
Moulin Mechanism Design for Freight Consolidation

Wentao Zhang
Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los

Angeles, CA 90089, wentao@usc.edu,

Nelson A. Uhan
Mathematics Department, United States Naval Academy, Annapolis, MD 21402, uhan@usna.edu,

Maged Dessouky
Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los

Angeles, CA 90089, maged@usc.edu,

Alejandro Toriello
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332, atoriello@isye.gatech.edu.

Abstract

In freight consolidation, a “fair” cost allocation scheme is critical for forming and sustaining

horizontal cooperation that leads to reduced transportation cost. We study a cost-sharing prob-

lem in a freight consolidation system with one consolidation center and a common destination.

In particular, we design a mechanism that collects bids from a set of suppliers, and then decides

whose demand to ship via the consolidation center and the corresponding cost shares. We use

the Moulin mechanism framework to design a truthful mechanism for the cost-sharing problem,

and study the mechanism’s budget-balance guarantee and economic efficiency. We find that

it is generally not possible to obtain a simultaneously truthful and budget-balanced Moulin

mechanism under the transportation cost structure we study. For our proposed mechanism,

there exists a trade-off between the budget-balance guarantee and the level of incentives that

can be given to large suppliers. Additionally, the mechanism has better economic efficiency

when there are more bidding suppliers or the destination is farther away. In our setting, either

the consolidation center or the suppliers need to be subsidized. The parameters that determine

the trade-off between the consolidation center’s benefit and suppliers’ cost savings should be

set based on the specific goals of the consolidation center. Encouraging more suppliers to bid

helps to increase the overall social welfare.
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1 Introduction

Transportation costs have increased over the last few decades for various reasons, such as the mis-

match of supply and demand for freight transportation services (Russell et al. 2014). Competitive

transportation costs are especially critical for the success of various industries. For instance, trans-

portation costs are often a large percentage of product costs in the agriculture industry (Nguyen

et al. 2013). Furthermore, as the single largest logistics cost element, transportation costs usually

account for more than 50% of the total logistics costs (Thomas and Griffin 1996). As a result, it is

important for suppliers to reduce their transportation costs in order to be competitive.

In terms of transportation costs, suppliers with low market share, which we call small suppliers,

are at a competitive disadvantage compared to suppliers with high market share, which we call large

suppliers, because small suppliers have greater difficulty negotiating favorable transportation rates

with carriers due to their smaller shipping volumes. Transportation costs for such suppliers can be

reduced by freight consolidation, which is the process of assembling smaller shipments together from

different locations; the resulting large shipping volumes allow for a reduction in transportation rates.

A survey of 53 United States companies revealed that freight consolidation, which takes advantage

of economies of scale, has contributed the most to reducing transportation costs (Jackson 1985).

Significant cost savings through freight consolidation have also been reported in various industries

(e.g., Cruijssen et al. (2010); Vanovermeire et al. (2014)). Freight consolidation often takes place

among businesses that produce similar products or departments within the same company with a

central planner to organize and implement the consolidation. Self-interested businesses are often

willing to consolidate because third-party carriers usually charge cheaper shipping rates when the

shipment volumes are large enough.

One example that shows the importance of freight consolidation is the plight of the California

cut flower industry. This industry has been facing increasing competition from cut flower growers

in South America, especially Colombia. Recently, this nation alone exports more than 4 billion

flowers at lower prices to the United States (Paletta and McClain 2018). California’s share of the

United States cut flower market has decreased from 64% to 20% in the last two decades, while South

America’s share reached approximately 70% in 2007 (Arbeláez et al. 2007). A shared cross-docking

and distribution facility located in Miami, Florida has contributed to the competitive prices of South

American flowers by reducing their transportation costs. Central planners in Miami organize and

consolidate products from South American growers in the distribution facility before sending them
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by truck to the rest of the United States. The resulting large volume shipments allow them to obtain

cheaper full-truckload (FTL) rates and the corresponding cost savings on transportation provide

them with a significant competitive advantage. In contrast, most California cut flower growers, who

currently send their products individually using more expensive less-than-truckload (LTL) rates,

are often of small to medium size and have no power to negotiate favorable transportation rates on

their own. Nguyen et al. (2013) evaluated the transportation practices in the California cut flower

industry and explored the possibility of building a consolidation center in Oxnard, California. They

concluded that a shipping consolidation center could reduce transportation costs by 35%, saving

$20 million per year if all the California cut flower growers were to participate in the consolidation.

Although establishing an alliance to consolidate can improve the competitiveness of suppliers,

it is essential to know under what circumstances the individual suppliers will have the incentive

to participate in the consolidation. A survey based on approximately 1500 representative logistics

service providers in Belgium reported that designing a fair cost sharing scheme is a major imped-

iment to horizontal cooperation among logistics service providers, even though the profitability of

cooperation is widely believed (Cruijssen et al. 2007). Therefore, providing a way to fairly allocate

the cost of consolidation is critical for facilitating cooperation among the suppliers.

Generally, there are two approaches to solve cost allocation problems. The majority of cost

allocation schemes developed in the transportation collaboration literature come from cooperative

game theory. Cooperative game theory generally assumes that all players can form a coalition

through a binding agreement and focuses on studying whether it is possible to coordinate these

players to stay in the coalition through an appropriate way of sharing their costs. The binding

agreement is agreed to by the entire set of players as an external enforcement of cooperation. For

example, the core (Gillies 1959) – one of the most well-studied solution concepts in cooperative

game theory – consists of cost shares that recover the cost incurred by all of the players and ensure

that no individual or a group of players can benefit by defecting. The nonemptiness of the core is

often used as a proxy for the possibility of cooperation.

The other approach to solving cost-sharing problems, cost-sharing mechanism design, deter-

mines who participates in a collaboration based on bids submitted by the players. The resulting

collaboration may contain only a subset of players. In the context of freight consolidation, com-

panies that are interested in participating in the consolidation submit their shipping volumes and

the maximum costs they are willing to pay for the shipping service at the planning phase of each
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consolidation. Then the central planner of the consolidation applies the cost-sharing mechanism to

decide who participates and how much cost to allocate to each participant. This approach does not

rely on an external binding agreement to enforce cooperation. Instead, it is carefully designed to

induce desired cooperative behavior and the coordination is self-enforcing.

In this paper, we advance the research on cost allocation for transportation collaborations by

designing cost-sharing mechanisms, which have seldom been applied to transportation collabora-

tions. In particular, we show how to handle the complex transportation cost structure in mechanism

design through approximations and demonstrate the trade-offs in mechanism design for the central

planners in freight consolidation. In the environment we consider, there is a set of suppliers that

could cooperate by using a nearby consolidation center to group their demands to ship to a common

faraway destination. Our proposed cost-sharing mechanism decides both the set of suppliers who

participate in consolidation and their corresponding cost shares.

We design our proposed cost-sharing mechanism to possess certain desirable properties: (i)

truthfulness, the idea that it is optimal for individual players or groups of players to bid their true

valuations for the service. It is important that no individual supplier or a group of suppliers can

benefit from submitting false bids (overreporting or underreporting their willingness to pay) in our

mechanism. Otherwise, suppliers can take advantage of this flaw to benefit unfairly and this can be

harmful to cooperation. (ii) Budget-balance, the notion that the mechanism charges the players the

cost they incur. We want our mechanism to be as close to budget-balanced as possible by recovering

as much of the cost incurred by consolidation as possible with the cost shares or prices charged.

(iii) Economic efficiency, the idea that the welfare for all the players is maximized. We want the

outcome of the proposed cost-sharing mechanism to maximize social welfare as much as possible.

In terms of results and managerial insights, we find that it is in general not possible to have

a simultaneously truthful and budget-balanced Moulin mechanism under the transportation cost

structure we study, which is a reasonable approximation of costs encountered in realistic settings.

As a result, either the consolidation center or the suppliers need to be subsidized. To this end, we

propose an approximately budget-balanced Moulin mechanism with an accompanying proportional

cost-sharing method. Under certain conditions, our mechanism guarantees to recover at least half

of the cost incurred by consolidation, but as shown in our computational experiments, the cost

recovered on average is much better than the worst-case guarantee. This proportional cost-sharing

method can be tuned to determine the trade-off between the cost that can be recovered at the
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consolidation center and the incentives that are provided to the suppliers. In terms of economic

efficiency, our mechanism performs better when there are more bidding suppliers or the destination

is farther away.

The rest of the paper is organized as follows. In Section 2, we review the existing research

on freight consolidation, cost-sharing mechanisms and cost allocation approaches in transportation

collaborations. We formally define our problem in Section 3. In Section 4, we review the Moulin

mechanism and demonstrate the difficulty of obtaining both a truthful and budget-balanced Moulin

mechanism for our problem. In Section 5, we propose an approximately budget-balanced Moulin

mechanism and investigate its truthfulness, budget-balance and economic efficiency. In Section 6,

we analytically study the proposed cost-sharing mechanism for the special case in which the total

demand of all suppliers fits into one truckload. We conclude our work in Section 7.

2 Literature Review

The passage of the Motor Carrier Act of 1980 made more transportation options available to com-

panies, enabling them to improve their logistics efficiency, customer service levels and profitability.

Some retailers and logistics providers seek for transportation collaboration to maximize the profit

of supply chains. Research has been done to show how to effectively establish such coordination

through pricing decisions with explicit transportation costs. Toptal and Bingöl (2011) studied a

full-truckload carrier pricing problem in an environment where a retailer has both full-truckload and

less-than-truckload transportation options. Their numerical results indicated that the systematic

cost savings can be significantly increased if the full-truckload carrier and the retailer make deci-

sions jointly. Mutlu and Çetinkaya (2011) and Mutlu and Çetinkaya (2013) studied a retailer and

carrier coordination problem under price-dependent demand for long term planning and one-time

contract, respectively. They showed that their proposed coordination mechanism and a linear price

contract could lead to a win-win situation for retailer and carrier in both scenarios. This gain is

comparable to the gain from supplier and retailer coordination. The research of Ke and Bookbinder

(2018) demonstrated that quantity discount and transportation discount can be used to coordinate

supplier, retailer and carrier in supply chains.

Another strategy that has been applied to reduce transportation costs in many settings is freight

consolidation. Jackson (1985) surveyed 53 firms on freight consolidation practice. All the firms

regarded freight consolidation as an important strategy to remain competitive in terms of cost

5



and 77% of them indicated that freight consolidation also helped provide better service. Different

freight consolidation strategies have been studied in Blumenfeld et al. (1985), Campbell (1990),

Daganzo (1988), Hall (1987). Quantity-based, time-based, and quantity-and-time-based shipment-

release policies have been examined to leverage lower transportation rates with large volumes by

aggregating shipment quantities in various ways (Abdelwahab and Sargious 1990, Bookbinder and

Higginson 2002, Çetinkaya and Bookbinder 2003, Higginson and Bookbinder 1994, Higginson and

Higginson 1995). Efficient consolidation operations have also been studied in vendor managed

inventory systems in Çetinkaya and Lee (2000), and Çetinkaya et al. (2006). While efficient freight

consolidation systems can reduce shipping costs considerably, the success of a freight consolidation

system also depends on whether the shipping cost is allocated between the consolidation participants

so that the cooperation among them is sustainable. Therefore, it is essential to design a cost

allocation scheme that shares the cost in a perceived “fair” way.

