart. As

expected, we observe that f r increases as order coverage becomes more relevant in the objective, but this

fill rate improvement requires a sacrifice in distance/order, i.e., the higher the order fill rates, the more

inefficient the routes. Moreover, the marginal rate of substitution between f r and distance/order decreases

with α . For example, from α = 1 to α = 2 the average gain in f r per distance/order sacrificed is 1.57%.

The same number from α = 2 to α = 100 is 0.65%, a 59% reduction. For decision makers, this suggests that

even in the efficient frontier, the transportation cost of an additional customer covered becomes increasingly
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more expensive; a cost-focused manager may be willing to sacrifice coverage for routing efficiency at a

sufficiently high fill rate.

We further explain the decreasing marginal substitution rate between coverage and routing efficiency

by looking at the last three rows of the table in Figure 4. RP creates more opportunities for recourse and

reoptimization to improve order coverage; the average number of dispatched routes is increased by 92% and

the route duration is reduced by 17%, and the result is reduced routing efficiency. Moreover, RP drastically

reduces the initial wait time by 78%, implying that the vehicle is in use for a much larger portion of the

day. This is also an interesting insight for managers: when coverage is the objective, vehicles operate

longer periods of time with higher maintenance costs and longer workdays for drivers (a higher cost in

human resources). Conversely, order consolidation increases when total cost is the objective, routes become

longer and efficient, and dispatches are pushed forward in time. This reduces the vehicle operating time, but

increases the time between order arrival and dispatch; logistics providers may want to minimize this value

to guarantee good service. In Figure 5 we demonstrate this tradeoff graphically, presenting two solutions

for the same instance realization. The left solution minimizes total cost while the right one minimizes lost

penalties. We clearly see how the right solution has to sacrifice roughly 50% in routing efficiency to increase

its order coverage by one order. It also makes 3 more vehicle dispatches and actively uses the vehicle for

2 more waves. In Appendix 8.5 we present analysis of the tradeoff between customer service and routing

efficiency under different values of the data set parameters pstart , pout and σ .

7 Conclusions

We have formulated the Dynamic Dispatch Waves Problem (DDWP) on general network topologies to

study same-day delivery distribution systems. We propose an IP model to solve a deterministic version of

the problem, and use this model to derive an optimal a priori solution for the stochastic case.

From the a priori solution we derive three heuristic policies that differ in their dynamism. The first

policy, AP, is an a priori solution with a order-skipping recourse; the second policy is a direct rollout of

the a priori solution, RP; and GP that is a computationally cheaper alternative to RP that rolls out a prize-

collecting TSP guided by an initial a priori solution.

We tested these policies in simulated instances under different settings of geography, problem size, and
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Figure 5: Example of two different solutions to the same instance realization. The left one minimizes total
cost and the right one minimizes lost penalties first, then distance cost. Green orders are served and red
ones are left unattended. Each order’s ready wave is labeled at its node and route dispatch/return waves are
shown in the upper-left corner.

order arrival dynamism and variability. The a priori policy costs average 23.1% over our perfect information

bound. The benefit of a dynamic policy over an a priori one can be significant; in our experiments, RP is

able to cut AP’s cost by 9.1% on average, yielding an average gap of 12.1% over the lower bound and

reducing its standard deviation by 3.7%, giving consistently good solutions compared to AP. Its marginal

benefit concentrates in improving the order fill rate by 4.6%, which is highly desirable for SDD services.

This benefit is achieved by increasing recourse opportunities to catch newly arrived orders, and by sacrificing

a small amount of routing efficiency. These benefits are especially significant when the instance dynamism

and variability are high; this can be commonplace in SDD systems. We also found little benefit and few

occurrences of the vehicle waiting at the depot during the planning horizon once dispatches begin.

RP’s computational effort may prevent its deployment (at least using exact optimization) for larger

problem sizes, e.g., n > 50. In this case, we provide GP that attains on average two-thirds of the cost

reduction and fill rate benefit of RP. In general, the DDWP proved quite challenging to solve and future

work may consider improvements in heuristic solution of the a priori problem. Another interesting question

is whether we can exploit probabilistic routing methods to solve the a priori problem with recourse.
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We also empirically studied the tradeoff between two possible SDD objectives, minimizing total cost and

maximizing the weighted order fill rate. One might think that these two objectives deliver similar results,

since well-sequenced routes leave more vehicle time available to cover more orders. However, we found that

one should expect significant sacrifices in vehicle routing efficiency (distance cost) in order to maximize fill

rate, and that the distance cost of an additional customer covered becomes more expensive as order coverage

increases. In our results, an RP solution that maximizes order coverage and one that minimizes costs have

a 51% difference in traveled distance per order and a 5.2% difference in order fill rate; also, a solution

focusing on coverage makes more dispatches (92% more), has 17% shorter routes on average, and starts

dispatching earlier, having on average a 65% longer vehicle utilization throughout the day. This has direct

implications on driver salaries and vehicle maintenance costs. We also observed that, as fill rate becomes

more important, the average improvement of dynamic policies over a priori policies increases.

