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Abstract

Freight consolidation is a logistics practice that improves the cost-effectiveness and

efficiency of transportation operations, and also reduces energy consumption and car-

bon footprint. A “fair” shipping cost sharing scheme is indispensable to help establish

and sustain the cooperation of a group of suppliers in freight consolidation. In this

paper, we design a truthful acyclic mechanism to solve the cost-sharing problem in a

freight consolidation system with one consolidation center and one common destina-

tion. Applying the acyclic mechanism, the consolidation center decides which suppliers’

demands ship via the consolidation center and their corresponding cost shares based

on their willingness to pay for the service. The proposed acyclic mechanism is designed

based on bin packing solutions that are also strong Nash equilibria for a related non-

cooperative game. We study the budget-balance of the mechanism both theoretically

and numerically. We prove a 2-budget-balance guarantee for the mechanism in general
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and better budget-balance guarantees under specific problem settings. Empirical tests

on budget-balance show that the mechanism only charges slightly more than the mini-

mum shipping cost in practice. We also study the economic efficiency of our mechanism

numerically to investigate its impact on social welfare under different conditions.

Key words: freight consolidation, cost allocation, acyclic mechanism, bin packing, game

theory

1 Introduction

The recent rapid growth of e-commerce and the accompanying increased demand for mov-

ing commodities in a reliable, efficient and secure logistics network have stimulated the

transportation sector in the United States. According to the Bureau of Transportation

Statistics [25], the transportation sector contributed 8.9% to the Gross Domestic Product

(GDP) of the U.S. economy in 2016. The logistics sector, a part of this transportation

sector, however, operates neither efficiently nor sustainably [21]. For instance, statistics

show that trailers on the road are only approximately 60% full on average and about 20%

of the trailers are traveling completely empty [21]. Moreover, in 2015, approximately 27%

of the total United States CO2 emissions, the biggest source of greenhouse gases (GHG)

emissions, came from transportation, primarily due to burning fossil fuel for cars, trucks,

ships, trains and planes [1]. As a result, cost-effective, efficient and environmentally friendly

logistics practices are urgently needed. Freight consolidation, the process of assembling and

transporting small shipments together to take advantage of lower freight rates, is an effec-

tive strategy to increase capacity utilization, improve cost-effectiveness of operations, and

reduce energy consumption and carbon footprint. To this end, more and more companies

are consolidating and shipping their demands using shared transportation capacity.

Both academic research and industry practices have demonstrated the effectiveness of

freight consolidation in reducing carbon footprint. Using a discrete-time based shipment

consolidation strategy, Ülkü [32] showed that freight consolidation directly help reduce the

emissions of CO2. At the strategic level, Pan et al. [26] concluded that freight consolida-

tion can reduce CO2 emissions by 14% based on real data of two French retailers. And
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this reduction would be 52% if rail transport is also considered. Moreover, a successful

implementation of freight consolidation between two pharmaceutical companies, UCB and

Baxter, achieved an approximately 50% reduction in CO2 emissions [20] [33].

The economic incentive to consolidate freight is significant. Transportation costs play

an important role in the success of various industries because they often account for a

substantial portion of the product costs. For instance, large portions of revenues have long

been paid to transport products in the agriculture industry [24]. However, the constrained

transportation capacity and the ever-increasing demand for logistics services with high

service levels have contributed to the rise in transportation costs [35]. Therefore, it is a

priority for companies to reduce their transportation costs in order to remain competitive

in the market. Significant cost savings have been reported through freight consolidation in

various industries, e.g. [8] [34]. Nguyen et al. [24] also concluded that a freight consolidation

practice could save $20 million on transportation cost per year for California cut flower

growers.

Although the environmental and economical initiatives to consolidate freight are widely

acknowledged, various concerns for establishing successful collaborations have slowed the

implementation of freight consolidation with self-interested companies. Cruijssen et al. [9]

conducted a survey with approximately 1500 representative logistics service providers in

Belgium and concluded that a lack of a fair cost/profit sharing scheme is one of the main

hurdles that make individual logistics service providers decide not to form collaborations.

Freight consolidation often takes place among companies who produce similar products or

provide similar services in the same geographical region and therefore they are also com-

petitors in the market. Establishing cooperation among them is not possible unless there

exists a perceived “fair” way to share the benefit of collaboration to ensure that each com-

pany maintains its competitive advantage over time in the collaboration. Considering this,

solving the consolidation shipping cost allocation problem for the potential collaborators is

a fundamental step to encourage freight consolidation with cooperation.

One approach to solve the cost allocation problem is cost-sharing mechanism design.

In a cost-sharing game, there is a set of players who are interested in using a common

3



service from a provider. Each player has a private valuation of the service and submits its

willingness to pay for the service as its bid to the provider. Players do not know the other

players’ valuations or bids. Using the service costs and the bids solicited from the players, a

cost-sharing mechanism helps the provider decide which players to serve and how much to

charge each player for service. In a binary demand cost-sharing game, each player’s service

request is either served or rejected, while in a general demand game, each player can receive

different levels of service.

Cost-sharing mechanisms are usually designed to possess certain desired properties:

truthfulness, budget-balance and economic efficiency. A truthful cost-sharing mechanism

guarantees that the solicited bids from the players are their true willingness to pay. In

other words, no player can be better off by submitting false bids. This is important because

the cost is shared based on the information given by the bids. This characteristic of the

mechanism is particularly important for establishing and sustaining cooperation. A cost-

sharing mechanism is budget-balanced if the total cost charged to players recovers the cost

of providing the service. An economically efficient cost-sharing mechanism maximizes the

social welfare of all players. Unfortunately, it has been proven by Green et al. [14] and

Roberts [28] that it is not possible to design a cost-sharing mechanism that is simultaneously

truthful, budget-balanced and economically efficient. When budget-balance is impossible

to achieve, we can design approximately budget-balanced mechanisms to recover as much of

the incurred cost as possible. When the mechanism cannot be economically efficient, we can

design the mechanism to maximize the social welfare as much as possible. However, a lot of

mechanisms yield zero or negative social welfare and thus it is difficult to make meaningful

relative comparisons between mechanisms in terms of economic efficiency. An alternative

measure of economic efficiency, social cost, which is always nonnegative, was proposed by

Roughgarden and Sundararajan [31] to quantify the inefficiency of a mechanism.

One of the frameworks that help design truthful and approximately budget-balanced

cost-sharing mechanisms is the Moulin mechanism, which was introduced by Moulin [22]

and Moulin and Shenker [23]. The Moulin mechanism determines the players to serve and

their cost shares using a cost-sharing method in an iterative process. A cost-sharing method
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is a function that assigns a nonnegative cost share to each player in a set of players to be

served. The iterative process starts with all players in the set to be served. A player is

removed from the service set if its cost share is greater than its bid. The process halts

when the cost shares of all players in the service set are smaller than or equal to their

bids. The truthfulness of the Moulin mechanism is enforced by requiring a cost-sharing

method to be cross-monotonic – a player’s cost shares do not decrease when another player

is removed from the service set. As a result, players are offered a sequence of nondecreasing

cost shares through the iterations of a Moulin mechanism. Approximately budget-balanced

Moulin mechanisms have been applied in a wide variety of applications, such as scheduling

[6, 5], network design [15, 30, 29], facility location [18, 16], logistics [36] and online selection

problems [11].

Applying the Moulin mechanism framework to a cost-sharing problem in freight con-

solidation was recently studied by Zhang et al. [37]. In the consolidation system they

considered, a set of suppliers in the same geographical region can use a non-profit consoli-

dation center to have their demand shipped to a common faraway destination using trucks.

Suppliers’ demands can be split and packed together to fill a truck as much as possible at

the consolidation center. The cost of using a truck depends on the demand volume packed

in the truck, the less-than-truckload (LTL) rate, and the full-truckload (FTL) rate. They

found that it is not possible to obtain a simultaneously truthful and budget-balanced Moulin

mechanism. By using a two-piece linear function to approximate the cost function at the

consolidation center, they designed a truthful and approximately budget-balanced Moulin

mechanism. Using the social cost as the measure of economic efficiency, they analyzed the

economic efficiency of the mechanism computationally.

In this paper, we study a similar cost-sharing problem in freight consolidation, but

with the restriction that the entire less-than-truckload demand of each supplier must be

shipped in a single truck at the consolidation center. That is, the demand cannot be split

into multiple trucks if it can fit into a single truck. There are several reasons to make

this assumption. On one hand, suppliers typically want their demand to be delivered in

a single shipment and prefer less handling of their products to avoid unnecessary damage.
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For instance, a lot of agricultural products – e.g. flowers, eggs – are prone to damage during

handling. Furthermore, a non-profit consolidation center can save on the extra handling

costs resulting from separating and combining the demands of different suppliers. This

small change in the problem setting greatly complicates the decisions that need to be made

by the consolidation center. In the problem that Zhang et al. [37] studied, demands at the

consolidation center are packed aggregately so that the way the demand of the suppliers

is packed into trucks does not affect the total outbound shipping cost and cost shares.

However, in the problem we study, the total outbound shipping cost, which is the sum of

the shipping costs of each used truck, heavily depends on how the suppliers’ demands are

packed into trucks. Different combinations of demands in trucks (i.e. packing solutions)

may result in different total outbound shipping costs and cost shares. However, the number

of possible packing plans grows exponentially as the number of suppliers grows. Therefore,

designing a cost-sharing mechanism under this setting is a challenging task.