Recently, there has been a lot of research exploring cost allocation schemes for collaborative

transportation problems. Most apply cooperative game theory to these problems. Some use

rule-based methods, some use linear programming duality, and some – especially for the more

application-specific problems – allocate costs by addressing particular notions of fairness. For a

thorough review of these cooperative game-theoretic methods, we refer readers to Guajardo and

Rönnqvist (2016), which reviewed 55 related articles from 2010 to 2015. Compared to the literature

reviewed in Guajardo and Rönnqvist (2016), we take a different approach – cost-sharing mechanism

design.

A cost-sharing setting consists of a set of players who are interested in receiving service from a

provider. A binary demand setting restricts the decision of the service provider to either serve the

player or not at all, whereas a general demand setting allows the provider to offer service at various

levels. Each player has a private valuation of the service. The objective of the service provider is

to decide who to serve, at what levels, and how to share the cost among the selected players. The

algorithm that service providers apply to make these decisions is a cost-sharing mechanism. In a

cost-sharing mechanism, these decisions are made based on bids that players submit to the service

provider. The bids of the players express their maximum willingness to pay for the service. The

study of cost-sharing mechanisms mainly focuses on three desired properties: truthfulness, budget-

balance and economic efficiency. Unfortunately, Green et al. (1976) and Roberts (1979) proved

that it is not possible for a cost-sharing mechanism to guarantee these three desired properties
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simultaneously. This has led to a cost-sharing mechanism design paradigm that relaxes either

the constraint on budget balance or economic efficiency. Furthermore, these impossibility results

have also motivated approximate measures of budget-balance and economic efficiency. For example,

Roughgarden and Sundararajan (2009) introduced a measure called social cost to quantify economic

inefficiency in cost-sharing mechanisms. While mechanisms can yield zero or negative social welfare,

they always have nonnegative social costs. As a result, by using social cost as a means of comparison,

we can identify with increased fidelity the relatively more efficient mechanisms.

Without the constraint of economic efficiency, Moulin (1999) and Moulin and Shenker (2001)

proposed a framework, now known as the Moulin mechanism, that allows the design of truthful

and approximately budget-balanced cost-sharing mechanisms. A Moulin mechanism decides on

the players to be served and the cost shares through an iterative process with the help of a cost-

sharing method, which provides the cost shares for any given set of players to be served. The

mechanism starts with all players being considered. In each iteration, cost shares are calculated

and offered to the considered players simultaneously, and only the players who accept the cost

shares remain in the next iteration. The iterations continue until all remaining players accept the

cost shares offered or the set of considered players becomes empty. Using a cost-sharing method

that is cross-monotonic, a Moulin mechanism offers a nondecreasing sequence of costs to the players

to guarantee that no individual or coalition of players can be better off by submitting false bids.

Meanwhile, approximate budget-balance is achieved by offering costs at each iteration that would

in total approximately cover the cost incurred if the current iteration were to be the last. Due to its

flexibility and reasonable economic efficiency, approximately budget-balanced Moulin mechanisms

have been designed for a wide range of cost-sharing applications arising in scheduling (Brenner and

Schäfer 2007, Bleischwitz and Monien 2009), network design (Archer et al. 2004, Gupta et al. 2004,

2007), facility location (Devanur et al. 2005, Könemann et al. 2005, Leonardi and Schäfer 2004, Pál

and Tardos 2003), and logistics (Xu and Yang 2009).

When truthfulness and economic efficiency are the primary concerns, the Vickrey-Clarke-Groves

(VCG) mechanism (Clarke 1971, Groves 1973, Vickrey 1961) is a powerful framework. As a special

case of the VCG mechanism, the marginal cost mechanism is often used to achieve efficient cost

allocations. The cost shares in the marginal cost mechanism are defined so that the welfare each

player obtains is its marginal contribution to the overall social welfare. However, this class of

mechanisms usually has no budget-balance guarantee and sometimes raises zero revenue (Moulin
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and Shenker 2001), which is likely to be unsuitable for many cost-sharing settings.

There has been limited prior research on mechanism design to solve cost allocation problems in

transportation collaborations. Furuhata et al. (2015) designed an online cost-sharing mechanism

that provides quotes to passengers who share a door-to-door transportation service provided by a

demand-responsive transport system. They proposed a novel cost sharing mechanism that satisfies

a number of desired properties – online fairness, immediate response, and ex-post incentive com-

patibility – that specifically address the issues involved with sharing costs without knowing future

demand.

3 Problem Definition

We study a freight consolidation system that consists of a group of suppliers who produce similar

products, all located in a certain geographical region, and ship to a common destination. All the

companies in the group are interested in cost reduction through freight consolidation. A central

planner operates a center that provides a consolidation service in the same region.

We assume suppliers in our environment are self-interested. They want to ship their demand

with the lowest transportation rate. However, we consider an environment where the consolidation

center is not profit-driven. Instead, it aims to encourage the participation of the consolidation

while financing itself as much as possible, i.e. recovering as much of the incurred shipping cost as

possible. This means we assume the consolidation center is subsidized by the government, associated

organizations, etc. In the case of the California flower industry, the center could for example

be run by the non-profit California Cut Flower Commission (CCFC), or the state government.

Although consolidation happens repeatedly over time in practice, e.g. daily, weekly, the truthfulness

guaranteed by the cost-sharing mechanism makes the behavior of suppliers predictable in this

dynamic environment. This property allows us to rely on the mechanism to solicit suppliers’ truthful

bids instead of learning their preferences over time. Therefore, under these assumptions, we can

formulate our problem as a one-time game without loss of generality.

Let N denote the set of suppliers who are interested in consolidating their shipments to a

common destination. Each supplier i ∈ N has a positive shipping demand di measured in ft3

and a valuation vi for the service provided by the consolidation center. The valuations reflect the

suppliers’ opinion about how much the service from the consolidation center is worth. The service

provided by the consolidation center is binary: either a supplier is not served at all or its entire
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demand is served.

Figure 1: Structure of consolidation system

Figure 1 shows the structure of the consolidation system we study. Suppliers in N have two

shipping options. They can ship the demand either directly to the destination or through a consol-

idation center. Suppliers express their willingness to consolidate by submitting a bid for service at

the beginning of the consolidation process. We denote supplier i’s bid by qi. Based on these bids,

the consolidation center selects a set of suppliers S ⊆ N to serve. Selected suppliers have their

products consolidated first and then shipped to the common destination. We call the shipment from

the suppliers to the consolidation center “inbound shipping”, and the corresponding cost incurred

by each supplier the “inbound shipping cost”. We call the shipment from the consolidation center

to the destination “outbound shipping”, and the corresponding cost incurred by the consolidation

center the “outbound shipping cost”. We call the shipment from the suppliers to the destination

“direct shipping”, and the corresponding cost for each supplier the “stand-alone cost”.

The suppliers and the consolidation center use trucks to ship their products. There are two

important parameters in the trucking cost structure. One is the less-than-truckload (LTL) rate, or

the cost for shipping each cubic foot when the shipping demand is less than some threshold value.

The other is the full-truckload (FTL) rate, or the fixed cost for using an entire truck when the

shipping demand is greater than the threshold value. Let b denote this threshold value, which we

call the FTL equivalent volume. Shipping demand b or more in one truck costs the same as if the

full truckload is used. The FTL rate is usually priced per mile while the LTL rate is usually priced

based on other factors besides distance, such as density, freight class, weight per cubic foot, etc.

However, with similar products in the shipment, we can assume that these factors influence the

price in the same way and thus the LTL rate and FTL rate only depend on the mileage between the
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origin and the destination. Given the distance between the origin and the destination, we denote

the corresponding LTL rate and FTL rate by cL and cF , respectively. The transportation cost is

a function of the shipping volume d and its value depends on the number of trucks used, the LTL

rate and the FTL rate. The cost structure is illustrated in Figure 2. In mathematical terms,

c(d) =


b dkF ccF + (d− kF b dkF c)cL if d− kF b dkF c < b,

(b dkF c+ 1)cF if d− kF b dkF c ≥ b,

where kF denotes the capacity of a single truck. Starting from zero, the transportation cost increases

linearly with the LTL rate cL as the demand increases until the demand reaches the FTL equivalent

volume b; then the cost remains the same for any demand volume beyond b but less than kF and

the cost is cF = cLb. When the current truck has no more capacity, another truck is used following

the same cost function. As a result, the total transportation cost is the sum of the total cost for

shipping some number of full truckloads and the shipping cost of the last necessary truck.

Figure 2: Cost structure

We assume that the suppliers and the consolidation center face the same truck cost structure

but not necessarily the same rates or FTL equivalent volume. Let cL1 and cF1 denote the LTL

rate and FTL rate for outbound shipping at the consolidation center, we define the shipping cost

functions for the suppliers and the consolidation center based on the following assumptions:

Consolidation center location assumption: The suppliers are all close to the consolidation

center and approximately the same distance away. Consequently, we assume all the suppliers

have the same positive LTL rate gL0 for inbound shipping.

Destination location assumption 1: The suppliers are all far away from the destination and

approximately the same distance away. Consequently, we assume all the suppliers have the
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same positive LTL rate gL1 for direct shipping.

Destination location assumption 2: The distances between the suppliers and the destination

are larger than the distances between the suppliers and the consolidation center. As a conse-

quence, gL1 > gL0 and gF1 > gF0, where gF0 is the suppliers’ positive FTL rate for inbound

shipping and gF1 is its positive FTL rate for direct shipping.

Location assumption: The suppliers, consolidation center and destination are located such that

the inbound shipping distances, outbound shipping distance and the direct shipping distances

satisfy the strict triangle inequality, i.e. gL1 < gL0 + cL1.

Threshold value assumption: The suppliers’ inbound and stand-alone costs have the same FTL

equivalent volume bG (ft3).

In general, the above assumptions represent a situation where the suppliers and the consolidation

center are located in the same region and the destination is sufficiently far away that outbound

shipping costs dominate the inbound shipping costs if suppliers send demand via the consolidation

center. Meanwhile, we consider the group of suppliers as a small community in which each supplier

is able to obtain the same transportation rate through negotiation with the carriers. For example,

if carriers charge suppliers based on shipping zones, suppliers in the same zone share the same

transportation rate for the same destination even though there may be small differences in distance.