An extension of this model to multiple vehicles seems natural; having a fleet of vehicles could pool the

risk associated with leaving orders unattended and therefore reduce costs, e.g., [1]. In general, same-day

delivery offers many new challenges to the logistics research community.
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8 Appendix

8.1 Local search procedures over an a priori solution

Let {rs
w,w ∈ Ws} be the set of routes of a feasible solution s to (3) indexed over the wave subset Ws ⊆ W

where these dispatches occur; we refer to Ws as the dispatch profile of a solution s. Each route rs
w represents

an elementary sequence of order visits starting and ending at the depot. The a priori cost cs is defined by
(3a), the duration of each route by ds

w, and its unserved customer set by Us := N \
⋃

w∈Ws
rs

w.

Algorithm 1 Local Search Procedure
1: procedure LOCALSEARCH(Solution s)
2: loop
3: if (¬INTRALS(s) and ¬INTERLS(s) and ¬DPLS(s)) then return s.

Our LS procedure is given by Algorithm 1 and is composed by three subroutines: IntraLS, InterLS
and DPLS. IntraLS, defined in Algorithm 2, exploits the relation between the DDWP and a prize-collecting
Traveling Salesman Problem (PCTSP) (see [11])

PCT SP(m,Q,ρ) := min
S⊆Q:

t(S)≤m

{
γt(S)−∑

i∈S
ρi

}
, (5)

where Q is the set of all potential customers, ρi is the prize collected when visiting customer i ∈Q, and m is
a maximum route duration. IntraLS is a best move procedure, where a move is described by re-optimizing
one route from s leaving all remaining routes unaltered. The procedure chooses a single route rs

w from
s, and solves a PCTSP over a set of nodes Q := Us ∪ rs

w defined by all orders left unattended if route rs
w

where removed, a maximum route duration m = ds
w` predefined by the waves left available, and prizes βi

discounted by P(τi ≥ w), for i ∈ Q. Any solution s processed by IntraLS contains only routes w that are
optimally sequenced and that cannot be improved by selecting a different subset of orders to service from
Us∪ rs

w.

Algorithm 2 Intra-route LS procedure
1: procedure INTRALS(Solution s)
2: improved← f alse and s∗← s
3: repeat
4: for w ∈Ws do
5: Let s′ be a copy of s without route rs

w
6: Solve PCTSP(ds

w`,Us′ ,{βiP(τi ≥ w)}) and add optimal route found to s′ at wave w
7: if (cs′ < cs∗) then s∗← s′ and improved← true
8: if (cs∗ < cs) then s← s∗

9: until ¬improved

InterLS uses best move searches over pairs of routes using neighborhoods inspired by those in [37] for
the CVRP: two-edge exchanges between routes, removal and reinsertion of a k-order sequence from one
route to another, and order swaps between routes. To implement these ideas, we account for two differences
between the CVRP and the DDWP. First, we model the prize-collecting component; a move changes penalty
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new
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Figure 6: Example of a cut operation where a new dispatch profile is created (dashed flow) from an existing
one (continuous flow) by cutting a route into two.

savings (due to the different dispatch time). Second, we check the durations of the new routes to ensure that
they remain compatible with the fixed dispatch times of the unchanged routes.

The third neighborhood search that we implement is a Dispatch Profile Local Search (DPLS), described
in Algorithm 3. The DPLS search perturbs the structure of the dispatch profile Ws for solution s using five
operators: Cut, Merge, Exchange, Start, and Reorder. The first four operators find potential new solutions
by solving a PCTSP, while the fifth uses a job scheduling approach.

