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Abstract

We consider the natural generalizations of packing and covering polyhedra in infinite dimen-
sions, and study issues related to duality and integrality of extreme points for these sets. Using
appropriate finite truncations we give conditions under which complementary slackness holds for
primal/dual pairs of the infinite linear programming problems associated with infinite packing
and covering polyhedra. We also give conditions under which the extreme points are integral.
We illustrate an application of our results on an infinite-horizon lot-sizing problem.

1 Introduction

Packing and covering polyhedra have been useful tools in optimization to model a wide variety of
decision problems involving resource allocation or demand satisfaction. This has certainly been the
case in combinatorial optimization, where many fundamental results involve packing and covering
polyhedra, particularly in the study of primal/dual pairs of such polyhedra and the integrality
of their extreme points. One salient example is König’s Theorem, which establishes the duality
relationship between the matching and vertex cover polyhedra of a bipartite graph, two polyhedra
known to have integral extreme points.

In the decades since, packing and covering polyhedra have been routinely applied in finite-
dimensional combinatorial optimization. For example, Fulkerson, who called them anti-blocking
and blocking polyhedra respectively [15, 16, 17], used them to derive polarity relations in various
combinatorial settings and applied them to several fundamental problems in graph theory and
discrete optimization, e.g. the study of perfect graphs and the derivation or re-derivation of duality
results such as the max-flow min-cut theorem.

In this paper we study the generalization of packing and covering polyhedra to problems in
infinite dimensions. We first consider strong duality results for the infinite linear programming
problems (LP) associated with such polyhedra. Unfortunately, the LPs associated with packing
and covering polyhedra often have objective functions that are infinite-valued over some or all of
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the feasible region. An example where such infinite-valued objective functions naturally appear
is infinite-horizon planning problems. A complication that arises from infinite objective values is
that some solutions attaining an infinite objective value may be more desirable than others but the
objective value does not distinguish this. A common approach to resolve this is to introduce discount
factors or running averages to force the objective function to be finite-valued and allow meaningful
comparison between solutions. However, these approaches introduce strong biases towards earlier
or later periods, respectively, which may be undesirable in some situations. To overcome this issue,
we consider a notion of optimality that allows for the comparison of solutions with infinite objective
values. This notion extends an idea from combinatorial optimization in infinite graphs and utilizes
the complementary slackness condition from strong duality to characterize optimality.

In order to implement this idea of using complementary slackness as a notion of optimality, we
introduce a primal/dual pairing between infinite packing and covering linear programs that is easy
to construct formally, without using algebraic or topological duality. In general, this is only helpful
if the proposed pairing is indeed a primal/dual pair in some standard sense. A contribution of our
paper is to show that for the case of packing/covering linear programs, complementary slackness
makes sense for our proposed primal/dual pairing. Specifically, one can define optimality by means
of complementary slackness of a pair of solutions and show that such a pair of solutions exists under
reasonable assumptions (Theorem 11). As an application of these tools, we derive properties for the
optimal policies of an infinite horizon lot-sizing problem with an undiscounted and infinite-valued
objective function.

Our strong duality results are limited to infinite packing and covering polyhedra defined by
linear constraints with only a finite number of non-zero coefficients. Extending this result to more
general packing and covering polyhedra will likely require more advanced techniques; one possibility
is to apply discrete techniques from infinite graph theory. For this reason we consider the integrality
of extreme points in infinite packing and covering polyhedra as a first step towards extending these
results.

The remainder of this paper is organized as follows. In Section 2 we introduce notation and
definitions, and review some previous work. In Section 3 we show the strong duality result, while
in Section 4 we show an application of this result to an infinite horizon lot-sizing problem. Finally,
in Section 5 we give the result on integrality of extreme points.

