
On the strength of approximate linear programming relaxations for

the traveling salesman problem

Ricardo Fukasawa
Department of Combinatorics and Optimization

University of Waterloo

Waterloo, ON, Canada

rfukasawa@uwaterloo.ca

Allan Sapucaia Barboza
Institute of Computing

University of Campinas

Campinas, Brazil

allansapucaia@gmail.com

Alejandro Toriello
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA, USA

atoriello@isye.gatech.edu

August 24, 2016

Abstract

We study the strength of a recently proposed approximate linear programming (ALP) family
of lower bounds for the traveling salesman problem (TSP). We show that the initial lower bound
is equivalent to the Held-Karp bound (settling an open question from [28]), and then show that
the final lower bound from the family is tight. We then compare it to another family of TSP
lower bounds, the branch-cut-and-price (BCP) family. We show that the two bound families
are in general incomparable in terms of bound strength, and then compare their performance
in a computational study. Our empirical conclusion is that the ALP family produces bounds of
similar quality to BCP.

1 Introduction

The traveling salesman problem (TSP) is one of the most well-known and studied combinatorial
optimization problems [8]. Its general description is as follows: Given a set of cities and travel costs
between every pair of cities, a “salesman” wishes to visit every city exactly once and then return
to the starting city, incurring the cheapest possible total cost. The problem has been the focus of
heavy study, with current heuristics and exact algorithms allowing instances of many thousands of
cities to be solved to optimality.

In this paper, we consider the asymmetric TSP; let G = (V,A) be the complete directed graph
on vertices V := {0} ∪ N , where N := {1, 2, ..., n}. Without loss of generality, we let 0 be the
salesman’s starting point, which we also call the depot. Each arc (i, j) has an associated cost,
cij . The asymmetric TSP seeks the minimum-cost directed Hamiltonian cycle (also called a tour),
starting and ending at the depot. For notation simplicity, we represent arc (i, j) by ij. Moreover,
for any U ⊆ V , we use δ+(U) := {ij ∈ A : i ∈ U, j /∈ U} and δ−(U) := δ+(V \ U). We also denote
δ+(i) := δ+({i}) and δ−(i) := δ−({i}), and generally identify singleton sets with their unique
elements when there is no danger of confusion.

1

The TSP has been modeled using integer programming (IP) since as far back as the 1950’s [12].
One of the most common formulations is the following:

min
∑
a∈A

caxa (1a)

s.t.
∑

a∈δ+(i)

xa =
∑

a∈δ−(i)

xa = 1 i ∈ V (1b)

∑
a∈δ+(U)

xa ≥ 1 ∅ (U ⊆ N (1c)

x ∈ ZA+. (1d)

Here, variable xij represents the salesman using arc ij in the tour. The lower bound obtained by
the linear programming (LP) relaxation of (1) is sometimes called the Held-Karp bound [21]; we
denote this value as zHK.

Recently, [28] proposed a family of bounds for the TSP based on approximate linear programming
(ALP). Introduced in the mid 1980’s and early 1990’s [27, 30, 31], ALP is a technique that obtains
bounds and policies for dynamic programs (DP) by restricting the feasible region of their LP
formulation. In the TSP’s case, the DP is a shortest path formulation originally studied in [9, 18, 20],
where states track the salesman’s current location and the cities remaining to visit. ALP has gained
popularity within optimization and operations research in the last decade [13, 14, 15], and has been
applied in commodity valuation [25], economic lot scheduling [5], inventory routing [2, 3], joint
replenishment [6, 7, 24], knapsack problems [10], revenue management [4], stochastic games [16]
and stochastic vehicle routing [29].

The family of ALP bounds for the TSP begins with a bound at least as strong as zHK and
successively tightens [28]; the purpose of this paper is to examine the strength of this bound family.
Our main contributions involve theoretically studying the bound hierarchy and establishing its
relation to various other bounds, including zHK, the optimal TSP value, and another family of
bounds stemming from branch-cut-and-price (BCP) techniques. BCP has seen empirical success
when applied to the capacitated vehicle routing problem (CVRP) [17] and the time-dependent TSP
(TDTSP) [1], and the BCP family of TSP bounds also includes successively tighter relaxations,
making it an ideal comparison for ALP. In summary, our theoretical comparison shows three main
results:

i) The initial ALP bound is actually equal to zHK; this result settles an open question [28].

ii) We show that roughly n/2 steps in the hierarchy suffice to provide a tight bound.

iii) We show that the ALP and BCP bounds are incomparable in general.

We also perform an empirical comparison which shows that an ALP bound is as tight as its BCP
analogue, or at worst within about 1%.

The remainder of the paper is organized as follows. Section 2 formulates the TSP and its
bounds, introduces notation and has other preliminaries. Section 3 has the proof of equivalence
between Held-Karp and the basic ALP bound as well as the tightness proof for the final member of
the ALP family. In Section 4, we present examples that show that the ALP and BCP bounds are
incomparable. Section 5 presents the results of our computational study, and Section 6 concludes
outlining future avenues of research.