Algorithm 3 Dispatch Profile Local Search (DPLS)
1: procedure DPLS(Solution s)
2: improved← true
3: repeat
4: if (¬CUT(s) and ¬MERGE(s) and ¬EXCHANGE(s) and ¬START(s) and ¬REORDER(s)) then
5: improved← f alse.
6: until ¬improved

The Cut operator, described in Algorithm 4, searches over all possible dispatch profiles that result when
splitting a single dispatch w with duration ds

w ≥ 2 into two dispatches with shorter duration; this operator
always add an extra return trip to the depot, as depicted in Figure 6. The Merge operator, described in Al-
gorithm 5, works in reverse and searches over all dispatch profiles that arise when merging two consecutive
dispatches into a single longer duration dispatch, as shown in Figure 7. The Exchange operator, described in
Algorithm 6, changes the dispatch durations of two consecutive dispatches (thus changing the dispatch wave
w of the latter); see Figure 8. The Start operator, described in Algorithm 7, searches for a better solution
among the (at most) two new dispatch profiles induced by moving the initial dispatch wave of solution s
backward or forward one wave, when feasible without altering subsequent dispatches; when the move is
backward, the initial dispatch is extended by one wave and when the move is forward, it is reduced by one
wave, as depicted in Figure 9.

The Reorder operator reassigns the routes in s to the best possible dispatch waves, without altering the
customer visit sequences or the route durations. This assignment problem is equivalent to a single machine
job scheduling problem of type 1||∑ j f j(w j) (see e.g., [32]): Consider a set of jobs, where each job j
corresponds to a route with processing time p j equal to the route duration (measured in waves). The cost of
assigning job j to start wave w is f j(w) := ∑i∈r j P(τi < w). This job scheduling problem is NP-hard, since
the single-machine scheduling problem minimizing the weighted sum of tardy jobs can be reduced to this
problem. Small instances with fewer than 10 routes can be solved effectively with dynamic programming.

We can in addition enhance the search by calling LS recursively, i.e., we run LS within the Cut, Merge,
Exchange, and Start operators on the temporary solution s′, after the move gets implemented but before
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Algorithm 4 Cut operation over solution s

1: procedure CUT(Solution s)
2: improved← f alse and s∗← s
3: for w ∈Ws do
4: for v : (w−1)→ (w−ds

w +1) do
5: Let s′ a copy of s without route rs

w
6: Solve PCTSP((w− v)`,Us′ ,{βiP(τi ≥ w)}) and add optimal route to s′ at wave w.
7: Solve PCTSP((v−w+ds

w)`,Us′ ,{βiP(τi ≥ v)}) and add optimal route to s′ at wave v
8: if (cs′ < cs∗) then s∗← s′ and improved← true
9: if (cs > cs∗) then s← s∗

10: return improved

waves

dispatch wait dispatch

Vehicle

dispatch
removed

Figure 7: Example of a merge operation where a new dispatch profile is created (dashed flow) from an
existing one (continuous flow) by merging two dispatches into one.

Algorithm 5 Merge operation over solution s

1: procedure MERGE(Solution s)
2: improved← f alse and s∗← s
3: for w ∈Ws such that w−ds

w > 0 do
4: Let s′ a copy of s without routes rs

w and rs
w−ds

w

5: Solve PCTSP((ds
w +ds

w−ds
w
)`,Us′ ,{βiP(τi ≥ w)}) and add optimal route to s′ at wave w

6: if (cs′ < cs∗) then s∗← s′ and improved← true
7: if (cs > cs∗) then s← s∗

8: return improved

waves

dispatch dispatch

Vehicle

new dispatch
pushed earlier

dispatch

Figure 8: Example of an exchange operation where a dispatch gives one wave to its successor (dashed flow).
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Algorithm 6 Exchange operation over solution s

1: procedure EXCHANGE(Solution s)
2: improved← f alse and s∗← s
3: for pair w1,w2 ∈Ws such that ds

w1
> 1 and (w1 = w2−ds

w2
or w1 = w2 +ds

w1
) do

4: if (w1 > w2) then Let w′1 = w1, w′2 = w2 +1, d′1 = ds
w1
−1, and d′2 = ds

w2
+1.

5: else Let w′1 = w2, w′2 = w1−1, d′1 = ds
w2
+1, and d′2 = ds

w1
−1

6: Let s′ a copy of solution s without routes rs
w1

and rs
w2

7: Solve PCTSP(d′1`,Us′ ,{βiP(τi ≥ w′1)}) and add optimal route to s′ at wave w′1
8: Solve PCTSP(d′2`,Us′ ,{βiP(τi ≥ w′2)}) and add optimal route to s′ at wave w′2
9: if (cs′ < cs∗) then s∗← s′ and improved← true

10: if (cs > cs∗) then s← s∗

11: return improved

waves

dispatchinitial
dispatch

dispatch
pushed later

dispatch
pushed earlier

Figure 9: Example of a Start operation where the first dispatch is enlarged/reduced (dashed flow).