Instead of a Moulin mechanism, we design an acyclic mechanism for the cost-sharing

problem studied in this paper, described above. An acyclic mechanism [19] is another

scheme that leads to a truthful and approximately budget-balanced cost-sharing mecha-

nism. It is a strict generalization of the Moulin mechanism. Unlike the Moulin mechanism,

an acyclic mechanism offers cost shares to the players in each iteration according to a

pre-defined order instead of simultaneously. This additional ordering protocol allows the

construction of truthful mechanisms to be no longer dependent on cross-monotonic cost-

sharing methods, which are necessary to induce truthful Moulin mechanisms. Mehta et

al. [19] point out that a large number of primal-dual algorithms naturally induce acyclic

mechanisms with non-ascending prices. Meanwhile, acyclic mechanisms have better budget-

balance and economic efficiency than the Moulin mechanisms for several classes of basic

cost-sharing problems, e.g. vertex cover, set cover, no-metric/metric uncapacitated facility

location. Finally, the acyclic mechanism framework can be extended to solve cost-sharing

problems with general demand settings [3], in which every player bids for each of the

service level it may receive. Although acyclic mechanisms have the aforementioned advan-

tages compared to Moulin mechanism, they achieve a weaker notion of truthfulness than
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the Moulin mechanism. The Moulin mechanism achieves a strong notion of truthfulness –

group strategyproofness (GSP) – that ensures that not only can an individual player not be

better off by false bidding, but also a subset of players can never strictly increase the utility

of one of its members without decreasing the utility of some other member by coordinating

false bids. The acyclic mechanism achieves weak group strategyproofness (WGSP), which

ensures that there must exist a member whose utility remains the same, i.e. an indifferent

member, if a coordinated false bid can strictly increase the utility of one of its members.

The contribution of this paper is two-fold. We advance the research on cost allocations

in freight consolidation by designing an acyclic mechanism, which has been rarely applied

to transportation settings. Our acyclic mechanism possesses several desirable properties.

The packing solutions of our acyclic mechanism are strong Nash equilibria in a related

non-cooperative game. This result provides an incentive to the suppliers to participate in

freight consolidation. Our acyclic mechanism is 2-budget-balanced in general, and better

budget-balance guarantees can be achieved under specific problem settings. Furthermore,

our empirical tests show that our acyclic mechanism only charges slightly more than the

minimum shipping cost on average. Finally, using social cost as the measure of economic

efficiency, we show that the outcomes of our acyclic mechanism have social cost gaps of less

than 3.8% in our numerical experiments under various problem settings.

The rest of the paper is organized as follows. In Section 2, we formally define our

problem. In Section 3, we briefly review the acyclic mechanism and introduce the design of

an acyclic mechanism based on bin packing solutions. We study the budget-balance of our

proposed cost-sharing mechanism both theoretically and computationally in Section 4. In

Section 5, we investigate the economic efficiency of the mechanism. We conclude our work

in Section 6.

2 Problem Definition

The freight consolidation system we consider consists of a set of suppliers, a consolidation

center and a common destination. Let N denote the set of suppliers who are interested in
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reducing their transportation costs by shipping their demands via a consolidation center to

a common destination. These suppliers produce similar products and are all located in the

same region. Each supplier i has a positive demand di (measured in units such as ft3 or

pounds) and a private valuation vi for the service provided by the consolidation center for

shipping demand di. Suppliers are self-interested. They always want to ship their demands

with the lowest transportation rate. Each supplier has two shipping options. One is to

ship the demand directly to the destination. We call this option direct shipping and the

corresponding shipping cost stand-alone cost. The other is to ship the demand via the

consolidation center. Supplier i expresses its willingness to pay to the consolidation center

by submitting bid qi at the planning phase of the consolidation. If supplier i is selected to

be served by the consolidation center, then supplier i pays for the inbound shipping (from

supplier to the consolidation center) and shares the cost of outbound shipping (from the

consolidation center to the destination) with the other selected suppliers. When selected to

participate in the consolidation, suppliers require their less-than-truckload demand to be

shipped in one truck for the outbound shipping.

The consolidation center, as the central planner of the consolidation service, is not

profit-driven in our problem. Its goal is to encourage more suppliers to participate in

consolidation while recovering as much of the incurred outbound shipping cost as possible

with the prices charged. That is, we assume that the consolidation center can be subsidized

by the government or associated organizations to provide the service. The consolidation

center provides binary service to the suppliers, i.e. either a supplier’s entire demand is served

or none of its demand is served. Although suppliers need to bid for the consolidation service

frequently over time, e.g. daily, weekly, the truthfulness of the cost-sharing mechanism

allows us to rely on the mechanism to solicit suppliers’ truthful bids instead of learning

their preferences over time. Moreover, each supplier i submits a bid for shipping its demand

volume di and receives the service for shipping exactly di if selected. Therefore, suppliers do

not have the incentive to misreport their shipping volumes. This means that we can safely

assume that the shipping volume of each supplier is known to the consolidation center.

Based on the above assumptions, we model our problem as a one-time cost-sharing game
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with binary demand.

Both the suppliers and the consolidation center use trucks to ship demands to the

destination. The shipping cost of using a truck primarily depends on two parameters:

the less-than-truckload (LTL) rate cL and the full-truckload (FTL) rate cF . The LTL

rate is the shipping cost per unit and the FTL rate is a fixed cost for using an entire

truck. The shipping cost of a truck first increases linearly at the LTL rate as the shipping

demand volume increases from 0. When the shipping demand volume in one truck exceeds

a threshold value b, the shipping cost of a truck is always the FTL rate regardless of the

actual shipping volume. In other words, shipping demand b or more in one truck costs the

same as if the full truckload is used. We call the threshold value b the FTL equivalent

volume and it satisfies cF = bcL. Mathematically, the shipping cost of one truck is

c(d) =


dcL if 0 < d < b,

cF if b ≤ d ≤ kF ,

where kF denotes the capacity of a truck. We assume that the values of the LTL rate and

the FTL rate are only mileage dependent. Larger distances between the origin and the

destination of a shipment induce greater LTL and FTL rates. Given a destination, let cL1

and cF1 denote the LTL rate and the FTL rate for the outbound shipping, respectively.

The FTL equivalent volume at the consolidation center is bC = cF1
cL1

.

Suppliers and the consolidation center are assumed to have the same shipping cost

structure, but they do not necessarily share or know each other’s cost parameters or the

FTL equivalent volume. We assume the suppliers have the same cost parameters for inbound

shipping and direct shipping because of their proximity in location. Let gL0 and gF0 denote

the LTL rate and the FTL rate for inbound shipping, respectively, and let gL1 and gF1

denote the LTL rate and FTL rate for direct shipping, respectively. Because the destination

is always farther from the suppliers than the consolidation center, we have gL1 > gL0 and

gF1 > gF0. We further assume that the FTL equivalent volume for inbound shipping

and direct shipping is the same for the suppliers. Consequently, every supplier has FTL
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equivalent volume bG = gF1
gL1

= gF0
gL0

.

Based on the above cost structure, suppliers with multiple truckloads of demand should

not submit bids for full truckloads of demand because they can ship them cheaper on their

own at the direct FTL rate. As a result, these suppliers only submit bids for their remaining

less-than-truckload demand to see if they can save on shipping cost through consolidation.

From the consolidation center’s perspective, full truckloads do not contribute to consolida-

tion but require extra handling to ship them from the consolidation center. Moreover, it is

trivial to decide whether full truckloads should be shipped via the consolidation center be-

cause such operations are beneficial for suppliers only when the savings from the outbound

shipping can cover the inbound shipping cost of full truckloads. Based on the above dis-

cussion, the kind of demand profile that is worth studying is the one in which each supplier

has less-than-truckload demand to send through the consolidation center and consolidating

can make a significant difference for them.

In this paper, we solve the cost-sharing problem for freight consolidation for a set of

suppliers N , whose demands satisfy di < kF , ∀i ∈ N . Because each supplier’s demand

cannot be split and must be shipped in a single truck at the consolidation center, determin-

ing whose demands to pack into one truck is a critical decision that affects the outbound

shipping cost and thus influences the cost share of each selected supplier. Let T1, T2 . . . Tl

denote a packing solution for the selected set of suppliers S ⊆ N using l trucks. In par-

ticular, each set Tk, k ∈ {1, 2 . . . l} contains the indices of suppliers whose demands are

assigned to truck k. Let D(Tk) denote the total demand volume packed in truck k. Then

we define the outbound shipping cost of truck k as:

Z(Tk) =


D(Tk)cL1, if D(Tk) < bC ,

cF1, if D(Tk) ≥ bC .

As a result, the outbound shipping cost incurred at the consolidation center for shipping

the demand of suppliers in S using the packing solution T1, T2 . . . Tl is
∑

k∈{1,2...l} Z(Tk).
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3 Acyclic Mechanism Based on Bin Packing

3.1 Acyclic Mechanisms

Acyclic mechanisms were first introduced by Mehta et al. [19] as an alternative to the

Moulin mechanism for designing truthful and approximately budget-balanced cost-sharing

mechanisms. An acyclic mechanism is induced by a cost-sharing method χ and a corre-

sponding valid offer function τ . An offer function τ(i, S) is a mapping from any given

subset S ⊆ N and player i ∈ S to a nonnegative offer time. The offer times reveal the

sequence that cost shares will be offered to the players in each iteration. Players with lower

offer times are offered cost shares earlier than the players with higher offer times. Players

with equal offer times are offered cost shares simultaneously. Although the cost-sharing

method χ in an acyclic mechanism is defined in the same way as in the Moulin mechanism,

it is not required to be cross-monotonic to induce a truthful mechanism. This flexibility

comes from the offer function. In particular, the order of offers can be designed to suppress

the non-cross-monotonicity of the cost-sharing method so that a player is still offered a

sequence of nondecreasing cost shares as the iterations progress. As a result, designing

such an offer function τ for a specific cost-sharing method χ is critical in acyclic mechanism

design. For a subset S ⊆ N and a player i ∈ S, let L(i, S), E(i, S), and G(i, S) denote

the players of S whose offer times are strictly less than, equal to, and strictly greater than

τ(i, S), respectively. A valid offer function τ for a cost-sharing method χ is defined in [19]

as follows:

Definition 1. An offer function τ is valid for the cost-sharing method χ if for every subset

S ⊆ N and player i ∈ S,

(a) χ(i, S \W ) = χ(i, S) for every subset W ⊆ G(i, S)

(b) χ(i, S \W ) ≥ χ(i, S) for every subset W ⊆ G(i, S) ∪ (E(i, S) \ {i})

From the above definition, we can see that the cost shares for a player i cannot decrease

if the players in G(i, S) and E(i, S) are removed from the service set. These two conditions

ensure that cost shares for player i are cross-monotonic when players in G(i, S) and E(i, S)
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are removed. However, the definition does not restrict how the cost shares change when

players in L(i, S) are removed.

