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Abstract

Motivated by situations in which independent agents wish to cooperate in some uncertain
endeavor over time, we study dynamic linear programming games, which generalize classical
linear production games to multi-period settings under uncertainty. We specifically consider
that players may have risk-averse attitudes towards uncertainty, and model this risk aversion
using coherent conditional risk measures. For this setting, we study the strong sequential core, a
natural extension of the core to dynamic settings. We characterize the strong sequential core as
the set of allocations that satisfy a particular finite set of inequalities that depend on an auxiliary
optimization model, and then leverage this characterization to establish sufficient conditions
for emptiness and non-emptiness. Qualitatively, whereas the strong sequential core is always
non-empty when players are risk-neutral, our results indicate that cooperation in the presence
of risk aversion is much more difficult. We illustrate this with an application to cooperative
newsvendor games, where we find that cooperation is possible when it least benefits players, and
may be impossible when it offers more benefit.

Keywords: cooperative game, stochastic linear program, risk measure

1 Introduction

In many situations, a group of individuals, or players, may benefit from cooperating and participating

in a joint enterprise, even if they do not share a common objective. For example, a set of retailers

may take advantage of economies of scale by jointly managing their inventory and demand. In order

for such a partnership to be successful, the participants must agree on how to share the costs they

incur together. Cooperative game theory provides a mathematical framework for determining “fair”

ways of sharing these costs of cooperation.

Applications of cooperative game theory in operations research and management science often

assume that the costs of cooperation are static and deterministic. For many settings, this is enough:

1



when cooperating agents must pay for a one-time task, the costs need to be allocated only once,

and the corresponding uncertainty may be negligible. However, in multi-period situations, such as

supply chain management problems involving dynamic inventory, capacity or resource planning,

costs are uncertain, must be allocated over time, and may be viewed as risky by the cooperating

agents. While static cooperative game-theoretic models have been successfully applied in many

supply chain management settings to design fair methods for sharing costs (Cachon and Netessine

2006, Nagarajan and Sošić 2008), depending on the context, accounting for dynamics, uncertainty

and risk in cooperation may be more realistic, and even critical for practitioners. In this work, we

study a widely applicable class of cooperative games, which we call dynamic linear programming

games, in which the costs of cooperation are uncertain and evolve over time, and the agents involved

may have risk-averse attitudes towards these costs.

In cooperative game theory, a solution concept is a method for allocating costs. One of the

most well-studied solution concepts is the core (Gillies 1959), the set of allocations that are both

economically efficient (i.e. exactly distribute the costs incurred by all the players) and stable against

coalitional defections (i.e. the cost allocated to every subset of players is less than what it would

incur on its own). Various refinements and relaxations of the core have also been proposed and

studied, such as the least core (Maschler et al. 1979), the α-core (Faigle and Kern 1993) and the

nucleolus (Schmeidler 1969). Perhaps because of its simple definition and intuitive appeal, the core

has been routinely studied as a method to allocate costs in supply chain management and other

applications. A typical approach is to define a cooperative version of a classical model, design an

allocation, and prove that it lies in the core. Such a result is thought to be a good indication that

cooperation in the model is possible.

The core is also the starting point for our analysis. In particular, our goal is to adapt the notion

of the core to the more general setting in which costs are dynamic and uncertain. To capture the

possibility that the players are risk-averse and may have different attitudes towards risk, we use

dynamic risk measures formed by the composition of conditional risk mappings (Ruszczyński and

Shapiro 2006) to model a player’s preferences for stochastic costs over time. This is an alternative

to the traditional expected utility approach (von Neumann and Morgenstern 1944), and consistent

with the dual theory of choice (Yaari 1987). Using this representation of player risk aversion, we

study the strong sequential core (see e.g. Kranich et al. 2005) of dynamic linear programming games,

the set of allocations that distribute costs as they are incurred and are stable against coalitional

defections at any point in the time horizon.

1.1 Previous Related Work

There has been a considerable amount of research applying cooperative game theory to problems

in operations research and management science. For example, in recent years, there has been

an emerging body of literature on cooperative games arising from inventory management. In an

inventory centralization or newsvendor game (e.g. Chen and Zhang 2009, Hartman and Dror 1996,

Montrucchio and Scarsini 2007, Özen et al. 2008), a set of retailers face one period of uncertain
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demand and share the expected cost of a joint procurement and inventory scheme. In an economic

lot-sizing game (e.g. Chen and Zhang 2006, Gopaladesikan et al. 2012, Toriello and Uhan 2014,

van den Heuvel et al. 2007), a set of retailers face deterministic demand over a finite number of

time periods and share the cost of jointly managing their collective inventory and demand over

the entire time horizon. Other examples of inventory-related cooperative games include inventory

routing games (Özener et al. 2013), joint replenishment games (He et al. 2012, Zhang 2009), and

production-inventory games (Guardiola et al. 2008; 2009). For other applications of cooperative

game theory to supply chain management, we refer the reader to Cachon and Netessine (2006) and

Nagarajan and Sošić (2008).