Algorithm 7 Start operation over solution s

1: procedure START(Solution s)
2: improved← f alse and s∗← s
3: inis←max{w ∈Ws}
4: Let s1 and s2 be two copies of solution s without route rs

inis
5: if (inis <W ) then
6: Solve PCTSP((ds

inis +1)`,Us1 ,{βiP(τi ≥ inis +1)}) and add optimal route to s1 at wave inis +1
7: if (cs1 < cs∗) then s∗← s1 and improved← true

8: if (ds
inis > 1) then

9: Solve PCTSP((ds
inis−1)`,Us2 ,{βiP(τi ≥ inis−1)}) and add optimal route to s2 at wave inis−1

10: if (cs2 < cs∗) then s∗← s2 and improved← true

11: if (cs > cs∗) then s← s∗

12: return improved
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comparing to the best solution available s∗. In our experiments, we implemented a two-level local search to
keep solution times manageable.

In addition to using the LS procedure during the branch-and-bound tree search, we also embed it in a
heuristic for building a good initial feasible solution s0 for the DDWP. This constructive heuristic is given a
set of m dispatch profiles, and for each Wk,k = 1, . . . ,m solves a series of sequential PCTSPs over time to
build a solution which is then improved with LS. In our experiments, the set of dispatch profiles provided
to the construction heuristic was {{1,2, . . . ,q}} for all q in 1≤ q≤W , i.e., all possible profiles that include
consecutive, single-wave dispatches up to the final wave.

Algorithm 8 Constructive Heuristic

1: procedure CONSTRUCTIVE(Set of dispatch profiles {W1,W2, . . . ,Wsm})
2: Initialize s0 as the empty solution
3: for k : 1→ m do
4: Build {dw,w ∈Wk}, the dispatch durations of Wk
5: Let sk be a copy of s0.
6: for w ∈Wk in decreasing order do
7: Update Usk , solve PCTSP(dw`,Usk ,{βiP(τi ≥ w)}) and add optimal route to sk at w.

8: LOCALSEARCH(sk)
9: if (csk < cs0) then s0← sk

10: return s0

8.2 Proof of Proposition 5.1: Rolling out the a priori optimal solution guarantees nonnega-
tive expected cost savings

We base this proof in the result provided by [25] stating that any sequentially improving heuristic weekly
improves its performance when rolled out. The definition of sequentially improving heuristic is stated in
Definition 8.1. We just need to prove that the optimal a priori solution is a sequentially improving heuristic.
This fact is stated in Proposition 8.2.

Definition 8.1. (Sequentially Improving Policy). Let s be the state of the system, let πH(s) be a policy
induced by a Heuristic H(s) computed at state s, and let Cπ(s) be the expected cost-to-go paid if a policy
π is implemented from state s onwards. Let s′ be any state such that it is on a sample path induced by
implementing πH(s) at state s. Then, H(·) is sequential improving if

E
[
CπH(s)

(s′)|s′
]
≥ E

[
CπH(s′)

(s′)|s′
]

(6)

Proposition 8.2. The optimal a priori solution is sequentially improving

Proof. (Proposition 8.2) Let πAP(s) be the resulting policy that arises from the optimal a priori policy com-
puted in state s and let s′ a state of the system in the sample path induced by πAP(s). Assume by contradiction
that we have E

[
CπAP(s)

(s′)|s′
]
<E

[
CπAP(s′)

(s′)|s′
]
, then πAP(s) has expected cost lower than the expected cost

of the optimal a priori solution policy computed at state s′. This is clearly a contradiction.
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8.3 Algorithmic details for the greedy a priori-based policy

Let W AP be the set of waves where vehicle dispatches take place in the a priori solution, and let Qw ⊂ Nw

be its set of planned orders to be dispatched at each w ∈W AP. We implement the heuristic dynamic policy
outlined in Algorithm 9.

Algorithm 9 Greedy a priori-based policy

1: Set w←max{v ∈W AP}, w+←max{v ∈W AP : v < w}
2: Wait at the depot until wave w
3: while w > 0 do
4: Read system state (w,R,P)
5: Compute R̄ := R \

⋃w+

v=1 Qv, the set of open orders not included in future dispatches of the a priori
solution

6: Solve PCTSP((w−w+)`, R̄,β ) and let S⊂ R̄ be the optimal set of sequenced orders selected
7: if qw(S) = w+, then dispatch a vehicle to S, set w← w+, w+←max{v ∈W AP : v < w},
8: else set w← w−1.