2

2 Preliminaries

2.1 Approximate Linear Programming Bounds

The ALP family of lower bounds [28] is based on the DP formulation of the TSP; we present this
exact formulation first. The DP uses the observation that when the salesman is at a city i, the
only information required to make the decision of which city to visit next is the subset U ⊆ N
of cities that has not yet been visited [9, 20]. This pair (i, U) is a DP state with cost-to-go equal
to the minimum cost of an i-0 Hamiltonian path through U . The set S := {(i, U) : i ∈ N, U ⊆
N \ i} ∪ {(0, N), (0, ∅)} denotes every possible state, and the action set is

A := {((0, N), (i,N \ i)) : i ∈ N} ∪ {((i, ∅), (0, ∅)) : i ∈ N}
∪ {((i, U ∪ j), (j, U)) : i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}},

where the cost of an action is given by the cost of the corresponding arc. The TSP is then the
shortest path problem between (0, N) and (0, ∅) in the graph (S,A), which can be formulated as
the linear program

min
∑
i∈N

(
c0ix0i +

∑
j∈N\i

∑
U⊆N\{i,j}

cijx
U
ij + ci0xi0

)
(2a)

s.t.
∑
i∈N

x0i = 1 (2b)

x0i −
∑
j∈N\i

x
N\{i,j}
ij = 0, ∀ i ∈ N (2c)

∑
k∈N\(U∪i)

xUki −
∑
j∈U

x
U\j
ij = 0, ∀i ∈ N, ∅ 6= U (N \ i (2d)

∑
k∈N\i

x∅ki − xi0 = 0, ∀ i ∈ N (2e)

∑
i∈N

xi0 = 1 (2f)

xa ≥ 0, ∀ a ∈ A.

We use abbreviated notation in which x0i and xi0 respectively denote moves to and from the depot
(i.e. using arcs ((0, N), (i,N \ i)) and ((i, ∅), (0, ∅)) in the DP respectively), while xUij indicates a
move from i to j when the other remaining cities are U ; i.e. a move from state (i, U ∪ j) to (j, U).
The dual is

max y0,N − y0,∅ (3a)

s.t. y0,N − yi,N\i ≤ c0i, ∀ i ∈ N (3b)

yi,U∪j − yj,U ≤ cij , ∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j} (3c)

yi,∅ − y0,∅ ≤ ci0, ∀ i ∈ N (3d)

This feasible region contains a line, so without loss of generality we can set y0,∅ = 0, and then the
remaining variables yi,U can be viewed as costs-to-go.

The approach proposed in [28] is to approximate the variables yi,U and solve an “approximate”
LP, or ALP, in order to obtain a dual feasible solution (and thus a bound on the optimal TSP

3

value). Given a parameter t ∈ Z with 0 ≤ t ≤ n+1
2 , we impose the restriction

yi,U = πi,∅ +
∑
k∈U

πi,k +
∑
W⊆U
|W |≥n−t

λi,W +
∑

W⊆N\(U∪i)
|W |≥n−t

µi,W .

The variable πi,∅ is a cost associated with being at the vertex i. The variable πi,k represents an
additional cost of being at i and still having to visit city k. Variable λi,W is an analogous cost
on certain city subsets W contained in the remaining set U ; µi,W is a similar variable for certain
sets of cities W already visited. The parameter t determines the granularity of our approximation;
when t is 0, we do not consider any λ or µ variables, and as t increases we add successively more.

After this approximation, the formulation (3) becomes the weak dual

max y0,N (4a)

s.t. y0,N − πi,∅ −
∑
k∈N\i

πi,k −
∑

U⊆N\i
|U |≥n−t

λi,U ≤ c0i, ∀ i ∈ N (4b)

πi,∅ − πj,∅ + πi,j +
∑
k∈U

(πi,k − πj,k) +
∑

W⊆U∪j
|W |≥n−t

λi,W +
∑

W⊆N\(U∪{i,j})
|W |≥n−t

µi,W

−
∑
W⊆U
|W |≥n−t

λj,W −
∑

W⊆N\(U∪j)
|W |≥n−t

µj,W ≤ cij , ∀ i, j ∈ N, U ⊆ N \ {i, j}
(4c)

πi,∅ +
∑

U⊆N\i
|U |≥n−t

µi,U ≤ ci0, ∀ i ∈ N, (4d)

which we denote ALPt; let ztALP be its optimal value. The separation problem for ALPt requires
O(nt+2 +n3) arithmetic operations [28], and therefore ALPt is solvable in polynomial time for fixed
t. In addition, the following result relates the base bound ALP0 to Held-Karp.

Lemma 1 ([28]). zHK ≤ z0ALP.