The class of games that we focus on here – dynamic linear programming games – generalize

the classic linear production game, originally proposed by Owen (1975), who used a simple and

elegant argument based on linear programming (LP) duality to give a constructive proof that the

core of these games is always non-empty. Linear production games have been extensively applied to

operations research and management science problems, as many cooperative settings that can be

modeled as an LP fall into this category. Particular examples include assignment games (Shapley

and Shubik 1971), maximum flow games (Kalai and Zemel 1982), and network synthesis games

(Tamir 1991), which include minimum cost spanning tree games (Granot and Huberman 1981) as

a special case. Linear production games have also stimulated subsequent study (e.g. Fl̊am 2002,

Granot 1986, Samet and Zemel 1984, van Gellekom et al. 2000). Furthermore, several researchers

have since exploited the connection between other cooperative games and linear production games

to establish computationally efficient and economically fair ways of allocating costs (e.g. Deng et al.

1999, Goemans and Skutella 2004, Toriello and Uhan 2013).

A few of the works cited above have mentioned issues related to using static allocations in

dynamic, uncertain environments. For example, Chen and Zhang (2009) discussed how to modify

their allocation of expected cost into an allocation of realized cost. Özener et al. (2013) designed

some inventory routing cost allocations that depend on costs incurred per route. Fl̊am (2002) defined

a static game in a multi-period stochastic setting, and discussed how successive static subgames

have non-empty cores when optimal solutions are implemented. Nevertheless, the majority of

the literature on cost sharing problems that arise in operations research and management science

does not directly address the possibility that the costs of cooperation are stochastic and evolve

dynamically.

Various researchers have studied how to incorporate uncertainty and dynamics into cooperative

game-theoretic models and solution concepts. These models and solution concepts, however, have

not enjoyed the same amount of attention as their static and deterministic counterparts. A number

of researchers have considered models and solution concepts for cooperative games that allocate

deterministic costs over time (e.g. Elkind et al. 2013, Filar and Petrosjan 2000, Habis and Herings

2010, Kranich et al. 2005, Lehrer and Scarsini 2013). Others have focused on models and solution

concepts under uncertainty that is realized once (e.g. Alparslan-Gök et al. 2009, Chalkiadakis et al.

2007, Charnes and Granot 1973, Habis and Herings 2011a;b, Ieong and Shoham 2008, Myerson
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2007, Predtetchinski et al. 2002, Suijs and Borm 1999, Suijs et al. 1999b) as well as uncertainty that

evolves over time (e.g. Avrachenkov et al. 2013, Gale 1978, Petrosjan 2002, Predtetchinski 2007,

Predtetchinski et al. 2004, Xu and Veinott 2013).

Some of the research mentioned above is especially relevant to our work. In particular, Kranich

et al. (2005) studied the strong sequential core of a dynamic cooperative game, which we adapt

to the setting we study here. The strong sequential core has been adapted and studied for other

uncertain and dynamic settings, including two-period exchange economies (Habis and Herings 2011a,

Predtetchinski et al. 2002), infinite-horizon dynamic exchange economies (Predtetchinski et al. 2004),

and infinite-horizon stationary non-transferable utility cooperative games (Predtetchinski 2007).

Xu and Veinott (2013) considered the strong sequential core in a setting similar to ours under the

assumption that players are risk-neutral. In fact, some of our results in Section 4 can be seen as

generalizations of their work’s main theorem; we discuss this paper and its relation to our work in

more detail in Section 4.3.

Our choice to represent the risk aversion of players with dynamic risk measures is also closely

tied to some of the work cited above. Suijs and Borm (1999) studied so-called stochastic cooperative

games with players whose attitudes towards risk before any uncertainty is realized are represented

by static risk measures. Based on this idea, under the assumption that player preferences are

represented by static convex risk measures, Uhan (2015) examined the core of stochastic linear

programming games, a class of stochastic cooperative games that can be viewed as a special case of

the dynamic linear programming games studied here. While these studies by Suijs and Borm (1999)

and Uhan (2015) use risk measures to represent player preferences, they do not consider stochastic

costs that evolve over time or how to represent player preferences in such a dynamic setting, like we

do in this work.