2 Definitions and Previous Work

For arbitrary sets W and L, we let WL denote all functions from L to W. This set can also be
thought as tuples of elements in W indexed by L or as the Cartesian product

∏
`∈LW. Some of

the proof techniques will employ the product topology of WL, where convergence is characterized
by coordinate-wise convergence. This convergence is also known as point-wise convergence. If W
is a compact topological space, then WL is compact when endowed with the product topology by
Tychonoff’s theorem. We also need the following partial converse to the Krein-Milman theorem:

Theorem 1 (Milman, quoted from [14]). If K is a compact convex subset of a locally convex space
and if A ⊆ K is such that K is equal to the closure of the convex hull of A, then the extreme points
of K are contained in the closure of A.

We also need an appropriate definition of infinite and possibly uncountable sums. Fortunately,
because we will only consider sums of non-negative numbers we can use the following straightforward
definition.
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Definition 2. Let I be an arbitrary and possibly uncountable index set and let a ∈ RI+. We let∑
i∈I ai := supS :S⊆I, |S|<∞

∑
i∈S ai.

We can now introduce packing and covering pairs of LPs through the following definition.

Definition 3 (Packing-Covering Pair). Let I, J be arbitrary and possibly uncountable index
sets, A := (aij)i∈I,j∈J ∈ RI×J+ be a possibly doubly infinite and non-negative “matrix”, and c :=
(cj)j∈J ∈ RJ+ and b := (bi)i∈I ∈ RI+ be non-negative and possibly infinite “vectors”. We consider
the packing-covering pair of LPs given by

(P ) z∗ = inf
∑
j∈J

cjxj (1a)

s.t.
∑
j∈J

aijxj ≥ bi ∀ i ∈ I (1b)

xj ≥ 0 ∀ j ∈ J (1c)

and

(D) w∗ = sup
∑
i∈I

biyi (2a)

s.t.
∑
i∈I

aijyi ≤ cj ∀ j ∈ J (2b)

yi ≥ 0 ∀ i ∈ I. (2c)

The covering polyhedron defined by A and b is the feasible region of (P ) given by P↑(A, b) :={
x ∈ RJ : (1b)–(1c)

}
and the packing polyhedron defined by A and c is the feasible region of (D)

given by P↓(A, c) :=
{
y ∈ RI : (2b)–(2c)

}
. When A, b and c are clear from the context, we use

the notation P↑ and P↓.

If I and J are finite, this pair of problems reduces to a traditional finite packing-covering pair.
In addition, special infinite versions of this problem have been studied by several authors. [13]
studies the extreme points of the packing polyhedron associated with the stable sets of an infinite
perfect graph, and [19] does the same for the packing polyhedron associated with matchings and
b-matchings of a bipartite infinite graph. In a series of papers, Aharoni and his co-authors study
duality for several problems in infinite graphs and hypergraphs, including integer and fractional
matching [3, 5, 8, 10, 9], connectivity [4, 7] and flows [6]. Another stream of related work is a series
of papers by Romeijn, Smith and their co-authors. These papers study extreme points [12, 18]
and duality [22, 23] for problems with more general structure, but only with countably infinite I
and J ; i.e. for the case in which both P↑ and P↓ are contained in RN =

∏∞
i=1R. When applied to

countably infinite packing-covering pairs the results in [12] imply that the extreme points of the
finite projections of P↓ converge in the product topology of RN to the closure of the extreme points
of P↓ and hence, if the extreme points of the finite projections are all integral, then the extreme
points of P↓ are also integral. The results in [22, 23] imply that, under some technical conditions,
strong duality holds for (P)/(D) for countable I, J .

While the previous papers are the most related to our results, infinite LP has been widely stud-
ied; we refer the reader to [11] for a longer treatment. In particular, many authors consider strong
duality results for primal/dual pairs of infinite LPs in uncountable dimensions using topological
or measure-theoretic techniques. An example of such a result and its application in operations
research can be found in [1, 2, 20, 21]. However, our formulation is more naturally an extension
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of existing research for the countable case, because our dual constructions do not rely on linear
functionals (and thus are not duals in the classical sense) and because we explicitly allow objectives
and constraints to evaluate to infinity.