With a cost-sharing method χ and a corresponding valid offer function τ , an acyclic

mechanism can be defined as follows.

Definition 2. An acyclic mechanism is a mechanism M(χ, τ) induced by a cost-sharing

method χ and an offer function τ that is valid for χ. M(τ, χ) operates as follows [19]:

1. Collect a bid qi from each player i ∈ N .

2. Initialize S := N .

3. If qi ≥ χ(i, S) for every i ∈ S, then stop. Return the set S. Each player i ∈ S is

charged the price pi = χ(i, S).

4. If there exist some players j ∈ J , J ⊆ S such that qj < χ(j, S), choose j∗ ∈ J such

that τ(j∗, S) ≤ τ(j, S) ∀j ∈ J , set S := S \ {j∗} and return to Step 3.

In Step 4, when there exist players whose cost shares are strictly greater than their bids,

the acyclic mechanism removes the player with the earliest offer time and if there is a tie,

then breaks the tie arbitrarily.

3.2 Cost-Sharing Mechanism Based on Bin Packing (BBP)

In our problem, we assume the demands of the suppliers cannot be split, so the consolidation

center has to decide which suppliers’ demands to pack together in a truck. This packing

solution is crucial because it affects the outbound shipping cost and thus influences each

supplier’s cost share and the selection of the suppliers to be served. We make this decision

by solving a bin packing problem. Based on this packing solution, we derive our cost-sharing

method and offer function.

Our packing problem can be interpreted as a bin packing problem. In a standard bin

packing problem, given a list of items L, each with a nonnegative size, and the capacity of

each bin H, we want to find a way to pack all the items using the minimum number of bins.
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Similarly, the consolidation center wants to pack suppliers’ demands into the minimum

number of trucks of capacity kF . Solving the packing problem to minimize the number of

trucks used serves the purpose of the consolidation center since the outbound shipping cost

is closely related to the number of trucks used. A smaller outbound shipping cost leads to

smaller cost shares for suppliers and thus encourages more suppliers to consolidate. The

bin packing problem is known to be NP-hard. We solve it using a heuristic approach called

the subset sum algorithm (ss) [27].

The subset sum algorithm is an intuitive way to solve the bin packing problem since

it iteratively fills one bin to its fullest using the unpacked items. Mathematically, in each

iteration we solve the optimization problem:

max
∑
i∈L

xihi

s.t.
∑
i∈L

xihi ≤ H,

xi ∈ {0, 1}, i ∈ L,

where xi = 1 means to pack item i in the current bin and 0 otherwise, hi denotes the size

of item i and L is the list of currently unpacked items. This is a special case of the 0-1

knapsack problem in which the value of each item equals its size, also known as the subset

sum problem. Although the subset sum algorithm is not a polynomial-time algorithm, it is

shown in [27] that the subset sum problem can be solved to optimality efficiently even for

lists with a very large number of items.

Given a set of suppliers N , each with a positive demand, and the capacity of a truck

kF , we apply the subset sum algorithm to solve our packing problem as follows. Let ss(N)

denote the number of trucks required for outbound shipping for the suppliers in N using

the subset sum algorithm. The output of the subset sum algorithm is a packing solution

presented in a sequence of ordered sets T1, T2, . . . , Tss(N); each set contains the indices of

suppliers whose demands are assigned to the same truck.

The subset sum algorithm packs one truck per iteration. Tk is packed in the kth itera-
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Algorithm 1 Subset sum algorithm
1: U ← N
2: k ← 1
3: while U 6= ∅ do
4: Tk ← arg max

P⊆U
{
∑

i∈P di :
∑

i∈P dj ≤ kF }

5: U ← U \ Tk
6: k ← k + 1
7: end while
8: return T1, T2, . . . , Tk−1

tion. We call the returned packing solution T1, T2, . . . , Tss(N) for supplier set N the subset

sum packing solution. Note that the subset sum packing solution T1, T2 . . . Tss(N) for any

set of suppliers N are ordered such that D(T1) ≥ D(T2) . . . ≥ D(Tss(N)).

We use the subset sum packing solution Tk, k ∈ {1, . . . ss(N)} as the shipping solution

for the consolidation center. Each set Tk of suppliers’ demands is shipped using one truck.

Intuitively, suppliers should be responsible for the outbound shipping cost of the truck

in which their demands are packed. We share the outbound shipping cost of each truck

among its corresponding suppliers proportional to their demand. With the subset sum

packing solution Tk, k ∈ {1, . . . ss(S)} for any set of suppliers S ⊆ N , we formally define

our cost-sharing method χ, which assigns a nonnegative cost share to each supplier i ∈ S

for every S ⊆ N , as follows:

χ(i, S) =


cL1di, if i ∈ Tk, D(Tk) < bC ,

di
D(Tk)cF1, if i ∈ Tk, D(Tk) ≥ bC .

Then we define our offer function τ(i, S), which determines the sequence in which the cost

shares are revealed for the set of suppliers S:

τ(i, S) = k s.t. i ∈ Tk, ∀i ∈ S.

Because k indicates the iteration in which the supplier’s demand is packed, this offer function

implies that suppliers whose demands are assigned in the earlier iterations in the subset

sum algorithm are offered cost shares earlier than those assigned in the later iterations.

The suppliers whose demands are assigned to the same truck are offered the cost shares at
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the same time.

Using the above subset sum algorithm and the offer function τ , we show how the removal

of some suppliers influences our subset sum packing solutions in Lemma 1 and Lemma 2.

Lemma 1. Suppose W ⊆ G(i, S) is removed from S, for some subset S ⊆ N and supplier

i ∈ S. Let Tk, k ∈ {1, . . . ss(S)} and T ′l , l ∈ {1, . . . ss(S \ W )} be subset sum packing

solutions for S and S \W , respectively. Then, for every supplier j ∈ L(i, S) ∪ E(i, S), if

j ∈ Tk and j ∈ T ′l , then Tk = T ′l .

Lemma 2. Suppose W ⊆ (E(i, S) \ {i}) is removed from S, for some subset S ⊆ N

and supplier i ∈ S. In addition, suppose supplier i is packed in truck T in a subset sum

packing solution for S, and in truck T ′ in a subset sum packing solution for S \W . Then

D(T ′) ≤ D(T ).

Now that we have defined the cost-sharing method χ and the offer function τ , we next

show that the offer function τ is valid for the cost-sharing method χ.

Proposition 1. The offer function τ is valid for the cost-sharing method χ.

With a valid offer function τ for the cost-sharing method χ, we define the cost-sharing

mechanism Based on Bin Packing (BBP) as the acyclic mechanism M(χ, τ) induced by χ

and τ . Mehta et al. [19] showed that every acyclic mechanism is weakly group strategyproof

(WGSP). Therefore, our cost-sharing mechanism BBP is WSGP. As a result, we assume

that supplier i’s valuation of the consolidation service vi is its stand-alone cost minus its

inbound shipping cost and thus is its bid qi submitted under cost-sharing mechanism BBP.

3.3 Cost-Sharing Mechanism BBP from the Selfish Bin Packing Perspec-

tive

The subset sum packing solutions produced by the cost-sharing mechanism BBP not only

help to induce an truthful acyclic mechanism, they also provide an insight from a non-

cooperative game theoretic perspective: the subset sum packing solution for the selected

suppliers is a strong Nash equilibrium. Consider a bin packing game in which each demand
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is controlled by a self-interested supplier. Each supplier has complete information about

the other suppliers and a set of strategies corresponding to which truck to pack its demand

for each possible packing of all the other suppliers’ demands. The cost of using each truck

is shared proportional to demand among the suppliers whose demands are packed in the

same truck.

This game was first introduced and studied by Bilò [4] and is referred to as the selfish

bin packing problem. Bilò [4] proved that there always exists a pure Nash equilibrium to

the bin packing game defined above. A strategy profile is a Nash equilibrium if no supplier

can strictly reduce its shared shipping cost by moving its demand to another truck while the

packing of other demands remains the same. A stronger notion is strong Nash equilibrium

[2], in which any subset of suppliers can not strictly reduce the shared shipping costs of

every member by moving their demands while the other demands are packed in the same

way. Epstein and Kleiman [12] proved that the packing solutions yielded by the subset sum

algorithm for this bin packing game are always strong Nash equilibria.

Relating the above result to our cost-sharing mechanism BBP, we can conclude that the

packing solutions from our cost-sharing mechanism BBP are strong Nash equilibria in the

setting even when suppliers are allowed to pick or change the truck in which they pack their

demands. No subset of suppliers can move their demands to benefit every member of the

coalition. In other words, every supplier should be satisfied with the subset sum packing

solutions provided by the cost-sharing mechanism BBP. This outcome further motivates

the use of the subset sum algorithm to produce packing solutions.