Researchers in the operations research community have used risk measures to capture a decision-

maker’s attitude towards risk in the objective function of a variety of stochastic optimization

problems. Their focus has typically been on coherent risk measures, since their supporting axioms

are arguably reasonable from an economic perspective, and their convexity and robust representation

yield nice structural and computational properties. Some have focused on specific coherent risk

measures, such as the worst-case risk measure and conditional value-at-risk (e.g. Chan et al. 2014,

Gotoh and Takano 2007, Rockafellar and Uryasev 2000, Wu et al. 2013, Yu 1998). Others have

focused on more general classes of coherent risk measures (e.g. Ahmed et al. 2007, Choi et al. 2011).

There has also been significant recent interest in constructing or approximating the uncertainty

sets that define these measures, (e.g. Bertsimas and Brown 2009, Iancu et al. 2014). We refer the

interested reader to Shapiro et al. (2014, Chapter 6) for additional references and a longer treatment.

1.2 Our Contributions

Our contributions can be summarized as follows. We introduce dynamic linear programming games,

a class of cooperative games whose costs are uncertain and evolve over time. These games are

a stochastic multi-period generalization of the classic linear production games (Owen 1975). We
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model player preferences on stochastic costs over time using dynamic risk measures formed from

conditional risk mappings (Ruszczyński and Shapiro 2006). We focus on the strong sequential core

of these games, the set of allocations that distribute costs as they are incurred and are stable against

coalitional defections at any point in the time horizon (e.g. Kranich et al. 2005). In particular:

1. We characterize the strong sequential core as the set of allocations that satisfy a finite collection

of inequalities. This characterization generalizes the well-known representation used for static

games (Gillies 1959) and for risk-neutral dynamic games (e.g. Xu and Veinott 2013). The

inequalities depend on optimization models that determine the minimum total risk a coalition

incurs with a feasible allocation. The result also shows that the strong sequential core is

convex if the players’ risk measures are convex.

2. We explore the connection between the dual multipliers associated with the risk-minimizing

optimization models mentioned above and the strong sequential core. Using this connection,

we give sufficient conditions for the strong sequential core to be empty, as well as sufficient

conditions for a dual-based allocation in the spirit of Owen (1975) and Xu and Veinott (2013)

to be in the strong sequential core. Our results indicate that unlike the risk-neutral case,

where the strong sequential core is always non-empty, when players are risk-averse the strong

sequential core can easily be empty, intuitively suggesting that cooperation is more difficult

when players account for risk.

3. We apply the results to newsvendor games where player preferences are represented by

comonotonic risk measures. We provide examples that highlight how difficult it may be for

risk-averse individuals to cooperate.

In Section 2, we introduce notation, necessary concepts and other preliminaries. We then

formulate dynamic linear programming games as well as define and characterize the strong sequential

core in Section 3. In Section 4, we use duality to give various conditions that determine whether

the strong sequential core is empty or non-empty. Next, we apply our results to newsvendor games

with risk-averse retailers in Section 5. Finally, in Section 6, we conclude and outline future avenues

for research.

2 Preliminaries

2.1 Preferences over Stochastic Costs and Risk Measures

Consider a stochastic process whose evolution is represented by a finite-horizon scenario tree T
with root node 1. For any node t ∈ T , we denote t’s parent by a(t) and its children by Dt. We

let a(1) := 0 represent the immediate past, i.e. incoming information at node 1. For any t ∈ T ,

given appropriate probabilities, Dt can be viewed as a probability space and any vector X ∈ RDt

can be seen as a random variable. We will frequently consider the conditional event of reaching

node r ∈ T . To facilitate this, we denote the subtree rooted at node r ∈ T by Tr, and for any pair
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of nodes r ∈ T and t ∈ Tr, we let P(r, t) be the unique path from node r to node t in T . In our

setting, the component of X ∈ RDt corresponding to node τ ∈ Dt is a scalar that represents either

an actual cost incurred at τ or a measure of risk based on the costs incurred throughout subtree Tτ .

To model a decision maker’s preferences over stochastic costs that evolve over time, we use a

dynamic risk measure. We construct this dynamic risk measure using conditional risk mappings

(Ruszczyński and Shapiro 2006). First, we associate every node t ∈ T satisfying Dt 6= ∅ with a risk

measure, a function ρt : RDt → R that satisfies the following axioms:

(M1) Monotonicity: If X ≥ Y , then ρt(X) ≥ ρt(Y ) for all X,Y ∈ RDt ;

(M2) Translation invariance: ρt([d+Xτ ]τ∈Dt) = d+ ρt(X) for all X ∈ RDt and d ∈ R.