3 LP Duality

The following straightforward lemma shows that weak duality holds for (P)/(D).

Lemma 4 (Weak Duality). w∗ ≤ z∗

Proof. Let x̄ and ȳ be feasible for (P) and (D) and let I+ = {i ∈ I : ȳi > 0}. Then∑
j∈J

cj x̄j ≥
∑
j∈J

x̄j
∑
i∈I

aij ȳi =
∑
j∈J

x̄j
∑
i∈I+

aij ȳi =
∑
j∈J

∑
i∈I+

aij ȳix̄j

=
∑
i∈I+

∑
j∈J

aij ȳix̄j =
∑
i∈I+

ȳi
∑
j∈J

aij x̄j ≥
∑
i∈I+

biȳi =
∑
i∈I

biȳi.

The first inequality holds by (2b), non-negativity of x̄ and the definition of
∑

j∈J . The first

equality is by the definition of I+ and the second equality holds by the definition of
∑

i∈I+ . The
third equality holds because of non-negativity of aij , x̄ and ȳ, and by the definitions of

∑
i∈I+ and∑

j∈J . The fourth equality holds by the definition of
∑

j∈J and the second inequality holds by

(1b). The last equality is by the definition of I+.

While it is possible to show strong duality under certain settings, e.g. [8, 22, 23], there are many
cases in which the objective values of every reasonable feasible solution for (P) and (D) are infinite.
A common alternative for these cases is to study the existence of primal/dual solutions that satisfy
the following definition of complementary slackness [3, 5, 8, 9, 10].

Definition 5 (Complementary Slackness and Optimality). Feasible solutions x ∈ P↑ and y ∈ P↓
satisfy complementary slackness if

∀j ∈ J
∑
i∈I

aijyi = cj or xj = 0

∀i ∈ I
∑
j∈J

aijxj = bi or yi = 0.
(3)

We say the primal/dual pair (x, y) ∈ RJ × RI is CS Optimal if and only if x ∈ P↑, y ∈ P↓ and
(x, y) satisfies (3). We say x ∈ RJ is CS Optimal if and only if there exists y ∈ RI such that (x, y)
is CS Optimal, and vice versa for y ∈ RI .

The following straightforward lemma shows that CS Optimal solutions have the smallest possible
objective values and their existence implies strong duality.

Lemma 6 (Strong Duality from CS Optimality). If the primal/dual pair (x̄, ȳ) ∈ RJ × RI is
CS Optimal, then

∑
j∈J cj x̄j =

∑
i∈I biȳi. If there exists a CS Optimal solution x̄ ∈ RJ , then

w∗ = z∗ =
∑

j∈J cj x̄j.

Proof. Directly from the fact that conditions (3) imply equality for the inequalities in the proof of
Lemma 4.
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Lemma 6 shows that a CS optimal solution has the best possible objective value. In particular,
if z∗ < ∞, then a CS optimal solution is optimal in the traditional sense. Furthermore, as the
following example shows, if z∗ = ∞, CS optimality provides some measure of optimality among
solutions with an infinite objective value. However, the example also shows that this measure is
not perfect.

Example 7. Consider the packing-covering LP pair given by

z∗ = inf
∑
j∈N

xj w∗ = sup
∑
i∈N

yi,i+1

s.t. xi + xi+1 ≥ 1, ∀ i ∈ N s.t. yj,j+1 + yj+1,j+2 ≤ 1, j ∈ N
xj ≥ 0, ∀ j ∈ N y12 ≤ 1

yi,i+1 ≥ 0, i ∈ N,

which corresponds to a minimum vertex cover and maximum matching in a bipartite graph with
one vertex of degree one and all other vertices of degree two, a one-sided infinite path. The two
sides of the bipartition contain odd and even vertices respectively, with edges between consecutively
numbered nodes. Consider the solutions x̄1, x̄2, ȳ1 and ȳ2 given by

