
The One-Dimensional Dynamic Dispatch Waves Problem

Mathias Klapp Alan L. Erera Alejandro Toriello

H. Milton Stewart School of Industrial and Systems Engieering
Georgia Institute of Technology

Atlanta, Georgia 30332
maklapp at gatech dot edu, {aerera, atoriello} at isye dot gatech dot edu

October 19, 2015

Abstract

We study same-day delivery (SDD) systems by formulating the Dynamic Dispatch Waves Problem
(DDWP), which models a depot where delivery requests arrive dynamically throughout a service day.
At any dispatch epoch (wave), the information available to the decision maker is (1) a set of known,
open requests which remain unfulfilled, and (2) a set of potential requests that may arrive later in the
service day. At each wave, the decision maker decides whether or not to dispatch a vehicle, and if so,
which subset of open requests to serve, with the objective of minimizing expected vehicle operating
costs and penalties for unserved requests. We consider the DDWP with a single delivery vehicle and
request destinations on a line, where vehicle operating times and costs depend only on the distance
between points. We propose an efficient dynamic programming approach for the deterministic variant,
and leverage it to design an optimal a priori policy with predetermined routes for the stochastic case.
We then show that fully dynamic policies may perform arbitrarily better than a priori ones, and propose
heuristics and dual bounds for this case.

Keywords: same-day delivery, dynamic dispatch, approximate dynamic programming

1 Introduction

E-commerce and the home delivery channel continue to grow within the consumer retail industry sector.

According to [50], the online sector accounted for 9% of the $3.2 trillion U.S. retail industry sales in 2013

and is forecast to grow 10% per year through 2018. Sales and density growth can help reduce last-mile

logistics costs. However, the online retail segment is extremely competitive and operates with very low

margins, driving a need for continued logistics optimization. Consider the case of Amazon. Its 2013 annual

report shows an operational margin of just 1% on annual revenue of $74.5 billion; among expenditures, cost

of sales accounts for the largest fraction at 73.5%, but fulfillment costs (11.6%) are also large [31].

1

Table 1: Examples of same-day delivery pilot programs in the US

Service What Charge/order US cities implemented

Amazon SDD items from warehouses $8.99, $5.99 members ($99/year)
ATL,BAL,BOS,CHI,DA-FW,
IND,LA,NY,PHI,PHO,SJ-SFO,
SEA,DC

Google Express items from associates free, but $10/month ($15 min order) SJ/SFO,NY,LA

Instacart personal shoppers $3.99 or $99/year ($35 min order)
ATL,AUS,BOS,CHI,DC,DEN,
HOU,LA,NY,PHI,SJ-SFO,SEA

Walmart to Go items from stores $10 BAL,DEN,MIN,PHI,SJ-SFO

One enhancement to customer service in this sector is same-day delivery (SDD). Several e-retailers

and logistics service providers have introduced programs in major US cities; see Table 1. We define SDD

as a distribution service where consumers place orders on the same day that they should be delivered. For

companies that implement SDD, it is imperative to both offer high levels of customer service and keep

logistics costs as low as possible.

Providing SDD services requires two core logistics processes: (1) order management at the stocking

location, including receiving, picking, and packing orders; and (2) order distribution from the stocking lo-

cation to delivery locations. To date, two classes of service providers have deployed SDD services: retailers

offering items primarily from owned stocks (in distribution centers or retail stores) such as Amazon and

Walmart, and logistics providers serving as intermediaries that pick up packages from stocking locations

and deliver them to customers, such as Google and Instacart as well as USPS, FedEx and UPS. Retailers

must manage both core logistics processes, while logistics providers are typically concerned with the second

one.

This research effort is a study of primary tradeoffs in SDD distribution. We formulate the Dynamic Dis-

patch Waves Problem (DDWP) as a Markov Decision Process (MDP). The DDWP models the dynamics

of a single dispatch facility (depot) where customer order requests arrive dynamically throughout an operat-

ing day. At any decision epoch, which we call a wave, the logistics operator maintains a set of known open

requests with known delivery destinations and a set of potential requests that may arrive before the end of

the day. At each wave, the operator decides whether or not to dispatch vehicles loaded with known orders,

and the vehicle routes for dispatched orders. The objective is to minimize expected operational costs and

expected penalties for unserved open requests at the end of the day. Such penalties could represent the cost

of direct dispatch or revenue lost due to unserved customers.

Dynamic optimization problems like the DDWP are those where only a subset of all relevant information

2

is known prior to the initial decision epoch, and the rest is revealed over time during the operating day. An

optimal solution to such problems is a dynamic policy that determines best decisions given the information

state available at each decision epoch. In contrast are simpler a priori policies that specify certain decisions

in advance, and may allow simple changes via recourse rules. A DDWP instance is characterized by its

degree of dynamism, a ratio of the amount of information revealed dynamically (online) to that available

offline; see [44]. When this ratio is large, dynamic policies may substantially outperform a priori policies.

We study the interaction between two important decisions in SDD distribution systems: dynamic dis-

patch and vehicle routing. Dispatch decisions refer to selection of the times at which vehicles are dispatched

and the orders that they deliver, while vehicle routing decisions refer to the sequences of deliveries for each

dispatched vehicle. Two fundamental tradeoffs exist. First, there is a tradeoff between waiting and dispatch-

ing a vehicle to serve requests. When a vehicle is dispatched, the queue of open requests is reduced but an

opportunity to serve future requests during the route is missed. On the contrary, when an available vehicle

is not dispatched, we reduce the time remaining in the operating day and potentially increase the likelihood

that future requests cannot be served. Second, there is a tradeoff between dispatching longer, time consum-

ing vehicle routes versus shorter ones. On one hand, a route serving many requests uses more total travel

time, and therefore keeps the vehicle away from the depot longer, but requires less time per customer visited.

On the other hand, a shorter route uses more time per customer, but returns to the depot faster and enables

the vehicle to be reused sooner for future orders.

To simplify the vehicle routing decisions, this paper focuses on problem instances where a single vehicle

is available to make deliveries to customer locations on the positive real line with the depot as the origin;

travel times and vehicle operating costs are proportional to distances between points.

We consider the following to be our main contributions.

1. We formulate the DDWP to capture the basic aspects of dynamic dispatch, order selection, and routing

decisions for same-day delivery.

2. We develop an approach for determining optimal a priori solutions to the stochastic one-dimensional

variant by reducing this problem to an equivalent deterministic problem where all customer request

arrival times are known in advance.

3. We show that, although a priori policies work well in practice, there exist problem instances for

which these solutions are arbitrarily worse than optimal dynamic policies. Accordingly, we provide

3

two schemes to obtain dynamic policies for the one-dimensional problem. The first is a rollout of

the a priori policy, and the second is an approximate dynamic programming approach that uses an

approximate linear program (ALP) to approximate the cost-to-go function. We empirically show the

benefits of dynamic policies with computational experiments over two sets of representative instances.

The remainder of the paper is organized in the following manner. Section 2 contains a literature review,

Section 3 formulates the model, and Sections 4 and 5 respectively cover a priori and dynamic policies. Fi-

nally, Section 6 outlines the results of a computational study, and we conclude with Section 7. An Appendix

contains all technical proofs not included in the body of this document.

2 Literature Survey

2.1 Vehicle Routing and Dispatch Problems

The deterministic Vehicle Routing Problem (VRP) and Traveling Salesman Problem (TSP) have been stud-

ied extensively; see e.g., the texts [6, 30] for the TSP and [19, 28, 54] for the VRP. Dynamic and stochastic

VRPs are problem extensions where some parameters are unknown during planning and/or operations. The

simplest stochastic VRP problems are a priori optimization models, where fixed operating (recourse) rules

are used to modify the solution during operation; see [14, 19, 26] for recent surveys. Dynamic and online

VRPs are problems where information is revealed over time during the operating period, and routing and

scheduling decisions are updated in response; see [34, 38, 44, 46, 52]. Different stochastic and dynamic

VRPs focus on uncertainty in different sets of parameters. Some examples are the VRP with stochastic

demands [2, 11, 29, 43, 49], the VRP with stochastic travel times [18, 35, 36, 39, 40, 41, 51, 53], and the

VRP with probabilistic customers [8, 15, 24, 32, 33, 37, 55].

A relevant problem in the literature that incorporates the dispatch dimension is the Dynamic Multiperiod

Routing Problem (DMPRP) [4, 5, 56], which consists of a distribution center dispatching orders with a sin-

gle vehicle and a planning horizon divided into time periods (typically days). Customer orders arrive online

at the beginning of each period with a geographical location, and each one has to be served within two

periods. The decision maker must choose which orders to postpone and which ones to serve immediately

in the vehicle’s route defined by a TSP. A recent extension called the Dynamic Multiperiod Vehicle Routing

Problem with Probabilistic Information (DVRPP) [3] covers the dynamic-stochastic case, where probabilis-

tic information about future requests arrival times and service time windows is available at each decision

4

epoch. In this case, there is a fleet of capacitated vehicles available at the depot, and each request demands

upon arrival a previously known product quantity that should be served within its service time window. The

problem is solved heuristically using a prize-collecting VRP model that outputs which orders to serve in

each decision epoch. The prizes of open requests are approximated as increasing functions of the proximity

to the service deadline and decreasing functions over the geographical closeness to potential future arrivals.

Although related to the DDWP, this model does not work for the same-day problem, since it assumes that

routing occurs between consecutive periods of potentially unlimited time duration. In the case of SDD, it is

fundamental to consider route duration constraints and incorporate how these constraints affect the quantity

and duration of future dispatch periods, e.g., shorter routes allow more dispatches per day. Moreover, a

model that intends to serve all requests ignores the relative importance between different requests.

The closest dispatch-related problem found in the literature to the DDWP is perhaps the VRP with

release dates (VRP-rd) [7, 16] that considers a deterministic problem with a depot dispatching orders with

previously known release dates. A release date specifies the earliest time when the order can be picked up

at the depot before it is transported to its customer’s location. In [7] the authors study simplified versions

of the problem, with two variants being particularly relevant to our work: one minimizes the time required

to serve all orders by a single vehicle, and another minimizes the total travel distance subject to a time

budget. The authors provide polynomial time algorithms for the cases in which requests are placed over

the line and other simplified topologies. In [16], the authors study an extension of the VRP-rd in a general

network topology that incorporates service time windows, capacity constraints and a homogeneous fleet

of capacitated vehicles. The authors provide heuristic solutions based on genetic algorithms combined with

local search procedures. Our problem differs from the VRP-rd by its dynamic-stochastic nature and its prize-

collecting features. Both elements are fundamental for SDD, where the problem’s context is stochastic and

where limited time resources do not allow full coverage of requests most of the time. We require a model

capable of selecting the least expensive set of orders to be left unattended or to be covered by more expensive

transportation modes.

In addition to same-day delivery with simplified routing costs, one-dimensional models have applica-

tion in other areas where a vehicle or machine’s movement is constrained along a single dimension; see

[22, 23, 57]. Also, our model is closely related to the Order Batching Problem (OBP) [25, 42], which deter-

mines optimal assignment of pick orders to batches and the pick tour sequence for each batch in warehouse

operations. The Dynamic Order Batching Problem (DOBP) is an extension with orders arriving dynamically

5

while the decision maker processes previous orders; see [13]. Recently, [17] present an analytical model to

determine the timing and the number of batches in an order fulfillment system. To the best of our knowl-

edge, none of these models allow a detailed selection of the orders within a batch, and solely contemplate

threshold rules such as consolidating the batch when a number (to be determined) of orders have arrived.