To finish this subsection, we present the relaxed primal given by ALPt, since it will be useful
later on. The constraints of the primal can be considered in two classes, those associated with the
π variables (5b–5d), and those associated with the λ and µ variables (5e–5f). The primal is

min
∑
i∈N

(
c0ix0i +

∑
j∈N\i

∑
U⊆N\{i,j}

cijx
U
ij + ci0xi0

)
(5a)

s.t.
∑
i∈N

x0i = 1 (5b)

− x0i +
∑
j∈N\i

∑
U⊆N\{i,j}

(xUij − xUji) + xi0 = 0, (5c)

∀ i ∈ N

− x0i +
∑

U⊆N\{i,j}

xUij +
∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

(xU∪jik − xU∪jki) = 0 (5d)

∀ i, j ∈ N

4

− x0i +
∑
j∈N\i

∑
U⊆N\{i,j}
U∪j⊇W

xUij −
∑
j∈N\i

∑
U⊆N\{i,j}
U⊇W

xUji = 0 (5e)

∀i ∈ N,W ⊆ N \ i : |W | ≥ n− t

xi0 +
∑
j∈N\i

∑
U⊆N\{i,j}

N\(U∪{i,j})⊇W

xUij −
∑
j∈N\i

∑
U⊆N\{i,j}
N\(U∪i)⊇W

xUji = 0 (5f)

∀i ∈ N,W ⊆ N \ i : |W | ≥ n− t
x ≥ 0.

2.2 Branch-Cut-and-Price

In [17], a BCP algorithm was introduced for the CVRP, an NP-hard problem that generalizes the
TSP. The approach was computationally successful and has been extended and applied to other
closely related variants of the TSP, such as the TDTSP [1]. Here, we present the bounds in the
context of the TSP. The idea of the BCP formulation is to combine the traditional arc formulation
with a formulation involving an exponential number of variables. This is achieved by considering
the set Q of n-paths [22].

Definition 2. Given the graph G = (V = {0} ∪N,A), an n-path q of G is a sequence of vertices
vq(0), vq(1), ..., vq(n + 1) such that vq(0) = vq(n + 1) = 0, vq(i) ∈ N, ∀ i = 1, . . . , n and vq(i) 6=
vq(i+ 1),∀i = 1, . . . , n− 1.

Informally, an n-path is a directed walk with n+1 arcs that begins and ends at the depot 0, and
does not otherwise visit it. The BCP formulation connects n-paths with the standard arc-based
formulation (1) by introducing the coefficient dqij :

dqij :=

n+1∑
k=1

1{vq(k−1)=i,vq(k)=j} ∀ i, j ∈ V, q ∈ Q

In other words, dqij is the number of times an n-path q uses the arc (i, j). We can now write the
BCP formulation for the TSP as

min
∑
a∈A

caxa (6a)

s.t. xa =
∑
q∈Q

dqaξq ∀ a ∈ A (6b)

∑
a∈δ+(i)

xa =
∑

a∈δ−(i)

xa = 1 ∀i ∈ V (6c)

∑
a∈δ+(U)

xa ≥ 1 ∀ ∅ (U (N (6d)

0 ≤ ξq ≤ 1 ∀ q ∈ Q (6e)

x ∈ ZA+.

This formulation imposes the Held-Karp constraints plus the requirement that x must be written
as a combination of n-paths using the ξq variables. We call the resulting formulation BCP.

The pricing problem for the ξ variables can be solved in O(n3) time via DP, and thus the LP
relaxation can be solved in polynomial time as well. (Though the polyhedron has exponentially

5

many variables and constraints, it can be shown [19] that the projection to the x variables can
be separated over in polynomial time.) Moreover, instead of pure n-paths, one can strengthen the
formulation by considering only a subset of Q through cycle elimination. Since eliminating cycles
entirely from the n-paths is NP-Hard, one can instead use t-cycle-free n-paths, for fixed values of
t, where a walk is t-cycle-free if it contains no cycles of vertices in N of length t or less, including
2-cycles (directed walks of the form i − j − i). Formally, we say that an n-path q is t-cycle free if
the vertices {vq(k), vq(k + 1), ..., vq(k + t)} are all distinct for every 0 ≤ k ≤ n− t+ 1. The pricing
algorithm for t-cycle-free n-paths adds some extra states in the DP, but can be done in O(t · t!2 ·n3)
time, which is polynomial for fixed t [23]. We can thus replace the set Q of n-paths with the set Qt

of t-cycle-free n-paths in (6), for t ≥ 1, noting that Q1 = Q. We call the associated LP relaxation
the BCPt formulation, yielding the ztBCP lower bound for the TSP.

The definition of t-cycle-free n-paths still allows for the existence of one cycle of length t or less
involving the depot. This formulation was derived from the CVRP context, where such cycles are
actually allowed in feasible solutions; by allowing them, the pricing problem for the LP relaxation
of (6) becomes simpler.

3 On the strength of ALPt

The focus of this section is to show that the ALPt family of bounds starts with a bound that is
equal to zHK for t = 0 and ends with a bound that is equal to the convex hull for t = bn+1

2 c. We
start by showing that the ALP0 bound proposed in [28] is actually equal to the Held-Karp bound.

Theorem 3. zHK = z0ALP.