x̄12j = 1 for j ∈ N and x̄12j−1 = 0 for j ∈ N,
x̄21 = x̄22j = 1 for j ∈ N and x̄22j+1 = 0 for j ∈ N,
ȳ12i−1,2i = 1 for i ∈ N and ȳ12i,2i+1 = 0 for i ∈ N,
ȳ22i−1,2i = 0 for i ∈ N and ȳ12i,2i+1 = 1 for i ∈ N.

Even though the objective values of all solutions are infinite, x̄1 is intuitively “better” than x̄2,
since x̄2 contains all nodes from x̄1. Furthermore, x̄1 is CS optimal (either ȳ1 or ȳ2 satisfy (3) with
it), while x̄2 is not, because x1 = 1 implies y12 = 1, which in turn implies x1 + x2 = 1.

Conversely, ȳ1 matches all nodes while ȳ2 leaves node 1 unmatched, and thus ȳ1 is intuitively
“better”. However, both solutions are CS optimal, as both satisfy (3) with x̄1. CS optimality
can distinguish x̄1 being qualitatively better than x̄2, but cannot distinguish ȳ1 being qualitatively
better than ȳ2.

For the countably infinite case, [22, 23] show that the limits of solutions that satisfy comple-
mentary slackness for certain finite truncations of (P)/(D) also satisfy complementary slackness for
(P)/(D). A similar technique is used in [8] to show that complementary solutions exist for certain
fractional matching/covering pairs in hypergraphs, even in the uncountable setting. This proof
directly extends to packing-covering problems so we use it to show that complementary solutions
for (P)/(D) exist under the following conditions.

Assumption 1. The following conditions hold:

i) Row Finiteness: For all i ∈ I,
∣∣{j ∈ J : aij > 0}

∣∣ <∞.

ii) Column Finiteness: For all j ∈ J ,
∣∣{i ∈ I : aij > 0}

∣∣ <∞.

The appropriate finite truncations of (P)/(D) and (x, y) for packing-covering problems are given
in the following definitions.
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Definition 8. Let U ⊆ J be such that |U | <∞ and I(U) = {i ∈ I : ai,j = 0 ∀j ∈ J \ U} . We
define the finite truncation of P associated with U as

(P (U)) w∗ = inf
∑
j∈U

cjxj (4a)

s.t.
∑
j∈U

aijxj ≥ bi ∀ i ∈ I(U) (4b)

xj ≥ 0 ∀ j ∈ U (4c)

and its feasible region as P↑(A, b, U) :=
{
x ∈ RU : (4b)–(4c)

}
. Similarly, we define the truncation

of D associated with U as

(D(U)) z∗ = sup
∑
i∈I(U)

biyi (5a)

s.t.
∑
i∈I(U)

aijyi ≤ ci ∀ j ∈ U (5b)

yi ≥ 0 ∀ i ∈ I(U) (5c)

and its feasible region as P↓(A, c, U) :=
{
y ∈ RI(U) : (5b)–(5c)

}
. Again, when A, b and c are clear

from context, we use the abbreviated notations P↑(U) and P↓(U).

Definition 9. For given vectors x ∈ RJ and y ∈ RI and sets U ⊆ J and V ⊆ I we let xU := (xj)j∈U
and yV := (yi)i∈V . We then refer to xU and yV as truncations of x and y.

An optimal primal dual pair for (P(U))/(D(U)) satisfies the natural finite version of CS op-
timality from Definition 5, which is given by the traditional complementary slackness conditions
from finite LP. Then, it is natural to hope for the following result regarding finite truncations:

1) Infinite primal/dual pair (x, y) ∈ RJ × RI is CS Optimal for (P)/(D) if and only if finite
truncations

(
xU , yI(U)

)
∈ RU × RI(U) are optimal for (P(U))/(D(U)) for all finite U ⊆ J .