In particular, we will focus on coherent risk measures ρt for t ∈ T that satisfy the following additional

properties (Artzner et al. 1999):

(M3) Positive homogeneity: ρt(αX) = αρt(X) for all X ∈ RDt and α ≥ 0;

(M4) Convexity: ρt(αX + (1− α)Y ) ≤ αρt(X) + (1− α)ρt(Y ) for all X,Y ∈ RDt and α ∈ [0, 1].

Assuming (M1) through (M3), convexity is equivalent to

(M4′) Subadditivity: ρt(X + Y ) ≤ ρt(X) + ρt(Y ) for all X,Y ∈ RDt .

It is well-known that coherent risk measures have a dual representation (e.g. Huber 1981); specifically,

the coherent risk measures ρt for t ∈ T can be represented as

ρt(X) = max
q∈Qt

Eq[X] = max
q∈Qt

∑
τ∈Dt

qτXτ for X ∈ RDt , (1)

where Qt ⊆ RDt is a closed, convex set of probability measures on Dt.
Next, given coherent risk measures ρt for t ∈ T , we define the composite risk measure φr : RTr →

R for each node r ∈ T recursively as follows:

φr([Xt]t∈Tr) =

Xr if Dr = ∅,

Xr + ρr
([
φt([Xτ ]τ∈Tt)

]
t∈Dr

)
if Dr 6= ∅.

(2)

When the conditional risk measures ρt for t ∈ T are coherent, the composite risk measures φr for

r ∈ T are also coherent: it is straightforward to see that φr for r ∈ T satisfies analogues of the

four defining axioms. The composite risk measure φr represents a decision maker’s preferences over

streams of stochastic costs in a natural way:

(Xt)t∈Tr is as good as (Y t)t∈Tr ⇔ φr([Xt]t∈Tr) ≤ φr([Y t]t∈Tr).

In several places below, we pay close attention to the risk-neutral case, in which each set Qt

for t ∈ T is a singleton. This corresponds to the scenario tree being governed by a probability
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distribution, where the probability of reaching t ∈ T is pt :=
∏
τ∈P(1,t)\{1} q

τ ; here, qτ is the τ -th

coordinate of the unique element of Qa(τ), i.e. the conditional probability of reaching τ given that

we have reached its parent. We may assume without loss of generality that pt > 0 for all t ∈ T .

We denote the conditional probabilities by pt|r := pt/pr for r ∈ T and t ∈ Tr. In this case, each

conditional risk mapping ρt is a conditional expectation, and the composite risk measure φ1 is the

expectation over the entire scenario tree.

2.2 Cooperative Games and Linear Production Games

Cooperative games are a natural way to model situations in which a set of agents with possibly

conflicting interests can collaborate to perform a common task at a lower cost. Traditionally, this

task’s cost is static (i.e. incurred once) and deterministic. Formally, a cooperative game is defined

by a set N := {1, . . . , n} of players (e.g. people or companies) and a function f : 2N → R that

specifies the cost any subset of N , or coalition, incurs when performing the task, where f(∅) = 0

by convention. The set of all players N is called the grand coalition. Cooperative game theory is

largely focused on the following question: assuming that the grand coalition agrees to cooperate

and incur cost f(N), how can this cost be allocated among the players in a “fair” way?

An allocation is a vector χ ∈ RN that assigns cost χi to player i ∈ N . Based on different notions

of fairness, a solution concept determines a set of allocations it deems “fair” for a game. One of the

most widespread solution concepts is the core (Gillies 1959), which imposes two conditions on an

allocation. First, an allocation should at least cover the cost incurred: an allocation χ is feasible for

a coalition U ⊆ N if
∑

i∈U χi ≥ f(U). Second, no coalition should have the incentive to defect, or

leave the grand coalition, in the form of another allocation that results in all of its members being

better off. Formally, the core consists of allocations χ satisfying the following two properties:

(C1) Feasibility: χ is feasible for the grand coalition N ; i.e.,
∑

i∈N χi ≥ f(N).

(C2) Stability: For any coalition ∅ 6= U ⊆ N , there does not exist an allocation ξ ∈ RU that is

feasible for U and also satisfies ξi < χi for each i ∈ U .

This second condition is expressed in terms of Pareto optimality: the core is the set of non-dominated

feasible allocations. It is simple to show that the core under this definition is equivalent to the

polyhedron of allocations given by the inequalities∑
i∈N

χi ≥ f(N), (3a)∑
i∈U

χi ≤ f(U) for U ⊆ N, (3b)

which simply states that allocations in the core are feasible and allocate to each coalition a quantity

not exceeding the coalition’s stand-alone cost. In fact, this equivalence is so well-known and

widespread that many researchers, especially in the operations research community, directly define
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the core as this polyhedron. However, we use the original Pareto definition, because the analogue of

(3) is not as straightforward in our risk-averse setting.