Proof. Consider the formulation for ALP0 given by (4) without λ or µ variables. For each ordered
triple i ∈ N , j ∈ N \ i, k ∈ N \ {i, j}, define an auxiliary variable ηkij ≥ 0. We can rewrite (4) as

max y0,N

s.t. y0,N − πi,∅ −
∑
k∈N\i

πi,k ≤ c0i, ∀ i ∈ N

πi,∅ − πj,∅ + πi,j +
∑

k∈N\{i,j}

ηkij ≤ cij , ∀ i, j ∈ N,

πi,∅ ≤ ci0, ∀ i ∈ N
πi,k − πj,k − ηkij ≤ 0,∀ i, j, k ∈ N
ηkij ≥ 0,∀ i, j, k ∈ N,

where at optimality we can take ηkij = max{0, πi,k − πj,k}. This formulation’s dual is equivalent to
the multi-commodity flow relaxation of the TSP originally proposed in [11]; when projected to the
space of xij variables, the multi-commodity flow relaxation’s feasible region is known to be (1)’s
polyhedron, see e.g. [26].

Theorem 3 confirms that the equivalence between the Held-Karp and ALP bounds is construc-
tive in the following sense: The proof of Lemma 1 [28] gives a construction whereby any feasible
solution of the Held-Karp dual formulation can be transformed into a feasible solution of (4) with
equal objective. The preceding proof shows that a feasible solution of the Held-Karp formulation
(1) has some transformation to a feasible solution of (4) with equal objective. But when solving

6

Held-Karp ALP

primal (1)
(7)←− (5)

m m
dual dual of (1)

[28]−→ (4)

Table 1: Summary of optimal solution transformations between Held-Karp and ALP formulations.

(4) to optimality, Theorem 3 ensures that the unique transformation in the reverse direction,∑
U⊆N\{i,j}

xUij = xij , (7)

also yields an optimal solution to the Held-Karp formulation (1). We can therefore solve the Held-
Karp bound to optimality and use its dual to obtain an optimal solution for the ALP, or solve the
ALP bound and use its dual (4) to obtain an optimal solution for Held-Karp. Table 1 summarizes
this discussion.

We also note that the equivalence between Held-Karp and the base ALP bound is striking
because the former uses quadratically many variables and exponentially many constraints in its
primal formulation, whereas the latter uses quadratically many variables and exponentially many
constraints in the dual space.

We end this section by focusing on the other end of the spectrum for the ALPt relaxation; that
is, the case when t = bn+1

2 c.

Theorem 4. For t = bn+1
2 c, ALPt is an exact formulation.

Proof. Replacing the value of t, we get the state representation

yi,U = πi,∅ +
∑
k∈U

πi,k +
∑
W⊆U
|W |≥n−1

2

λi,W +
∑

W⊆N\(U∪i)
|W |≥n−1

2

µi,W . (8)

We can consider this set of equations as

y = B

 π
λ
µ

 (9)

for some matrix B. If B has full row rank, then given any y that is feasible for the original dual
(3), there exists (π, λ, µ) that is feasible for (4) and satisfying (9), thus showing that the optimal
value of (4) is greater than or equal to the optimal value of (3), which gives us the desired result.
Thus, it suffices to show that B has full row rank.

For two vertices i and j, if i is not equal to j, they are represented by two disjoint sets of

7

variables, i.e. (9) can be rewritten as

y =

y0
y1
...
yn

 =

B0 0 0 . . . 0
0 B1 0 . . . 0
...
0 0 0 . . . Bn

π0
λ0
µ0
π1
λ1
µ1
...

πn
λn
µn

(10)

where yi, πi, λi, µi are the blocks of variables corresponding to vertex i. Thus, if all blocks in B
corresponding to the states for each vertex have full row rank, B itself has full row rank and the
result follows.

In matrix Bi, there is one row per variable yi,U , and thus one row for every subset U ⊆ N \ i.
Moreover, B has one column per variable λ and µ (we will not focus on the π variables here), that
is, for every W ⊆ N \ i such that |W | ≥ n−1

2 there is a column for λi,W and one for µi,W . Finally
note that variable λi,W appears in row yi,U if and only if W ⊆ U and variable µi,W appears in row
yi,U if and only if W ⊆ N \ (U ∪ i).

Suppose for the sake of contradiction that there is a state yi,U ′ that can be written as a linear
combinations of other states; i.e. suppose that

bi,U ′ =
∑

U ′ 6=W⊆(N\i)

αW bi,W (11)

for some i ∈ N , U ′ ⊆ N \ i with at least one αW nonzero, where bi,U is the row of the submatrix
Bi corresponding to variable yi,U . If |U ′| ≥ n−1

2 , the coefficient of λi,U ′ is one in bi,U ′ and thus
equation (11) holds only if there is a set W) U ′ such that αW 6= 0. Let W be the largest set such
that αW 6= 0 and W) U ′. However, the coefficient of λi,W in bi,W is 1, but it is 0 in bi,U ′ , requiring
yet another W ′)W such that αW ′ is nonzero, which contradicts the choice of W .

On the other hand, if |U ′| < n−1
2 , then |N \ (U ′ ∪ i)| > n−1

2 and the coefficient of µi,N\(U ′∪i)
must be one in bi,U ′ . This implies that αW is nonzero for some W (U ′, and the proof follows as
in the previous case.

4 Incomparability of BCP and ALP

Having established the behavior of the two extreme members of the ALP hierarchy, we next study
the hierarchy’s relationship to the BCP bound family. We start giving a series of examples where
BCP1 is strictly better than ALPt for any t < bn+1

2 c, which shows that BCPt+k can be much better
than ALPt. On the other hand, we show afterwards that there are also instances for which ALPt
can be better than BCPt+1 or even BCPt+k for larger values of k.