2.2 MDP and Approximate Dynamic Programming

Most dynamic and stochastic VRPs can be modeled as MDPs; see [47]. Optimizing MDPs that arise from

routing problems is usually intractable due to the curse of dimensionality. However, there are several com-

putationally efficient lower bounding techniques; see [21] for a survey. An example of a tractable bounding

procedure is the a posteriori bound [49] or Perfect Information Relaxation (PIR) [12] that disregards the

solution’s “non-anticipative” dynamics and finds the deterministic optimal cost for each possible realization

of the random parameters before computing this expected cost. Another bounding technique is the Approxi-

mate Linear Programming (ALP) method [20, 48] that looks for suboptimal solutions of the MDP’s dual LP

formulation. The fundamental idea is to eliminate the exponential number of state variables by enforcing

a dependence on a previously determined low-dimensional set of basis functions. Moreover, its solution

can be used as a cost-to-go approximation in heuristic policies. The ALP approach has been successfully

applied in stochastic routing before, e.g. [1, 53].

In terms of approaches for the VRP and similar dispatch problems, the curse of dimensionality necessi-

tates approximate dynamic programming (ADP) solution techniques, e.g., [27, 29, 43, 49]. One widely used

ADP method is to develop approximations for the optimal cost-to-go function and use it to select an ap-

proximately optimal action at any encountered state; see [9, 45]. Rollout algorithms [10] have been widely

applied for stochastic routing models, e.g., [29, 49, 53].

3 The One-Dimensional Dynamic Dispatch Waves Problem

3.1 Problem Definition

Consider a dynamic dispatch and routing problem for a single vehicle operating over a fixed-duration oper-

ating period (i.e., a day). The vehicle is dispatched from a depot, located at one end of a line segment, to

serve a set of customer delivery requests. After completing a route, the vehicle returns to the depot and may

be dispatched again until the end of the operating period. At each decision epoch, the vehicle (if available)

6

may be dispatched to serve any open customer requests, those that have arrived and are ready for dispatch.

In addition to information about open orders, probabilistic information describing unknown future order

requests is also available. The objective is to minimize vehicle operating costs and penalties for unserved

requests. We consider a specific class of problems of this type:

1. Let T := {1, . . . ,T} be the set of waves (decision epochs) during the operating period, where waves

are counted backwards so that the waves number represents the “waves-to-go” before t = 0, the dead-

line for the vehicle to return to the depot. Let T0 = T ∪{0}.

2. Let N := {1, . . . ,n} be the set of all potential customer requests i ∈ N, where each i is characterized

by: (1) a known destination represented by a round-trip travel time of di from the depot; (2) a penalty

cost pi > 0 that must be paid if the request arrives but is not served by t = 0; and (3) a random arrival

time τi drawn from a request-dependent distribution with support T ∪ {−1}, where −1 indicates

“no arrival”. We asume that order arrival times are independent between different customers, which

is reasonable, since one customer’s behavior should not affect the others’. Let N be ordered such

that di ≤ d j for i < j. Note that our probabilistic model enumerates all possible request arrivals.

Another way of modeling this problem is to define a fixed set of locations at which orders appear with

potentially multiple arrivals per wave. This alternative probabilistic model is implicitly captured in

our setting by adding several requests with an identical customer location.

A vehicle located at the depot at any wave t ∈ T can be dispatched to serve some subset S of the

set of open (revealed and unattended) requests R ⊆ {i ∈ N : τi ≥ t} at wave t. Once a vehicle leaves the

depot at wave t, it cannot serve any request arriving at τ < t until it returns for reloading; we assume

that once dispatched, a vehicle must finish its route and cannot serve any other request until it returns for

reloading. Serving request set S requires time, and we assume that no additional service time is required

beyond vehicle travel time. Given request locations along the line, the time required by the vehicle to serve S

is then dS := maxi∈S di; we assume the vehicle operating cost for this dispatch is αdS, where α is the cost per

unit distance. A vehicle dispatched at t returns to the depot at t−dS. S is therefore constrained by dS ≤ t, but

we assume no other constraints on S, such as capacity, consistent with motivating SDD applications where

time is the binding resource. Total system cost is measured by the sum of the vehicle operating costs over

all dispatches plus the sum of the penalties pi for all i ∈ R at the terminal wave (t = 0).

For purposes of analysis, we suppose in this paper that the di values are scaled such that they are all

integer, and time between consecutive waves is constant and equal to the time required for the vehicle to

7

complete a round trip with dispatch travel time 1.

3.2 MDP formulation of the DDWP

We now formulate an MDP for the DDWP. At each wave t ∈T0, the system state is given by (t,R,P) ∈S ,

where S is the state space, t represents the waves-to-go, R is the set of open requests, and P is the set of

remaining potential requests with an unknown arrival time τ < t. Requests not in R or P have been already

served and so the pair (R,P) belongs to the set Ξ := {(R,P) : R∪P⊆ N,R∩P = /0}. The maximum number

of waves and the three possible states for each requests (open, potential and served) define a bound on the

cardinality of the state space given by O(3nT).

In any non-terminal state (t,R,P) with t ≥ 1, we choose between waiting with the vehicle at the depot,

and dispatching the vehicle to serve a set of requests S ⊆ R, which is equivalent to selecting a route of

duration d ≤ t serving the set {i ∈ R : di ≤ d}. Define then the action space A t
R := {di | ∀i ∈ R : di ≤ t},

with cardinality O(n). Selecting an action d in a given state (t,R,P) transforms the state as follows. If

a dispatch of length d is selected, R is partitioned into the new set of unattended requests Rd := {i ∈ R :

di > d} and the set of served requests R̄d = R\Rd . Time moves forward to t−d and state (t,R,P) becomes

(t−d,Rd∪F t
d ,P\F t

d) where F t
d := {i∈N : t > τi ≥ t−d} is the set of newly arriving requests. If no dispatch

occurs (d = 0), the new state is (t−1,R∪F t
1 ,P\F t

1).

Let Ct(R,P) be a set function representing the minimum expected cost-to-go at state (t,R,P) ∈S . The

optimal expected cost C∗ is defined recursively over t ∈T0 in (1), where R̂ is the set of open requests at the

start of the horizon (t = T). First, at t = 0 the cost-to-go is simply the sum of penalties of unserved requests,

and subsequently, for each t ∈ T the cost-to-go at state (t,R,P) is equal to the minimum cost between no

dispatch and a dispatch to any distance d ∈A t
R:

C0(R,P) = ∑i∈R pi ∀(R,P) ∈ Ξ (1a)

Ct(R,P) = min
d∈A t

R∪{0}

{
αd +EF t

d

[
Ct−max{1,d}

(
Rd ∪F t

d ,P\F t
d
)]}

, ∀t ∈T ,(R,P) ∈ Ξ (1b)

C∗ = ER̂

[
CT
(
R̂,N \ R̂

)]
. (1c)

Formulation (1) is a generalization that considers an uncertain set R̂, meaning that the initial set of open

8

requests is not disclosed when computing the problem’s expected cost, but a useful special case is when R̂

is known. The optimal action d∗t (R,P) ∈A t
R ∪{0} that attains Ct(R,P) is then defined as a set function for

each state (t,R,P). The vector of optimal actions for each state is called an optimal policy. We can also

express optimality conditions using a standard LP dual reformulation of (1),

C∗ = max
{C≥0}

ER̂

[
CT
(
R̂,N \ R̂

)]
(2a)

s.t. C0(R,P)≤ ∑i∈R pi, ∀(R,P) ∈ Ξ (2b)

Ct(R,P)≤ EF t
1

[
Ct−1

(
R∪F t

1 ,P\F t
1
)]
, ∀t ∈T ,(R,P) ∈ Ξ (2c)

Ct(R,P)≤ αd +EF t
d

[
Ct−d

(
Rd ∪F t

d ,P\F t
d
)]
, ∀t ∈T ,(R,P) ∈ Ξ,d ∈A t

R, (2d)

which very clearly shows the difficulty in finding an optimal policy; formulation (2) has exponentially

many variables, exponentially many constraints and exponentially many terms in the expectations.

4 A Priori Solutions for the Stochastic DDWP

In this section we develop a priori policies for the DDWP defined in (1). We begin studying the deterministic

version of the problem to understand the structure of optimal a priori policies.

4.1 The Deterministic Case

Suppose arrivals are known with certainty at the beginning of the horizon, and let the set of arriving requests

be NA := {i ∈ N : τi > 0}. Requests still arrive dynamically over the operating period, and thus it remains

infeasible to serve a request with a vehicle dispatch prior to its arrival time.

Figure 1a gives an instance where arrival times and destinations for each request i ∈ NA are represented

by a coordinate (τi,di) in a distance versus time graph. Also depicted is an example vehicle dispatch plan.

The vehicle starts at the depot at wave T and waits until t1 when it is dispatched a distance x. Then, it returns

at t2 = t1− x and waits until t3 to execute a second dispatch of distance y, and so on. Requests covered by

this operation are those with coordinates inside the shaded areas. We now state and prove three properties

that at least one optimal vehicle dispatch plan should satisfy:

9

time

di
st

an
ce

x
y

z

T t1 t2 t3 t4 t5 0

•

•

•
•

•

•
•

•

•
•
•

•
•

•
•

•

•

•

(a) Suboptimal Operation.

time

di
st

an
ce

y

z′

T t1 t2 t3 t4 t5 0

•

•

•
•

•

•
•

•

•
•
•

•
•

•
•

•

•

•

(b) Operation that could be optimal.

Figure 1: Examples of vehicle operations described in the distance versus time graph.

Property 4.1 (Decreasing consecutive dispatches). For all dispatch pairs starting at two waves t > t ′ with

respective dispatch durations d and d′, we have d > d′.

Proof. If d′ ≥ d, by deleting the dispatch at t we reduce operational cost with unaltered coverage.

Property 4.2 (No wait after a dispatch). The vehicle does not wait once the first dispatch has occurred.

Proof. If a solution waits for w waves after a dispatch at t, we can shift forward each vehicle dispatch that

occurs prior to wave t exactly w waves in time without reducing the set of covered requests.

Property 4.3 (Dispatch duration equals round-trip time to some request). The duration of each dispatched

route equals dS = maxi∈S di, where S⊆ R is the set of requests served by the route.

Proof. If d > dS, by setting d = dS we reduce operational cost with unaltered request coverage.

Figure 1b depicts an operation that satisfies all properties. A direct consequence of these properties is

that we can formulate a deterministic dynamic program with a reduced state space.

Let the set of possible dispatch durations be D := {di | ∀i ∈ NA : di ≤ τi}. We can find an optimal dis-

patch plan via a dynamic program with states (t,x), where t is the current wave and x is the duration of

the previous dispatch completed at wave t (x = 0 if no dispatches have occurred prior to t). Figure 2 is an

example of the system at state (t,x), where the last dispatch was of duration x at wave t + x and covered all

requests shaded in light gray. Requests shaded in medium gray will never be served by an optimal dispatch

plan satisfying the previous three properties and are thus lost, and the requests shaded in dark gray could be

covered by the next dispatch at wave t.

An action given state (t,x) is defined as the next dispatch duration d ∈At,x, where

At,x = {di | ∀i ∈ NA : di ≤ t,di < x, t ≤ τi < t + x} , ∀x ∈D : t + x≤ T (3a)

10

time
di

st
an

ce

unknown

covered requests action
dependent

lost requests

futurex
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

T t + x t 0

Figure 2: Example of state and action for the deterministic DDWP.

At,0 = {0}∪{di | ∀i ∈ NA : di ≤ t, τi ≥ t} . (3b)

If no dispatches have occurred by t (x = 0), an optimal vehicle operation may wait until t−1, i.e., d = 0.

Define Ct(x) as the cost-to-go function in state (t,x). Optimality equations are given by (4), where CT (0)

is the minimum cost for the deterministic DDWP:

C0(x) = ∑
i∈NA

pi, ∀ x ∈D ∪{0} (4a)

Ct(0) = min
d∈At,0

{
αd− ∑

i∈NA: di≤d, τi≥t
pi +Ct−max{1,d}(d)

}
, ∀ t ∈T (4b)

Ct(x) = min
d∈At,x

{
αd− ∑

i∈NA: di≤d, t≤τi<t+x
pi +Ct−d(d)

}
, ∀ t ∈T , x ∈D : t + x≤ T. (4c)

In this dynamic program, we initialize by assuming that all arrived requests are not served by t = 0.