Following the definition of the cost structure and the assumptions above, the inbound shipping

cost for supplier i is

G0
i =


b dikF cgF0 + (di − kF b dikF c)gL0 if di − kF b dikF c < bG,

(b dikF c+ 1)gF0 if di − kF b dikF c ≥ bG.

The stand-alone shipping cost for supplier i is

G1
i =


b dikF cgF1 + (di − kF b dikF c)gL1 if di − kF b dikF c < bG,

(b dikF c+ 1)gF1 if di − kF b dikF c ≥ bG.

Suppliers are responsible for their own inbound shipping costs if selected for service by the

consolidation center. We consider the outbound shipping cost as the only cost incurred by the

consolidation center while providing the service and therefore only the outbound shipping cost will
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be shared among the selected suppliers. We denote FTL equivalent volume at the consolidation

center by bC = cF1

cL1
. In mathematical terms, the cost φ of shipping demand d at the consolidation

center is

φ(d) =


b dkF ccF1 + (d− kF b dkF c)cL1 if d− kF b dkF c < bC ,

(b dkF c+ 1)cF1 if d− kF b dkF c ≥ bC .

As a result, the total cost C(S) incurred when consolidating and shipping the demand of suppliers

in S is

C(S) = φ

(∑
i∈S

di

)
.

We assume that the consolidation center only has partial information about the transportation

costs of the suppliers. In particular, the consolidation center knows that it has the same cost

structure for trucking as the suppliers, but it does not know the exact parameters of the cost

functions that apply to the suppliers. The information that the consolidation center solicits from

the suppliers is their bids for the corresponding shipping volumes. Selected suppliers receive the

consolidation service for their reported demand volumes. Therefore, suppliers have to report their

demand truthfully. In other words, we can safely assume that the shipping volume of each supplier

is known to the consolidation center.

4 The Moulin Mechanism Design

4.1 Preliminaries

The Moulin mechanism (Moulin 1999, Moulin and Shenker 2001) is used to design truthful and

budget-balanced or approximately budget-balanced cost-sharing mechanisms. It simulates an it-

erative ascending auction to determine which subset of players to serve by using a cost-sharing

method, a function χ that assigns a nonnegative cost share for each player i ∈ S in every S ⊆ N .

The cost shares for the selected subset of players indicate the prices charged for service. The Moulin

mechanism operates as follows:

1. Collect a bid qi from each player i ∈ N .

2. Initialize S := N .

3. If qi ≥ χ(i, S) for every i ∈ S, then stop. Return the set S. Each player i ∈ S is charged the
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price pi = χ(i, S).

4. If qj < χ(j, S) for a player j ∈ S, then set S := S \ {j} and return to Step 3.

In Steps 3 and 4, cost shares are offered to players in S simultaneously. An arbitrary player j is

removed from S if multiple players have cost shares that are greater than their bids. Because only

the players whose bids are greater than or equal to their cost share stay in S, the players selected

by the Moulin mechanism are never charged more than what they bid.

The cost-sharing method χ plays a very important role in the Moulin mechanism design. It

is almost always required to be cross-monotonic, which means that the cost share of each player

cannot decrease as other players are removed, i.e. for all S ⊆ T ⊆ N and i ∈ S, χ(i, S) ≥ χ(i, T ).

This implies that each player in S is offered a sequence of nondecreasing cost shares through

the iterations. When the cost-sharing method χ is cross-monotonic and nonnegative, the Moulin

mechanism is group strategyproof. Group strategyproofness is a strong notion of truthfulness: it

means that not only can an individual player not be better off by falsely bidding, but also a subset

of players can never strictly increase the utility of one of its members without decreasing the utility

of some other member by coordinating false bids.

We split the possible outcomes of this mechanism – the set of players served S – into three

categories:

Total participation: All the players in N are served.

Zero participation: None of the players in N is served.

Partial participation: A non-empty proper subset of N is served.

Observation 1: Any Moulin mechanism yields total participation if and only if χ(i,N) ≤ qi for

all i ∈ N .

Observation 2: Any Moulin mechanism yields zero participation if and only if in every iteration

k = 1, 2 . . . , n, there exists at least one player i such that χ(i, Sk) > qi, where Sk denotes the

remaining set of players at the beginning of iteration k. If the Moulin mechanism yields zero

participation, then one player is removed from Sk in Step 4 of iteration k of the mechanism.

In other words, in each iteration of the mechanism there exists at least one player that has a

cost share that is strictly greater than its bid. Now if in each iteration k, there exists a player
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i that satisfies χ(i, Sk) > qi, then a player will be removed from Sk until there are no more

players left.

4.2 Truthfulness and Budget-Balance

Since Green et al. (1976) and Roberts (1979) proved the impossibility of obtaining truthfulness,

budget-balance, and economic efficiency simultaneously in a cost-sharing mechanism, one natural

approach to designing a cost-sharing mechanism, which is our approach, is to relax the constraint

on economic efficiency. Focusing on truthfulness and budget-balance, we first examine if there

exists a cost-sharing method that results in a cost-sharing mechanism that is always truthful and

budget-balanced for any demand profile of a set of suppliers.

We initiate our examination by assuming that cost shares may be approximately budget-

balanced. In particular, a cost-sharing method is α-budget-balanced if αC(S) ≤
∑
i∈S χi ≤ C(S)

(α ≤ 1) for any outcome set S, where χi are the cost shares for suppliers in S given by the cost-

sharing method. For any demand profile, we solve for a set of cost shares using a linear program

that maximizes α while enforcing α-budget-balance and cross-monotonicity. The model is presented

below.

N := {1, 2, . . . , n}: Set of suppliers.

C(S) : Outbound shipping cost for coalition S when all suppliers in S use consolidation service,

S ⊆ N .

χ(i, S) : Cost share for supplier i in coalition S, S ⊆ N, i ∈ S.

α : Budget-balance guarantee.

max α (1)
s.t.

∑
i∈S

χ(i, S) ≤ C(S), ∀S ⊆ N (2)∑
i∈S

χ(i, S) ≥ α · C(S), ∀S ⊆ N (3)

χ(i, S) ≥ χ(i, S ∪ {j}), ∀S ⊆ N \ {j}, i ∈ S, j ∈ N, i 6= j (4)
χ(i, S) ≥ 0, ∀S ⊆ N, ∀i ∈ S (5)

Constraints (2) and (3) ensure that cost shares are α-budget-balanced. Constraint (4) guarantees

the cross-monotonicity of cost shares, i.e. the cost share for a given supplier does not increase when

additional suppliers join the coalition. Nonnegativity constraint (5) ensures, along with constraint

(4), that the resulting Moulin mechanism is truthful.

The numbers of decision variables and constraints of the model (1)-(5) both grow exponentially
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as the number of suppliers increases. Therefore, it is not trivial to find the cross-monotonic cost-

sharing method with the largest α for even modest values of |N |. As a result, it may not be practical

to apply this approach to design cost-sharing methods.

We solved the above model on thousands of demand profiles with different numbers of suppliers

and different numbers of trucks required to ship the total demand of all the suppliers. Unfortunately,

we found that the maximum possible α is less than 1 for the majority of the demand profiles. This

indicates that cross-monotonic cost shares generally are not budget-balanced. Therefore, we can

conclude that looking for cross-monotonic cost-sharing methods will not result in both truthful and

budget-balanced Moulin mechanisms for our cost-sharing problem.

5 A Cost-Sharing Mechanism Using Approximate Costs

5.1 An Approximately Budget-Balanced Approach

Since our numerical experiments indicate that it is impossible to find a budget-balanced and cross-

monotonic cost-sharing method, our goal is to design a cross-monotonic cost-sharing method with a

good budget-balance guarantee α. We assume that suppliers are responsible for their own inbound

shipping cost and they only share the outbound shipping cost incurred at the consolidation center.

One intuitive approach is to approximate the true outbound shipping cost function using a concave

function, and use this approximation to determine the cost shares. The concavity is important

because it will help in finding cross-monotonic cost shares. The approximate outbound shipping

cost should not exceed the true shipping cost because sharing more than the actual cost does not

incentivize the suppliers. If we have an outbound shipping cost approximation that is at most

a factor α away from the true outbound shipping cost and we share the approximate outbound

shipping cost among the suppliers, then we have a α-budget-balanced cost-sharing method. To

simplify the analysis and computation, we use linear concave functions to approximate the true

cost function.

Assume the capacity of the consolidation center is mkF . Consider the two-piece outbound

shipping cost approximation function ψ(d, µ):

ψ(d, µ) =


[ cF1

bC
− (kFbC − 1)µ]d if 0 < d ≤ bC ,

(d− kF )µ+ cF1 if bC < d ≤ mkF .
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Note that µ is the slope of the second piece of ψ(d, µ) and the second piece passes through (kF , cF1).

Figure 3 shows an example of ψ(d, µ) when m = 4.

Figure 3: An example of cost approximation function

In order for ψ(d, µ) to be a valid cost approximation function for our purposes, it needs to

satisfy two conditions: (1) ψ(d, µ) must be concave in d, and (2) ψ(d, µ) ≤ φ(d) for all d ∈ [0,mkF ].

Both conditions are satisfied when 0 ≤ µ ≤ cF1

kF
. With 0 ≤ µ ≤ cF1

kF
, the slope of the second line

segment is no greater than the slope of the first line segment, i.e. µ ≤ cF1

bC
− (kFbC − 1)µ. Since

the approximate cost at tkF , t = 1, 2, . . . n is (t− 1)kFµ+ cF1, which is smaller than the true cost

tcF1 when 0 ≤ µ ≤ cF1

kF
, the approximate cost is always less than or equal to the true cost. As a

result, we require 0 ≤ µ ≤ cF1

kF
for ψ(d, µ) to be a valid cost approximation function. We use two-

piece linear concave functions because adding more linear pieces to the function while maintaining

concavity does not increase the cost recovered by the function in the worst-case. Because µ is the

slope of the second linear piece, the greater its value is, the more cost can be recovered. Following

the concavity constraint, a newly added linear piece must have a smaller slope than µ and thus the

resulting function would recover less cost than the two-piece linear function.

To decide which ψ(d, µ) to select – in particular, to decide the value of µ – we can try to

maximize the budget-balance guarantee α to maximize the cost recovered by the outbound shipping

cost approximation function in the worst case. Define the cost recovery ratio γ(d, µ) = ψ(d,µ)
φ(d) . If we

look at the cost recovery ratio for d ∈ [tkF , (t+1)kF ) for some t = 0, 1, . . .m−1, we can easily see that

within this interval, γ(d, µ) decreases first as d increases and the true cost function increases at rate

cL1 ≥ µ; γ(d, µ) then increases as the true cost function becomes flat. As a result, the cost recovery

ratio always reaches its smallest value in [tkF , (t + 1)kF ) when d = tkF + bC , t = 0, 1, . . .m − 1.