Linear production games are a widely applicable class of cooperative games, first studied by

Owen (1975). Given a common technology matrix A, a cost vector c and a requirement or demand

vector di for each player i ∈ N , the cost function of the cooperative game is defined by a linear

program

f(U) := min
x

cx

s.t. Ax =
∑
i∈U

di

x ≥ 0.

We assume the linear program above is feasible and bounded for any coalition ∅ 6= U ⊆ N . Applying

duality, we obtain

f(U) = max
λ

λ
∑
i∈U

di

s.t. λA ≤ c.

One of Owen’s (1975) main results is that the allocation χ̂i := λ̂di for every player i ∈ N is in the

core, where λ̂ is a dual optimal solution when U = N . The proof follows directly from strong and

weak duality.

Notation. To alleviate the notational burden and improve readability, in the remainder of the

paper we use subsets as indices to indicate a vector’s restriction. For example, given an allocation

χ ∈ RN , χU := (χi)i∈U ∈ RU is its restriction to the coalition U ⊆ N , and thus χN = χ. Similarly,

for a random variable X ∈ RT , XTr := (Xt)t∈Tr indicates its restriction to the subtree rooted at

node r, and XDr := (Xt)t∈Dr is its restriction to the children of node r.

3 Dynamic Linear Programming Games

A set of players N := {1, . . . , n} cooperates in some endeavor over time in the presence of uncertainty.

We model this uncertainty with a finite-horizon scenario tree T , using the concepts and notation

introduced in Section 2.1. At any node t ∈ T , each player i ∈ N has an initial state given by a

vector s
a(t)
i and a set of possible actions or decisions; these actions are represented by a vector xti. A

fixed vector dti represents player i’s demand or requirements at node t. If a coalition U ⊆ N chooses

to cooperate, the initial states, actions, and requirements of the players i ∈ U determine the ending

state vector sti for each player i ∈ U through the linear system dynamics∑
i∈U

Atix
t
i +
∑
i∈U

Bt
is
a(t)
i −

∑
i∈U

Ctis
t
i =

∑
i∈U

dti,
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where the dimensions of all vectors and matrices are matched appropriately, and there are no

redundant equations (i.e. the system has full row rank). Given initial states s
a(t)
i and actions xti, if

more than one assignment of values to the sti vectors satisfies the equation, we assume the players

choose one. For example, the dynamics may represent the coalition’s inventory flow balance at some

review period, in which case the sti vectors determine how the ownership of ending inventory is spread

among the individual players in the coalition. The set of feasible solutions for coalition U ⊆ N

starting at node r ∈ T with initial state ŝ
a(r)
U is

SrU (ŝ
a(r)
U ) :=



(x, s) :
∑
i∈U

Arix
r
i −

∑
i∈U

Cri s
r
i =

∑
i∈U

dri −
∑
i∈U

Br
i ŝ
a(r)
i ,∑

i∈U
Atix

t
i +
∑
i∈U

Bt
is
a(t)
i −

∑
i∈U

Ctis
t
i =

∑
i∈U

dti for t ∈ Tr \ {r},

xti ≥ 0, sti ≥ 0 for i ∈ U, t ∈ Tr


. (4)

Let SN := S1N (ŝ0), where ŝ0 = ŝ0N represents the players’ initial state vectors at the start of the

time horizon. We assume S1i (ŝ0i ) is non-empty for each player i ∈ N , which implies S1U (ŝ0U ) is

non-empty for any coalition U ⊆ N . This assumption also implies that for each node r ∈ T and

coalition U ⊆ N , SrU (ŝ
a(r)
U ) is non-empty for every state vector ŝ

a(r)
U that is part of a feasible solution

in S1U (ŝ0U ), i.e. for every state reachable from ŝ0U . The cost incurred by coalition U ⊆ N at node

t ∈ T is
∑

i∈U (ctix
t
i + htis

t
i), where cti and hti are cost vectors of appropriate dimension. Note that

we can easily work with discounted costs by incorporating a discount factor appropriately into the

cost vectors cti and hti.

We represent player preferences over random costs by dynamic risk measures, again using

notation and concepts from Section 2.1. In particular, at each node t ∈ T with Dt 6= ∅, each

player i ∈ N has a coherent risk measure ρti : RDt → R represented by a closed, convex set of

probability measures Qti, and the collection of these measures in any subtree Tr define a coherent

dynamic risk measure φri : RTr → R for r ∈ T .