When we execute a dispatch of duration d, we incur its operating cost while also saving the penalties of

the requests served. This dynamic program has O(nT) states, O(n) possible actions for each state, and the

cost of each action can be evaluated in constant time by computing its cost incrementally over the dispatch

distance. So, these equations are solvable in O(n2T) operations.

4.2 The stochastic case and a priori policies

Consider again the stochastic DDWP defined in (1). We next develop the optimal static a priori solution in

which a schedule specifying the waves at which to dispatch the vehicle and the duration of each dispatch is

determined only with information revealed at the start of the horizon in wave T .

11

The operating cost of such an a priori solution is known, and the penalties paid for unserved requests

depend on the future arrivals. This observation motivates an approach for determining an a priori solution

that minimizes expected cost. This problem is equivalent to solving a deterministic DDWP instance in

which each potential request i ∈ N is copied T times and assumed to arrive at every wave t ∈ T for which

its probability of arrival is positive, with an adjusted penalty for not serving the request at wave t equal to

piP(τi = t|τi < T). Known requests (τi = T) are not copied and arrive only at wave T with probability one.

Thus, the recursive equations to find an optimal a priori policy are a natural extension of the deterministic

system (4),

CAP
0 (x) = ∑

i∈N:τi=T
pi + ∑

i∈N:τi<T
P(τi > 0 | τi < T)pi, ∀x ∈D ∪{0} (5a)

CAP
t (0) = min

d∈At,0

αd − ∑
i∈N:

τi=T, di≤d

pi − ∑
i∈N:

τi<T, di≤d

P(τi ≥ t|τi < T)pi +CAP
t−max{1,d}(d)

 , ∀t ∈T (5b)

CAP
t (x) = min

d∈At,x

αd − ∑
i∈N:

τi<T, di≤d

P(t ≤ τi < t + x|τi < T)pi + CAP
t−d(d)

 , ∀t ∈T ,x ∈D : t + x≤ T,

(5c)

where the optimal expected cost is given by CAP
T (0). Note that this policy is found by solving a deterministic

DDWP, and so, it satisfies Properties (4.1), (4.2) and (4.3). In addition, we can preprocess the values of all

probabilities in (5) and keep the O(n2T) running time.

Our a priori problem requires knowledge of available orders at wave T . To estimate the expected cost of

implementing this heuristic policy, we simulate a set m ∈ {1, . . . ,M} of vectors τ(m); each one containing

an arrival time τi(m) for each order i ∈ N. We solve this heuristic for each realization m ∈ M assuming

that the set {i ∈ N : τi(m) = T} is known, and then we take the average cost over all M realizations. For

consistency in computational results, we will use the same M realizations when comparing performance of

lower bounds and different solutions for a given instance.

We can improve the performance of an a priori policy by allowing simple recourse actions during the

operation. Let a policy be represented by the ordered set of k dispatches, each with dispatch distance d j and

wave t j: {(d j, t j)}k
j=1. The policy satisfies t j− t j+1 = d j and d j > d j+1 for j = 1, . . . ,k− 1. Consider the

following recourse actions:

12

1. Postponement and cancellation: Consider dispatch j scheduled at wave t j. Any open request i with

di ≤ d j+1 can be covered by dispatch j+1. So, if no request i has arrived since the previous dispatch

time t j−1 with d j+1 < di ≤ d j, then postpone dispatch j by modifying its scheduled time t j ← t j−1

and its duration d j← d j−1 if d j−1 > d j+1, otherwise cancel dispatch j. A rescheduled dispatch is

considered again for postponement and cancellation iteratively.

2. Marginal profit adjustment: Given a dispatch j that has not been postponed or cancelled, adjust its

distance d j to maximize its marginal profit. This is accomplished by choosing the actual dispatch

distance d equal to the location dr of an open request r ∈ N with d j+1 < dr ≤ d j, such that it max-

imizes the following marginal profit V mg(r, t) :=
(

∑{i∈N:d j+1<di≤dr, τi≥t} pi−dr

)
. If V mg(r, t) ≤ 0 for

each possible request r, then again postpone the dispatch to t j ← t j− 1 with new dispatch duration

d j← d j−1 if d j−1 > d j+1, otherwise cancel dispatch j. If the dispatch is adjusted such that d < d j,

we also postpone it to time t j+1 +d to potentially serve more customers with no increase in cost.

5 Dynamic Policies for the Stochastic DDWP

A priori policies, particularly when adjusted via recourse actions, may yield reasonable solutions to many

problems. However, there exist instances for which an optimal adjusted a priori policy is arbitrarily worse

than an optimal dynamic policy.

Pathological A Priori Instances Consider a family of instances with 2 requests, T = 4, and a parameter

z ≥ 0. Let locations be d1 = 1 and d2 = 2, and penalties p1 = z+1 and p2 = z2 + z+2. Request 1 arrives

at τ1 = 1, while request 2 arrives at τ2 = 3 with probability u = z
z+1 and τ2 = 2 with probability v = 1

z+1 .

There are four possible a priori solutions (See Figure 3). Either of the last two options (c) or (d) are optimal

a priori policies with simple recourse, and both have expected cost of 3+ z.

t

di
st

.

4 3 2 1 0

1

2
u v

(a)

t

di
st

.

4 3 2 1 0

1

2
u v

(b)

t

di
st

.

4 3 2 1 0

1

2
u v

(c)

t

di
st

.

4 3 2 1 0

1

2
u v

(d)

Figure 3: Feasible a priori dispatch options.

13

The optimal dynamic policy is different. If request 2 arrives at t = 3, it dispatches to d = 2 at t = 3 and

then d = 1 at t = 1 for total cost of 3; otherwise it dispatches to d = 2 at t = 2 for cost of 3+ z. The expected

cost of this policy is 3u+(3+ z)v = 3+ z
z+1 < 4. As z→∞, the optimal cost is bounded, while any a priori

policy’s cost is unbounded.

5.1 A Priori-Based Rollout Policy

One approach to build a dynamic policy is to roll out the a priori policy. At each wave t ∈ T when the

vehicle is available, we recompute an optimal a priori policy given updated information regarding requests

(open, potential, and served); if the policy dictates a dispatch d > 0 at t, the decision is executed and a new

a priori policy is then computed at t−d, otherwise a new a priori policy is computed at t−1. Computing

such a rollout policy requires O(n2T 2) operations, i.e., it solves O(T) a priori problems.

5.2 Approximate Linear Programming for the DDWP

Heuristic dynamic policies can be generated via the dual MDP reformulation (2). Because this formulation

has exponentially many variables and constraints, the ALP approach restricts its feasible region in such a

way that the resulting optimization model is tractable and so it yields a lower bound for the optimal expected

cost-to-go that can be used within a rollout policy.

We can generate a lower bound CALP
t (R,P) for the cost-to-go function of the DDWP at any feasible

state (t,R,P) by representing Ct(R,P) as a linear function of a predetermined set of basis functions, and

then solving the resulting restriction of (2) to obtain multipliers for these basis functions. Let Ct(R,P) ≈

CALP
t (R,P), where

CALP
t (R,P) := ∑

i∈R
at

i +∑
i∈P

bt
i−

t

∑
k=1

vk, (6)

and where at
i represents the cost of request i if it is open at wave t, bt

i represents the cost of potential request

i if it hasn’t arrived by wave t, and vk represents the incremental value of each wave k.

Proposition 5.1. Applying the restriction (6) to (2) yields a model equivalent to

CALP = max
{a,b,v,s,u}

∑
i∈N

(
P(τi = T)aT

i +P(τi < T)bT
i
)
−

T

∑
t=1

vt (7a)

s.t. a0
i = pi,b0

i = 0, ∀i ∈ N (7b)

14

sit ≥ at
i−at−1

i , ∀i ∈ N, t ∈T (7c)

sit ≥ bt
i− fitat−1

i − f̄itbt−1
i , ∀i ∈ N, t ∈T (7d)

∑
i∈N

sit ≤ vt , ∀t ∈T (7e)

ud
it ≥ at

i−1(di>d)a
t−d
i , ∀i ∈ N, t ∈T ,d ∈A t

N (7f)

ud
it ≥ bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i , ∀i ∈ N, t ∈T ,d ∈A t

N (7g)

∑
i∈N

ud
it ≤

t

∑
k=t−d+1

vk +αd ∀t ∈T ,d ∈A t
N (7h)

u,s≥ 0, (7i)

where fit := P(τi = t−1 | τi < t) is the conditional probability that potential request i at wave t arrives at

the next wave, gd
it := P(τi ≥ t−d) | τi < t) is the conditional probability that potential request i at wave t

arrives in one of the next d waves, and also ḡd
it := 1−gd

it and f̄it := 1− fit .

Any set of values {a,b,v} used to compute CALP
t (R,P) which are feasible for (7b)-(7i) yield a lower

bound of the cost-to-go function at any state (t,R,P): CALP
t (R,P)≤Ct(R,P). In particular, we have CALP ≤

C∗.

The proposition’s proof is in the appendix. Model (7) has interesting properties which give economic

intuition and accelerate computation times; each of these properties is proved in the appendix.

Property 5.2 (Bounds). We may assume 0 ≤ at
i ≤ pi and 0 ≤ bt

i ≤ gt
it pi,∀i ∈ N, t ∈ T0 without loss of

optimality.

Intuitively, Property 5.2 implies that the individual cost per open request at any wave is nonnegative and

cannot exceed the penalty for leaving the request unattended, and that the individual cost for any potential

request at any wave is nonnegative and cannot exceed the penalty discounted by the arrival probability.

Property 5.3 (Lost requests). Without loss of optimality, we may assume that at
i = pi for any i ∈ N, t ∈T0 :

di > t, and bt
i = gt

it pi for any i ∈ N, t ∈T0 : di ≥ t.

Property 5.3 says that the cost of having an open request i at time t with an impossible dispatch (di > t)

is equal to pi. A similar idea motivates the expression for bt
i .

The following theorem, also proved in the appendix, describes the performance of the ALP lower bound

in the deterministic case.

15

Theorem 5.4 (Strong duality for the deterministic case). Assume request i’s arrival wave τi is deterministic

for each request i∈N. Then the bound given by (7) is tight, i.e., equal to the optimal cost of the deterministic

DDWP given in (4).

The result gives further motivation to use ALP for the DDWP, since the approximation is able to recover

optimality in the deterministic case. Furthermore, it relates the ALP and the a priori solution: if we trans-

form a stochastic instance into a deterministic one as described in Section 4, the ALP matches the a priori

solution, and both can be used heuristically. However, the ALP can also be used without the transformation,

so it can be viewed as a generalization of the a priori rollout policy.

We next apply (7) to approximate the optimal action d∗t (R,P). Given a feasible (a,b,v) to (7b)-(7i), we

have a closed linear form lower bound for the expected cost-to-go function measured after a decision with

dispatch distance d ∈A t
R has been taken via

EF t
d

[
Ct−d

(
Rd ∪F t

d ,P\F t
d

)]
≥ EF t

d

[
CALP

t−d

(
Rd ∪F t

d ,P\F t
d

)]
= EF t

d

[
∑i∈Rd∪F t

d
at−d

i +∑i∈P\F t
d

bt−d
i −∑

t−d
k=1 vk

]
= ∑i∈Rd

at−d
i +∑i∈P

(
gd

ita
t−d
i + ḡd

itb
t−d
i

)
−∑

t−d
k=1 vk. (8)

A similar expression can be obtained to underestimate the expected cost-to-go measured after the vehi-

cle waits for one wave at the depot. We use these bounds to compute an approximately optimal action

dALP
t (R,P).