2) If, for each finite U ⊆ J there exists
(
x̄U , ȳU

)
∈ RU ×RI(U) that are optimal for (P(U))/(D(U)),

then there exists (x, y) ∈ RJ × RI that is CS Optimal for (P)/(D).

The first condition simply aims to give a series of finite conditions (optimality for (P(U))/(D(U)))
for fixed infinite solution (x, y) ∈ RJ × RI . The second condition goes one step further and aims
to show existence of an infinite solution (x, y) ∈ RJ × RI based on the existence of a sequence of
finite solutions

(
x̄U , ȳU

)
∈ RU ×RI(U). This last step is significantly more ambitious as it does not

require any coordination between the finite solutions. For instance, if finite U1, U2 ⊆ J are such
that U1 ∩ U2 6= ∅ the finite conditions do not require x̄U1

j = x̄U2
j for j ∈ U1 ∩ U2. Hence, it is not

clear that the finite solutions can be combined to construct the infinite solution. Fortunately, under
some compactness assumptions, we can extend Theorem 3.4 of [8] to show that the finite solutions
can indeed be combined together into an infinite solution. However, this combination leads to a
series of optimality conditions that are only nearly- or pseudo-finite. We begin by proving this
modified version of the first result we hoped to achieve and then show the second result.

Proposition 10 (Pseudo-Finite Optimality). Under Assumption 1 the following conditions are
equivalent:

i) (x, y) is CS optimal.
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ii) For every finite U ⊆ J we have

xU ∈ P↑(U) (6a)

yI(U) ∈ P↓(U) (6b)

∀j ∈ U
∑
i∈I

aijyi = cj or xj = 0 (6c)

∀i ∈ I(U)
∑
j∈U

aijxj = bi or yi = 0. (6d)

iii) For every finite U ⊆ J we have

xU ∈ P↑(U) (7a)

yI(U) ∈ P↓(U) (7b)

∀j ∈ U
∑
i∈I(U)

aijyi = c′j or xj = 0 (7c)

∀i ∈ I(U)
∑
j∈U

aijxj = bi or yi = 0. (7d)

where c′i = ci −
∑

i∈I\I(U) aijyi.

Proof. We only prove the equivalence between i) and ii) as the equivalence between ii) and iii) is
straightforward.

To see that x ∈ P↑ is equivalent to xU ∈ P↑(U) for all finite U ⊆ J first note that by the
definition of I(U) we have

∑
j∈U aijxj =

∑
j∈J aijxj for all i ∈ I(U). Hence x satisfies the inequality

of P↑ indexed by i ∈ I(U) if and only if xU satisfies the corresponding inequality of P↑(U). The
equivalence then follows by noting that the row finiteness assumption implies that for all i ∈ I
there exist a finite U ⊆ J such that i ∈ I(U). Similarly, by column finiteness and non-negativity
of the aij we have that y ∈ P↓ is equivalent to yI(U) ∈ P↓(U) for all finite U .

Finally, the equivalence of the first complementary slackness condition is direct and the second
one follows by again noting that

∑
j∈U aijxj =

∑
j∈J aijxj for all i ∈ I(U).

The pseudo-finite optimality conditions are very close to complementary slackness conditions
for the finite truncations (P (U))/(D(U)). Indeed, if we replace c′ by c in condition (7) we pre-
cisely obtain the optimality conditions of the truncation (P (U))/(D(U)). However, even if this
replacement were valid or inconsequential, Proposition 10 does not yield a way to prove existence
of an infinte CS optimal primal/dual pair from the existence of finite optimal primal/dual pairs:
it only shows that a fixed infinite primal/dual pair satisfies CS optimality if and only if its finite
truncations are optimal for a modification of the finite truncations. To show that the finite pairs
can indeed be combined into an infinite pair we need the following assumption, guaranteeing certain
compactness requirements in the proof.