As in the static case outlined in Section 2.2, we assume the players in the grand coalition N

agree to cooperate. Unlike that case, however, here the players agree to cooperate at the start of

the time horizon in node 1, but they must allocate costs throughout the time horizon in a fair way,

also accounting for the temporal aspects of this allocation. A dynamic allocation χ ∈ RN×T , also

called an allocation stream or cooperative payoff distribution procedure (Avrachenkov et al. 2013,

Filar and Petrosjan 2000, Kranich et al. 2005, Petrosjan 2002), assigns a cost of χti to player i ∈ N
if the process reaches node t ∈ T . The allocation χ is feasible for coalition U ⊆ N starting at node

r ∈ T with initial state ŝ
a(r)
U if there exists a solution (x, s) ∈ SrU (ŝ

a(r)
U ) such that∑

i∈U
χti ≥

∑
i∈U

(ctix
t
i + htis

t
i) for t ∈ Tr;

that is, the allocation covers the coalition’s incurred costs as they occur. Let ArU (ŝ
a(r)
U ) denote the

corresponding set of feasible dynamic allocations, and let AN := A1
N (ŝ0).
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3.1 The Strong Sequential Core

When allocations occur over time, the notion of what is fair or desirable can be strengthened by

considering temporal aspects. The strong sequential core (e.g. Kranich et al. 2005, Predtetchinski

2007, Predtetchinski et al. 2002; 2004), also referred to as the stochastic sequential core (Xu and

Veinott 2013), generalizes the core’s concepts of feasibility and stability in a natural way: First,

allocations must cover the grand coalition’s costs as they are incurred ; this differs from other

approaches to cooperative game theory under uncertainty in which a single allocation is determined

at the start of the time horizon, which is unrealistic in many situations. Second, the allocation

must be stable not only at the beginning of the horizon, but also throughout the horizon, so that a

coalition does not find it profitable to defect as the underlying stochastic process evolves. In our

case, this time-consistent stability must hold with respect to players’ risk preferences.

Definition 1. A dynamic allocation χ ∈ AN is in the strong sequential core for solution (x̂, ŝ) ∈ SN
if it satisfies the following conditions:

(SSC1) Feasibility: χ is feasible for the grand coalition N with respect to (x̂, ŝ), i.e.∑
i∈N

χti ≥
∑
i∈N

(ctix̂
t
i + htiŝ

t
i) for t ∈ T .

(SSC2) Time-Consistent Stability: For any coalition ∅ 6= U ⊆ N and any node r ∈ T , there does

not exist a dynamic allocation ξ ∈ ArU (ŝ
a(r)
U ) that also satisfies φri (ξi) < φri (χ

Tr
i ) for every

player i ∈ U .

Intuitively, the definition of the strong sequential core stipulates that the players in the grand

coalition are willing to cooperate if they can agree on (i) a set of actions to implement over the time

horizon, and (ii) an allocation of the cost of these actions that covers them as they are incurred,

without at any point in the process putting a coalition in a position where every coalition member

would perceive lower risk by defecting. In other words, if χ is in the strong sequential core, then for

any coalition U ⊆ N and node r ∈ T , χ must be Pareto optimal among feasible allocations for U

with respect to those players’ risk measures.

We explore the strong sequential core of a dynamic linear programming game through the

following optimization model, which finds a feasible dynamic allocation that minimizes the total

risk incurred by coalition U ⊆ N , starting at node r ∈ T with initial state ŝ
a(r)
U :

f r(U, ŝ
a(r)
U ) := min

ξ∈Ar
U (ŝ

a(r)
U )

∑
i∈U

φri (ξ
Tr
i ).

We slightly abuse notation and denote both the optimal value of the above optimization model and

the model itself as f r(U, ŝ
a(r)
U ).
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Theorem 2. A dynamic allocation χ ∈ AN is in the strong sequential core for solution (x̂, ŝ) ∈ SN
if and only if it satisfies ∑

i∈N
χti ≥

∑
i∈N

(ctix̂
t
i + htiŝ

t
i) for t ∈ T , (5a)∑

i∈U
φri (χ

Tr
i ) ≤ f r(U, ŝa(r)U ) for ∅ 6= U ⊆ N, r ∈ T . (5b)

Furthermore, if these conditions hold, χ satisfies∑
i∈N

φri (χ
Tr
i ) = f r(N, ŝa(r)) for r ∈ T . (5c)

In particular, χ is optimal for f1(N, ŝ0).

Proof. Condition (5a) simply restates (SSC1) for completeness. Therefore, it suffices to prove the

equivalence of (5b) and (SSC2) under condition (5a). First suppose χ ∈ AN is in the strong sequential

core with solution (x̂, ŝ). For the purposes of contradiction, suppose there exists ∅ 6= U ⊆ N and

r ∈ T such that (5b) does not hold. Let

ξ̄ ∈ arg min
ξ∈Ar

U (ŝ
a(r)
U )

∑
i∈U

φri (ξi),

and define

∆ :=
∑
i∈U

φri (χ
Tr
i )−

∑
i∈U

φri (ξ̄i) > 0.