Any feasible set of values {a,b,v} provides an underestimate of the expected cost-to-go in (8). In

particular, the tightest lower bound is achieved when maximizing (8) subject to (7b)-(7i). This is a post

state and decision re-optimization of the ALP in which the values of {a,b,v} are recomputed at each wave

t when the vehicle is ready at the depot, and for each potential action d ∈ A t
Rt(m) ∪{0}. We compute the

approximate optimal action by

dALP
t (R,P) = argmin

d∈A t
R∪{0}

max{(a,b,v)∈(7b)−(7i)}∑i∈R at−1
i +∑i∈P

(
fitat−1

i + f̄itbt−1
i

)
−∑

t−1
k=1 vk, if d = 0

αd +max{(a,b,v)∈(7b)−(7i)}∑i∈Rd
at−d

i +∑i∈P
(
gd

ita
t−d
i + ḡd

itb
t−d
i

)
−∑

t−d
k=1 vk, if d ∈A t

R

.

(9)

This involves solving O(nT) linear programs sharing the same feasible set of solutions. Its performance

can be improved by applying LP warmstart and ruling out suboptimal dispatch distances (see the appendix

for details). The procedure is repeated for each realization m = 1, . . . ,M of arrivals to estimate its expected

16

cost.

6 Computational Experiments

We present two sets of computational experiments using different families of randomly generated instances.

Our goal is to test the quality of the various heuristics and to obtain qualitative insights regarding solutions.

The two sets of experiments differ in their models of the request arrival process. In the first set, we assume

that the conditional likelihood of a request arrival by the next dispatch at wave t is constant over time but

may vary by request. In the second set, we use an arrival distribution that assigns probabilities for the arrival

time (or the non-arrival event) for each request using a mean arrival that varies by request. All heuristics

were programmed in Java and computed using a 2.1GHz Intel Core i7-3612QM processor with 8 GB RAM,

using CPLEX 12.4 when necessary as the LP solver.

Table 2 summarizes the lower bounds and heuristic policies’ costs that we computed for the instances in

this study. We do not include the ALP lower bound, as our preliminary experiments revealed it to be weaker

than the PIR bound. Similar behavior has been observed in other stochastic routing contexts, e.g., [53].

For each particular instance, we simulated M = 100 realizations of the arrival time vector τ , and use this

common set to estimate lower bounds and policies’ expected costs via Monte Carlo sampling.

Table 2: Lower bounds and heuristic policies’ costs computed

Type Procedures

Lower bound perfect information relaxation (PIR)
A priori policies Static a priori policy (AP) & a priori policy with recourse actions (APR)
Dynamic policies dynamic a priori policy rollout (DAP) & dynamic ALP policy (DALP)

6.1 Design of Instance Set 1: Stationary Conditional Arrival Probability

The first set of experimental instances model arrivals using a stationary conditional arrival distribution for

each request. Therefore, for each i ∈ N, the probability that it arrives at wave t given that it has not yet

arrived is independent of t, i.e., P(τi = T) = P(τi ≥ t−1 | τi < t) = θi and P(τi =−1) = (1−θi)
T−1.

We construct instances with different size, geography, and time flexibility as follows. Let (n, `,r) define

an instance where n is the number of potential requests over the horizon; ` is the maximum distance between

a request and the depot; and r := T/` is the ratio between the total number of waves T and `. We consider

17

all combinations of n ∈ {5,10,20,40,60,80,100}, ` ∈ {5,10,20}, and r = {1,2,3} and generate 20 random

instances for each combination by varying the vectors {θi}, {pi}, and {di} as

{θi}: probability parameter θi for each i drawn i.i.d. from a continuous uniform distribution, U(1
2T ,

2
T);

{pi}: penalty parameter pi drawn with equal probability from the values {0.25`,0.5`,0.75`,`}

{di}: distance parameter di drawn with equal probability from the values {1, . . . , `} .

6.2 Results for Instance Set 1

Figure 4 reports the average duality gap between the PIR bound and the optimal expected cost for small

instances (n ∈ {5,10}) where the fully dynamic-stochastic problem is solvable to optimality.

1-
5 10 20 2-
5 10 20 3-
5 10 20

90
91
92
93
94
95
96
97
98
99

100

r− `

%
G

ap
=

10
0(

bo
un

d
op

t.
)

(a) n = 5

1-
5 10 20 2-
5 10 20 3-
5 10 20

90
91
92
93
94
95
96
97
98
99

100

r− `

%
G

ap
=

10
0(

bo
un

d
op

t.
)

(b) n = 10

Figure 4: Percentage gap between PIR lower bound and optimal solution values for Instance Set 1

Table 3: Overall performance of heuristics in Instance Set 1

Upper Bound %GAP vs OPT (small instances) %GAP vs lower bound Time per sample-instance (secs)

AP 11.53% 12.14% 0.0124
APR 5.27% 9.24% 0.0122
DAP 1.97% 6.59% 0.1489
DALP 1.65% 6.42% 0.5869

Table 3 presents average gap and solution times for each heuristic. In case of the ALP-based policy

(DALP), we employed a hybrid approach that executes DAP until the operation reaches wave x` and, af-

terwards, executes an ALP-based policy. The motivation is the two policies’ complementary behavior. The

ALP tends to be too conservative initially, when the remaining horizon includes many possibilities it has

to under-approximate, while DAP simply assumes “averages” for the future; conversely, towards the end of

18

the horizon the ALP can more accurately assess possible future recourse actions, and thus can make better

decisions. Also, the linear programs in the ALP tend to have highly degenerate polytopes for instances with

high flexibility, making them difficult to solve. After searching over a grid of different values in preliminary

experiments, we concluded that x = 1.1 yields the best gap while still keeping computation times low. This

contrasts with naive implementations of ALP policies, which can be computationally demanding.

For small instances with n = 5 or n = 10, Figure 5 shows the average relative gap to the optimal solution.

The dynamic a priori policy rollout (DAP) and the dynamic ALP-based policy (DALP) dominate the a priori

solutions and achieve an average gap of 1.97% and 1.65%, respectively.

5-
1 2 3

10
-1 2 3

20
-1 2 30

2
4
6
8

10
12
14
16
18
20

l− r

%
ga

p
=

10
0(

bo
un

d
op

t.
−

1)

DALP DAP AP APR

(a) n = 5

5-
1 2 3

10
-1 2 3

20
-1 2 30

2
4
6
8

10
12
14
16
18
20

l− r

%
ga

p
=

10
0(

bo
un

d
op

t.
−

1)

DALP DAP AP APR

(b) n = 10

Figure 5: Average percentage gap between heuristic solution costs and optimal costs for Instance Set 1

For larger instances, the gap is computed with respect to the PIR bound. Figure 6 details average gaps

over all classes of instances.

5-
5 10 20

10
-5 10 20

20
-5 10 20

40
-5 10 20

60
-5 10 20

80
-5 10 20

10
0-

5 10 20

0
2
4
6
8

10
12
14
16
18
20
22
24
26

n− `

%
ga

p
=

10
0(

bo
un

d
lb
−

1)

DALP DAP APR AP

(a) r = 1

5-
5 10 20

10
-5 10 20

20
-5 10 20

40
-5 10 20

60
-5 10 20

80
-5 10 20

10
0-

5 10 20

0
2
4
6
8

10
12
14
16
18
20
22
24
26

n− `

%
ga

p
=

10
0(

bo
un

d
lb
−

1)

DALP DAP APR AP

(b) r = 2

5-
5 10 20

10
-5 10 20

20
-5 10 20

40
-5 10 20

60
-5 10 20

80
-5 10 20

10
0-

5 10 20

0
2
4
6
8

10
12
14
16
18
20
22
24
26

n− `

%
ga

p
=

10
0(

bo
un

d
lb
−

1)

DALP DAP APR AP

(c) r = 3

Figure 6: Average percentage gap between heuristic solution costs and lower bound for Instance Set 1

As expected based on each heuristic’s recourse possibilities, APR outperforms AP and both are outper-

19

formed by the two dynamic policies (DAP and DALP). Also, the gap differences between AP, APR and the

dynamic policies decrease with n. This suggests that dynamic solutions produce a bigger gap improvement

for instances with more request arrival granularity, i.e., where an early or late arrival can significantly im-

pact costs unless corrective actions are taken. Conversely, for instances with more requests the marginal

value of dynamic solutions is smaller. This may be due to risk pooling effects between requests, e.g., if

one out of 100 requests arrives early, another one will likely arrive late and the relative disturbance will be

minor. Moreover, the relative gap of both dynamic policies as a function of n reaches a maximum and then

decreases as n grows. This confirms their effectiveness for large n. Also, all four heuristics’ gaps increase

as a function of r; the level of flexibility translates into solution complexity for our heuristics. Additionally,

the gap tends to increase with `; this is likely related to an increase in the problem’s complexity. Finally, the

ALP-based policy has an average gap smaller than DAP. For less flexible instances (r = 1) both approaches

average a relative gap of 3.4%, but when the variability and recourse flexibility increases to r = 2 and r = 3

it improves over DAP, from 7.3% to 7.1% for r = 2 and from 9.0% to 8.8% for r = 3. Although small, this

improvement was consistently observed across all instances.

6.3 Design of Instance Set 2: Uniform Arrivals

The previous arrival distributions defined by a single parameter could be hiding interesting interdependen-

cies between mean, variance, probability of arrival, and degree of dynamism. We defined a second set of

experiments with a fixed number of requests (n = 20), waves (T = 30) and maximum location (`= 10). The

distance vector d and penalty vector p are set as in the previous experiments, but arrivals have distributions

with a probability w of arrival at the beginning of the horizon (i.e., the degree of dynamism), a probability

q of not showing up, and a discrete uniform probability 1−w−q
(min{T−1,µi+v}−max{1,µi−v})+1 of arriving during the

operation at wave t = max{1,µi− v}, . . . ,min{T − 1,µi + v}, where µi is a request-dependent parameter

drawn i.i.d. from a discrete uniform distribution U(0,T −1) for each i ∈ N. The parameter v represents the

arrival variability (half of the arrival range). We created 20 instances for each set of parameters (v,q,w) in

the set {(v,q,w) : v = {0,1,2,4,8,30},q = {0,0.2,0.4},w = {0,0.2,0.4,0.6,0.8,1} : w+q≤ 1}.

6.4 Results for Instance Set 2

Table 4 presents overall results for each heuristic over the second set of experiments. We notice that our

simple recourse rules in APR capture 58% = 7.54−5.62
7.54−4.24 of the total gap improvement that the best dynamic

20

Table 4: Overall performance of heuristics in Instance Set 2.

Upper Bound %GAP Time per sample-instance (secs)

AP 7.54% 0.0006
APR 5.62% 0.0006
DAP 4.46% 0.0066
DALP 4.24% 0.442

heuristic captures over the static solution AP. Figure 7 presents average relative gaps over instances with

different settings of parameters q−w or v.

0.
0-

0.
0

0.
0-

0.
2

0.
0-

0.
4

0.
0-

0.
6

0.
0-

0.
8

0.
0-

1.
0

0.
2-

0.
0

0.
2-

0.
2

0.
2-

0.
4

0.
2-

0.
6

0.
2-

0.
8

0.
4-

0.
0

0.
4-

0.
2

0.
4-

0.
4

0.
4-

0.
60

2
4
6
8

10
12
14
16
18

q−w

%
G

A
P
=

10
0(

va
lu

e
lb
−

1) DALP
DAP
APR
AP

0 1 2 4 8 30
0

2

4

6

8

10

12

v

%
G

A
P
=

10
0(

va
lu

e
lb
−

1)

DALP
DAP
APR
AP

Figure 7: Average percentage gap between heuristics cost and lower bound in Instance Set 2.