Therefore, to find the budget-balance guarantee of a given cost approximation function, we only

need to consider d = tkF +bC , t = 0, . . .m−1. In other words, the budget-balance guarantee is now
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a function of µ and α(µ) = min{γ(d, µ)|d ∈ [0,mkF ]} = min{γ(d, µ)|d = tkF + bC , t = 0, . . .m−1}.

We summarize the budget-balance guarantee results in Proposition 1.

Proposition 1. Suppose the capacity of the consolidation center is mkF . Then:

α(µ) =



1
m + (m−2)kF+bC

mcF1
µ if 0 ≤ µ < cF1

2kF−bC ,

1− kF−bC
cF1

µ if cF1

2kF−bC < µ ≤ cF1

kF
,

1
2 + bC

2(2kF−bC) if µ = cF1

2kF−bC .

Proof. We identify the worst cost recovery ratio by studying how the cost recovery ratio changes as

t changes. Since the cost function is different when t = 0, we first consider the cost recovery ratio

at d = tkF +bC , t = 1, 2 . . . ,m−1 as a function of t. Let f(t) = γ(tkF +bC , µ) = [(t−1)kF+bC ]µ+cF1

(t+1)cF1
.

f(t)′ =
kFµ(t+ 1)cF1 − cF1[((t− 1)kF + bC)µ+ cF1]

(t+ 1)2c2F1

=
(2kF − bC)µ− cF1

(t+ 1)2cF1

set f(t)′ = 0, we have µ = cF1

2kF−bC . Consequently, when 0 ≤ µ < cF1

2kF−bC , f(t)′ < 0, the cost

recovery ratio decreases as t increases. When cF1

2kF−bC < µ ≤ cF1

kF
, f(t)′ > 0, the cost recovery

ratio increases as t increases. When µ = cF1

2kF−bC , the cost recovery ratio is the same for any

t = 1, 2, . . .m− 1.

Now we consider the cost recovery ratio at d = bC and d = kF + bC . The cost recovery ratio at

d = bC is γ(bC , µ) = 1− kF−bC
cF1

µ. The cost recovery ratio at d = kF + bC is γ(kF + bCµ) = bCµ+cF1

2cF1
.

Since both ratios are linear in µ, we can have γ(bC , µ) = γ(kF + bC , µ) to get the threshold µ that

determines the relationships of these two ratios:

γ(bC , µ) = γ(kF + bC , µ) =⇒ µ =
cF1

2kF − bC

Therefore, when 0 ≤ µ < cF1

2kF−bC , γ(bC , µ) > γ(kF +bC , µ); when cF1

2kF−bC < µ ≤ cF1

kF
, γ(bC , µ) <

γ(kF + bC , µ); and when µ = cF1

2kF−bC , γ(bC , µ) = γ(kF + bC , µ).

Combining the two sets of results, we can conclude that when 0 ≤ µ < cF1

2kF−bC , α(µ) =

1
m + (n−2)kF+bC

mcF1
µ; when cF1

2kF−bC < µ ≤ cF1

kF
, α(µ) = 1 − kF−bC

cF1
µ; and when µ = cF1

2kF−bC , α(µ) =

1
2 + bC

2(2kF−bC) .

From Proposition 1 we can see that when 0 ≤ µ < cF1

2kF−bC , only 1
m of the outbound shipping
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cost is guaranteed to be recovered. When cF1

2kF−bC < µ ≤ cF1

kF
, the worst-case cost recovery ratio

depends on bC
kF

. When bC is arbitrarily small, bCkF can be arbitrarily small as well, thus leaving α(µ)

only bounded below by 0. In addition, α(µ) in both these cases is bounded above by kF
2kF−bC =

1
2 + bC

2(2kF−bC) . It is only when µ = cF1

2kF−bC that we can reach the maximum worst-case cost recovery

ratio, which guarantees that at least half of the outbound shipping cost is recovered. However, the

budget-balance ratio for our cost-sharing method on average can be much greater than the worst-

case budget-balance guarantee given in Proposition 1 as shown in the computational experiments

in Section 5.3.

5.2 The Cost-Sharing Mechanism Proportional to Effective Demand for

Sharing (PEDS)

Now we have an approximate outbound shipping cost to share with the suppliers who participate in

consolidation. How should we charge the suppliers so they are willing to participate and bid their

true willingness to pay for the service? Arguably, the most intuitive way of sharing the outbound

shipping cost is to share proportionally to each supplier’s actual demand. This means setting the

cost share for supplier i ∈ S to di∑
j∈S dj

φ(
∑
j∈S dj), where S is the selected set of suppliers. This

cost-sharing method tends to allocate more cost to suppliers with larger demand and thus such

suppliers, without whom the total outbound shipping demand may not be large enough to benefit

from consolidation, may not have incentive to consolidate.

To illustrate, using the true outbound shipping cost function, we consider an example where there

are three suppliers who can consolidate their demands. Their transportation costs and truthful bids

are given in Table 1. We assume kF = 10000, bC = bG = 5000, cF1 = $1000, cL1 = gL1 = $0.2/ft3,

gL0 = $0.043/ft3 and each supplier bids truthfully with their willingness to pay, which is equal to

their stand-alone cost minus their inbound shipping cost. Supplier 3’s demand is larger than that

of supplier 1 and supplier 2. If every supplier ships its demand individually, the transportation

cost is $1400 in total. However, if we consolidate all of their demand, the total transportation cost

is C(N) = $1301. If we share the outbound shipping cost proportional to actual demand in the

Moulin mechanism, the corresponding cost shares for each supplier in each iteration is shown in

Table 2.

Table 2 shows that sharing the outbound shipping cost proportional to actual demand in the

first iteration of the Moulin mechanism leads to a cost share that is greater than the bid from the
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Table 1: Cost-sharing example
Supplier 1 Supplier 2 Supplier 3

Demand (1000 ft3) 1 1 8
Stand-alone cost ($) 200 200 1000

Inbound shipping cost ($) 43 43 215
Bid ($) 157 157 785

Table 2: Cost shares for proportional to actual demand
Supplier 1 Supplier 2 Supplier 3

Iteration 1
Cost share ($) 100 100 800

Decision Accept Accept Decline
Iteration 2

Cost share ($) 200 200 N/A
Decision Decline Decline N/A

supplier with large demand. As a result, supplier 3 declines to use the service. This leaves only

supplier 1 and supplier 2 under consideration. However, without supplier 3, supplier 1 and supplier

2 end up with cost shares that are higher than their bids. Consequently, none of the suppliers can

benefit from consolidation, which could have saved a total of $99 if implemented properly. The

example above shows the deficiency of sharing outbound shipping cost proportional to the actual

demand and reveals the importance of having the suppliers with larger demand participate.

Therefore, in order to incentivize large suppliers to participate so that we can take advantage

of the FTL rate, we discount their demand while sharing outbound shipping cost proportionally.

Since the consolidation center does not know the suppliers’ FTL equivalent volumes, it reasonably

estimates it as bE ≥ bC because it has more power to negotiate for favorable transportation costs

compared to individual suppliers. For each supplier, we discount the part of demand that exceeds bE

by a factor of λ, 0 ≤ λ ≤ 1. λ represents how much incentive is provided to the large suppliers. The

smaller λ is, the larger the discount. Suppliers whose demand is less than bE share the outbound

shipping cost according to their true demand.

Effective demand for sharing: For each supplier i ∈ N , its effective demand for sharing is

d′i =


di if 0 < di ≤ bE ,

(di − bE)λ+ bE if bE < di ≤ mkF .

We propose a cost-sharing method that shares the approximate outbound shipping cost propor-

tional to effective demand for sharing (PEDS). Let DS =
∑
i∈S di and D

′
S =

∑
i∈S d

′
i. The price

19



offered to supplier i ∈ S is equal to the share of the approximate outbound shipping cost for set S

proportional to supplier i’s effective demand for sharing; that is, for S ⊆ N , i ∈ S, we define the

cost share χ(i, S, µ, λ) as

χ(i, S, µ, λ) =
d′i
D′S

ψ
(
DS , µ

)
.

If we apply cost-sharing method PEDS in the example above with λ = 0 and bE = 5000, the

cost shares we obtain in the corresponding Moulin mechanism for each supplier are summarized

in Table 3. Cost-sharing method PEDS charges less to supplier 3 than sharing proportional to

actual demand. The cost share for each supplier from cost-sharing method PEDS is less than its

bid. Thus, all suppliers are willing to participate in the consolidation, which successfully saves $99.

Additionally, with the participation of supplier 3, each supplier of this coalition is able to reduce its

transportation costs. This simple example reveals the power of our proposed cost-sharing method

in incentivizing consolidation and improving social welfare.

Table 3: Cost shares for proportional to effective demand for sharing
Supplier 1 Supplier 2 Supplier 3

Cost share ($) 143 143 714
Decision Accept Accept Accept

We will next examine the truthfulness of the Moulin mechanism using cost-sharing method

PEDS. As mentioned above, cross-monotonic cost-sharing methods lead to truthful Moulin mech-

anisms. The proposition below gives conditions under which our cost-sharing method PEDS is

cross-monotonic.

Proposition 2. Suppose bE ≥ bC , µ ≤ cF1

kF
and the capacity of consolidation center is mkF . If

(mkF−bE)µ
(m−1)kFµ−bEµ+cF1

≤ λ ≤ 1, then cost-sharing method PEDS is cross-monotonic.

Proof. Let i be an arbitrary supplier whose cost share we observe and compare in different subsets.

Let S be an arbitrary set such that i ∈ S and S ⊆ N \ {j}, where i 6= j. We obtain T by

augmenting S with supplier j, i.e. T = S ∪ {j}. Let DS =
∑
i∈S di, DT =

∑
i∈T di, D

′
S =

∑
i∈S d

′
i

and D′T =
∑
i∈T d

′
i. Let Γ(S, T ) denote the total cost share of the outbound shipping cost for

suppliers in S while serving T . We first prove that the total cost share of suppliers in S does not

increase when more suppliers are served, i.e. Γ (S, T ) ≤ ψ(DS).

Because ψ and θ functions change at bC and bE , respectively, there are six different DS , DT

and dj combinations to consider.
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Case 1: DS ≤ bC , dj ≤ bE , DT ≤ bC , D′S = DS and D′T = DT .

Γ(S, T ) =
D′S
D′T

ψ(DT ) =
DS

DT
[
cF1

bC
− (

kF
bC
− 1)µ]DT = ψ(DS)

Case 2: DS ≤ bC , dj ≤ bE , DT > bC , D′S = DS and D′T = DT .

Γ(S, T ) =
D′S
D′T

ψ(DT ) =
DS

DT
[(DT − kF )µ+ cF1]

Γ(S, T )− ψ(DS) =
DS

DT
[(DT − kF )µ+ cF1]− [

cF1

bC
− (

kF
bC
− 1)µ]DS

= DS(
1

DT
− 1

bC
)(cF1 − kFµ) < 0

Case 3: DS ≤ bC , dj > bE , DT > bC , D′S = DS and D′T = DS + d′j .