Assumption 2. We assume supi∈I:aij>0 {bi/aij} <∞ for all j ∈ J and
supj∈J :aij>0 {cj/aij} <∞ for all i ∈ I.

Under this assumption, we can extend Theorem 3.4 of [8] to show that existence of optimal
primal/dual pairs for (P (U))/(D(U)) for every finite U do indeed imply the existence of at least
one infinite CS optimal pair. Furthermore, certain properties of the finite pairs are guaranteed to be
inherited by this infinite pair. To describe such properties we consider sets F,G ⊆ R representing a
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restriction on the domain of the solutions. For example, F = G = Z represents the constraint that
solutions are integral. Using this we can show that, if all truncations (P (U))/(D(U)) have optimal
pairs taking values in F,G, then (P )/(D) has a CS Optimal primal/dual pair that also takes values
in F,G.

Theorem 11. Let F,G ⊆ R be closed subsets such that 0 ∈ F,G. Suppose for any U ⊆ J with
|U | <∞ there exist xU ∈ FU ∩ P↑(U) and yU ∈ GI(U) ∩ P↓(U) such that

∀j ∈ U
∑
i∈I(U)

aijy
U
i = cj or xUj = 0 (8a)

∀i ∈ I(U)
∑
j∈U

aijx
U
j = bi or yUi = 0, (8b)

where the superscript indicates the solutions’ dependence on the set U . Then, under Assumptions
1 and 2, there exists a primal dual pair (x, y) ∈ F J ∩ P↑ × GI ∩ P↓ of CS optimal solutions for
(P )/(D).

Proof. We follow and extend the proof of a similar result in [8] for fractional matchings in infinite
graphs and hypergraphs. Let gj := supi∈I:aij>0 {bi/aij}, hi := supj∈J :aij>0 {cj/aij}, and let X :=∏
j∈J [0, gj ], Y :=

∏
i∈I [0, hi]. By Assumption 2 and Tychonoff’s Theorem, X × Y is compact.

Furthermore, P↓ ⊆ Y and every xU ∈ FU ∩ P↑(U) satisfying (8) is contained in
∏
j∈U [0, gj ]

(because such xU is optimal for P (U)).
Now, for any finite U ⊆ J , let

C(U) =

{
(x, y) ∈ X × Y :

xU ∈ P↑(U), y ∈ P↓,
(x, y) ∈ F J ×GI , (x, y) satisfies (3)

}

By the assumptions, C(U) is closed. To see that it is non-empty take x ∈ FU ∩ P↑(U) and
y ∈ GI(U) ∩P↓(U) satisfying (8) and extend them to X × Y by appending zeros. Family C(U) has
the finite intersection property because for any finite subfamily (Ui)i we have C (

⋃
i Ui) ⊆

⋂
iC(Ui).

Then, by compactness we have that
⋂
U⊆I : |U |<∞C(U) 6= ∅. To obtain the desired result it just

remains to prove that if x ∈ F J is such that xU ∈ P↑(U) for all U ⊆ I with |U | <∞, then x ∈ P↑.
This follows by row finiteness (condition (i) of Assumption 1), by noting that each constraint of
P↑ is a constraint of P↑(U) for a sufficiently large but finite U ⊆ I.

4 Application to Lot Sizing

We next discuss our results’ application to an infinite-horizon version of the single-item lot-sizing
problem [22]. For this we assume there is an infinite sequence of demands bt > 0 for t ∈ N that must
be met either with product produced in the same period or with product held over in inventory
from previous periods; backlogging is not allowed. The assumption that demand is positive is made
for ease of exposition and can be relaxed. There are time-dependent unit production and holding
costs, ct > 0 and ht > 0 respectively. Instead of the traditional inventory balance formulation, we
employ assignment variables xst that indicate how much of period t’s demand is produced in period
s ≤ t; these variables have a composite unit cost of cst = cs +