From these graphs we conclude that the relative gaps of all four policies decrease as w increases; the

more information available at the initial wave, the closer we can get to a deterministic problem. There is

zero gap in the extreme deterministic cases (w+q = 1). The value of dynamic solutions also decreases when

w increases, which is expected, since a smaller w implies a larger degree of dynamism and more importance

is placed on recourse actions. Regarding the request arrival probability, the gap increases with q (unless

w+ q = 1). This means that it is harder to optimize an instance for which there is a bigger probability

of no arrival. The value of dynamic solutions also grows with q. With respect to the variability of the

instance, the gap increases as v increases. This may be due both to a decrease in the lower bound’s quality

and to an increase in the optimal expected cost. Finally, the dynamic heuristics yield larger marginal costs

savings when v increases. This means that the more variability the system has, the more important it is to

implement a dynamic solution. There is also a range of intermediate variability for which DALP clearly

21

dominates DAP. In this range, the additional complexity of ALP yields the most benefit. Table 5 provides

four examples of instance families within this rage; their average percent reduction in relative gap of DALP

over DAP is 15.0%.

Table 5: Average gap percent reduction of DALP for cases with intermediate variability in Instance Set 2.

Family (q,w,v) DALP %GAP DAP %GAP % reduction over DAP

(0.4, 0.2, 4) 8.23% 9.67% 14.9%
(0.4, 0.2, 8) 10.79% 12.41% 13.1%
(0.4, 0.4, 4) 7.46% 8.95% 16.6%
(0.4, 0.4, 8) 8.68% 10.31% 15.8%
Aggregate 8.79% 10.34% 15.0%

7 Conclusions

We have formulated the dynamic dispatch waves problem (DDWP) to capture the basic aspects of dispatch

and routing decisions for same-day delivery. This papers initiates work on the DDWP by studying the

single-vehicle stochastic case where customer destinations are placed over the line.

We develop a set of tractable solution policies that differ in their solution dynamism, from an a priori

solution to fully dynamic policies. Our computational experiments indicate that the performance of an a

priori policy is good, especially when we include heuristic improvements. In computational tests over two

instance sets this policy yields an expected cost within 9.24% and 5.62% of the best lower bound. Never-

theless, we prove that the benefit of a fully dynamic policy can be unbounded in the worst-case scenario.

Accordingly, we proposed and experimentally tested two dynamic policies that differ by the nature of the

approximate cost-to-go function: the rollout of the a priori solution and an ALP-based dynamic policy. The

rollout of the a priori policy computes this policy at the start of the horizon, but only implements the first

action, then updates all known information and re-computes a new a priori solution. In both sets of instances

it cuts the gap of our a priori policy with recourse by 28.7% and 20.6%, respectively. We have also found

that a dynamic policy that incorporates the ALP approach yields the best possible results. Its marginal im-

provement as gap reduction for both sets of experiments is 2.6% and 4.9%, respectively. In instance families

with intermediate variability, this gap reduction grows to 15.0%.

A final conclusion of our study concerns the relative value of dynamic policies. With all other things

being equal, the benefit of a dynamic policy over the optimal a priori solution eventually decreases as n

grows, i.e., as the number of potential orders increases. This is unsurprising, since for larger numbers of

22

potential orders one would expect an averaging effect. We found the maximum benefit in dynamic policies

for order sets of around 20 to 50; for smaller numbers, the exact optimal solution is still tractable, whereas

for larger numbers the a priori policy is close to optimality. Many same-day delivery applications, such

as grocery home delivery, might expect maximum daily order volume around these numbers. Similarly,

dynamic policies’ benefits decrease as orders become more likely to appear at the start of the horizon. In

other words, if many of the orders are not placed in the same day at all, but rather are carried over from

the previous day, an a priori policy performs quite well. It is precisely in the most uncertain environments,

where orders can appear at any moment, that new models such as ours offer the most benefit.

Future work on the DDWP needs to consider the solution on a general network topology, and thus be-

come more applicable for SDD operations in urban networks. This problem is quite challenging; in addition

to dispatch decisions, it needs to deal with difficult vehicle routing problems. Given this additional difficulty,

one could deal with this problem by designing heuristics based on insights from the one-dimensional case.

It would also be interesting to extend this model to multiple vehicles that could pool the risk associated

with leaving orders unattended and therefore reduce costs. Other extensions could be incorporating vehicle

service times at each location or including customer service time windows instead of a deadline at the end

of the day. In general, same-day delivery offers many new challenges to the logistics research community.

Acknowledgment

The authors would like to thank the editors and reviewers for their prompt response and for their comments,
which contributed to improve the correctness and presentation of this article.

References

[1] D. Adelman, A Price-Directed Approach to Stochastic Inventory/Routing, Operations Research 52
(2004), 499–514.

[2] A. Ak and A. Erera, A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic
demands, Transportation science 41 (2007), no. 2, 222–237.

[3] M. Albareda-Sambola, E. Fernández, and G. Laporte, The dynamic multiperiod vehicle routing prob-
lem with probabilistic information, Computers & Operations Research 48 (2014), no. 0, 31–39.

[4] E. Angelelli, M. Savelsbergh, and M.G. Speranza, Competitive analysis of a dispatch policy for a
dynamic multi-period routing problem, Operations Research Letters 35 (2007), no. 6, 713–721.

[5] E. Angelelli, M.G. Speranza, and M.W.P. Savelsbergh, Competitive analysis for dynamic multiperiod
uncapacitated routing problems, Networks 49 (2007), no. 4, 308–317.

23

[6] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook, The traveling salesman problem: A computa-
tional study, Princeton University Press, Princeton, New Jersey, 2006.

[7] C. Archetti, D. Feillet, and M.G. Speranza, Complexity of routing problems with release dates, working
paper, University of Brescia (2015).

[8] R. Bent and P. van Hentenryck, Scenario-based planning for partially dynamic vehicle routing with
stochastic customers, Operations Research 52 (2004), no. 6, 977–987.

[9] D. Bertsekas, Dynamic programming and optimal control, vol. 1, Athena Scientific Belmont, MA,
1995.

[10] D. Bertsekas and D. Castañón, Rollout algorithms for stochastic scheduling problems, Journal of
Heuristics 5 (1999), no. 1, 89–108.

[11] D. Bertsimas, A vehicle routing problem with stochastic demand, Operations Research 40 (1992), no. 3,
574–585.

[12] D. Brown, J. Smith, and P. Sun, Information relaxations and duality in stochastic dynamic programs,
Operations research 58 (2010), 785–801.

[13] Y. Bukchin, E. Khmelnitsky, and P. Yakuel, Optimizing a dynamic order-picking process, European
Journal of Operational Research 219 (2012), no. 2, 335–346.

[14] A.M. Campbell and B. Thomas, Challenges and advances in a priori routing, The Vehicle Routing
Problem: Latest Advances and New Challenges, Springer, 2008, pp. 123–142.

[15] , Probabilistic traveling salesman problem with deadlines, Transportation Science 42 (2008),
no. 1, 1–21.

[16] D. Cattaruzza, N. Absi, and D Feillet, The multi trip vehicle routing problem with time windows and
release dates, Transportation Science, forthcoming (2015).

[17] E. Çeven and K.R. Gue, Optimal wave release times for order fulfillment systems with deadlines,
working paper, University of Louisville (2015).

[18] T. Cheong and C. White, Dynamic traveling salesman problem: Value of real-time traffic information,
IEEE Transactions on Intelligent Transportation Systems 13 (2012), no. 2.

[19] J.F. Cordeau, G. Laporte, M. Savelsbergh, and D. Vigo, Vehicle routing, Transportation, handbooks in
operations research and management science 14 (2006), 367–428.

[20] D.P. de Farias and B. van Roy, The linear programming approach to approximate dynamic program-
ming, Operations Research 51 (2003), no. 6, 850–865.

[21] V. Desai, V. Farias, and C. Moallemi, Bounds for Markov decision processes, Reinforcement Learning
and Approximate Dynamic Programming for Feedback Control (2011), 452–473.

[22] S. Emde and N. Boysen, One-dimensional vehicle scheduling with a front-end depot and non-crossing
constraints, OR Spectrum 36 (2014), no. 2, 381–400.

24

[23] G. Erdoğan, M. Battarra, and G. Laporte, Scheduling twin robots on a line, Naval Research Logistics
(NRL) 61 (2014), no. 2, 119–130.

[24] A. Erera, M. Savelsbergh, and E. Uyar, Fixed routes with backup vehicles for stochastic vehicle routing
problems with time constraints, Networks 54 (2009), no. 4, 270–283.

[25] N. Gademann and S. Velde, Order batching to minimize total travel time in a parallel-aisle warehouse,
IIE transactions 37 (2005), no. 1, 63–75.

[26] M. Gendreau, G. Laporte, and R. Séguin, Stochastic vehicle routing, European Journal of Operational
Research 88 (1996), no. 1, 3–12.

[27] G. Godfrey and W. Powell, An adaptive dynamic programming algorithm for dynamic fleet manage-
ment, i: Single period travel times, Transportation Science 36 (2002), no. 1, 21–39.

[28] B.L. Golden, S. Raghavan, and E.A. Wasil (eds.), The Vehicle Routing Problem: Latest Advances and
New Challenges, Springer, 2008.

[29] J. Goodson, J. Ohlmann, and B. Thomas, Rollout policies for dynamic solutions to the multivehicle
routing problem with stochastic demand and duration limits, Operations Research 61 (2013), no. 1,
138–154.

[30] G. Gutin and A.P. Punnen (eds.), The Traveling Salesman Problem and Its Variations, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 2002.

[31] Amazon.com Inc., Annual report form (10-k), (2013).

[32] P. Jaillet, Probabilistic traveling salesman problems, Ph.D. thesis, Massachusetts Institute of Technol-
ogy, 1985.

[33] , A priori solution of a traveling salesman problem in which a random subset of the customers
are visited, Operations Research 36 (1988), no. 6, 929–936.

[34] P. Jaillet and M. Wagner, Online vehicle routing problems: A survey, in Golden et al. [28], pp. 221–237.

[35] A. Kenyon and D. Morton, Stochastic vehicle routing with random travel times, Transportation Science
37 (2003), no. 1, 69–82.

[36] G. Laporte, F. Louveaux, and H. Mercure, The vehicle routing problem with stochastic travel times,
Transportation science 26 (1992), no. 3, 161–170.

[37] , A priori optimization of the probabilistic traveling salesman problem, Operations Research
42 (1994), no. 3, 543–549.

[38] A. Larsen, O.B.G. Madsen, and M.M. Solomon, Recent developments in dynamic vehicle routing sys-
tems, The Vehicle Routing Problem: Latest Advances and New Challenges, Springer, 2008, pp. 199–
218.

[39] C. Lee, K. Lee, and S. Park, Robust vehicle routing problem with deadlines and travel time/demand
uncertainty, Journal of the Operational Research Society 63 (2011), no. 9, 1294–1306.

25

[40] T. Leipälä, On the solutions of stochastic traveling salesman problems, European Journal of Opera-
tional Research 2 (1978), no. 4, 291–297.

[41] X. Li, P. Tian, and S. Leung, Vehicle routing problems with time windows and stochastic travel and
service times: models and algorithm, International Journal of Production Economics 125 (2010), no. 1,
137–145.

[42] T. Ma and P. Zhao, A review of algorithms for order batching problem in distribution center, Inter-
national Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014),
Atlantis Press, 2014.

[43] C. Novoa and R. Storer, An approximate dynamic programming approach for the vehicle routing prob-
lem with stochastic demands, European Journal of Operational Research 196 (2009), no. 2, 509–515.

[44] V. Pillac, M. Gendreau, C. Guéret, and A. Medaglia, A review of dynamic vehicle routing problems,
European Journal of Operational Research 225 (2013), no. 1, 1–11.

[45] W. Powell, Approximate dynamic programming: Solving the curses of dimensionality, John Wiley &
Sons, 2007.

[46] H. Psaraftis, Dynamic vehicle routing: Status and prospects, Annals of Operations Research 61 (1995),
no. 1, 143–164.

[47] M. Puterman, Markov decision processes: discrete stochastic dynamic programming, John Wiley &
Sons, 2009.