Γ(S, T ) =
D′S
D′T

ψ(DT ) =
DS

D′T
[(DT − kF )µ+ cF1]

Γ(S, T )− ψ(DS) =
DS

D′T
[(DT − kF )µ+ cF1]− [

cF1

bC
− (

kF
bC
− 1)µ]DS

= DS [(
D′T
DT
− 1)µ+ (

1

D′T
− 1

bC
)(cF1 − kFµ)] < 0

The last equality is valid because DT > D′T > (dj − bE)λ+ bE > bE ≥ bC .

Case 4: DS > bC , dj ≤ bE , DT > bC , D′S = DS and D′T = DT .

Γ(S, T ) =
D′S
D′T

ψ(DT ) =
DS

DT
[(DT − kF )µ+ cF1]

Γ(S, T )− ψ(DS) =
DS

DT
[(DT − kF )µ+ cF1]− (DS − kF )µ− cF1

=
−dj
DT

(cF1 − kFµ) < 0

Case 5: DS > bC , dj > bE , DT > bC , D′S = DS and D′T = DS + d′j .

Γ(S, T ) =
D′S
D′T

ψ(DT ) =
DS

D′T
[(DT − kF )µ+ cF1]
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Γ(S, T )− ψ(DS) =
DS

D′T
[(DT − kF )µ+ cF1]− (DS − kF )µ− cF1

=
(dj − d′j)
D′T

DSµ−
d′j
D′T

(cF1 − kFµ)

=
d′j
D′T

[(
dj
d′j
− 1)DSµ− cF1 + kFµ] (6)

=
d′j
D′T

[(
dj

djλ+ (1− λ)bE
− 1)DSµ− cF1 + kFµ]

≤
d′j
D′T

[(
1

λ
− 1)DSµ− cF1 + kFµ]

<
d′j
D′T

[(
1

λ
− 1)(mkF − bE)µ− cF1 + kFµ]

≤
d′j
D′T

(cF1 − kFµ− cF1 + kFµ) = 0

The third last inequality is valid because (1−λ)bE ≥ 0. For the second last inequality, dj > bE ,

DS + dj ≤ mkF , so DS < mkF − bE . Because λ ≥ (mkF−bE)µ
(m−1)kFµ−bEµ+cF1

, the last inequality is valid.

Case 6: DS > bC , dj > bE , DT > bC , D′S < DS and D′T = D′S + d′j .

Γ(S, T ) =
D′S
D′T

ψ(DT ) =
D′S
D′T

[(DT − kF )µ+ cF1]

Γ(S, T )− ψ(DS) =
D′S
D′T

[(DT − kF )µ+ cF1]− (DS − kF )µ− cF1

=
D′SDT −DSD

′
T

D′T
µ+ (

D′S
D′T
− 1)(cF1 − kFµ)

=
1

D′T
[(D′Sdj −DSd

′
j)µ− d′j(cF1 − kFµ)]

=
d′j
D′T

[(
dj
d′j
D′S −DS)µ− (cF1 − kFµ)]

<
d′j
D′T

[(
dj
d′j
− 1)DSµ− (cF1 − kFµ)] (7)

< 0

The second last inequality is valid because D′S < DS . The last inequality is valid because (7) is
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the same as (6).

The six cases above show that the total cost share of the outbound shipping cost does not

increase when one more supplier is served, i.e. Γ(S, T ) ≤ φ
(
DS

)
. Since the total cost share Γ(S, T )

does not increase, the share of the outbound shipping cost for supplier i does not increase as well.

Therefore, when i ∈ S, S ⊆ N \{j}, T = S∪{j}, and i 6= j, we have χ(i, S) ≥ χ(i, T ). This implies

that for arbitrary S ⊆ T ⊆ N , χ(i, S) ≥ χ(i, T ).

Corollary 1. Sharing the approximate outbound shipping cost proportional to demand is always

cross-monotonic.

Corollary 1 directly follows Proposition 2 because when λ = 1, cost-sharing method PEDS

corresponds to sharing proportionally to demand.

Suppose we use Proposition 2 as a guideline to guarantee that the cost-sharing method PEDS is

cross-monotonic. As we can see, λ is bounded below by a value that is determined by the parameters

m and µ. So, the largest discount we can provide to large suppliers while maintaining cross-

monotonicity depends on m and µ. Let cF1 = kFµ+ δ for some δ ≥ 0. Then (mkF−bE)µ
(m−1)kFµ−bEµ+cF1

=

mkFµ−bEµ
mkFµ−bEµ+δ . When m → ∞, mkFµ−bEµ

mkFµ−bEµ+δ → 1 and therefore λ → 1 to guarantee cost-sharing

method PEDS to be cross-monotonic. As the capacity of the consolidation center grows, our cost-

sharing method PEDS converges to sharing proportional to demand. According to Proposition 2,

when the center has infinite capacity, we should share the approximate outbound shipping cost

proportional to demand to maintain cross-monotonicity of the cost-sharing method.

We can see that as µ increases, λ must increase to guarantee cross-monotonicity. If we follow

Proposition 2, when the total demand is greater than two truckloads, increasing the recovered cost

with greater µ decreases the maximum discount we can offer to the large suppliers while maintaining

cross-monotonicity. On the other hand, as µ decreases, λmust decrease. Hence, there exists a trade-

off in this more-than-two-truckload scenario between how much cost we want to recover and how

much incentive we want to offer to the large suppliers. In other words, this is a trade-off between

the benefit of the consolidation center and the cost savings of the suppliers.

Corollary 2. When µ = 0, cost-sharing mechanism PEDS is both truthful and budget-balanced

when the total demand fits into one truckload with any 0 ≤ λ ≤ 1.

This result is very intuitive. When µ = 0, any 0 ≤ λ ≤ 1 guarantees a cross-monotonic

cost-sharing method. Actually, when µ = 0, the cost approximation function becomes the true cost
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function for the first truckload. This means that when the total demand of all suppliers fits into one

truckload, we can have a truthful and budget-balanced cost-sharing mechanism. This interesting

result motivates us to further study this case specifically in Section 6.

Since our cost-sharing method PEDS is cross-monotonic when (mkF−bE)µ
(m−1)kFµ−bEµ+cF1

≤ λ ≤ 1, the

Moulin mechanism that applies our cost-sharing method PEDS under these conditions, is group

strategyproof. We call this cost-sharing mechanism PEDS. In our study of this mechanism, we

assume that supplier i’s valuation of the consolidation service vi is its stand-alone cost minus its

inbound shipping cost and thus is its bid qi submitted under cost-sharing mechanism PEDS. This

assumption is reasonable because cost-sharing mechanism PEDS is group strategyproof.

5.3 Economic Efficiency of Cost-Sharing Mechanism PEDS

We have shown that our cost-sharing mechanism PEDS is truthful and approximately budget-

balanced. The remaining desired property left to explore is economic efficiency. In order to ex-

amine cost-sharing mechanism PEDS from an economic efficiency perspective, we first introduce

an optimization model that calculates a social-welfare-maximizing solution for any given demand

profile. We then compare the outcomes of mechanism PEDS with economically efficient solutions

under different parameter settings.

Typically, the economic efficiency of a cost-sharing mechanism is measured by social welfare.

Social welfare W (S) is defined as the savings incurred by the set of suppliers S selected by the

mechanism. In mathematical terms, W (S) = V (S) − C(S), where V (S) is the total valuation

of the suppliers in S and C(S) is the total cost to serve the suppliers in S. The economically

efficient solution is the one that maximizes the social welfare. Unfortunately, Feigenbaum et al.

(2003) showed that truthful and approximately budget-balanced cost-sharing mechanisms often

yield outcomes with zero or negative social welfare even though outcomes with strictly positive

social welfare exist. This makes it difficult to compare the relative economic efficiency of cost-

sharing mechanisms with the same budget-balance guarantee.

To sidestep this issue, Roughgarden and Sundararajan (2009) introduced social cost, another

measure of economic efficiency. The social cost π(S) is defined as the summation of the cost

incurred by serving S and the total valuation of suppliers who are not in S. In mathematical terms,

π(S) = C(S)+V (N\S), where V (N\S) is the total valuation of the suppliers not in S. In fact, social

cost can be constructed by an affine transformation from social welfare: π(S) = −W (S) + V (N).
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This implies that minimizing social cost is equivalent to maximizing social welfare, although social

cost is always nonnegative. For these reasons, we use social cost as the measure of economic

efficiency and determine outcomes with the maximum social welfare by minimizing social cost.

In our problem, the social cost is actually equal to the total shipping cost of all the suppliers

in N . Slightly different from our problem definition above, we allow suppliers to ship part of their

demand to the consolidation center when solving for the minimum social cost. We believe that this

is a more meaningful cost to compare with the outcome of our mechanism because it truly reveals

what can be achieved within this consolidation system. We consider the following optimization

model to minimize the total shipping cost of all the suppliers. The decision variables and the model

are presented below.

xiF0: Number of trucks sent from grower i to the consolidation center by the FTL rate ∀i ∈ N .

xiL0: Binary variable. If supplier i’s inbound shipping uses the LTL rate xiL0 = 1, otherwise 0.

xiF1: Number of trucks sent from grower i to the destination by the FTL rate ∀i ∈ N .

xiL1: Binary variable. If supplier i’s direct shipping uses the LTL rate xiL1 = 1, otherwise 0.

xCF : Number of trucks sent from the consolidation center to the destination by the FTL rate.

xCL: Binary variable. If outbound shipping uses the LTL rate xCL = 1, otherwise 0.

yiF0 : Amount of supplier i’s demand sent by the FTL rate to the consolidation center ∀i ∈ N .

yiL0 : Amount of supplier i’s demand sent by the LTL rate to the consolidation center ∀i ∈ N .

yiF1 : Amount of supplier i’s demand sent by the FTL rate to the destination ∀i ∈ N .

yiL1 : Amount of supplier i’s demand sent by the LTL rate to the destination ∀i ∈ N .

yCF : Amount of demand sent by the FTL rate from the consolidation center to the destination.

yCL : Amount of demand sent by the LTL rate from the consolidation center to the destination.

min
∑
i∈N

(gF0x
i
F0 + gF1x

i
F1 + gL0y

i
L0 + gL1y

i
L1) + cF1xCF + cL1yCL (8)

25



s.t. yiF0 ≤ kFxiF0, ∀i ∈ N (9)
yiL0 ≤ bGxiL0, ∀i ∈ N (10)
yiF1 ≤ kFxiF1, ∀i ∈ N (11)
yiL1 ≤ bGxiL1, ∀i ∈ N (12)
yCF ≤ kFxCF , (13)
yCL ≤ bCxCL, (14)
yiF0 + yiL0 + yiF1 + yiL1 = di, ∀i ∈ N (15)∑
i∈N

(yiF0 + yiL0) = yCF + yCL (16)

xiF0, x
i
F1 ∈ {0} ∪ Z+, ∀i ∈ N (17)

xiL0, x
i
L1 ∈ {0, 1}, ∀i ∈ N (18)

xCL ∈ {0, 1} (19)
xCF ∈ {0} ∪ Z+ (20)
all other decision variables are nonnegative (21)

Constraints (9), (11), (13) ensure that the shipping volumes do not exceed the number of

truckloads when shipping with the FTL rates. Constraints (10), (12), (14) ensure that the shipping

volumes do not exceed the FTL equivalent volumes when shipping with the LTL rates. Constraints

(15) make sure that each supplier ships all of its demand. Constraint (16) enforces that what ships

into the consolidation center ships out. The rest of the constraints restrict decision variables to be

binary, integers or nonnegative reals. The optimal solution of this model provides a shipping plan

for each supplier that minimizes the social cost of the system.