4.1 BCP1 can be strictly better than ALPt

We construct a family of instances where the bound obtained from BCP1 is strictly greater than
ALPt for t < bn+1

2 c. We start with an example for t = 0 based on the solution to the LP relaxation

8

of the Held-Karp formulation (1) given in Figure 1. The example shows a solution that can be
readily verified to be feasible for (1), with dashed arcs representing variables with value 1/2 and
solid arcs representing variables with value 1. If we let the costs of arcs (5, 2) and (1, 3) be 0, the
costs of all other drawn arcs be 1, and give all other arcs sufficiently large cost, the solution then
has value 5, which by Theorem 3 implies z0ALP ≤ 5. On the other hand, it can also be readily
verified that the only possible n-path that exclusively uses the arcs in Figure 1 is 0,4,5,3,1,2,0, with
a cost of 6. Therefore, the optimal solution to BCP1 must be equal to 6, which is strictly greater
than the optimal solution to ALP0.

0

1

2

3

4

5

Figure 1: An example showing the strict dominance of BCP1 to ALP0. Solid arcs have value 1 in
the Held-Karp solution, while dashed arcs have value 1

2 .

The previous example can be extended to show that BCP1 can strictly dominate ALPt. Consider
the instance presented in Figure 2. As in the previous example, we let the costs of arcs (2t+4, 2t+1)
and (2t+ 2, 2t+ 3) be 0, the costs of all other drawn arcs be 1, and give all other arcs sufficiently
large cost. The solution depicted has variables equal to 1 for solid arcs and 1/2 for dashed arcs and
has a cost of 2t + 5. It can also be readily verified that the only possible n-path that exclusively
uses the arcs in Figure 1 is 0, 1, . . . , t, 2t + 5, 2t + 4, . . . , t + 1, 0, with a cost of 2t + 6. Therefore,
the optimal solution to BCP1 (and hence to BCPt′ for any t′) must be equal to 2t+ 6.

0 1 2 . . . t− 1 t

2t

2t− 1

. . .

t+ 2

t+ 1

2t+ 1

2t+ 2 2t+ 3

2t+ 4

2t+ 5

Figure 2: An example showing the strict dominance of BCP1 to ALPt. Solid arcs have value 1 in
the solution, while dashed arcs have value 1

2 .

We also need to establish that the solution of Figure 2 is feasible for the ALPt formulation. For
that purpose, we can set the following variables in the ALPt formulation to match the depicted

9

solution, which implies that ztALP ≤ 2t+ 5:

x01 = 1

x
{i+2,...,2t+5}
i,i+1 = 1, ∀ i = 1, . . . , t− 1

x
{t+1,...,2t+4}
t,2t+5 = 1

x
{t+1,...,2t+3}
2t+5,2t+4 = 1

x
{t+1,...,2t+2}
2t+4,2t+3 = 1/2

x
{t+1,...,2t+1}
2t+3,2t+2 = 1

x
{t+1,...,2t}
2t+2,2t+1 = 1/2

x
{t+1,...,2t}
2t+4,2t+1 = 1/2

x
{t+1,...,2t}
2t+2,2t+3 = 1/2

x
{t+1,...,t+i−1}
t+i+1,t+i = 1, ∀ i = 1, . . . , t

xt+1,0 = 1.

It is not hard to verify then that the only constraints of (2) that are being violated by the solution
are the ones corresponding to the constraints (2d) for the following values of (i, U) and with the
corresponding violations (left-hand side minus right-hand side):

i) i = 2t+ 4, U = {t+ 1, . . . , 2t+ 3} (violation 0.5)

ii) i = 2t+ 4, U = {t+ 1, . . . , 2t+ 1} (violation -0.5)

iii) i = 2t+ 2, U = {t+ 1, . . . , 2t+ 1, 2t+ 3} (violation -0.5)

iv) i = 2t+ 2, U = {t+ 1, . . . , 2t+ 1} (violation 0.5) .

We next examine the constraints for (5). Constraint (5c) can be rewritten as

x0i −
∑
j∈N\i

x
N\{i,j}
ij −

∑
j∈N\i

∑
U(N\{i,j}

xUij +
∑
j∈N\i

∑
∅(U⊆N\{i,j}

xUji +
∑
j∈N\i

x∅ji − xi0 = 0

and equivalently as

x0i −
∑
j∈N\i

x
N\{i,j}
ij −

∑
∅(U(N\i

∑
j∈U

x
U\j
ij +

∑
∅(U(N\i

∑
j∈N\(U∪i)

xUji +
∑
j∈N\i

x∅ji − xi0 = 0,

which implies that constraint (5c) is the sum of constraint (2c), (2e) and all constraints (2d) for a
fixed i. Since the violations above offset each other for a fixed i, we have that (5c) is satisfied.

Similarly, constraint (5d) can be rewritten as

x0i−
∑
k∈N\i

x
N\{i,k}
ik +x

N\{i,j}
ij −

∑
k∈N\{i,j}

∑
U(N\{i,j,k}

xU∪jik −
∑

U⊆N\{i,j}

xUij+
∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

xU∪jki = 0,

and the result follows.
The above discussion proves the following result.