[48] P. Schweitzer and A. Seidmann, Generalized polynomial approximations in markovian decision pro-
cesses, Journal of mathematical analysis and applications 110 (1985), no. 2, 568–582.

[49] N. Secomandi and F. Margot, Reoptimization approaches for the vehicle-routing problem with stochas-
tic demands, Operations Research 57 (2009), no. 1, 214–230.

[50] V. Sehgal, Online retail forecast (US), 2013 to 2018, Technical report, Forrester Research (2014).

[51] D. Taş, N. Dellaert, T. van Woensel, and T. de Kok, Vehicle routing problem with stochastic travel
times including soft time windows and service costs, Computers & Operations Research (2012).

[52] B. Thomas, Dynamic vehicle routing, Wiley Encyclopedia of Operations Research and Management
Science (2010).

[53] A. Toriello, W.B. Haskell, and M. Poremba, A Dynamic Traveling Salesman Problem with Stochastic
Arc Costs, Operations Research 62 (2014), 1107–1125.

[54] P. Toth and D. Vigo, Vehicle routing: Problems, methods, and applications, vol. 18, SIAM, 2014.

[55] S. Voccia, A.M. Campbell, and B. Thomas, The probabilistic traveling salesman problem with time
windows, EURO Journal on Transportation and Logistics (2012), 1–19.

[56] M. Wen, J.-F. Cordeau, G. Laporte, and J. Larsen, The dynamic multi-period vehicle routing problem,
Computers & Operations Research 37 (2010), no. 9, 1615–1623.

[57] C. Zhang, Y. Wan, J. Liu, and R.J. Linn, Dynamic crane deployment in container storage yards, Trans-
portation Research Part B: Methodological 36 (2002), no. 6, 537–555.

26

Appendix

Proof of Proposition 5.1
Proof. Applying restriction (6) to (2) yields the LP

CALP = max
{a,b,v}

ERT

∑
i∈R̂

aT
i + ∑

i∈N\R̂
bT

i

− T

∑
t=1

vt (10a)

s.t. ∑
i∈R

a0
i +∑

i∈P
b0

i = ∑
i∈R

pi, ∀(R,P) ∈ Ξ (10b)

∑
i∈R

at
i +∑

i∈P
bt

i−EFt
1

 ∑
i∈R∪Ft

1

at−1
i + ∑

i∈P\Ft
1

bt−1
i

≤ vt , ∀t ∈T ,(R,P) ∈ Ξ (10c)

∑
i∈R

at
i +∑

i∈P
bt

i−EFt
d

 ∑
i∈Rd∪Ft

d

at−d
i + ∑

i∈P\Ft
d

bt−d
i

≤ αd +
t

∑
k=t−d+1

vk, ∀t ∈T ,(R,P) ∈ Ξ,d ∈A t
R. (10d)

Model (10) has a polynomial number of variables for a given n and T , but it has exponentially many terms
within the expectations and constraints. We prove Proposition 5.1 in two steps. First, we compute a closed
form for the expectations in model (10). Then we show a one to one equivalence between both domains.

The expectations in (10) are given by

ERT

∑
i∈R̂

aT
i + ∑

i∈N\R̂
bT

i

= ∑
i∈N

(
P(τi = T)aT

i +P(τi < T)bT
i
)

EF t
1

 ∑
i∈R∪F t

1

at−1
i + ∑

i∈P\F t
1

bt−1
i

= ∑
i∈R

at−1
i +∑

i∈P
fitat−1

i + f̄itbt−1
i

EF t
d

 ∑
i∈Rd∪F t

d

at−d
i + ∑

i∈P\F t
d

bt−d
i

= ∑
i∈Rd

at−d
i +∑

i∈P
gd

ita
t−d
i + ḡd

itb
t−d
i .

Replacing them in (10) yields

max
{a,b,v≥0}

∑
i∈N

(
P(τi = T)aT

i +P(τi < T)bT
i
)
−

T

∑
t=1

vt s.t. (11a)

∑
i∈R

a0
i +∑

i∈P
b0

i = ∑
i∈R

pi ∀(R,P) ∈ Ξ

(11b)

∑
i∈R

(
at

i−at−1
i

)
+∑

i∈P

(
bt

i− fitat−1
t − f̄itat−1

i

)
≤ vt ∀t ∈T ,∀(R,P) ∈ Ξ

(11c)

∑
i∈R̄d

at
i + ∑

i∈Rd

(
at

i−at−d
i

)
+∑

i∈P

(
bt

i−gd
ita

t−d
t − ḡd

ita
t−d
i

)
≤

t

∑
k=t−d+1

vk +αd ∀t ∈T ,∀(R,P) ∈ Ξ,∀d ∈A t
R,

(11d)

27

where we still have an exponential number of constraints. We prove that (7) is equivalent to (11) by showing
equality between both domains.

1. (7b) ⇐⇒ (11b): Suppose that (a,b,v) satisfies (11b). If R = {i} and P = /0 we get at
i = pi, and if

R = /0 and P = {i} we get bt
i = 0. Now, suppose that (a,b,v) satisfies (7b) and add ai = pi and b j = 0

over any feasible pair of sets (R,P) ∈ Ξ to get (11b).

2. (7c),(7d),(7e) ⇐⇒ (11c): Suppose that (a,b,v) satisfies (11c). For each t ∈T , choose a particular
(R,P) ∈ Ξ as follows: put i ∈ R if at

i − at−1
i > max{0,bt

i− fitat−1
i − f̄itbt−1

i }, and put i ∈ P if bt
i −

fitat−1
i − f̄itbt−1

i > max{0,at
i−at−1

i }.
Then, for (i, t) set sit = max

{
0,at

i−at−1
i ,bt

i− fitat−1
i − f̄itbt−1

i

}
and we get

vt ≥∑
i∈R

at
i−at−1

i +∑
i∈P

bt
i− fitat−1

t − f̄itat−1
i = ∑

i∈N
max

{
0,at

i−at−1
i ,bt

i− fitat−1
i − f̄itbt−1

i

}
= ∑

i∈N
sit .

Now suppose that (a,b,v,s) satisfies (7c),(7d),(7e), select any pair (R,P) ∈ Ξ and we have

vt ≥ ∑
i∈N

sit ≥∑
i∈R

sit +∑
i∈P

sit ≥∑
i∈R

(
at

i−at−1
i

)
+∑

i∈P

(
bt

i− fitat−1
t − f̄itat−1

i

)
.

3. (11d) ⇐⇒ (7 f),(7g),(7h). Consider that (a,b,v) satisfies (11d). For each t ∈ T and d ∈ A t
N ,

choose (R,P) ∈ Ξ as follows: put i ∈ R if at
i − Idi>dat−d

i > max{0,bt
i−gd

ita
t−d
i − f̄ d

it bt−d
i }, and put

i ∈ P if bt
i−gd

ita
t−d
i − f̄ d

it bt−d
i > max{0,at

i−Idi>dat−d
i }.

Then, for each (i, t,d) define ud
it = max

{
0,at

i−Idi>dat−d
i ,bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i

}
. By (11d), we get

αd +
t

∑
k=t−d+1

vk ≥∑
i∈R

(
at

i−Idi>dat−d
i

)
+∑

i∈P

(
bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i

)
= ∑

i∈N
max

{
0,at

i−Idi>dat−d
i ,bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i

}
= ∑

i∈N
ud

it .

Now, suppose that (a,b,v,u) satisfies (7 f),(7g),(7h), select any pair (R,P) ∈ Ξ and get

αd +
t

∑
k=t−d+1

vk ≥ ∑
i∈N

ud
it

≥∑
i∈R

ud
it +∑

i∈P
ud

it

≥∑
i∈R

(
at

i−Idi>dat−d
i

)
+∑

i∈P

(
bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i

)
= ∑

i∈Rd

at
i + ∑

i∈R̄d

(
at

i−at−d
i

)
+∑

i∈P

(
bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i

)
.

7.1 Proof of Property 5.2

Proof. We start proving that there exists at least one optimal solution for (7) satisfying at
i ≤ pi and bt

i ≤ gt
it pi

for all i ∈ N and t ∈T0. Choose any i ∈ N and do forward induction on t.

• t = 0 is given by constraints (7b).

28

• Inductive step:
Assume that ak

i ≤ pi and that bk
i ≤ gk

ik pi for all k < t. We prove the statement for step t.

Suppose that at
i = pi+δa and bt

i = gt
it pi+δb, with ε = max{δa,δb}> 0. By the inductive hypothesis,

(7c),(7d), (7f) and (7g) it implies that sit ≥ ε , ud
it ≥ ε , for all d ∈A t

N and by (7e) we have vt ≥ ε .

So, update the variables for time t as follows: at
i← pi; bt

i← bt
i−ε; sit← sit−ε; ud

it← ud
it−ε, ∀d ∈A t

N
and vt← vt−ε . Also, update the variables for time v > t: av

i ← av
i −ε and bv

i ← bv
i −ε . These changes

keep (7) feasible and the objective value does not changes (the reduction in vt increases the objective
by ε , but the change in P(τi = T)aT

i +P(τi < T)bT
i reduces it by ε).

Now, let us show that there exists at least one optimal solution for (7) satisfying at
i ≥ 0, bt

i ≥ 0 for all i ∈ N
and t ∈T0. Choose any i ∈ N and do forward induction on t.

• t = 0 is given by constraints (7b).

• Inductive step:
Assume that ak

i ≥ 0,bk
i ≥ 0 for all k < t. We prove the statement for step t.

Suppose that: at
i < 0 and/or bt

i < 0. We can set these variables equal to 0 without losing feasibility. If
t < T , then the objective remains unaltered. Else, it improves when t = T .

7.2 Proof of Property 5.3

Proof. Choose any i ∈ N. We prove by induction on t that there exists an optimal solution satisfying at
i = pi

and bt
i = gt

it pi for all i ∈ N, t ∈T0 : di > t.

• t = 0 is given by (7b).

• Inductive step:
Assume that ak

i = pi, bk
i = gk

ik pi,∀k ∈ T0 : di > k with k < t and suppose that the optimal solution is
such that at

i = pi− δa,bt
i = gt

it pi− δb, where max{δa,δb} > 0. We can reassign these two variables,
i.e., at

i ← pi and bk
i ← gk

ik pi, keeping feasibility and without reducing the objective value. Just note
that for constraints (7f) we have di > d (given by di > t and d ∈A t

N). Thus, all constraints involving
the reassigned variables are

sit ≥ at
i−at−1

i =−δa

sit ≥ bt
i− fitat−1

i − f̄itbt−1
i =−δb

sit+1 ≥ at+1
i −at

i = at+1
i − pi +δa

sit+1 ≥ bt+1
i − fit+1at

i− f̄it+1bt
i = bt+1

i −gt+1
it+1 pi + fit+1δa + f̄it+1δb

ud
it ≥ at

i−at−d
i =−δa

ud
it ≥ bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i =−δb

ud
it+d ≥ at+d

i −at
i = at+d

i − pi +δa

ud
it+d ≥ bt+d

i −gd
it+dat

i− ḡd
it+dbt

i = bt+d
i −gt+d

it+d +gd
it+dδa + ḡd

it+dδb,

and when δa,δb→ 0 the lower bounds for u and s do not increase, since u and s are nonnegative. The
missing case, i.e. bt

i = gt
it pi when di = t follows a similar proof.