In order to study the economic efficiency of cost-sharing mechanism PEDS, we conducted a

set of computational experiments to compare the social cost of the mechanism’s solutions to the

optimal social cost obtained from the optimization model (8)-(21) for the same demand profile. In

particular, we want to know how the social cost gap changes with different numbers of suppliers

and different relative distances between the consolidation center and the destination. We define the

social cost gap as
mechanism social cost− optimal social cost

optimal social cost
.

In the demand profiles we use in these computational experiments, each supplier has less-than-

truckload demand. In fact, the consolidation center should only accept less-than-truckload demand

from each supplier. On one hand, from the consolidation center’s point of view, full-truckloads

cannot contribute to the consolidation because there is no more room to consolidate other demand.
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Therefore, there is no reason for the consolidation center to accept full-truckloads. On the other

hand, from suppliers’ point of view, if they have one or several full truckloads of demand that

can be shipped via the lowest transportation rate, they may not want to ship this demand to the

consolidation center to avoid delays and extra operations. Instead, they may be only interested

in shipping their less-than-truckload demand to the consolidation to see if they can pay less for

shipping. Therefore, the most intriguing demand profiles to study are the ones in which each

supplier has less-than-truckload demand. For each given number of suppliers n, we randomly

generate 100 demand profiles. Each supplier’s demand is randomly generated from the uniform

distribution on (0, kF ).

Table 4: Fixed parameters
kF (ft3) bC (ft3) bE (ft3) bG (ft3) cF1 m
4000 2000 2000 2000 6000 20

In these experiments, we fix the values of the most parameters and change the number of sup-

pliers and the ratio gL1

gL0
to study their influence on the gap in social cost. The fixed parameters are

shown in Table 4. We calculate the remaining parameters based on these fixed parameters. For

example, we choose µ = cF1

2kF−bC in order to achieve the maximum budget-balance guarantee and

therefore, the cost-sharing mechanism PEDS we study in this experiment is 1
2 -budget-balanced.

However, our experimental results show that our mechanism usually recovers a much greater pro-

portion of the shipping cost. Based on the value of µ, we give the suppliers the maximum incentive

to participate and thus choose λ = (mkF−bE)µ
(m−1)kFµ−bEµ+cF1

. We set gL1 = cL1. All related shipping rates

can be calculated by the relationship between the FTL rate and the LTL rate. We change gL1

gL0
to

change the ratio between the distance for direct shipping and the distance for inbound shipping. A

larger gL1

gL0
represents a farther destination compared to the location of the consolidation center. Our

choices of gL1

gL0
are 1.5, 2.4, 3.2, 4.8, 9, and 15. In order to study the influence of number of suppliers

on the gap in social cost, we choose the number of suppliers n to be 3, 6, 10, and 15. We summarize

the average budget-balance ratios in Table 5. The average social cost gaps over the demand profiles

for which the Moulin mechanism outcomes are different from the social-cost-minimizing solutions

are summarized in Table 6.

In Table 5, the average budget-balance ratios indicate that the cost-sharing mechanism PEDS

recovers between 68% and 83% of the total shipping cost in general. When gL1

gL0
= 4.8, 9, 15, the

average budget-balance ratio is the same for the same number of suppliers (6,10,15 suppliers)
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Table 5: Summary of average budget-balance ratios
gL1

gL0
2.4 3.2 4.8 9 15

3 suppliers 0.8313 0.7501 0.7603 0.7605 0.7631
6 suppliers 0.7850 0.7416 0.7164 0.7164 0.7164
10 suppliers 0.7248 0.7058 0.7006 0.7006 0.7006
15 suppliers 0.7036 0.6904 0.6890 0.6890 0.6890

because our mechanism always yields total participation and thus we always consolidate the same

amount of demand for the same demand profile. gL1

gL0
= 1.5 is omitted from this table because the

mechanism solutions always result in zero participation and thus the destination is too close for

the suppliers to benefit from consolidation. From Table 6, we can see that overall, the social cost

gaps are less than 10%. When gL1

gL0
= 1.5, the mechanism’s solutions are always the economically

efficient solutions. This implies that when the destination is close enough, direct shipping is the best

choice. The social cost gaps are the largest when gL1

gL0
= 3.2. In other words, under our parameter

settings, the mechanism’s solutions are the most different from the optimal social cost solutions

when gL1

gL0
= 3.2. This social cost difference is due to the trade-off between the inbound shipping

costs and the savings from shipping via the consolidation center. Consolidation is attractive only

when the savings can offset the inbound shipping cost. When gL1

gL0
is larger than 3.2, as gL1

gL0
increases,

the social cost gap decreases. Our experimental results also show that the mechanism almost always

yields total participation when gL1

gL0
≥ 4.8. For the optimization model, as gL1

gL0
increases, the savings

from consolidation dominates the inbound shipping cost and therefore, suppliers ship more demand

through consolidation. This effect makes the solution of the mechanism and the optimization model

more and more similar as gL1

gL0
gets larger and larger. In terms of the number of suppliers, we see

that the social cost gaps generally become smaller as the number of suppliers increases. This is a

good indication that, in order to maximize social welfare, we should encourage more suppliers to

consider consolidation.

Table 6: Social cost gaps for suppliers with less-than-truckload demand
gL1

gL0
1.5 2.4 3.2 4.8 9 15

3 suppliers 0% 6.97% 9.45% 8.30% 4.37% 2.66%
6 suppliers 0% 6.21% 7.32% 6.70% 3.28% 1.91%
10 suppliers 0% 5.14% 6.93% 5.18% 2.47% 1.42%
15 suppliers 0% 5.06% 7.30% 4.86% 2.25% 1.29%
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6 Cost-Sharing Mechanism for the Single Truck Scenario

In this section, we study the special case where the total demand of the suppliers fits into one

truckload, i.e.
∑
i∈N di ≤ kF . Consequently, the demand of each supplier also fits into one truck-

load, i.e. di ≤ kF . This case is worth studying not only because we can provide a both truthful

and budget-balanced cost-sharing mechanism, but also because the suppliers with small demand in

this case deserve more attention. They need the consolidation more than the suppliers who have

large enough demand to ship with the FTL rate. Moreover, the results for this scenario provide

managerial insights for some practical applications. For instance, according to the data provided by

the California Cut Flower Commission (CFCC), the demand of many California cut flower growers

in 2010 shows that in more than 95% of the cases, the aggregated shipping volumes to a single

destination for these growers is less than one truckload on a daily basis. Most of these growers are

from small farms and are willing to participate in consolidation.

6.1 Truthfulness and Budget-Balance

As we pointed out in Section 5.2, when µ = 0, the cost approximation function becomes the true

outbound shipping cost function for the first truckload. Thus, we can now design a both truthful

and budget-balanced cost-sharing mechanism for the “single truck scenario”. In this scenario, the

outbound shipping cost for a selected supplier set S becomes

φ(DS) = ψ(DS , 0) =


cL1DS if 0 ≤ DS ≤ bC ,

cF1 if DS ≥ bC .

According to Proposition 2, when µ = 0, any 0 ≤ λ ≤ 1 guarantees that cost-sharing method

PEDS is cross-monotonic and the associated cost-sharing mechanism PEDS is group strategyproof.

In addition, the cost-sharing method and cost-sharing mechanism is budget-balanced. For this

section, we choose λ = 0. The reasons for choosing this value are twofold. First, when cross-

monotonicity is guaranteed, we want to provide as much incentive as possible to the large suppliers to

participate. Second, λ = 0 provides a more intuitive explanation of the cost-sharing method. When

λ = 0, suppliers with demand greater than bE have bE as their effective demand for sharing. On the

other hand, suppliers with demand smaller than bE have their true demand as their effective demand

for sharing. In other words, the effective demand for sharing for supplier i is d′i = min{di, bE}.

Intuitively, cost-sharing method PEDS shares the costs proportional to the consolidation center’s
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estimate of each supplier’s stand-alone cost. When the estimated FTL equivalent volume is equal

to the true FTL equivalent volume of suppliers, i.e. bE = bG, cost-sharing method PEDS shares the

cost proportional to the actual stand-alone cost of each supplier. The estimated stand-alone cost

is a better reflection of the true shipping costs of the suppliers. In particular, the cost of shipping

demand larger than bG is not proportional to the demand volume. To simplify the notation, let

χ(i, S) = χ(i, S, 0, 0) denote the cost share of supplier i when the service set is S.

6.2 Economic Efficiency

We study the economic efficiency of the cost-sharing mechanism PEDS for the single truck scenario

by analytically comparing the social cost from the mechanism’s solutions to the minimum social

cost of the system. The optimization model (8)-(21) can be easily adapted to get the minimum

social cost for the single truck scenario. The only change is that xiF0, x
i
F1, ∀i ∈ N and xCF are

restricted to be binary instead of integral, because both the demand of each supplier and the total

demand are less than or equal to one truckload. All of the other decision variables and constraints

remain the same. Because of the single truck constraint, if a shipping volume d from a supplier to

the consolidation center or the destination is smaller than bG, then LTL is the optimal shipping

method; if d is greater than or equal to bG, then FTL is the optimal shipping method. Increasing the

shipment volume when the total shipping demand exceeds bG does not incur extra cost. Therefore,

either the FTL rate or the LTL rate is used to ship a supplier’s entire demand to the consolidation

center or the destination in the optimal social cost solution. In mathematical terms, for every

supplier i, x̃iF0· x̃iL0 = 0 and x̃iF1· x̃iL1 = 0 where x̃ is in the optimal solution. The same logic applies

to the consolidation center as well, i.e. x̃CF · x̃CL = 0. We analyze the structure of the optimal

solutions to this model to understand how the minimum social cost is achieved. The findings are

summarized in Proposition 3, Corollary 3 and Proposition 4. (We present all proofs in this section

in the Appendix).

Proposition 3. There exists an optimal solution to the model (8)-(21) in which each supplier ships

all its demand either to the consolidation center or directly to the destination.