Define an alternate dynamic allocation χ̄ for coalition U starting at node r: for all i ∈ U ,

χ̄ri := ξ̄ri + φri (χ
Tr
i )− φri (ξ̄i)−

∆

n
,

χ̄ti := ξ̄ti for t ∈ Tr \ {r}.

Since ∑
i∈U

χ̄ri =
∑
i∈U

ξ̄ri + ∆− ∆

n
|U | ≥

∑
i∈U

ξ̄ri ,∑
i∈U

χ̄ti =
∑
i∈U

ξ̄ti for t ∈ Tr \ {r},

it follows that χ̄ ∈ ArU (ŝ
a(r)
U ). Moreover, for all i ∈ U ,

φri (χ̄i) = φri (ξ̄i) + φri (χ
Tr
i )− φri (ξ̄i)−

∆

n
< φri (χ

Tr
i ),

which is a contradiction, since this violates (SSC2) at node r.
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Now suppose χ satisfies (5a) and (5b), and fix a node r ∈ T . For any coalition U ⊆ N , we have∑
i∈U

φri (χ
Tr
i ) ≤ f r(U, ŝa(r)U ) = min

ξ∈Ar
U (ŝ

a(r)
U )

∑
i∈U

φri (ξi).

Therefore, for any coalition U ⊆ N and dynamic allocation ξ ∈ ArU (ŝ
a(r)
U ), we must have φri (χ

Tr
i ) ≤

φri (ξi) for at least one player i ∈ U , and thus χ satisfies (SSC2).

To prove the theorem’s final statement, fix a node r ∈ T . Since χ ∈ AN , we have also

χTr ∈ ArN (ŝa(r)), and therefore∑
i∈N

φri (χ
Tr
i ) ≥ min

ξ∈Ar
N (ŝa(r))

∑
i∈N

φri (ξi) = f r(N, ŝa(r)),

which together with (5b) gives the result. �

Note that the proof of Theorem 2 does not use the fact that the risk measures φri for i ∈ N and

r ∈ T are coherent; the only property of risk measures that the proof uses is translation invariance

(M2). In addition, if the risk measures φri for i ∈ N and r ∈ T are all convex, then Theorem 2

implies the strong sequential core is convex as well.

Corollary 3. Let r ∈ T and U ⊆ N . Suppose there exists an optimal solution to f r(U, ŝ
a(r)
U ) for

some initial state ŝa(r). If some player j ∈ U satisfies Qtj ⊆ Qti for all t ∈ Tr and i ∈ U \ {j}, then

f r(U, ŝ
a(r)
U ) = min

ξ∈Ar
U (ŝ

a(r)
U )

φrj

(∑
i∈U

ξi

)
.

Proof. Let ξ̂ ∈ ArU (ŝ
a(r)
U ) be an optimal solution to f r(U, ŝ

a(r)
U ). It is straightforward to see that the

allocation ξ̄ defined as

ξ̄tj =
∑
i∈U

ξ̂ti for t ∈ Tr, ξ̄ti = 0 for i ∈ U \ {j}, t ∈ Tr

is also in ArU (ŝ
a(r)
U ) and therefore is a feasible solution to f r(U, ŝ

a(r)
U ). Note that by construction,

ξ̄j =
∑

i∈U ξ̂i. Therefore,

f r(U, ŝ
a(r)
U ) ≤

∑
i∈U

φri (ξ̄i)
(i)
= φrj(ξ̄j) = φrj

(∑
i∈U

ξ̂i

)
(ii)

≤
∑
i∈U

φrj(ξ̂i)
(iii)

≤
∑
i∈U

φri (ξ̂i) = f r(U, ŝ
a(r)
U ).

where (i) holds by construction of ξ̄ and the positive homogeneity (M3) of φri for all i ∈ U , (ii)

holds due to the subadditivity (M4′) of φrj , and (iii) holds because Qtj ⊆ Qti for all t ∈ Tr and

i ∈ U \ {j}. �

Intuitively, this corollary states that if one player’s level of risk aversion is less than or equal to

all the others’, an optimal solution of f r(U, ŝ
a(r)
U ) can allocate all costs to him and simply optimize
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with respect to his risk measure. For instance, this would apply if all players have the same attitude

towards risk. The result highlights a natural difficulty in allocating costs among risk-averse players:

An allocation that optimizes the total risk experienced by a coalition results in costs assigned to

players who are less risk-averse, but an allocation in the strong sequential core must balance this

optimality with the stability condition that would intuitively need to spread costs to other players,

including more risk-averse ones. Any attempt to shift costs to more risk-averse players must do so

without increasing the total risk, which may be difficult or even impossible.