29

7.3 Proof of Theorem 5.4

For this proof we simplify our formulation to keep the intuition as simple as possible. The action set A t
R in

state (t,R,P) will be {d ∈ Z+ : d ≤ t}, and so, will include possibly suboptimal actions. So, consider the
stochastic DDWP

C∗ =max
C

ER̂ [CT (R̂,N\R̂)]

s.t. C0(R,P)≤ ∑i∈R pi, (R,P) ∈ Ξ

Ct(R,P)≤ EF t
1
[Ct−1 (R∪F t

1 ,P\F t
1)] , t ∈T , (R,P) ∈ Ξ

Ct(R,P)≤ αd +EF t
d
[Ct−d (Rd∪F t

d ,P\F
t
d)] , t ∈T , d ∈ Z+ : d ≤ t, (R,P) ∈ Ξ,

and its ALP bound

C
′
= max

a,v,s,u ∑
i∈N

(
P(τi = T)aT

i +P(τi < T)bT
i
)
−

T

∑
k=1

vk

s.t. a0
i ≤ pi, b0

i ≤ 0, i ∈ N

at
i−at−1

t − sit ≤ 0, i ∈ N, t ∈T

bt
i− fitat−1

i − f̄itbt−1
i − sit ≤ 0, i ∈ N, t ∈T

∑i∈N sit − vt ≤ 0, t ∈T

at
i−ud

it ≤ 0, i ∈ N, t ∈T , ,d ∈ {di, . . . , t}
at

i−at−d
i −ud

it ≤ 0, i ∈ N, t ∈T , ,d ∈ {1, . . . ,min(di−1, t)}
bt

i−gd
ita

t−d
i − ḡd

itb
t−d
i −ud

it ≤ 0, i ∈ N, t ∈T ,d ∈ {1, . . . , t}
∑i∈N ud

it −∑
t
k=t−d+1 vk ≤ αd, t ∈T , ,d ∈ {1, . . . , t}

s,u≥ 0.

For the deterministic case we get P(τi = T) = I(τi=T), fit = I(τi=t−1) and gd
it = I(t−d≤τi<t). The ALP

collapses to

C
′
= max

a,v,s,u ∑
i∈N

(
aT

i I(τi=T)+bT
i I(τi<T)

)
−

T

∑
k=1

vk

s.t. a0
i ≤ 0, b0

i ≤ 0, i ∈ N

at
i−at−1

t − sit ≤ 0, i ∈ N, t ∈T

bt
i−bt−1

i −I(t−1≤τi<t)(a
t−1
i −bt−1

i)− sit ≤ 0, i ∈ N, t ∈T

∑i∈N sit − vt ≤ 0, t ∈T

at
i−ud

it ≤ 0, i ∈ N, t ∈T ,d ∈ {di, . . . , t}
at

i−at−d
i −ud

it ≤ 0, i ∈ N, t ∈T , ,d ∈ {1, . . . ,min(di−1, t)}
bt

i−bt−d
i −I(t−d≤τi<t)(a

t−d
i −bt−d

i)−ud
it ≤ 0, i ∈ N, t ∈T ,d ∈ {1, . . . , t}

∑i∈N ud
it −∑

t
k=t−d+1 vk ≤ αd, t ∈T ,d ∈ {1, . . . , t}

30

s,u≥ 0.

From this point we assume without loss of generality that di ≤ τi. Otherwise, we can transform the
model to an equivalent one satisfying this requirement. If request i does not arrive (τi < 0), the optimal ALP
value does not get altered by removing it, since at optimality at

i = bt
i = 0, ∀t ∈ T0. In case that 0 < τi < di,

i.e. the order arrives but cannot be served, one optimal solution is at
i = pi, ∀t ∈ T0 and may be removed

from the analysis by adding a constant pi to the objective.
Now, let us preset some variables in the ALP:

• at
i = 0, for all i ∈ N, t > τi; the open order cost before arrival is zero.

• bt
i = aτi

i , for all i ∈ N, t > τi; the potential order cost before arrival is equal to the open order cost upon
arrival.

• bt
i = 0, for all i ∈ N, t ≤ τi, i.e., the potential order cost after arrival is zero.

We have restricted the feasible space, and thus the remaining model is still an underestimate of C∗ given
by

C
′′
= max

a,v,s,u ∑
i∈N

aτi
i −

T

∑
k=1

vk

s.t. (w) at
i−at−1

t − sit ≤ 0, i ∈ N, t ∈ {1, . . . ,τi}
(m) at

i−ud
it ≤ 0, i ∈ N, t ∈ {di, . . . ,τi},d ∈ {di, . . . , t}

(α) at
i−at−d

i −ud
it ≤ 0, i ∈ N,d ∈ {1, . . . ,di−1}, t ∈ {d, ..,τi},

(β) aτi
i −at−d

i −ud
it ≤ 0, i ∈ N, t ∈ {τi +1, . . . ,T},d ∈ {t− τi, . . . , t}

(γ) a0
i ≤ pi, i ∈ N

(Z) ∑
i∈N

sit − vt ≤ 0, t ∈T

(Y) ∑
i∈N

ud
it −

t

∑
k=t−d+1

vk ≤ d, t ∈T ,d ∈ {1, . . . , t}

s,u≥ 0,

and its dual problem is

C
′′
= min

Z,Y,α,β ,γ,m,w≥0
∑
i∈N

piγi +
T

∑
t=1

t

∑
d=1

dYt,d (18a)

s.t. (v) Zt +
T

∑
t ′=t

t ′

∑
d=t ′−t+1

Yt ′,d = 1, t ∈T (18b)

(s) wt
i ≤ Zt , i ∈ N, t ∈ {1, . . . ,τi} (18c)

(u) md
i,t ≤ Yt,d , i ∈ N, t ∈ {di, . . . ,τi},

d ∈ {di, . . . , t} (18d)

α
d
i,t ≤ Yt,d , i ∈ N,d ∈ {1, ..,di−1},

t ∈ {d, . . . ,τi} (18e)

31

β
d
i,t ≤ Yt,d , i ∈ N, t ∈ {τi +1, . . . ,T},

d ∈ {t− τi, . . . , t} (18f)

(a) γi =
(

w1
i +∑

T
k=1+τi

β k
i,k +∑

di−1
k=1 αk

i,k

)
, i ∈ N,

t = 0 (18g)(
wt

i +∑
t
d=1 αd

i,t

)
=
(

wt+1
i +∑

T
k=1+τi

β
k−t
i,k +∑

di−1
k=1 I(k+t≤τi)α

k
i,k+t

)
, i ∈ N,

t ∈ {1, . . . ,di−1} (18h)(
wt

i +∑
t
d=di

md
i,t +∑

di−1
d=1 αd

i,t

)
=
(

wt+1
i +∑

T
k=1+τi

β
k−t
i,k +∑

di−1
k=1 I(k+t≤τi)α

k
i,k+t

)
, i ∈ N,

t ∈ {di, . . . ,τi−1} (18i)(
wτi

i +∑
τi
d=di

md
i,τi

+∑
di−1
d=1 αd

i,t

)
+
(

∑
T
k=τi+1 ∑

k
d=k−τi+1 β d

i,k

)
= 1, i ∈ N,

t = τi. (18j)

Consider (18):

1. First note that (18b) are equivalent to the following network flow balance constraints

1 = ZT +∑
T
d=1YT,d (19a)

Zt+1 +∑
T
t ′=t+1Yt ′,t ′−t = Zt +∑

t
d=1Yt,d , t ∈ {1, ..,T −1} (19b)

Z1 +∑
T
t ′=2Yt ′,t ′−1 = 1 (19c)

Z,Y ≥ 0, (19d)

represented in Figure 8.

Proof. Equivalence is obtained by subtracting constraint t from constraint t + 1 in (18b) for all t ∈
{T − 1, . . . ,2}. The flow balance constraint at node t = T comes explicitly, and the flow balance
constraint at node t = 1 is obtained by adding the previously derived equations.

Therefore, substructure (19) has integral extreme points.

2. Now, let us study the remaining constraints. Note that for a given (Z,Y) the resulting problem in
variables (α,β ,γ,w,m) collapses to n independent capacitated minimum cost network flow problems
(CMCNF) for each order i ∈ N defined in (20)

γi (Z,Y) = min
αi,βi,γi,mi,wi≥0

γi (20a)

s.t. (18c),(18d),(18e),(18 f),(18g),(18h),(18i),(18 j). (20b)

32

T · · · t +1 t t−1 · · · 0
1 1ZT Zt+2 Zt+1 Zt Zt−1 Z1

Yt+1,1 Yt,1

Yt+1,2

Yt−1,t−1

Yt,t

Yt+1,t+1

YT,T

YT,T−t−1

YT,T−t

YT,T−t+1

Figure 8: Network Structure in (Z,Y)-domain

In this network there is a set of nodes given by {0, . . . ,τi} and a sink node Si defined by the (redundant)
flow balance constraint γi+∑

τi
t=di

∑
t
x=di

md
i,t = 1 obtained when adding (18g),(18h),(18i) and (18j). We

would like to minimize the cost of moving one unit of flow from node τi to the sink node. There are
five arc types available in (20) given by

• Type 1 arc (γi) going from node 0 to Si. Our objective is to minimize the value of this flow, since
it is the only one with non-zero cost.

• Type 2 arcs (md
i,t) going from node t ∈ {di, . . . ,τi} to Si. We want to maximize these flows, but

these arc flows are bounded by Yt,d .

• Type 3 arcs (wt
i) going from t to t−1 for each t ∈ {1, . . . ,τi}. These flows are bounded by Zt .

• Type 4 arcs (αd
i,t) going from a node t ∈ {1, . . . ,τi} to any node t−d for each d < di and d ≤ t;

also bounded by Yt,d .

• Type 5 arcs (β d
i,k) going from node τi to any node t ∈ {0, . . . ,τi−1} for each k ∈ Z+ and d ∈ Z+

satisfying τi < k ≤ T and k−d = t; also bounded by Yk,d .

Note that problem (20) is feasible for any value (Z,Y) ∈ (19). Its network is graphically represented
in Figure 9.

If we put these two comments together, the dual ALP in (18) is equal to

min
(Z,Y)∈(19)

C(Z,Y) := ∑
i∈N

piγi(Z,Y)︸ ︷︷ ︸
P(Z,Y)

+
T

∑
t=1

t

∑
d=1

dYt,d︸ ︷︷ ︸
COP(Y)

. (21)

We show in two parts that (21) has an optimal value equal to the optimal cost of the deterministic DDWP
in (4). First, we prove that any feasible dispatch for the deterministic DDWP has a one-to-one mapping with
integer feasible solutions (Z,Y) to (21). Then, we show that without loss of optimality a solution of (21) can
be assumed integral.

Part 1: Consider any feasible dispatch with lengths {d1, ...,dK} and dispatch times {t1, .., tK}. Then, there
is a unique integer solution of (Z,Y) representing this operation. Just set to zero all components of Y except

33

τi · · · t · · · di · · · 1 0

Si

1

1

γi
m

di
i,di

md
i,t , di ≤ d ≤ t

md
i,τi

, di ≤ d ≤ τi

w
τi
i wt+1

i wt
i w

di+1
i w

di
i w2

i w1
i

α
τi−t
i,τi

, τi− t < di

αd
i,τi

, d < di
αd

i,t , d < di
αd

i,di
, d < di

α
di−1
i,di

α1
i,1

β d
i,k , k−d < τi , k > τi

β
k−t
i,k , k > τi

Figure 9: Network for ith order subproblem.

for Ytk,dk = 1,∀k ∈ {1, . . . ,K} and set Z to satisfy (18b). Thus, Yt,d represents a dispatch at t with distance
length d and Zt represents waiting at the depot between t and t−1. Its corresponding operational dispatch
cost matches the second term in the objective of (21), i.e. COP(Y) := ∑

T
t=1 ∑

t
d=1 dYt,d = ∑

K
k=1 dk. Also, let

ηi =

{
1 if dk ≥ di and tk ≤ τi, for some k ∈ {1, . . . ,K}
0 otherwise

indicate whether order i is covered by any dispatch or not. If ηi = 0, then all type 2 arcs for subproblem (20)
cannot be used, i.e. md

i,t ≤ 0 for di ≤ t ≤ τi and di ≤ d ≤ t, so there is a unique path from τi to Si with γi = 1.
If ηi = 1, then a new (τi−Si)-path arises with capacity one. The idea is to move the unit flow horizontally
using type 3 arcs (wt

i = 1) at each node t : 1 ≤ t ≤ τi when Zt = 1. Otherwise, if Zt = 0 there are three
potential scenarios:

• A dispatch at t covers i, i.e., d ≥ di. Then we can use the corresponding type 2 arc md
i,t = Yt,d = 1 and

reach the sink node Si at zero cost (γi = 0).