4 Budget-Balance of Cost-Sharing Mechanism BBP

In this section, we study the budget-balance guarantee of the cost-sharing mechanism BBP

under different conditions and problem settings. We define a cost-sharing method χ as

β-budget-balanced if CM (S) ≤
∑

i∈S χi ≤ βC(S), β ≥ 1, for any outcome set S, where

CM (S) is the cost of a feasible solution for serving set S output by the mechanism and

C(S) is the minimum outbound shipping cost of serving set S. This definition bounds the
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total cost share of suppliers in S from above by a factor β of the minimum cost. In the

study of the budget-balance of our cost-sharing mechanism BBP, we want to find such a β

as small as possible. In our case, we regard the outbound shipping cost associated with our

subset sum algorithm solution for S as CM (S). Because our cost-sharing mechanism BBP

charges each supplier exactly what the cost-sharing method yields as the supplier’s cost

share, if our cost-sharing method is β-budget-balanced, then our cost-sharing mechanism

BBP is also β-budget-balanced. We study the value of β for our mechanism in this section.

4.1 Theoretical Results on Budget-Balance Ratio

Intuitively, packing using a smaller number of trucks leads to a smaller cost. So the min-

imum outbound shipping cost should be induced by the optimal bin packing solution.

However, this is not necessarily true with our trucking cost structure. For example, let

cL1 = $1, bC = 13, kF = 14, so cF1 = $13. Assume we have 13 suppliers with 5 units of

demand and 6 suppliers with 3 units of demand. One optimal packing solution, which uses

7 trucks, is to pack 5, 5 and 3 units of demand in each of the first 6 trucks and 5 units

of demand in the last truck. The outbound shipping cost of this optimal packing solution

is $83. The subset sum packing solution of our cost-sharing mechanism uses 8 trucks. It

packs 5, 3, 3 and 3 units of demand in each of the first two trucks, 5 and 5 units of demand

in the next 5 trucks and 5 units of demand in the last truck. The outbound shipping cost of

this subset sum packing solution is $81. From the above example, we can see that although

the optimal packing solution uses one fewer truck, it costs more to ship the total demand.

This phenomenon is due to our trucking cost structure, in which shipping 13 units or

more in one truck costs the same. The subset sum packing solution ships two more units

of demand in the first two trucks without paying more. Because of this phenomenon, it

is not easy to determine the minimum outbound shipping cost and use it to study the

budget-balance ratio of the cost-sharing mechanism BBP. However, the outbound shipping

cost for a set of suppliers when their demands can be split and consolidated to fill a truck as

much as possible, is a lower bound for the minimum outbound shipping cost when suppliers’

demands cannot be split. We call this lower bound cost the lowest outbound shipping cost.
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If we compare the outbound shipping cost incurred by the subset sum packing solution to

the lowest outbound shipping cost, we can obtain an upper bound on the budget-balance

ratio for our cost-sharing mechanism BBP.

For the convenience of analysis, we define the budget-balance ratio of S as β(S) = CM (S)
C(S)

and therefore, β = max
S

{
CM (S)
C(S)

}
. Let C∗(S) denote the lowest outbound shipping cost for

the supplier set S. Its value only depends on the total demand volume for a given set of

cost parameters:

C∗(S) =


⌊∑

i∈S di
kF

⌋
cF1 +

(∑
i∈S di − kF

⌊∑
i∈S di
kF

⌋)
cL1 if

∑
i∈S di − kF

⌊∑
i∈S di
kF

⌋
< bC ,(⌊∑

i∈S di
kF

⌋
+ 1

)
cF1 if

∑
i∈S di − kF

⌊∑
i∈S di
kF

⌋
≥ bC .

Next we find an upper bound for β using C∗(S). By definition, C∗(S) ≤ C(S) for any

supplier set S.

Lemma 3. For any set of suppliers S, let m be such that (m − 1)kF <
∑

i∈S di ≤ mkF .

Then ss(S) ≤ 2m− 1, and this inequality is tight.

Proposition 2. The cost-sharing mechanism BBP is 2-budget-balanced.

Although we have obtained an upper bound on β for our cost-sharing mechanism, this

bound is not necessarily tight. We use the lowest outbound shipping cost C∗(S) to obtain

this upper bound and sometimes this cost can be much lower than the minimum outbound

shipping cost for our problem. We could possibly obtain better bounds on the value of β

by using the minimum outbound shipping cost that is induced by a packing solution in

which the suppliers’ demands are not split. We cannot easily find this minimum outbound

shipping cost in general, but we can restrict our attention to special cases for which we

can determine this minimum outbound shipping cost. For example, we can look at certain

input demand profiles that produce structured subset sum packing solutions such that the

outcome of the cost-sharing mechanism BBP is budget-balanced.
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Proposition 3. For a given supplier set S, if the subset sum packing solution uses no more

than two trucks, then β(S) = 1.

Lemma 4. [7] Given a set of suppliers S, if no three suppliers’ demands fits in one truck,

then ss(S) = opt(S), where opt(S) denotes the minimum number of trucks that have to be

used in order to ship the demands of suppliers in S.

Proposition 4. Given a set of suppliers S, if no three supplier’s demands fit in one truck,

then the subset sum packing solution for supplier set S induces the minimal outbound ship-

ping cost for supplier set S.

With the result in Proposition 4, we can easily draw the conclusion in Corollary 1.

Corollary 1. If no three suppliers’ demands fit in one truck in supplier set S, then β(S) =

1.

As a summary of the above results, we present Proposition 5.

Proposition 5. Cost-sharing mechanism BBP is budget-balanced for the demand profiles

in which (1) no three suppliers’ demands fit in one truck or (2) the corresponding subset

sum packing solutions use no more than two trucks.

We can also determine the minimum outbound shipping cost when we have specific

values of bC . Recall the example that shows the minimum outbound shipping cost is not

necessarily induced by the optimal bin packing solution for a given set of suppliers. If we

change bC to 7 and cF1 to $7 in that example, we can see now the outbound shipping cost

of the optimal bin packing solution is $47, which is smaller than that of the subset sum

packing solution $54. This example seems to indicate that with a smaller bC the optimal bin

packing solutions yield the minimum outbound shipping cost. Next, we show a sufficient

condition for the optimal bin packing solutions to yield the minimum outbound shipping

cost.

Let B1, . . . Bm denote a bin packing solution using m bins, D(Bk), k = 1, . . . ,m denote

the total item size packed in Bk and H denote the capacity of bins. For the sake of analysis,

we define nontrivial bin packing solutions.
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Definition 3. A bin packing solution B1, . . . Bm is nontrivial if there are at least m − 1

bins half filled.

The outcomes of bin packing algorithms are often nontrivial bin packing solutions. The

optimal bin packing solutions must be nontrivial. If they are not, we can easily reduce the

solution by one bin by simply combining the items in two bins that are both less than half

filled, contradicting the fact that the packing solution is optimal. The subset sum packing

solutions are also nontrivial. If there are two bins less than half filled, the subset sum

algorithm should pack all the items in these two bins in one bin to maximize the total size

instead of keeping them in separate bins.

Proposition 6. When bC ≤ 1
2kF , the minimum outbound shipping cost C(S) is induced by

an optimal bin packing solution for supplier set S.

Note that the optimal bin packing solution for a supplier set may not be unique. If

there are multiple optimal bin packing solutions, the outbound shipping cost we refer to as

C(S) is always induced by the one whose least filled truck has the smallest total demand

among all optimal bin packing solutions.

As we see above, when bC ≤ 1
2kF , the number of trucks used plays an important

role in determining the outbound shipping costs. In order to study β, we want to know

how many more trucks the subset sum packing solution uses compared to the optimal bin

packing solution for any set of suppliers. For the convenience of the analysis we define

the worst-case ratio Rss(S) for a given supplier set S as the ratio between the number of

trucks used by the subset sum packing solution ss(S) and the number of trucks used by an

optimal bin packing solution opt(S), i.e. Rss(S) = ss(S)
opt(S) . The absolute worst-case ratio is

Rss = max
S
{Rss(S)}.

In order to find an upper bound for β, we are interested in knowing the worst-case

behavior of the subset sum algorithm. The absolute worst-case ratio is the greatest ratio

between ss(S) and opt(S) for any supplier set S. It helps us bound the number of trucks

used by the subset sum algorithm from above using the optimal number of trucks. Then

we can derive the worst-case cost ratio accordingly.
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To the best of our knowledge, the absolute worst-case ratio of the subset sum algorithm

has been studied only rarely. However, the subset sum algorithm can be seen as a refinement

of the first-fit algorithm [17], whose absolute worst-case ratio has been thoroughly studied.

The first-fit algorithm packs an item in the earliest opened bin that it fits. If the item does

not fit in any opened bins, it is packed in a newly opened bin. If a set of items are given

in the sequence of how they are packed by the subset sum algorithm, the first-fit algorithm

provides the same packing solution as the one yielded by the subset sum algorithm. That

is to say, for any set of items, there always exists an ordering of items such that the first-fit

algorithm yields the same packing solution as the subset sum algorithm. Therefore, the

performance of the first-fit algorithm cannot be better than the subset sum algorithm, i.e.

Rss ≤ Rff , where Rff denotes the absolute worst-case ratio of the first-fit algorithm. The

exact value of Rff was proved to be 1.7 by Dósa and Sgall [10]. Therefore, Rss ≤ 1.7.

With Rss ≤ 1.7, we can easily calculate the maximum possible number of trucks used

by the subset sum algorithm when given the optimal number of trucks. For a given set

of suppliers S, the possible number of trucks used by the subset sum algorithm ss(S) ∈

{k|opt(S) ≤ k ≤ b1.7opt(S)c, k ∈ Z+}. Next we analyze the instance budget-balance ratio

for supplier set S for which opt(S) ∈ {3, . . . , 9}.