Proposition 5. There exist instances where z1BCP > ztALP for 0 ≤ t < bn+1
2 c.

10

4.2 ALPt can be strictly better than BCPt+k

First, we show a family of graphs for which BCP has a weak bound unless t is large, which will
give us the following theorem.

Theorem 6. Let C be a positive real number and n ≥ 5. There exists a graph with n vertices such
that the integrality gap is at least C for BCPt with t ≤ n− 3.

Proof. Let G(n,C) = Cn ∪ {(1, n− 2), (n− 1, 2)}, where Cn is a bi-directed cycle with n vertices
appearing in increasing order. Let all arc costs be 1, except for (n− 1, n− 2) and (1, 2), which cost
nC − n+ 1 (see Figure 3). We complete the instance setting remaining edge costs to a sufficiently
large number M > nC.

The optimal tour has cost nC, which can be derived as follows. First, note that the two directed
cycles in Cn give cost nC, so the optimal tour has cost at most nC. Therefore, the optimal tour
does not use any of the arcs with cost M . Since any feasible tour must enter and leave the depot,
the optimal tour must then use either the pair of arcs (n−1, 0) and (0, 1) or the pair of arcs (0, n−1)
and (1, 0).

Now if a feasible tour uses the arcs (n− 1, 0) and (0, 1), and does not use arcs of cost M , then
it must enter vertex n− 1 through arc (n− 2, n− 1). But then, it cannot use (1, n− 2), since that
creates a subtour (0, 1, n − 2, n − 1, 0). Thus, the only feasible tour that uses arcs (n − 1, 0) and
(0, 1) is one using one of the directed cycles in Cn. The case that uses arcs (1, 0) and (0, n− 1) is
symmetric and the argument is analogous.

To show the integrality gap, let q1 = (0, 1, n−2, n−3, . . . , 3, 2, 1, 0) and q2 = (0, n−1, 2, 3, . . . , n−
2, n − 1, 0) be two t-cycle-free n-paths (see Figure 4) and let x be a solution to (6) obtained by
setting ξq1 = ξq2 = 0.5.

We first check that x is actually feasible for (6). It is clear that x satisfies the degree constraints.
Now pick a set ∅ ⊂ U ⊆ N . Let supp(x) := {ij ∈ A : xij > 0}. Note that every arc in supp(x)
has value 0.5. Also note that the arcs in supp(x) are exactly the arcs appearing in either q1 or q2.
Denote that set of arcs by An. If we can show that G′ := (V,An) is 2-arc-connected, then we have
that x(δ+(U)) = 0.5|δ+(U) ∩An| ≥ 1, so subtour elimination is satisfied.

It is easy to argue that Cn is 2-arc-connected. So if δ+(U)∩An ⊇ δ+(U)∩Cn, then |δ+(U)∩An| ≥
2. But then, the only arcs that are in Cn, but not in An are (n − 1, n − 2) and (1, 2). Therefore,
for the inclusion above to be violated, we must have either

i) n− 1 ∈ U and n− 2 /∈ U , or

ii) 1 ∈ U and 2 /∈ U .

For (i), either U = {n − 1}, in which case (n − 1, 2) and (n − 1, 0) in δ+(U) ∩ An, or there exists
v /∈ {0, n − 1} such that v ∈ U . But then, there exists an arc in q1 that is in δ+(U) since there
exists a v−0 path in q1 and there exists an arc in q2 that is in δ+(U) since there exists a (n−1)−0
path in q2; so either way |δ+(U) ∩An| ≥ 2. The proof of (ii) is analogous.

Having established that x is feasible for (6), we note that the cost of that solution is n, which
implies that ztBCP ≤ n, which implies the integrality gap is at least C.

The previous example coupled with Theorem 4 implies a reverse result to Proposition 5. More
precisely, it cannot be the case that for a given fixed k ≥ 0, BCPt+k dominates ALPt for every t.

11

1

2

3 n− 3

n− 2

n− 1

0

· · ·

nC − n+ 1 nC − n+ 1

Figure 3: Generic construction for a graph with n vertices for which the BCPn−3 solution has
integrality gap at least C.

1

2

3 n− 3

n− 2

n− 1

0

· · ·

1

2

3 n− 3

n− 2

n− 1

0

· · ·

Figure 4: (n− 3)-cycle-free n-paths q1 and q2 that yield a solution to (6) of value n

5 Empirical comparison to BCP

Having established in Section 4 that no dominance relationship exists between the ALP and BCP
families of bounds, we compared the two empirically by evaluating the lower bounds obtained by
each formulation for increasing values of t in a few benchmark instances. This section presents
the description of these experiments as well as their results. All experiments were conducted in an
AMD server, with 48 cores of 2.3GHz and 256 GB of RAM. The model was generated using C++
and solved with CPLEX 12.6.

One of our main difficulties was finding instances for which the Held-Karp bound is not tight,
but the bounds ztBCP and ztALP could also be obtained in a reasonable amount of time. Due to

12

this problem, even though we have fully functional implementations, we were only able to test a
few instances.