• A dispatch at t does not cover i, i.e. d < di. Then we can use the corresponding type 4 arc αd
i,t =Yt,d = 1

and reach node t− d at zero cost. Since ηi = 1, we proceed until we find the type 2 arc associated
with the earliest dispatch that covers i.

• We have t = τi and there is a dispatch at time k > τi with distance d such that k−d < τi. Then we can
send one unit of flow in a type 5 arc to node k− d, i.e., bd

i,k = Yk,d = 1. Again, we proceed until we
find the earliest type 2 arc.

The first cost term in (21) will be exactly equal to the penalties paid for orders left unattended: P(Z,Y) :=
∑i∈N piγi = ∑i∈N:

ni=0
pi.

Part 2: Now we prove that without loss of optimality Z,Y is binary, and hence an optimal solution is an
optimal dispatch for the deterministic DDWP. Assume by contradiction that Y has fractional components

34

and that C(Z,Y) < C(Z̄,Ȳ) for any integral solution (Z̄,Ȳ) ∈ (19). We can express (Z,Y) as a convex
combination of the extreme points (Z1,Y 1), . . . ,(Zp,Y p) of (19) which are binary. Thus, we have (Z,Y) =
∑

p
l=1 λl(Zl,Y l) for a given nonnegative vector λ ≥ 0 such that ∑

p
l=1 λl = 1. The operational cost term COP(Y)

in (21) is additive in Y , since

COP(Y) =
T

∑
t=1

t

∑
d=1

dYt,d =
T

∑
t=1

t

∑
d=1

d

(
p

∑
l=1

λlY l
t,d

)
=

p

∑
l=1

λl

(
T

∑
t=1

t

∑
d=1

dY l
t,d

)
=

p

∑
l=1

λlCOP(Y l).

So, if (Z,Y) satisfies for each i ∈ N that

γi(Z,Y) =
p

∑
l=1

λlγi(Zl,Y l), (22)

then the additive relation follows for the penalty cost term P(Z,Y) in (21), because

P(Z,Y) = ∑
i∈N

γi(Z,Y)pi = ∑
i∈N

(
p

∑
l=1

λlγi(Zl,Y l)pi

)
=

p

∑
l=1

λl

(
∑
i∈N

γi(Zl,Y l)pi

)
=

p

∑
l=1

λlP(Zl,Y l),

and the total cost is additive in (Z,Y), i.e. C(Z,Y) = ∑
p
l=1 λlC(Zl,Y l). So, if condition (22) is true, the

optimal cost is a convex combination of binary extreme point costs and it directly implies that there should
be an integer extreme point l∗ satisfying C(Zl∗ ,Y l∗)≤C(Z,Y). This is our desired contradiction.

Proof of condition (22): Note that γi(Z,Y)≤ ∑
p
l=1 λlγi(Zl,Y l) is trivial, since the optimal value of (20) is a

convex function of the right-hand-side argument (Z,Y). Also, we have that γi(Zl,Y l) = 1 when the operation
encoded in Y l covers order i, else it is equal to 0. So, the right-hand-side of (22) yields ∑

p
l=1 λlγi(Zl,Y l) =

1−∑l:Y l covers i λl .
We need to show that the left-hand-side of (22) is also equal to the above value. There is two cases:

1. Suppose that for each l ∈ {1, . . . , p} with 0 < λl < 1, the operation encoded in Y l covers order i ∈ N
at most in one dispatch. In case that Y l covers i exactly once, then (λlY l,λlZl) will add in (20) exactly
one type 2 arc md

i,t with capacity λl > 0, where Y l
t,d is such that di ≤ d and τi ≥ t. Also, (λlY l,λlZl)

will produce a zero cost path from τi to Si with capacity λl that uses arc md
i,t . On the other hand, if

Y l does not cover i there will be no additional paths to Si. If we put all these solutions Y l together
for each l ∈ {1, . . . , p} with 0 < λl < 1 and form Y = ∑

p
l=1 λlY l , the binding cut between τi and Si

with zero-cost flows will be defined by U = {1, . . . ,τi} with capacity ∑l:Y l covers i λl . So, given that
the cut is always binding, if we put these paths together in one single network it does not affect the
output and γi(Z,Y) = 1−∑l:Y l covers i λl . Figure 10 provides an example of this network showing the
arc capacities of subproblem (20) for order i. This case has three integer extreme points Y : Y 1,Y 2 and
Y 3 defining Y = λ1Y 1 +λ2Y 2 +λ2Y 3 and 1 = λ1 +λ2 +λ2 for λ ≥ 0. Y 1 and Y 2 cover order i, but Y 3

does not. It is clear that the maximum zero-cost flow from τi to Si is equal to the capacity of the cut U
equal to λ1 +λ2 < 1. So, γi = 1−λ1−λ2.

2. A potential problem could occur if an operation covers an order more than once in multiple dispatches.
For example, suppose that there exists an operation l1 with 0 < λ l1

< 1 such that Y l1
covers order i

twice and that there exists another operation l2 not covering i such that the vehicle is at the depot when
operation l1 dispatches the latest dispatch covering i. Then, an “artificial” coverage is created for order
i. Figure 11 illustrates this problem. In this example, operation l = 1 with weight λ1 = 0.5 waits at

35

τi · · · t1 · · · t2 · · · t3 · · · 0

Si

1

1

∞

λ1

λ1 λ1 +λ3 λ1 +λ3

λ1

λ2 +λ3 λ2 +λ3 λ2 +λ3 λ2 +λ3

λ2

λ3

Figure 10: Example of a convex combination of three operations in ith order subproblem.

τi · · · t1 · · · t2 · · · 0

Si

1

1

∞

0.5
0.5

0.5+0.5 0.5+0.5 0.5 0.5 0.5 0.5

Figure 11: Example of a convex combination of two operations where subproblem for order i is not additive
in the argument (Z,Y).

the depot until t1, covers order i at t1, returns at t2 and covers order i again at t2. Operation l = 2
with weight λ2 = 0.5 waits at the depot all the time (between τi and 0). We have that 0.5γi(Z1,Y 1)+
0.5γi(Z2,Y 2) = 0.5, but γi

(
0.5(Z1,Y 1)+0.5(Z2,Y 2)

)
= 1− 0.5−min{0.5,0.5} = 0. So condition

(22) does not hold. Fortunately, we can prove that there exists an alternative set of operations l ∈ E
such that Y can also be written as Y = ∑l∈E λlY l and such that condition (22) holds.

Let us solve this problem for the example in Figure 11 first. Define Y 3 and Y 4 as follows. Let

Y 3
t,d :=

{
Y 1

t,d t > t2,1≤ d ≤ t
Y 2

t,d t ≤ t2,1≤ d ≤ t
and Y 4

t,d :=

{
Y 2

t,d t > t2,1≤ d ≤ t
Y 1

t,d t ≤ t2,1≤ d ≤ t
.

Note that Y = 0.5Y 3 + 0.5Y 4 and, thus, this new decomposition does not affect operational costs.
Also, it covers the same amount of orders plus the “artificial” coverage which is now valid. So
0.5γi(Z3,Y 3)+0.5γi(Z4,Y 4) = γi

(
0.5(Z3,Y 3)+0.5(Z4,Y 4)

)
= 0. Figure 12 presents this solution.

The general proof can be constructed by induction on r1+r2, where r1 is the total number of additional
dispatches covering i ∈ N in operations inside S, and r2 is the number of operations not covering i in
S with the vehicle at the depot at a time t∗ where another operation l′ ∈ S executes a dispatch covering
i which is not the earliest such dispatch.

36

τi · · · t1 · · · t2 · · · 0

Si

1

1

∞

0.5
0.5

0.5+0.5 0.5+0.5 0.5 0.5 0.5 0.5

Figure 12: Same example with two operations where subproblem for order i is additive in the argument
(Z,Y).

• Case r1 = 0,r2 = 0: This case is trivial, since the set S : Y = ∑l∈S λlY l satisfies (22).

• Case r1 > 0,r2 = 0: This case is also trivial, since the multiple dispatches cannot be used to
generate “artificial coverages” and any S such that Y = ∑l∈S λlY l satisfies (22).

• Case r1 = 0,r2 > 0: This case is impossible, by the definition of r2 (r1 = 0 =⇒ r2 = 0).

• Case r1 > 0,r2 > 0: Let l1 ∈ S be the operation with a repeated dispatch to i at time t∗ such that
there exists another operation l2 ∈ S not covering i and with the vehicle available at the depot at
time t∗. Construct two new operations l3 and l4 as follows:

Y l3

t,d :=

{
Y l1

t,d t > t∗,1≤ d ≤ t

Y l2

t,d t ≤ t∗,1≤ d ≤ t
and Y l4

t,d :=

{
Y l2

t,d t > t∗,1≤ d ≤ t

Y l1

t,d t ≤ t∗,1≤ d ≤ t
.

We have three cases:

– If λl1 < λl2 , we have Y = ∑l∈S\{l1,l2}λl1Y l +λl1(Y l3
+Y l4

)+(λl2−λl1)Y l2
and r1 decreases

by one. Use induction with S′ = S\{l1}∪{l3, l4}.
– If λl2 < λl1 , we have Y = ∑l∈S\{l1,l2}λl1Y l +λl2(Y l3

+Y l4
)+(λl1−λl2)Y l1

and r2 decreases
by one. Use induction with S′ = S\{l2}∪{l3, l4}.

– If λl2 = λl1 , set Y = ∑l∈S\{l1,l2}λl1Y l +λl1(Y l3
+Y l4

) and r1 and r2 each decrease by one.
Use induction with S′ = S\{l1, l2}∪{l3, l4}.

7.4 ALP solution pruning

We can reduce the computational effort involved in getting the ALP optimal policy defined by (9) with the
following proposition:

Proposition 7.1 (ALP solution pruning). Suppose δ ∈A t
R is a feasible dispatch distance at state (t,R,P) and

its related ALP solution to (9) is {a(δ),b(δ),v(δ)}. Let µ ∈A t
R be a different feasible dispatch distance. If

αδ +∑i∈Rδ
ai(δ)

t−δ +∑i∈P
(
gδ

it ai(δ)
t−δ + ḡδ

it bi(δ)
t−δ
)
−∑

t−δ

k=1 vk(δ)

< αµ +∑i∈Rµ
ai(δ)

t−µ +∑i∈P
(
gµ

it ai(δ)
t−µ + ḡµ

it bi(δ)
t−µ
)
−∑

t−µ

k=1 vk(δ),

37

then µ is suboptimal for (9) and can be discarded before solving its related ALP.

Proof. The proof is based on the fact that {a(δ),b(δ),v(δ)} is also a feasible solution for the ALP problem
related to µ . By proposition (7.1) and the feasibility of a(δ),b(δ),v(δ) in any ALP problem we get

αδ + ∑
i∈Rδ

ai(δ)
t−δ +∑

i∈P

(
gδ

it ai(δ)
t−δ + ḡδ

it bi(δ)
t−δ

)
−

t−δ

∑
k=1

vk(δ)

< αµ + ∑
i∈Rµ

ai(δ)
t−µ +∑

i∈P

(
gµ

it ai(δ)
t−µ + ḡµ

it bi(δ)
t−µ
)
−

t−µ

∑
k=1

vk(δ)

≤ αµ + max
{(a,b,v)∈(7b)−7i}

∑
i∈Rµ

at−µ

i +∑
i∈P

(
gd

ita
t−µ

i + ḡd
itb

t−µ

i

)
−

t−µ

∑
k=1

vk,

and this proves that the dispatch distance δ yields a lower approximate expected cost than µ for the ALP
policy.

38