Following the above proposition, we can prove a stronger result on the structure of the optimal

solution.

Corollary 3. Every optimal solution to the model (8)-(21) shares the same structure: x̃iF0 + x̃iL0 +

x̃iF1 + x̃iL1 = 1 where x̃ is in the optimal solution. In other words, in every optimal solution to the
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model, each supplier’s entire demand is shipped either to the consolidation center or directly to the

destination.

So far, we have shown the best practice for each supplier in N in an optimal social cost solution.

Although suppliers have two shipping options, shipping the entire demand of one supplier using one

option leads to the minimum social cost. The optimal system-wide shipping plan is given next.

Proposition 4. The optimal solution to the model (8)-(21) is either zero participation or total

participation. A solution in which a subset of suppliers S ⊂ N, S 6= ∅ ships their demand to the

consolidation center first while the rest of the suppliers ship their demand directly to the destination

is not optimal.

Since the economically efficient solution is either zero participation or total participation, we can

easily verify if an outcome of cost-sharing mechanism PEDS is economically efficient or not. If the

outcome is partial participation, it is not an economically efficient solution. If the outcome is total

or zero participation, we can compare its total shipping cost to the total shipping cost under zero

or total participation to see if the outcome is economically efficient or not. When the total shipping

cost of total participation and zero participation are the same, we assume total participation as

the solution of the optimization model. Next, we characterize the participation of the outcomes of

the cost-sharing mechanism PEDS and present the comparisons in the following propositions and

corollaries.

Based on the protocols of cost-sharing mechanism PEDS, a sufficient condition for the mecha-

nism to yield zero participation is summarized in Lemma 1.

Lemma 1. If χ(i,N) > qi for all i ∈ N , cost-sharing mechanism PEDS yields zero participation.

Proposition 5. When DN < bC , cost-sharing mechanism PEDS is economically efficient.

Next, we consider the case when DN ≥ bC . The consolidation center decides the value of bE

before collecting bids. Without knowing the exact value of bG for the suppliers, the consolidation

center’s estimate can be above, below, or equal to the true bG. Let D′N denote the total effective

demand for sharing of all the suppliers in N , i.e. D′N =
∑
i∈N d

′
i =

∑
i∈N min{di, bE}. Note that

bE ≥ bC and DN ≥ bC , so D′N ≥ bC . When DN ≥ bC , certain conditions are necessary in order for

the cost-sharing mechanism PEDS to yield zero or total participation.

Proposition 6. When DN ≥ bC , the conditions for cost-sharing mechanism PEDS to yield zero

or total participation are summarized below:
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1. bE > bG, D′N ≥
bE
bG

cF1

gL1−gL0
⇐⇒ total participation

2. bE > bG, D′N < cF1

gL1−gL0
=⇒ zero participation

3. bE < bG, D′N ≥
cF1

gL1−gL0
⇐⇒ total participation

4. gL1−gL0

cL1
bG < bE < bG, D′N < bE

bG
cF1

gL1−gL0
=⇒ zero participation

The lower bound gL1−gL0

cL1
bG on bE in case 4 is necessary for bE

bG
cF1

gL1−gL0
to be a valid upper

bound for D′N . Since D′N ≥ bC , bE > gL1−gL0

cL1
bG guarantees that bE

bG
cF1

gL1−gL0
≥ bC . Whether

the consolidation center underestimates or overestimates the suppliers’ FTL equivalent, there is a

range of D′N , for example [ cF1

gL1−gL0
, bEbG

cF1

gL1−gL0
) with overestimation, whose corresponding outcome

of cost-sharing mechanism PEDS remains unknown. This ambiguity no longer exists when the

consolidation center correctly estimates the suppliers’ FTL equivalent volume.

Corollary 4. When bE = bG, cost-sharing mechanism PEDS yields either zero or total participa-

tion.

Having proved the conditions under which cost-sharing mechanism PEDS yields zero or total

participation, we show that these outcomes are also economically efficient in Proposition 7.

Proposition 7. When DN ≥ bC , cost-sharing mechanism PEDS is economically efficient under

each of the following conditions:

1. bE > bG and D′N ≥
bE
bG

cF1

gL1−gL0
2. bE > bG and D′N < cF1

gL1−gL0

3. bE < bG and D′N ≥
cF1

gL1−gL0
4. gL1−gL0

cL1
bG < bE < bG and D′N < bE

bG
cF1

gL1−gL0

5. bE = bG

From Proposition 5, 6, and 7, we can conclude that the cost-sharing mechanism PEDS yields

economically efficient solutions under the demand profiles for which we know the mechanism’s

outcome is zero or total participation. When bE = bG, the mechanism’s solutions are always

economically efficient.

7 Conclusion

In this paper, we defined a cost-sharing problem in a freight consolidation system with one con-

solidation center. Suppliers in the same region are all interested in using this nearby consolidation

center to ship their demand to a common destination for cheaper transportation rates. In order

to form and sustain the cooperation among suppliers, we design a Moulin mechanism to share the

shipping cost of the participating suppliers.
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However, the nonconvex and nonconcave outbound shipping cost when the consolidated demand

exceeds one truckload makes it difficult to develop Moulin mechanisms that are both truthful and

budget-balanced. Our numerical experiments showed that it is not possible for us to have a both

cross-monotonic and budget-balanced cost-sharing method, which would lead to a truthful and

budget-balanced Moulin mechanism. As a result, we approached the problem by approximating

the outbound shipping cost function with piecewise linear concave functions.

In order to encourage the participation of the large suppliers – suppliers who have large enough

demand to ship with the FTL rate – we share the approximate outbound shipping cost proportional

to each supplier’s effective demand for sharing, which discounts the part of demand that exceeds

the estimated suppliers’ FTL equivalent volume. We provided the conditions under which the

Moulin mechanism that applies cost-sharing method PEDS, which we call cost-sharing mechanism

PEDS, is group strategyproof and approximately budget-balanced. We found that in order to

retain truthfulness of the mechanism, there exists a trade-off between the consolidation center’s

benefit and the suppliers’ cost savings in the choice of µ (the slope of the second linear piece

in approximate outbound shipping cost function) and λ (the discount factor in defining effective

demand for sharing). The values of µ and λ should be determined based on the specific goal of the

consolidation center.

We computationally studied the economic efficiency of our cost-sharing mechanism PEDS using

social cost as the measure. The social cost gaps are less than 10%. Our experimental results indicate

that our mechanism’s economic efficiency improves as more suppliers bid for the service and the

destination is farther away.

Finally, we investigated our cost-sharing mechanism PEDS for the single truck scenario in which

the total demand of suppliers fits into one truckload. The cost-sharing mechanism PEDS for the

single truck scenario is not only truthful but also budget-balanced. Additionally, we analytically

showed that the outcomes of zero or total participation guaranteed by the cost-sharing mechanism

PEDS for certain demand profiles are economically efficient.

Our future research will focus on exploring the acyclic mechanism framework (Mehta et al. 2009)

to develop alternate cost-sharing mechanisms for our problem. Currently, the cross-monotonicity of

cost-sharing methods required by the Moulin mechanism to ensure truthfulness restricts our choice

of cost-sharing methods. Fortunately, the acyclic mechanism framework allows the construction of

truthfulness from non-cross-monotonic cost-sharing methods by incorporating a designer-specified
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offer function that decides the cost share disclosure sequence of suppliers in each iteration. How-

ever, this increased choice of cost-sharing methods comes at a price of some loss in the degree of

truthfulness.
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Appendix

Proof of Proposition 3.

Proof. We prove this proposition by contradiction.

First of all, we show that 0 < yCF + yCL < bC is not optimal. Suppose 0 < yCF + yCL < bC

is in an optimal solution. WLOG, we assume that yCF = 0. Therefore, the consolidation center

incurs a cost of yCLcL1. If bG ≥ bC , then yCL < bG. The total shipping cost via the consolidation

center is yCL(cL1 + gL0). However, shipping the same demand directly to the destination instead

costs only yCLgL1 < yCL(cL1 + gL0). If bG < bC , it is possible that bG < yCL < bC . In this case,

the total shipping cost via the consolidation center is yCLcL1 + (ngF0 + δgL0), where n ≥ 0, n ∈ Z

denotes the number of suppliers who can send their demand to the consolidation center by FTL

rate and δ denotes the demand volume sent by LTL rate. The cost of shipping the same demand

directly to the destination is ngF1 + δgL1. Since

ngF1 + δgL1 − yCLcL1 − (ngF0 + δgL0) = (nbG + δ)(gL1 − gL0)− yCLcL1
≤ (nbG + δ)(gL1 − gL0)− (nbG + δ)cL1

= (nbG + δ)(gL1 − gL0 − cL1)

< 0,

shipping directly is cheaper than consolidating. The first inequality is valid because the actual

demand sent via FTL rate by each of the n suppliers should be greater than or equal to bG.

The validity of the second inequality lies in the assumption that gL1 < cL1 + gL0. Therefore,

0 < yCF +yCL < bC is not optimal. This also indicates that either yCF +yCL = 0 or yCF +yCL ≥ bC

is true in an optimal solution.
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We assume supplier i ships dCi > 0 to the consolidation center and dDi > 0 to the destination in

the optimal solution, i.e. dCi + dDi = di. Since it is optimal to use either LTL or FTL rate to ship

each supplier’s demand to the consolidation center or directly to the destination respectively, there

are only four possible shipping plans for supplier i.

(1) yiL0 = dCi , yiF1 = dDi .

If supplier i ships by this plan, then dCi < bG and dDi ≥ bG. Since dDi ≥ bG, if we also ship

dCi directly to the destination, no extra cost of direct shipping is incurred. Therefore, shipping

di > bG directly to the destination reduces the shipping cost of supplier i by gL0d
C
i . Now we

examine whether the shipping cost of consolidation is increased by shipping dCi directly instead of

consolidating it first. If (yCF + yCL) ≥ bC and (yCF + yCL − dCi ) ≥ bC , then the optimal shipping

cost of the consolidation center remains cF1. If (yCF + yCL) ≥ bC and (yCF + yCL− dCi ) < bC , the

cost of shipping decreases from cF1 to (yCF + yCL − dCi ) · cL1 ≤ cL1bC = cF1. Therefore, shipping

di directly to the destination instead yields a decrease in the total cost by at least gL0dCi , and so

this plan cannot be optimal.

(2) and (3) yiF0 = dCi , yiL1 = dDi or yiF1 = dDi .

If supplier i ships by either of these two plans, then dCi ≥ bG. Since dCi ≥ bG, if we also ship dDi

to the consolidation center first, no extra cost of inbound shipping is incurred. Therefore, shipping

di > bG to the consolidation center reduces the shipping cost of supplier i by gL1dDi or gF1. As for

the shipping cost of the consolidation center, since (yCF + yCL) ≥ dCi ≥ bC , the optimal shipping

cost remains cF1 if dDi is shipped to the consolidation center. To summarize, shipping di to the

consolidation center ensures a decrease in the total cost by gL1dDi or gF1, and so these plans cannot

be optimal.