The first set of instances were from TSPLIB. There are very few of these instances with n small
enough for which the formulations BCPt and ALPt can be tested with nontrivial values of t. From
the ones we were able to test, only bayg29 and bays29 had a non-optimal Held-Karp bound. The
instance rand25 was generated using CONCORDE, by selecting random Euclidean points to be
vertices and rounding the pairwise distances to the nearest integer. Finally, instance f6 is composed
of two triangles and a matching between them (6 vertices and 18 arcs), using shortest path distances
between non-adjacent vertices. Table 2 shows the bounds for our first set of instances.

Since other TSPLIB instances took too long to solve, we performed the following experiment.
We generated instances for a specific value of n by uniformly sampling n points from a 100 by 100
grid and rounding distances to the nearest integer, until we found one where the Held-Karp bound
and the optimal value were different. These are the instances used to create Table 3. This was
similar to the process used to generate rand25, but we used a smaller number of vertices since we
wanted to test for larger values of t. The table is missing entries corresponding to bounds we were
not able to compute.

Instance Formulation

Optimal Held-Karp
ALP BCP

t = 0 t = 1 t = 2 t = 1 t = 2 t = 3

bayg29 1610.00 1608.00 1608.00 1608.00 1608.00 1608.00 1610.00 1610.00
bays29 2020.00 2013.50 2013.50 2013.50 2013.50 2013.50 2019.64 2020.00
f6 8.00 6.00 6.00 6.67 8.00 6.00 8.00 8.00

rand25 1071.00 1062.50 1062.50 1062.50 1062.50 1062.5.0 1064.50 1067.6667

Table 2: Bounds given by Held-Karp, ALP and BCP formulations for small t

vertices Optimal Value Formulation Bound

t=0 t=1 t=2 t=3 t=4 t=5

12 36
ALPt 35.50 35.50 35.50 35.57 36.00 36.00

BCPt+1 35.50 36.00 36.00 36.00 36.00 36.00

13 44
ALPt 43.50 43.50 43.50 43.50 43.50 44.00

BCPt+1 43.50 44.00 44.00 44.00 44.00 44.00

14 52
ALPt 51.50 51.50 51.50 51.50 51.50 51.50

BCPt+1 51.50 51.50 51.50 51.50 51.50 51.50

15 49
ALPt 48.50 48.50 48.50 48.50 48.58 -

BCPt+1 48.50 49.00 49.00 49.00 49.00 49.00

16 48
ALPt 47.50 47.50 47.50 47.50 47.50 -

BCPt+1 47.50 47.83 48.00 48.00 48.00 48.00

17 65
ALPt 64.50 64.50 64.50 64.50 64.50 -

BCPt+1 64.50 65.00 65.00 65.00 65.00 65.00

Table 3: Bounds for ALP and BCP, and optimal values for random Euclidean instances as a function
of number of vertices

Notice that we compare ALPt and BCPt+1 (rather than comparing ALPt with BCPt) because
the BCPt bound keeps track of the last t − 1 vertices visited, i.e. sets U such that |U | ≤ t − 1.

13

Similarly, ALPt takes into account sets U such that |U | ≤ t. In addition, ALPt is defined starting
with t = 0, while BCPt is defined starting with t = 1.

The results show that BCPt+1 is always at least as good as ALPt, but the bounds’ difference is
quite small – around 1% in a few cases and usually smaller or zero. The one exception is f6, where
in one of three cases the difference is larger. (This instance’s pathological behavior is well studied,
as it is used to construct an instance collection giving the worst known gap for Held-Karp.) The
two bounds’ closeness, coupled with BCP’s empirical success in models related to the TSP, suggest
that ALP may be useful to empirically bound the TSP and other routing models. However, it
is worth remarking that the nature of the experiments limited our choice of instance to smaller
problems, and the bound families’ behavior may be different when the number of vertices grows
larger.

6 Conclusions

In this work, we studied the strength of a new ALP family of relaxations for the TSP. We have
shown that ALP0 is equivalent to the Held-Karp bound, a question which was left open in [28].
We also showed that ALPb(n+1)/2c is tight. We also showed that the ALP and BCP families are
incomparable, i.e. neither family can dominate the other in terms of bound strength. Our empirical
results show that each tested ALP bound is comparable to its BCP counterpart, though sometimes
the ALP bound is slightly lower.

Our study suggests possible improved results or modifications for either family. For instance,
it may be possible to prove a more strict relationship between the ALP and BCP families in some
special cases. Specifically, the counterexamples from Section 4 have asymmetric costs. If we assume
the instances have symmetric costs (which is indeed the case in the tested instances), it may be
possible to establish dominance.

An interesting potential direction is to consider combining the ALP and BCP bounds. One way
would be to provide an enhanced ALP approximation that can match the BCP bounds. Another
would be to somehow include the n-path restriction directly into the ALP relaxed primal, which
would involve two kinds of column generation procedures working in tandem. In either case,
progress along these lines could suggest new efficient bounds for the TSP as well as related routing
problems where BCP has seen success.

References

[1] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa. The Time Dependent Traveling Salesman
Problem: Polyhedra and Algorithm. Mathematical Programming Computation, 5:27–55, 2013.