8.4 Set 1: Further empirical analysis for an average solution’s dispatch structure

The graphs presented in Figures 10,11, and 12 show for each policy the evolution of the average number of
dispatches, duration in waves per dispatch, and initial number of waves spent waiting at the depot over the
different instance parameters. From the first graphs on the left, we see that all policies dispatch more vehicles
as n grows and wait a smaller amount of initial waves at the depot, meaning that a relatively dense geography
justifies a higher number of dispatches during the day and more “active” dispatch waves during the operating
period. We also see that the difference in routes dispatched between RP and AP increases with n, and that
dynamic policies slightly reduce the waves used per dispatch as n grows. This shows empirically how
dynamic policies increase recourse opportunities, i.e., more returns to the depot, as n increases. The second
set of graphs from left to right show how our policies have fewer and longer vehicle dispatches with shorter
initial waiting periods as off-line information increases (higher pstart). This means that as deterministic
information increases, fewer recourse opportunities are needed and routing efficiency becomes the focus.
The shorter initial wait periods can be explained because there may be relatively less need to “wait and
see” versus instances where less information is given at start. Similar effects can also be observed from
the graphs on the right. It is interesting to note that RP slightly increases the average number of dispatches
and the route length over AP as pout and σ increase. Again, it shows how this policy can recover from
uncertainty, e.g., orders realizing later than expected or not showing up, by dynamically inserting unplanned
orders as substitutes.

8.5 Set 2: Further empirical analysis of the tradeoff between customer service and routing
efficiency under different values the data set parameters pstart , pout and σ

We next analyze the performance of all heuristics under different values of α and the data set parameters
pstart , pout and σ . In Figure 13 we present the previously shown Pareto charts for all heuristic policies under
different settings of pstart . We observe that RP can approximately cut the gap between the a priori heuristic
and the perfect information bound in half. Approximately two thirds of that improvement can be achieved by
GP. When pstart is small (10%) the value of dynamic policies is higher and the marginal rate of substitution
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Figure 10: Average number of vehicles dispatched versus n, pstart , pout , and σ

25 35 50
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

n

nW
av

es

AP GP RP

10% 15% 25% 50%

pstart

20% 40%

pout

Lo Hi

σ

Figure 11: Average number of waves per vehicles dispatch versus n, pstart , pout , and σ
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Figure 12: Average number waves waited before initial dispatch versus n, pstart , pout , and σ
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Figure 13: Pareto charts showing each policy’s average f r and duration/order for different settings of pstart

between f r and duration/order is smaller. When pstart in higher (50%) there is less additional value in
implementing dynamic policies and the marginal rate of substitution becomes higher, implying that one has
to sacrifice less routing efficiency for a marginal increase in order coverage. We also see that as pstart grows
the system moves to the upper left, better for both f r and duration/order.

In Figure 14 we present the Pareto charts of all heuristics for each value of the conditional probability
of a order not showing up, pout . We observe that as pout increases all heuristics move to the right, a loss in
routing efficiency explained by the increased amount of uncertainty in the order arrival process that makes
a priori plans less reliable; this is especially true for problems maximizing fill rate, making the marginal
rate of substitution smaller. Dynamic policies provide more value as pout increases and the curves move
up in relation to AP, because they can better recover from unexpected order late arrivals and corresponding
changes in the route plans.

In Figure 15 we analyze the Pareto charts of all heuristics under the two settings of order ready wave
variability (σ ). We observe two effects as variability increases. First, all curves get wider, with a smaller
marginal rate of substitution. This implies that as arrival variability increases it is more expensive to gain
coverage and more sacrifices in efficiency have to be made. Also, we observe that AP and GP move down
as σ increases, meaning that our static policy and simple dynamic policy lose order coverage. This is not
the case of RP; again we see the importance of sophisticated dynamic policies as variability increases.

35



10 11 12 13 14 15 16 17 18
80

84

88

92

duration/order

fr
(%

)

AP
GP
RP
LB

10 11 12 13 14 15 16 17 18
80

84

88

92

duration/order

pout = 40%pout = 20%

Figure 14: Pareto charts showing each policy’s average f r and duration/order for different settings of pout
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