Proposition 7. For a given supplier set S, if bC ≤ 1
2kF and 3 ≤ opt(S) ≤ 9, then

β(S) < 1.875.

Proposition 8. For a given supplier set S, if bC ≤ 1
2kF , β <

17
9 when opt(S) ≥ 10.

Combining Proposition 7 and Proposition 8, we obtain the following Corollary 2.

Corollary 2. For any given supplier set S, if bC ≤ 1
2kF , then β <

17
9 .

As a result of Corollary 2, we obtain Theorem 1.

Theorem 1. When bC ≤ 1
2kF , the cost-sharing mechanism BBP is 17

9 -budget-balanced.
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4.2 Numerical Results on Budget-Balance Ratio

Although we have proved that, generally, the cost-sharing mechanism BBP charges less

than twice the minimum outbound shipping cost, this upper bound on β may not truly

reflect the performance of our cost-sharing mechanism in practice. In order to reveal a

more accurate picture of the budget-balance ratio of our cost-sharing mechanism, we study

the ratio numerically. For each given demand profile, we obtain a budget-balance ratio by

calculating the minimum outbound shipping cost and the outbound shipping cost incurred

by our cost-sharing mechanism. As we have mentioned before, the minimum outbound

shipping cost is not always induced by the optimal bin packing solution, but this does

not mean that we cannot obtain the minimum outbound shipping cost numerically. The

following proposition helps us find the minimum outbound shipping cost for any demand

profile using the first-fit algorithm.

Proposition 9. For any given supplier set S, the packing solution that induces the mini-

mum outbound shipping cost for set S can be obtained by applying the first-fit algorithm to

a specific order of the demand profiles in S.

Because of Proposition 9, we can always obtain the minimum outbound shipping cost for

a supplier set by packing the demands using the first-fit algorithm on every possible ordering

of the demand profiles. The number of possible ordering of demand profiles for supplier

set S is |S|! and the first-fit algorithm can be implemented in O(|S|log|S|) elementary

operations. Therefore, we can exactly compute the minimum outbound shipping cost for

moderate |S|.

We compare the minimum outbound shipping costs and the outbound shipping costs

incurred by our cost-sharing mechanism for the demand profiles with 3, 6 and 10 suppliers.

For each number of suppliers, we generate 100 demand profiles. Each supplier has less

than truckload demand randomly generated from the uniform distribution on (0, kF ). The

parameters we used to generate the demand profiles and calculate the shipping cost is shown

in Table 1.

Because the value of bC also influences the minimum shipping cost, we run the experi-
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Table 1: Experiment parameters
kF (ft3) gL0 ($) gL1 ($)
4000 1 15

ments with three bC values while setting bC = bG. Given the number of suppliers and the

value of bC , we summarize the results over 100 demand profiles by reporting the statistics

of the budget-balance ratios, which we define as CM (S)
C(S) for supplier set S.

Table 2: Budget-balance ratio for demand profiles with 3 suppliers
Max ratio Min ratio Avg. ratio # of same cost

bC = 1
4kF 1 1 1 100

bC = 1
2kF 1 1 1 100

bC = 3
4kF 1 1 1 100

Table 3: Budget-balance ratio for demand profiles with 6 suppliers
Max ratio Min ratio Avg. ratio # of same cost

bC = 1
4kF 1.0507 1 1.0005 99

bC = 1
2kF 1.2284 1 1.0042 98

bC = 3
4kF 1.1001 1 1.0021 94

Table 4: Budget-balance ratio for demand profiles with 10 suppliers
Max ratio Min ratio Avg. ratio # of same cost

bC = 1
4kF 1.2000 1 1.0132 93

bC = 1
2kF 1.1937 1 1.0160 78

bC = 3
4kF 1.0913 1 1.0109 62

In Tables 2, 3 and 4, we present the maximum, minimum and average budget-balance

ratios among the 100 demand profiles results for each combination of numbers of suppliers

and bC values. In addition, we also show the number of demand profiles whose minimum

outbound shipping cost equals the outbound shipping cost of the subset sum packing solu-

tion.

From the results in Table 2, we empirically see that when there are three suppliers in

the demand profiles, the subset sum packing solution always yields the minimum outbound
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shipping cost. This result aligns with Proposition 3. In Tables 3 and 4, the maximum

ratios are much smaller than the upper bounds we found for β and the average ratios are

all bounded above by 1.016. This empirically demonstrates that our cost-sharing mecha-

nism BBP has good budget-balance performance by only charging slightly more than the

minimum shipping cost on average. Moreover, we see that the subset sum packing solutions

very often induce the minimum outbound shipping costs. However, the number of instances

with the same cost decreases as the value of bC or number of suppliers increases.

5 Economic Efficiency of Cost-Sharing Mechanism BBP

We have shown that our cost-sharing mechanism BBP is truthful and thoroughly studied its

budget-balance guarantees in various problem settings. The desired property left to explore

is economic efficiency. The economic efficiency of a cost-sharing mechanism is usually mea-

sured by social welfare. The outcome of an economically efficient cost-sharing mechanism

maximizes the social welfare, defined as W (S) = V (S) − C(S), where V (S) denotes the

total valuation of the suppliers in S and C(S) denotes the total cost of serving suppliers

in S. Intuitively, social welfare quantifies the savings from providing the common service

to a selected set of suppliers. However, it has been shown that truthful and approximately

budget-balanced cost-sharing mechanisms often yield outcomes with zero or negative social

welfare when there exist outcomes with strictly positive social welfare [13]. Therefore, it

is difficult to relatively compare the economic efficiency of cost-sharing mechanisms using

social welfare.

Social cost π(S) was proposed as an alternative way to measure the economic efficiency

of a mechanism [31]. Instead of quantifying the savings, social cost is equal to the summation

of the cost of serving the selected suppliers S and the total valuation of players in N \ S.

Mathematically, π(S) = C(S) + V (N \ S), where V (N \ S) denotes the total valuation of

the suppliers not in S. By definition, social cost is always a positive value and thus makes

it easier to relatively compare the economic efficiency of mechanisms with the same budget-

balance guarantee. In addition, social cost can be obtained from social welfare using an
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affine transformation: π(S) = −W (S) + V (N). This means that minimizing social cost is

equivalent to maximizing social welfare. The outcome of economically efficient cost-sharing

mechanisms should minimize the social cost.

In this section, we study the economic efficiency of the cost-sharing mechanism BBP by

comparing the social cost of the cost-sharing mechanism BBP to the minimum social cost

of our problem. The social cost in our problem is the total shipping cost of all suppliers.

We minimize the social cost of our problem using a mixed integer optimization model,

in which each supplier ships all its demand either to the consolidation center or to the

destination directly. Each supplier’s demand is delivered in its entirety, without splitting.

The parameters, decision variables, and the model are presented below.

Parameters:

N : set of suppliers.

T : set of trucks available at the consolidation center.

G0
i : Inbound shipping cost for the entire demand of supplier i ∀i ∈ N .

G1
i : Stand-alone shipping cost for the entire demand of supplier i ∀i ∈ N .

Decision variables:

xjCF : Binary variable. If outbound shipping of truck j uses the FTL rate, then xjCF = 1;

otherwise, 0 ∀j ∈ T .

yjCF : Amount of demand of truck j shipped by the FTL rate from the consolidation center

to the destination ∀j ∈ T .

yjCL: Amount of demand of truck j shipped by the LTL rate from the consolidation center

to the destination ∀j ∈ T .

zij : Binary variable. If the entire demand of supplier i is shipped using truck j, then

zij = 1; otherwise zij = 0.

Model:

min
∑
i∈N

∑
j∈T

zijG
0
i +

∑
i∈N

(1−
∑
j∈T

zij)G
1
i +

∑
j∈T

(cF1x
j
CF + cL1y

j
CL) (1)

25



s.t. yjCF ≤ kFx
j
CF , ∀j ∈ T (2)

yjCL ≤ bC , ∀j ∈ T (3)

yjCF + yjCL ≤ kF , ∀j ∈ T (4)∑
j∈T

zij ≤ 1, ∀i ∈ N (5)

∑
i∈N

zijdi = yjCF + yjCL, ∀j ∈ T (6)

xjCF , zij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ T (7)

yjCF ≥ 0, yjCL ≥ 0, ∀j ∈ T (8)

Constraints (2) and (3) ensure that trucks correctly incur the FTL rate or the LTL

rate under our trucking cost structure, respectively. Constraint (4) ensures that the packed

demand in each truck does not exceed kF . Constraint (5) allows each supplier’s demand

to be packed in at most one truck at the consolidation center. Constraint (6) makes sure

that the consolidation center ships all demands packed in each truck. Constraints (7) and

(8) enforce the corresponding decision variables to be binary and nonnegative reals. For

supplier i, if
∑

j∈T zij = 0, then supplier i ships all its demand directly. If
∑

j∈T zij = 1,

then supplier i’s demand is shipped using truck j at the consolidation center. Therefore, in

the objective function (1),
∑

i∈N
∑

j∈T zijG
0
i represents the total inbound shipping cost for

the suppliers who ship their demands via the consolidation center,
∑

i∈N (1−
∑

j∈T zij)G
1
i

represents the total stand-alone cost for the suppliers who ship their demands directly to

the destination, and
∑

j∈T (cF1x
j
CF + cL1y

j
CL) is the total outbound shipping cost. Like our

cost-sharing mechanism BBP, the optimization model (1) - (8) also decides which suppliers

participate in consolidation and how their demands are packed in trucks, but with the

objective of minimizing the system’s total cost.