(4) yL0 = dCi and yL1 = dDi .

If supplier i ships by this plan, then dCi < bG and dDi < bG. Because yL0 = dCi > 0, we must

have yCF + yCL ≥ bC . Therefore, increasing the shipment volume of the consolidation center does

not incur any extra cost. Now if we ship dDi to the consolidation center as well, the total cost is

decreased by (gL1− gL0)dDi if dDi < bG or (gF1− gF0) if dDi ≥ bG. As a consequence, shipping di to

the consolidation center ensures a decrease in the total cost by (gL1 − gL0)dDi or (gF1 − gF0), and

so this plan cannot be optimal.

In the analysis above, we show that shipping di either to the consolidation center or directly

to the destination yields a smaller total cost than shipping dCi > 0 directly to the consolidation
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center and dDi > 0 to the destination. This contradicts the assumption that shipping dCi to the

consolidation center and dDi to the destination is optimal. Therefore, there exists an optimal

solution, in which each supplier ships all its demand either to the consolidation center or to the

destination.

Proof of Corollary 3.

Proof. In the proof of Proposition 3, we have shown that by shipping each supplier’s entire demand

to the consolidation center or directly to the destination, we are able to reduce the total shipping

cost at least by gL0dCi in shipping plan (1), gL1dDi in shipping plan (2), gF1 in shipping plan (3),

and (gL1 − gL0)dDi or (gF1 − gF0) in shipping plan (4). With shipping rates and demand being

non-zero and gL1 > gL0, gF1 > gF0, the reduced cost is strictly positive. Consequently, the total

cost of shipping each supplier’s entire demand either to the consolidation center or directly to the

destination is strictly less than shipping some of a supplier’s demand to the consolidation center

and the rest directly to the destination. Therefore, in every optimal solution to the model, each

supplier’s entire demand is shipped either to the consolidation center or directly to the destination.

Combined with the result that it is optimal for suppliers to ship either by the FTL rate or the LTL

rate, we can conclude that x̃iF0 + x̃iL0 + x̃iF1 + x̃iL1 = 1 where x̃ is in the optimal solution.

Proof of Proposition 4.

Proof. We prove this proposition by contradiction.

Based on Corollary 3, we assume that in the optimal solution, a subset of suppliers S ⊂ N

ship their demand to the consolidation center first and the rest of the suppliers ship their demand

directly to the destination. supplier i ∈ N \ S is one of the suppliers who ship the demand directly

to the destination.

If yCF +yCL = 0 in the optimal solution, the optimal solution of the model is zero participation.

If yCF + yCL ≥ bC in the optimal solution, the optimal shipping method for the consolidation

center is by FTL which costs cF1. If supplier i ships its demand to the consolidation center first,

then the shipping cost reduces from gL1di or gF1 to gL0di or gF0, respectively. However, shipping

di directly to the destination does not incur any extra cost. Therefore, the total cost decreases by

(gL1 − gL0)di or (gF1 − gF0) if supplier i ships its demand to the consolidation center first.

Both results contradict the assumption that a solution in which a subset of suppliers S ⊂

N, S 6= ∅ ships their demand to the consolidation center first while the rest of the suppliers ship
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their demand directly to the destination is optimal. As a consequence, the optimal solution is either

zero participation or total participation.

Proof of Lemma 1.

Proof. Assume χ(i,N) > qi for all i ∈ N . Suppose supplier j ∈ N is removed in the first iteration

of the mechanism, resulting in S := N \ {j} in the second iteration. Because cost-sharing method

PEDS is cross-monotonic, χ(i, S) ≥ χ(i,N) > qi for all i ∈ S. As a result, another supplier will be

removed from S in the second iteration. By the same argument, there exists at least one supplier

i such that χ(i, S) > qi in each iteration. According to Observation 2, zero participation is the

outcome of cost-sharing mechanism PEDS.

Proof of Proposition 5.

Proof. We prove the claim by first proving that the cost-sharing mechanism PEDS yields zero

participation when DN < bC .

Because DN < bC ≤ bE , the demand of each supplier di is smaller than bE . As a result, the

effective demand for sharing of each supplier d′i = di. Consequently, suppliers share the outbound

shipping cost by paying the LTL rate no matter how many suppliers participate in the consolidation,

i.e. di
DN

cL1DN = dicL1. Thus, in the first iteration of the mechanism, any supplier i with di < bG

has the cost share

χ(i,N) = dicL1 > digL1 − digL0 = qi.

The inequality is valid because gL1 < gL0 + cL1. Any supplier i with di ≥ bG has the cost share

χ(i,N) = dicL1 ≥ bGcL1 > bG(gL1 − gL0) = qi.

Consequently, every supplier i has a cost share χ(i,N) > qi. Therefore, according to Lemma 1,

cost-sharing mechanism PEDS yields zero participation for the set of suppliers whose total demand

is less than bC .

Based on the proved claim above, it is obvious that it costs more for each supplier to ship via

the consolidation center. Since each supplier pays less when shipping directly, zero participation is

less expensive than total participation. Therefore, the economically efficient solution must be zero

participation as well.
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Proof of Proposition 6.

Proof. Case 1: Based on the relationships among di, bG and bE , we categorize the suppliers into

three groups: supplier i with di < bG, supplier i with bG ≤ di < bE and supplier i with di ≥ bE .

“=⇒” Suppose we have total participation. Based on Observation 1, for supplier i with di < bG,

we have

digL1 ≥ digL0 +
di
D′N

cF1 ⇐⇒ gL1 − gL0 ≥
cF1

D′N
⇐⇒ D′N ≥

cF1

gL1 − gL0
.

For supplier i with bG ≤ di < bE , we have

gF1 ≥ gF0 +
di
D′N

cF1 ⇐⇒ bG(gL1 − gL0) ≥ di
D′N

cF1 ⇐⇒ D′N ≥
di
bG

cF1

gL1 − gL0
.

In order to have all suppliers in this group participate in the consolidation we need D′N ≥ d∗

bG
cF1

gL1−gL0

where d∗ = max{di|bG ≤ di < bE}. For supplier i with di ≥ bE , we have

gF1 ≥ gF0 +
bE
D′N

cF1 ⇐⇒ bG(gL1 − gL0) ≥ bE
D′N

cF1 ⇐⇒ D′N ≥
bE
bG

cF1

gL1 − gL0
.

From the three conditions above, if we have total participation, then D′N ≥
bE
bG

cF1

gL1−gL0
.

“⇐=” Suppose we have D′N ≥
bE
bG

cF1

gL1−gL0
. For supplier i with di < bG, the cost share in the

first iteration of the mechanism is

χ(i,N) =
di
D′N

cF1 ≤
bG
bE
di(gL1 − gL0)

< di(gL1 − gL0) = qi.

For supplier i with bG ≤ di < bE , the cost share in the first iteration of the mechanism is

χ(i,N) =
di
D′N

cF1 ≤
bG
bE
di(gL1 − gL0)

=
di
bE
bG(gL1 − gL0)

< bG(gL1 − gL0) = gF1 − gF0 = qi.
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For supplier i with di ≥ bE , the cost share in the first iteration of the mechanism is

χ(i,N) =
bE
D′N

cF1 ≤ bG(gL1 − gL0) = gF1 − gF0 = qi.

Therefore, by Observation 1, cost-sharing mechanism PEDS yields total participation.

Case 2:

Similar to the proof of case 1, we categorize the suppliers into three groups: supplier i with

di < bG, supplier i with bG ≤ di < bE and supplier i with di ≥ bE .

If D′N < cF1

gL1−gL0
, for supplier i with di < bG, the cost share in the first iteration of the

mechanism is

χ(i,N) =
di
D′N

cF1 > di(gL1 − gL0) = qi

For supplier i with bG ≤ di < bE , the cost share in the first iteration of the mechanism is

χ(i,N) =
di
D′N

cF1 > di(gL1 − gL0)

≥ bG(gL1 − gL0) = gF1 − gF0 = qi.

For supplier i with di ≥ bE , the cost share in the first iteration of the mechanism is

χ(i,N) =
bE
D′N

cF1 > bE(gL1 − gL0)

> bG(gL1 − gL0) = gF1 − gF0 = qi.

Therefore, by Lemma 1, cost-sharing mechanism PEDS yields zero participation.

Case 3 and case 4 can be proved following the same steps, we omit their proofs here.

Proof of Corollary 4.

Proof. In Proposition 6, when bE = bG, the conditions for total and zero participation depend on

the same critical value cF1

gL1−gL0
. Thus, the conditions for total and zero participation complement

each other. Therefore, given any demand profile, the result of cost-sharing mechanism PEDS is

either zero participation or total participation.

Proof of Proposition 7.
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Proof. Under the conditions 1 and 3, cost-sharing mechanism PEDS yields total participation,

which means that each participant pays no more than its stand-alone cost when shipping via

the consolidation center. Then, the social cost of total participation is no more than the social

cost of zero participation. Given the assumption that the minimum social cost solution is total

participation when the social costs of total participation and zero participation are the same, cost-

sharing mechanism PEDS produces the same economic efficient solutions as the optimization model

under conditions 1 and 3.

Under conditions 2 and 4, cost-sharing mechanism PEDS yields zero participation induced by

Lemma 1, which means that each participant pays strictly more than its stand-alone cost if total

participation is enforced. Then, the social cost of total participation is strictly more than that of

zero participation. Therefore, cost-sharing mechanism PEDS produces the same economic efficient

solutions as the optimization model under conditions 2 and 4.

Under condition 5, bC ≤ bE = bG. According to Proposition 6, cost-sharing mechanism PEDS

yields zero participation when D′N < cF1

gL1−gL0
and total participation when D′N ≥

cF1

gL1−gL0
. In the

optimization model, the total shipping cost of total participation is ngF0 + δgL0 + cF1 and the total

shipping cost of zero participation is ngF1 + δgL1, where n denotes the number of suppliers whose

demands are greater than or equal to bG and δ denotes the total demand of the suppliers whose

demands are smaller than bG.

Suppose D′N < cF1

gL1−gL0
. The cost difference between zero participation and total participation

is

ngF1 + δgL1 − (ngF0 + δgL0 + cF1) = nbGgL1 + δgL1 − nbGgL0 − δgL0 − cF1

= (nbG + δ)(gL1 − gL0)− cF1

= D′N (gL1 − gL0)− cF1

< 0,

the last equality holds because bE = bG. Therefore, the optimization model yields zero participation

when D′N < cF1

gL1−gL0
. Similarly, the optimization model yields total participation when D′N ≥

cF1

gL1−gL0
. As a result, cost-sharing mechanism PEDS yields the same solution as the optimization

model for any demand profile as well.
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