∑t−1
τ=s hτ . This naturally leads to the
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formulation

inf
∞∑
s=1

∞∑
t=s

cstxst (9a)

s.t.
t∑

s=1

xst ≥ bt, t ∈ N (9b)

xst ≥ 0 s = 1, . . . t, t ∈ N (9c)

The model clearly satisfies Assumptions 1 and 2, and the dual is

sup
∞∑
t=1

btyt

s.t. yt ≤ cst, s = 1, . . . , t, t ∈ N
yt ≥ 0, t ∈ N

Applying Theorem 11 and our definition of CS optimality, we can derive the following conclusions.
Let x∗ and y∗ be CS optimal; since bt > 0, some x∗st must be positive, and therefore

y∗t = min
s≤t

cst t ∈ N (10a)

x∗st > 0⇒ y∗t = cst s = 1, . . . , t t ∈ N (10b)

That is, production to meet demand in period t should only occur in the period(s) s ≤ t that
affords the cheapest overall unit cost. Since ct > 0, (10a) in turn implies y∗t > 0 and hence

t∑
s=1

x∗st = bt t ∈ N; (10c)

i.e. each period’s demand is met exactly. Finally, a simple calculation shows

cst = min
σ≤t

cσt ⇒ csτ = min
σ≤τ

cστ , τ = s, . . . , t, (10d)

and therefore if it is optimal to produce in period s for period t, it is also optimal to produce in s
for all intervening periods. This reasoning gives the following result, an extension of [22, Theorem
5.1] for the case when (9) does not necessarily have a finite optimal value.

Theorem 12. For problem (9), we can choose a CS optimal production plan x∗ with a production
epoch or regeneration interval structure:

x∗st > 0⇒ x∗sτ = bτ , x
∗
στ = 0, σ ∈ {1, . . . , τ} \ {s}, τ = s, . . . , t. (11)

5 Extreme Point Structure

The topological techniques used in Section 3 are strongly dependent on the finite row/column
conditions of Assumption 1. While duality results have been proven in the context of infinite
graphs [3, 5, 8, 10] without these assumptions, the proofs require more elaborate techniques that
are usually connected to the discrete structure of these problems. This suggests that extending
duality results in the absence of Assumption 1 might be possible for infinite LPs with discrete
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structures or solutions. In this section we study the existence of such discrete structures in infinite
LPs as a first step towards this extension. Theorem 11 already shows that CS optimal solutions can
inherit discrete structures of the optimal solutions of the truncations. For instance, if all truncations
have integral optimal solutions (F = G = Z), then there exists an integral CS optimal solution.
We show that a similar inheritance holds even in the absence of Assumption 1. More precisely, we
give a generalization of a result in [13] to show that the extreme points of P↑ and P↓ inherit the
properties of the following finite truncations.

Definition 13. For U ⊆ J and V ⊆ I, let

i) P̃↑(U) :=
{
x ∈ RU :

∑
j∈U aijxj ≥ bi ∀ i ∈ I, xj ≥ 0 ∀j ∈ U

}
,

ii) P̃↓(V ) :=
{
y ∈ RV :

∑
i∈V aijyi ≤ cj ∀ j ∈ J, yi ≥ 0 ∀i ∈ V

}
.

5.1 Packing Polyhedra

Theorem 14. Let F ⊆ R be closed and such that 0 ∈ F . If for any finite V ⊆ I the extreme points
of P̃↓(V ) are in F V , then under Assumption 2 the extreme points of P↓ are in F I .

Proof. We follow and extend the proof of a similar result in [13] for stable set polyhedra of infinite
perfect graphs (See Definition 15). Equip RI with the product topology; this ensures it is a locally
convex, Hausdorff space. Assume (aij)j∈J contains at least one non-zero for each i, implying the
boundedness (and compactness) of P↓. The general case is a simple extension.