We compare the social cost of our cost-sharing mechanism BBP to that of the optimiza-

tion model (1) - (8) for demand profiles with 3, 6, 10, and 15 suppliers, respectively. Again,
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for each number of suppliers, we generate 100 demand profiles. Each supplier has less than

truckload demand randomly generated from the uniform distribution on (0, kF ]. We fix the

values of kF , bC , bG, cL1 and gL1 (in Table 5), and study how different numbers of suppliers

and different gL1
gL0

ratios influence the social cost of cost-sharing mechanism BBP compared

to the minimum social cost. Because the shipping rates are distance dependent, the larger
gL1
gL0

is, the farther the destination is compared to the location of the consolidation center.

Our choices of gL1
gL0

are 1.5, 2.4, 3.2, 4.8, 9 and 15. Other cost parameters are calculated

accordingly for each selection of gL1
gL0

.

Table 5: Fixed values for the parameters
kF (ft3) bC (ft3) bG (ft3) cL1 ($) gL1 ($)
4000 2000 2000 1 1

We present the number of instances for which the optimization model and the cost-

sharing mechanism BBP result in the same solution and the average social cost gap in

Table 6. For each gL1
gL0

ratio, the first column shows the number of same solutions and

second column shows the average social cost gap. The social cost gap is defined as

mechanism social cost− optimal social cost
optimal social cost

.

Table 6: Comparison of social cost gaps for cost-sharing mechanism BBP
gL1
gL0

1.5 2.4 3.2 4.8 9 15

3 suppliers 100 0% 97 0.72% 95 2.33% 95 1.97% 98 1.66% 97 0.33%
6 suppliers 100 0% 88 0.70% 86 1.51% 81 3.22% 80 3.79% 79 3.29%
10 suppliers 100 0% 72 0.54% 65 1.10% 64 2.19% 58 2.97% 55 3.17%
15 suppliers 100 0% 50 0.54% 47 1.27% 43 2.08% 45 3.44% 38 3.62%

In our experiments, when gL1
gL0

= 1.5, solutions from the optimization model and the

cost-sharing mechanism BBP are always zero participation. This demonstrates that con-

solidation is more likely to be beneficial for suppliers when the destination is far (long-haul

transportation) compared with the location of the consolidation center. Hence, it is not sur-

prising that the cost-sharing mechanism BBP is economically efficient when gL1
gL0

= 1.5. In

terms of the number of same solutions, roughly speaking, it is less likely for the cost-sharing
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mechanism BBP to yield the social cost minimizing solution as the number of suppliers and

the gL1
gL0

ratio increase. In particular, the number of same solutions decreases more quickly

as the number of suppliers increases. In terms of social cost gap, all gaps presented in Table

6 are smaller than 3.8%. One interesting phenomenon of the average social cost gap is that

the values are not monotonic in the number of suppliers or the gL1
gL0

ratios. For some demand

profiles, we find that the packing solutions for two “consecutive” gL1
gL0

ratios (e.g. 1.5 and

2.4, 2.4 and 3.2) come from completely two different sets of suppliers. That is, it is not

always true for a demand profile that as gL1
gL0

increases, zero participation becomes partial

participation or partial participation becomes total participation. Moreover, the social cost

changes are not monotonic in number of suppliers either. A possible contributing factor

of this phenomenon is that packing the demands in trucks is essentially a combinatorial

problem, whose solution largely depends on the specific composition of the demand profiles

rather than the number of suppliers. As a result, the changes in social cost gap may not

be aligned with changes of the gL1
gL0

ratios and the number of suppliers. However, we can

still expect that the social cost gap generally increases as the number of suppliers or the
gL1
gL0

increases.

6 Conclusions

In this paper, we study the cost-sharing problem in a freight consolidation system with one

consolidation center. Self-interested suppliers in the same region have the option to use

this nearby consolidation center to ship their demands together to a common destination

with trucks for lower transportation rates. The entire less-than-truckload demand of each

supplier must be shipped in a single truck. We design an acyclic mechanism to solve this

shipping cost allocation problem for freight consolidation. At the planning phase of each

consolidation, the central planner of the consolidation collects bids from all the suppliers.

Then applying a cost-sharing mechanism, the central planner decides the set of suppliers

who participate in the consolidation and their corresponding cost shares based on the bids.

In our problem setting, a critical problem we need to solve first is how to pack a set of
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suppliers’ less-than-truckload demands since the packing solution directly influences the se-

lected set of suppliers and their outbound shipping cost shares. We formulate this problem

as a bin packing problem and obtain the packing solution using the subset sum algorithm.

Based on the obtained packing solution, we derive the cost-sharing method and the offer

function that induces our truthful acyclic mechanism – cost-sharing mechanism Based on

Bin Packing (BBP). Our cost-sharing mechanism BBP is weakly group strategyproof. Ad-

ditionally, we find that the packing solutions yielded by the subset sum algorithm are strong

Nash equilibria from a non-cooperative game theory perspective. This outcome endorses

our use of the subset sum algorithm.

We first study the budget-balance ratio of the cost-sharing mechanism BBP theoret-

ically, We prove that our cost-sharing mechanism BBP is 2-budget-balanced in general.

However, the mechanism BBP is budget-balanced when the demand profiles satisfy either

of the two following conditions: 1) the corresponding subset sum algorithm uses no more

than two trucks, or 2) no three suppliers’ demands can fit in one truck. Additionally, when

bC ≤ 1
2kF , the cost-sharing mechanism BBP is 17

9 -budget-balanced. To comprehensively

analyze the budget-balance ratio, we then investigate the ratio empirically. On average, the

budget-balance ratio is only slightly above 1. In fact, our cost-sharing mechanism BBP is

“practically budget-balanced” because it always recovers the total outbound shipping cost

by the cost shares, though it is not theoretically budget-balanced.

Finally, we study the economic efficiency of the mechanism BBP numerically. We use

social cost to quantify and compare the economic efficiency. We obtain the minimum social

cost shipping solution of the consolidation system with a mixed integer optimization model.

Compared with the minimum social cost, the outcomes of our cost-sharing mechanism BBP

have an average social cost gap less than 3.8%. In addition, although the changes in social

cost gap are not perfectly aligned with changes of the gL1
gL0

ratios and the number of suppliers,

the social cost gap can be expected to increase in general as the gL1
gL0

ratio and the number

of suppliers increase.
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Appendix

Proof of Lemma 1.

Proof. The above claim indicates that for subset sum packing solutions, the removal of

suppliers who are packed in iterations later than supplier i does not affect the subset sum

packing solutions of the suppliers who are packed before any of the removed suppliers.

Because the demand of any supplier in W ⊆ G(i, S) does not contribute to maximizing

the total demand in the iterations in which the demand of supplier j ∈ L(i, S) ∪ E(i, S) is

packed, the existence of W ⊆ G(i, S) does not affect the subset sum packing solutions for

the supplier j ∈ L(i, S)∪E(i, S). As a result, every supplier j ∈ L(i, S)∪E(i, S), including

supplier i, ends up being packed with the same suppliers when we remove W ⊆ G(i, S)

from S.

Proof of Lemma 2.

Proof. We prove by contradiction. If D(T ′) > D(T ), then according to the subset sum

algorithm, supplier i should end up being in T ′ in a subset sum packing solution for S

instead of T . This contradicts the fact that supplier i is packed in T in a subset sum

packing solution for S.

Proof of Proposition 1.

Proof. We first prove part (a) of Definition 1. Part (a) indicates that supplier i’s cost share

remains the same if we remove some suppliers who are offered cost shares after supplier i.

According to Lemma 1, all suppliers j ∈ L(i, S) ∪ E(i, S), including supplier i, are packed

with the same suppliers when W⊆G(i, S) is removed from S. As a result, supplier i ’s cost

share remains the same when we remove W ⊆ G(i, S) from S, i.e. χ(i, S \W ) = χ(i, S).
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For part (b), whenW ⊆ G(i, S)∪(E(i, S)\{i}), we assume there exist two supplier sets

P and Q such that P ⊆ G(i, S), Q ⊆ (E(i, S) \ {i}), and P ∪Q = W . Based on the above

argument, we can conclude that the removal of P results in χ(i, S \P ) = χ(i, S). Since the

cost shares remain the same for supplier i when P is removed, we can restrict our attention

to the setting in which Q is removed from S \ P . Let T be the truck in which supplier i

is packed in a subset sum packing solution for S \ P . According to Lemma 2, when Q is

removed from S \ P , supplier i is packed in T ′ such that D(T ′) ≤ D(T ). Since χ shares

the outbound shipping cost proportional to demand, the cost share of supplier i dose not

decrease when removing Q from S \P . Therefore, χ(i, S \W ) ≥ χ(i, S \P ) = χ(i, S) .

Proof of Lemma 3.

Proof. Whenm = 1, the subset sum algorithm packs all demands in one truck. So the claim

holds. Next, when m ≥ 2, we prove this claim in two steps. First, we prove the subset

sum algorithm uses no more than 2m− 1 trucks. In any subset sum packing solution, the

sum of the demands in any two trucks exceeds kF . Assume the subset sum algorithm uses

t trucks. Then there are t(t−1)
2 different pairs of trucks in the solution. Summing over

all these pairs, we have more than t(t−1)
2 kF units of demand packed in these t(t−1)

2 pairs

of trucks. Each truck participates in exactly t − 1 pairs. As a result, the total demand

packed in these t trucks is strictly greater than t
2kF . Since

t
2kF <

∑
i∈S di ≤ mkF , we have

t < 2m. Second, we prove that 2m− 1 is a tight upper bound. Without loss of generality,

let
∑

i∈S di = (m− 1
2)kF + δ, δ ≤ 1

2kF . We construct a demand profile with |S| = 2m− 1,

and di = 1
2kF + δ

2m−1 for all i ∈ S. Since each supplier’s demand is strictly greater than

1
2kF , the subset sum algorithm will pack each supplier’s demand in a separate truck and

thus use 2m− 1 trucks.