[2] D. Adelman. Price-Directed Replenishment of Subsets: Methodology and its Application to
Inventory Routing. Manufacturing and Service Operations Management, 5:348–371, 2003.

[3] D. Adelman. A Price-Directed Approach to Stochastic Inventory/Routing. Operations Re-
search, 52:499–514, 2004.

[4] D. Adelman. Dynamic Bid Prices in Revenue Management. Operations Research, 55:647–661,
2007.

[5] D. Adelman and C. Barz. A Unifying Approximate Dynamic Programming Model for the
Economic Lot Scheduling Problem. Mathematics of Operations Research, 39:374–402, 2014.

14

[6] D. Adelman and D. Klabjan. Duality and Existence of Optimal Policies in Generalized Joint
Replenishment. Mathematics of Operations Research, 30:28–50, 2005.

[7] D. Adelman and D. Klabjan. Computing Near-Optimal Policies in Generalized Joint Replen-
ishment. INFORMS Journal on Computing, 24:148–164, 2011.

[8] D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press, Princeton, New Jersey, 2006.

[9] R. Bellman. Dynamic Programming Treatment of the Travelling Salesman Problem. Journal
of the Association for Computing Machinery, 9:61–63, 1962.

[10] D. Blado, W. Hu, and A. Toriello. Semi-Infinite Relaxations for the Dynamic Knapsack
Problem with Stochastic Item Sizes. SIAM Journal on Optimization, 2016. Forthcoming.

[11] A. Claus. A New Formulation for the Travelling Salesman Problem. SIAM Journal on Algebraic
Discrete Methods, 5:21–25, 1984.

[12] G. Dantzig, D. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem.
Journal of the Operations Research Society of America, 2:393–410, 1954.

[13] D.P. de Farias and B. van Roy. The Linear Programming Approach to Approximate Dynamic
Programming. Operations Research, 51:850–865, 2003.

[14] D.P. de Farias and B. van Roy. On Constraint Sampling in the Linear Programming Approach
to Approximate Dynamic Programming. Mathematics of Operations Research, 29:462–478,
2004.

[15] V.V. Desai, V.F. Farias, and C.C. Moallemi. Approximate Dynamic Programming via a
Smoothed Linear Program. Operations Research, 60:655–674, 2012.

[16] V.F. Farias, D. Sauré, and G.Y. Weintraub. An Approximate Dynamic Programming Approach
to Solving Dynamic Oligopoly Models. RAND Journal of Economics, 43:253–282, 2012.

[17] R. Fukasawa, H. Longo, J. Lysgaard, M. de Aragão, M. Reis, E. Uchoa, and R. Werneck.
Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical
Programming, 106:491–511, 2006.

[18] R.H. Gonzales. Solution to the traveling salesman problem by dynamic programming on
the hypercube. Technical Report 18, Operations Research Center, Massachusetts Institute of
Technology, 1962.

[19] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer-Verlag, Berlin, second corrected edition, 1993.

[20] M. Held and R.M. Karp. A Dynamic Programming Approach to Sequencing Problems. Journal
of the Society of Industrial and Applied Mathematics, 10:196–210, 1962.

[21] M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning trees. Op-
erations Research, 18:1138–1162, 1970.

[22] D. Houck, J.C. Picard, M. Queyranne, and R.R. Vemuganti. The Traveling Salesman Problem
and Shortest n-paths. Technical report, University of Maryland, 1977.

15

[23] S. Irnich and D. Villeneuve. The shortest-path problem with resource constraints and k-cycle
elimination for k ≥ 3. INFORMS Journal on Computing, 18:391–406, 2006.

[24] D. Klabjan and D. Adelman. An Infinite-Dimensional Linear Programming Algorithm for
Deterministic Semi-Markov Decision Processes on Borel Spaces. Mathematics of Operations
Research, 32:528–550, 2007.

[25] S. Nadarajah, F. Margot, and N. Secomandi. Relaxations of approximate linear programs for
the real option management of commodity storage. Management Science, 2014. Forthcoming.

[26] M. Padberg and T.-Y. Sung. An analytical comparison of different formulations of the travelling
salesman problem. Mathematical Programming, 52:315–357, 1991.

[27] P.J. Schweitzer and A. Seidmann. Generalized Polynomial Approximations in Markovian
Decision Processes. Journal of Mathematical Analysis and Applications, 110:568–582, 1985.

[28] A. Toriello. Optimal Toll Design: A Lower Bound Framework for the Asymmetric Traveling
Salesman Problem. Mathematical Programming, 144:247–264, 2014.

[29] A. Toriello, W.B. Haskell, and M. Poremba. A Dynamic Traveling Salesman Problem with
Stochastic Arc Costs. Operations Research, 62:1107–1125, 2014.

[30] M.A. Trick and S.E. Zin. A Linear Programming Approach to Solving Stochastic Dynamic
Programs. Unpublished manuscript available online at http://mat.gsia.cmu.edu/trick/,
1993.

[31] M.A. Trick and S.E. Zin. Spline Approximations to Value Functions: A Linear Programming
Approach. Macroeconomic Dynamics, 1:255–277, 1997.

16