The conclusion follows from Theorem 1 with K = P↓ and A = F I ∩ P↓, a closed set. It is
enough to show that the closure of the convex hull of A contains P↓, and we show this now. Let
ŷ ∈ P↓, and consider any open set containing ŷ. Let V ⊆ I be the finite index set of coordinates
for which this open set’s component is not equal to R. Define ȳ ∈ P↓ as ȳj = ŷj for i ∈ V and 0
otherwise. Then ȳV ∈ P↓(V ), and hence it is a convex combination of points in F V ∩ P↓(V ). By
extending with zeros in all other coordinates, we can take this combination also in RI ; thus ŷ is in
the closure of the convex hull of points in A.

Theorem 14 has several direct corollaries. To describe them we will need the following definitions
concerning (infinite) graphs.

Definition 15. A (infinite) graph is a pair G = (V,E) where V an arbitrary and possibly uncount-
able set and E ⊆ {{u, v} : u, v ∈ V, u 6= v}. For U ⊆ V we let G(U) = {U,E(U)} be the graph
induced by U , where E(U) := {{u, v} ∈ E : u, v ∈ U}. For v ∈ V we let E(v) := {e ∈ E : v ∈ e}.

• We say a graph G is perfect if every one of its finite induced graphs is perfect.

• We say an graph G = (V,E) is bipartite if there exist U1, U2 ⊆ V such that U1 ∩ U2 = ∅,
V = U1 ∪ U2 and E ⊆ {{u1, u2} : u1 ∈ U1, u2 ∈ U2}.

• The stable set polyhedron of a graph G is given by{
y ∈ RV : yv + yu ≤ 1 ∀ {u, v} ∈ E, yv ≥ 0 ∀v ∈ V

}
.

• The fractional matching polyhedron of G is given byy ∈ RE :
∑

e∈E(V )

ye ≤ 1 ∀ v ∈ V, ye ≥ 0 ∀e ∈ E

 .

10



• For b ∈ ZV+, the fractional b-matching polyhedron of G is given byy ∈ RE :
∑

e∈E(V )

ye ≤ bv ∀ v ∈ V, ye ≥ 0 ∀e ∈ E

 .

• The fractional vertex cover polyhedron of G is given by{
x ∈ RV : xu + xv ≥ 1 ∀ {u, v} ∈ E, xv ≥ 0 ∀v ∈ V

}
.

With these definitions we can obtain some well known results from [13, 19].

Corollary 16 ([13]). The stable set polyhedron of a perfect graph has integer extreme points. The
extreme points of the fractional matching polyhedron of a graph are half-integral.

Furthermore, we can extend some well known results concerning finite graphs to the infinite
setting.

Corollary 17 ([19]). The b-matching polyhedron of a bipartite graph has integer extreme points.

5.2 Covering Polyhedra

Similarly to Theorem 14, we may consider solutions with values in certain closed sets containing 0.
However, for simplicity we restrict our attention to integral solutions.

Theorem 18. If for any finite U ⊆ J the extreme points of P̃↑(U) are integral, then, under
Assumption 2, the extreme points of P↑ are integral.

Proof. Let dj :=
⌈
supi∈I:aij>0

{
bi/aij

}⌉
+1. The proof is similar to the proof of Theorem 14. Equip

RJ with the product topology, and consider the set P↑ ∩ {x ∈ RJ : xj ≤ dj ,∀ j ∈ J}. Using the
same argument from the previous proof with x̄j = dj , ∀ j ∈ J \ J ′, it follows that this set has
integer extreme points, since the upper bound constraints cannot add fractional extreme points.
Moreover, any x ∈ P↑ having some j ∈ J with xj > dj cannot be extreme, so the extreme points
of this truncated set contain the extreme points of P↑.

Similarly to Theorem 14, Theorem 18 yields as a corollary the following result.

Corollary 19. The extreme points of the fractional vertex cover polyhedron of a graph are half-
integral.
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