Proof of Proposition 2.

Proof. Without loss of generality, assume we have a set of suppliers S such that (m −

1)kF <
∑

i∈S di ≤ mkF . When the suppliers’ demands can be split and consolidated into

full truckloads, we have at least m − 1 full trucks in this consolidated packing solution.
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Therefore, C∗(S) > (m − 1)cF1. If the subset sum packing solution uses at most 2m − 2

trucks for the same demand profile, then β(S) = CM (S)
C(S) ≤

(2m−2)cF1

C∗(S) < (2m−2)cF1

(m−1)cF1
= 2.

If the subset sum packing solution uses 2m − 1 trucks, we can conclude that
∑

i∈S di >

(m − 1
2)kF . This is because the first 2m − 3 trucks must at least be half filled and the

total demand of the last two trucks must exceed kF and so the total demand must be

strictly greater than (2m − 3) · 1
2kF + kF = (m − 1

2)kF . As a result, the last truck in the

consolidated packing solution when demands can be split must have more than 1
2kF . If

bC ≤ 1
2kF , then C

∗(S) = mcF1. If 1
2kF < bC ≤ kF , then cF1 = bCcL1 ≤ kF cL1 and thus,

C∗(S) > (m− 1)cF1 + 1
2kF cL1 ≥ (m− 1

2)cF1. Consequently, when the subset sum packing

solution uses 2m − 1 trucks, β(S) = CM (S)
C(S) ≤

(2m−1)cF1

C∗(S) < (2m−1)cF1

(m− 1
2

)cF1
= 2. To summarize,

β = max
S
{β(S)} < 2. Therefore, when β = 2, we have CM (S) ≤

∑
i∈S χi ≤ βC(S) for any

supplier set S.

Proof of Proposition 3.

Proof. If the subset sum packing solution uses one truck to pack all demands in S, then

obviously β(S) = 1. If the subset sum packing solution uses two trucks to pack all demands

in S, then any other packing solution will use at least two trucks to pack all the demands

in S. The outbound shipping cost for an arbitrary packing solution is (
∑

i∈S di − D̂)cL1,

where D̂ is the total demand volume that exceeds bC in each of the packed trucks. As

D̂ increases, the outbound shipping cost decreases. Let T s1 and T s2 denote the subset sum

packing solution, and let T a1 , . . . , T ap (D(T a1 ) ≥ . . . ≥ D(T ap ), p ≥ 2) denote any other

packing solution for supplier set S. Let D̂1 and D̂2 denote the demand volume that exceeds

bC in T s1 and T s2 , respectively and let D̂′1, . . . , D̂′p denote the demand volume that exceeds bC

in T a1 , . . . , T ap , respectively. Then we have D̂1 ≥ D̂′1 according to the subset sum algorithm.

Let 0 ≤ q ≤ p denote the number of trucks that have demand volumes exceed bC in

T a1 , . . . , T
a
p , i.e. D̂′1 ≥ . . . ≥ D̂′q > 0, and ˆD′q+1 = . . . = D̂′p = 0.

When D̂1 = 0, then D̂′1 = 0. All demands are shipped using the LTL rate in both

packing solutions. So the outbound shipping cost of T s1 , T s2 equals to the outbound shipping

cost of T a1 , . . . , T ap .
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When D̂1 > 0 and D̂2 = 0, if q ≤ 1, then the outbound shipping cost of T a1 , . . . , T ap is

greater than that of the subset sum packing solution because D̂1 + D̂2 > D̂′1 + . . .+ D̂′q. If

q ≥ 2, then we have,

D̂1 + bC +D(T s2 ) = (D̂′1 + . . .+ D̂′q) + qbC +

p∑
k=q+1

D(T ak )

=⇒ D̂1 = (D̂′1 + . . .+ D̂′q) + (q − 1)bC −D(T s2 ) +

p∑
k=q+1

D(T ak )

=⇒ D̂1 > D̂′1 + . . .+ D̂′q.

Therefore, the outbound shipping cost of T a1 , . . . , T ap is greater than that of the subset sum

packing solution.

When D̂1 > D̂2 > 0, if q ≤ 1, then the outbound shipping cost of T a1 , . . . , T ap is greater

than that of the subset sum packing solution following the same argument above. If q ≥ 2,

then we have,

D̂1 + D̂2 + 2bC = (D̂′1 + . . .+ D̂′q) + qbC +

p∑
k=q+1

D(T ak )

=⇒ D̂1 + D̂2 = (D̂′1 + . . .+ D̂′q) + (q − 2)bC +

p∑
k=q+1

D(T ak )

=⇒ D̂1 + D̂2 > D̂′1 + . . .+ D̂′q.

Therefore, the outbound shipping cost of T a1 , . . . , T ap is greater than that of the subset sum

packing solution.

Based on the above analysis, the subset sum packing solutions always cost no more

than any other packing solutions. Consequently, when the subset sum packing solution

uses no more than two trucks, it always yields the minimum outbound shipping cost, i.e.

β(S) = 1.

Proof of Proposition 4.

Proof. We prove the above claim by proving that the subset sum packing solution does
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not cost more than any other packing solution for the same set of suppliers. Without

loss of generality, let T ss1 , . . . , T ssM denote the subset sum packing solution and T1, . . . , TK

denote any packing solution that is different from T ss1 , . . . , T ssM . For the sake of analysis,

we order the packing solution T1, . . . , TK so that D(T1) ≥ D(T2) . . . ≥ D(TK). Because of

Lemma 4, M ≤ K. Recall that each Tk, k ∈ {1, 2, . . . ,K}, in the solution set contains the

suppliers’ indices whose demands are packed in the kth truck. In order, we compare T ssm

with Tm for m ∈ {1, 2, . . .M}. Let m∗ ≤ M be the smallest index such that T ssm = Tm,

m ∈ {1, 2 . . .m∗}. Therefore, up to the m∗th truck, T ss1 , . . . , T ssM and T1, . . . , TK have

the same exact packing solution, and thus incur the same outbound shipping cost. Since

T ssm = Tm, m ∈ {1, 2 . . .m∗}, the packing solutions T ssm∗+1, . . . , T
ss
M and Tm∗+1, . . . , TK

contain the demands of the same set of suppliers, whose demands are not packed in the

firstm∗ trucks. Consequently, D(T ssm∗+1) ≥ D(Tm∗+1). We consider the following four cases

based on the relationships between D(T ssm∗+1), D(Tm∗+1) and bC .

Case 1: whenD(Tm∗+1) ≤ D(T ssm∗+1) ≤ bC , packing solutions T ssm∗+1, . . . , T
ss
M and Tm∗+1, . . . , TK

incur the same outbound shipping cost because the demands are all shipped at the LTL

rate.

Case 2: when D(T ssm∗+1) > bC ≥ D(Tm∗+1), the outbound shipping cost incurred by

T ssm∗+1, . . . , T
ss
M is strictly lower because it ships at least D(T ssm∗+1) at the flat FTL rate

while Tm∗+1, . . . , TK ships all demands at the LTL rate.

Case 3: when D(T ssm∗+1) = D(Tm∗+1) > bC , we prove that we can reconfigure the packing

solutions so that T ssm∗+1 = Tm∗+1 while retaining the same outbound shipping cost of both

packing solutions.

When T ssm∗+1 = {i} and Tm∗+1 = {j}, but i 6= j, there must exist Tm∗+∆, ∆ ∈ {2, . . .K−

m∗} so that Tm∗+∆ = {i}. Otherwise, if supplier i’s demand is packed with another

supplier’s demand, this contradicts the fact that D(T ssm∗+1) ≥ D(Tm∗+1) and D(Tm∗+1) ≥

. . . ≥ D(TK). If we switch Tm∗+1 and Tm∗+∆, we have T ssm∗+1 = Tm∗+1.

When T ssm∗+1 = {i} and Tm∗+1 = {j, u}, but i 6= j 6= u, there must exist Tm∗+∆,

∆ ∈ {2, . . .K−m∗} so that Tm∗+∆ = {i} for the same reason in the above argument. If we

switch Tm∗+∆ with Tm∗+1, we have T ssm∗+1 = Tm∗+1. Similarly, when T ssm∗+1 = {j, u} and
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Tm∗+1 = {i}, we can have T ssm∗+1 = Tm∗+1 as well.

When T ssm∗+1 = {i, j} and Tm∗+1 = {u, v} but {i, j} 6= {u, v}, consider the following.

If T ssm∗+1 and Tm∗+1 do not share suppliers, i.e. {i, j} ∩ {u, v} = ∅, we can always have

a truck that contains the demands of supplier u and v in the subset sum packing solution

without changing the outbound shipping cost. If there exists T ssm∗+∆, ∆ ∈ {2, . . .M −m∗}

so that T ssm∗+∆ = {u, v}, then the above claim holds. If the demands of supplier u and v

are not packed in the same truck, then either du or dv should be packed in a truck whose

total demand equals du + dv; otherwise the demands of supplier u and v should be packed

together by the subset sum algorithm to yield a truck with greater total demand. Assume

dl is packed with du in T ssm∗+∆, ∆ ∈ {2, . . .M −m∗} such that dl+du = du+dv. Therefore,

dv = dl. If we switch dv and dl, we obtain a T ssm∗+∆ that contains the demands of supplier u

and v and retain the outbound shipping cost of the packing solution. By switching T ssm∗+1

and T ssm∗+∆ , we have T ssm∗+1 = Tm∗+1.

If T ssm∗+1 and Tm∗+1 share one common supplier – WLOG, we assume i = u – then

dj = dv. dj must be packed in one of the trucks in Tm∗+2, . . . , TK . If we switch dv and dj

in Tm∗+1, . . . , TK , we have T ssm∗+1 = Tm∗+1.

Note that all the swaps in Case 3 only change the ordering of trucks with equal demand

volume or the packings of equal demands. The resulting packing solutions are essentially

equivalent to T ssm∗+1, . . . , T
ss
M and Tm∗+1, . . . , TK . Therefore, their outbound shipping costs

do not change.

Case 4: whenD(T ssm∗+1) > D(Tm∗+1) > bC , we prove that we can always change Tm∗+1, . . . , TK

to have T ssm∗+1 = Tm∗+1 without increasing the outbound shipping cost of Tm∗+1, . . . , TK .

First, we prove when D(T ssm∗+1) > D(Tm∗+1) > bC , there must be two suppliers’ demands

in T ssm∗+1. If T ssm∗+1 contains only one supplier’s demand di, then di must be packed in one

of Tm∗+1, . . . , TK . This contradicts D(T ssm∗+1) > D(Tm∗+1) and D(Tm∗+1) ≥ . . . ≥ D(TK).

Therefore, T ssm∗+1 must contain two suppliers’ demands di and dj . Since D(T ssm∗+1) >

D(Tm∗+1), di and dj are not packed in the same truck in Tm∗+1, . . . , TK . Let’s assume di is

packed with dp and dj is packed with dq somewhere in the packing solution Tm∗+1, . . . , TK .

Because di and dj are packed in T ssm∗+1, di+dj > di+dp and di+dj > dj+dq. Thus, dj > dp
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and di > dq. Now suppose we modify Tm∗+1, . . . , TK to pack di and dj together in one truck

and pack dp and dq together in another truck. Because di+dj is the largest demand volume

that can be packed in one truck, Tm∗+1 now becomes {i, j}. If di + dp ≥ bC , dj + dq ≥ bC ,

and dp + dq ≥ bC , then packing di and dj together in Tm∗+1, . . . , TK does not change the

outbound shipping cost of Tm∗+1, . . . , TK . If di + dp ≥ bC , dj + dq ≥ bC , and dp + dq < bC ,

then packing di and dj together in Tm∗+1, . . . , TK reduces the outbound shipping cost of

Tm∗+1, . . . , TK from 2cF1 to cF1 + (dp + dq)cL1. If di + dp ≥ bC and dj + dq < bC , then

dp + dq < bC because dj > dp. Therefore, the cost for shipping di, dj , dp, dq decreases

from cF1 + (dj + dq)cL1 to cF1 + (dp + dq)cL1 after packing di and dj together. Similarly, if

di + dp < bC and dj + dq ≥ bC , the cost of shipping Tm∗+1, . . . , TK decreases as well after

packing di and dj together. If di + dp < bC , dj + dq < bC and dp + dq < bC , the cost of

shipping di, dj , dp, dq decreases from (di+dp+dj+dq)cL1 to cF1+(dp+dq)cL1 after packing

di and dj together. Thus, having T ssm∗+1 = Tm∗+1 by switching demands in Tm∗+1, . . . , TK

does not increase the outbound shipping cost of the packing solution. Finally, if di or dj is

packed in a truck alone in Tm∗+1, . . . , TK , the above conclusion also holds because it can

be seen as a special case of the above situation where dp = 0 or dq = 0.

Comparing T ssm∗+∆ and Tm∗+∆, ∆ ∈ {2, . . .M − m∗}, if at any time, D(T ssm∗+∆) and

D(Tm∗+∆) satisfy the conditions in cases 1 or 2, we can conclude that the outbound shipping

cost of T ss1 , . . . , T ssM is no more than T1, . . . , TK . If D(T ssm∗+∆) and D(Tm∗+∆) satisfy the

conditions in cases 3 or 4, we set m∗ = m∗ + 1 and repeat the above procedures again.

If D(T ssm∗+∆) and D(Tm∗+∆) always fall into cases 3 or 4, we will end up with T ssm = Tm,

m ∈ {1, . . . ,M}. Because we do not increase the outbound shipping cost every time we

perform the above procedures to change T1, . . . , TK toward T ss1 , . . . , T ssM , we can conclude

that T ss1 , . . . , T ssM costs no more than T1, . . . , TK .

Proof of Proposition 6.

Proof. Let opt(S) denote the number of trucks that the optimal bin packing solution uses for

supplier set S. Because optimal bin packing solutions are nontrivial bin packing solutions,

based on Definition 3, there are at least opt(S)−1 trucks in the optimal bin packing solutions
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half filled. Since bC ≤ 1
2kF , we have (opt(S)− 1)cF1 < C(S) ≤ opt(S)cF1. Other nontrivial

bin packing solutions that are not optimal use at least opt(S) + 1 bins and therefore, cost

strictly more than opt(S)cF1 to ship all demands. As a result, the outbound shipping cost

induced by an optimal bin packing solution is the smallest among all packing solutions for

supplier set S.

Proof of Proposition 7.

Proof. Assume opt(S) = 3, then ss(S) = {3, 4, 5}. First we prove ss(S) ≤ 4. WLOG,

let T opt1 , T opt2 and T opt3 denote the optimal packing solution ordered such that D(T opt1 ) ≥

D(T opt2 ) ≥ D(T opt3 ) and let T ss1 , . . . , T ss5 denote the subset sum packing solution. Because

of how the subset sum algorithm works, D(T opt1 ) ≤ D(T ss1 ). Then it must be true that

D(T opt2 )+D(T opt3 ) ≥
∑5

i=2D(T ssi ). Additionally, the total demand volume of any two trucks

in a subset sum packing solution exceeds kF , e.g. D(T ss2 )+D(T ss3 ) > kF . We sum up all the

inequalities that only include the last 4 trucks and obtain
∑5

i=2D(T ssi ) > 2kF . This means

D(T opt2 )+D(T opt3 ) > 2kF , which is a contradiction. Therefore, when opt(S) = 3, ss(S) ≤ 4.

Next we prove β(S) ≤ 3
2 . If opt(S) = ss(S) = 3 and bC ≤ 1

2kF , then β(S) =
2cF1+Z(T ss

3 )

2cF1+Z(T opt
3 )

<

3cF1
2cF1

= 3
2 , where Z(Tk) denotes the outbound shipping cost of truck Tk. If opt(S) = 3

and ss(S) = 4, then using a similar idea as above, we have D(T ss2 ) + D(T ss3 ) > kF ,

D(T ss3 ) +D(T ss4 ) > kF and D(T ss2 ) +D(T ss4 ) > kF . Summing up these three inequalities,

we obtain D(T ss2 ) + D(T ss3 ) + D(T ss4 ) > 3
2kF . Therefore, D(T opt2 ) + D(T opt3 ) > 3

2kF . This

implies that D(T opt3 ) > 1
2kF . As a result, if opt(S) = 3, ss(S) = 4 and bC ≤ 1

2kF , then

β(S) =
3cF1+Z(T ss

4 )
3cF1

< 4cF1
3cF1

= 4
3 . Finally, we can conclude that when opt(S) = 3, β(S) < 3

2 .

Applying the exact same technique when 4 ≤ opt(S) ≤ 9, we are able to obtain the

corresponding instance budget-balance ratios that are summarized in Table 7:
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Table 7: Instance budget-balance ratio summary
opt(S) ss(S) β(S)

4 4, 5, 6 5
3

5 5, 6, 7, 8 7
4

6 6, 7, 8, 9, 10 9
5

7 7, 8, 9, 10, 11 11
6

8 8, 9, 10, 11, 12, 13 13
7

9 9, 10, 11, 12, 13, 14, 15 15
8

To summarize, when 3 ≤ opt(S) ≤ 9 and bC ≤ 1
2kF , β(S) = max{3

2 ,
5
3 ,

7
4 ,

9
5 ,

11
6 ,

13
7 ,

15
8 } =

15
8 = 1.875.

Proof of Proposition 8.

Proof. Following the same argument in Proposition 7,

β(S) =
(ss(S)− 1)cF1 + Z(T ssss(S))

(opt(S)− 1)cF1 + Z(T optopt(S))

<
ss(S)cF1

(opt(S)− 1)cF1

=
ss(S)

opt(S)− 1

≤ b1.7opt(S)c
opt(S)− 1

≤ 1.7opt(S)

opt(S)− 1
.

The value of f(x) = x
x−1 decreases as x increases. When opt(S) ≥ 10, the maximum value of

1.7opt(S)
opt(S)−1 is obtained when opt(S) = 10. As a result, β(S) < 17

9 ≈ 1.89 when opt(S) ≥ 10.

Proof of Proposition9.

Proof. Let T1, . . . , Tk be the packing solution that induces the minimum outbound shipping

cost C(S). Assume Tm, m ∈ {1, . . . , k} are ordered such that D(T1) ≥ . . . ≥ D(Tk). The

packing solution that induces the minimum outbound shipping cost may not be unique.

We prove that applying the first-fit algorithm on a specific order of demand profiles leads

us to one such packing solution. Among all the packing solutions that induce the minimum
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outbound shipping cost, there must exist one T ∗1 , . . . , T ∗k such that each demand in T ∗m,

m ∈ {1, . . . k}, cannot be moved to T ∗m−∆, ∆ ∈ {1, . . . ,m − 1} without moving other

packed demands. Otherwise, we can create a packing solution that induces less shipping

cost. If we order the demand profiles of suppliers S in a sequence of how they are placed

in T ∗1 , . . . , T
∗
k , the packing solution of the first-fit algorithm for this sequence of demand

profiles is T ∗1 , . . . , T ∗k by the definition of the first-fit algorithm.
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