4 Dual Solutions and the Strong Sequential Core

In this section, we explore the connection between the strong sequential core and the dual solutions

of the mathematical programs f r(U, ŝ
a(r)
U ) for every node r ∈ T and coalition U ⊆ N . We begin by

using the robust representation of coherent risk measures ρti in (1) and the recursive definition of

the composite risk measures φti in (2) to reformulate f r(U, ŝ
a(r)
U ) as

f r(U, ŝ
a(r)
U )

= min
ξ,z,x,s

∑
i∈U

zri (6a)

s.t. zti −
∑
τ∈Dt

qτzτi − ξti ≥ 0 for i ∈ U, t ∈ Tr : Dt 6= ∅, q ∈ Qti, (6b)

zti − ξti ≥ 0 for i ∈ U, t ∈ Tr : Dt = ∅, (6c)∑
i∈U

(ξti − ctixti − htisti) ≥ 0 for t ∈ Tr, (6d)∑
i∈U

Arix
r
i −

∑
i∈U

Cri s
r
i =

∑
i∈U

dri −
∑
i∈U

Br
i ŝ
a(r)
i , (6e)∑

i∈U
Atix

t
i +
∑
i∈U

Bt
is
a(t)
i −

∑
i∈U

Ctis
t
i =

∑
i∈U

dti for t ∈ Tr \ {r}, (6f)

xti ≥ 0, sti ≥ 0 for i ∈ U, t ∈ Tr. (6g)

Recall that the sets Qti for all players i ∈ N and nodes t ∈ T are closed and convex, and therefore

f r(U, ŝ
a(r)
U ) is a linear semi-infinite program. The constraints (6b) can equivalently be written to

include only the constraints for every extreme point of Qti, so when the sets Qti are all polyhedra,

the model simplifies to a (finite) linear program. Since we assume the equality constraints have no

redundant equations (i.e. they have full row rank), the finite-support Haar dual – the semi-infinite

analogue of the finite LP dual – is in fact a strong dual for f r(U, ŝ
a(r)
U ), because the coefficients of

constraints (6b) are continuous functions of the sets Qti and the model has an easily constructed

Slater point (see e.g. Glashoff and Gustafson 1983, Goberna and López 1998). This dual is

f r(U, ŝ
a(r)
U ) = max

λ,π,µ,σ

∑
t∈Tr

λt
∑
i∈U

dti − λr
∑
i∈U

Br
i ŝ
a(r)
i (7a)
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s.t. λtAti − πtcti ≤ 0 for i ∈ U, t ∈ Tr, (7b)∑
τ∈Dt

λτBτ
i − λtCti − πthti ≤ 0 for i ∈ U, t ∈ Tr, (7c)

πt − σti = 0 for i ∈ U, t ∈ Tr : Dt = ∅, (7d)

πt −
∑
q∈Qt

i

µt,qi = 0 for i ∈ U, t ∈ Tr : Dt 6= ∅, (7e)

∑
q∈Qr

i

µr,qi = 1 for i ∈ U, (7f)

∑
q∈Qt

i

µt,qi −
∑

q∈Qa(t)
i

µ
a(t),q
i qt = 0 for i ∈ U, t ∈ Tr \ {r} : Dt 6= ∅, (7g)

σti −
∑

q∈Qa(t)
i

µ
a(t),q
i qt = 0 for i ∈ U, t ∈ Tr \ {r} : Dt = ∅, (7h)

πt ≥ 0 for t ∈ Tr, (7i)

µt,qi ≥ 0 for i ∈ U, t ∈ Tr : Dt 6= ∅, q ∈ Qti, (7j)

σti ≥ 0 for i ∈ U, t ∈ Tr : Dt = ∅, (7k)

µ has finite support. (7l)

The model has an intuitive probabilistic interpretation that yields interesting consequences. The

variables π can be interpreted as a probability measure over Tr, conditional on arriving at node r,

while the variables µ and σ convey probabilistic information about each player’s worst-case measure

over Tr; that is, the measure achieving the minimum in (2). Constraint (7f) indicates that at node r,

each player i ∈ U gets a unit of probability mass that must be assigned between the measures in

Qri . The flow balance of probabilities down the scenario tree is enforced by (7g), while each leaf

node t’s probability is assigned to variable σti in (7h). Constraints (7d) and (7e) force the players’

worst-case measures to coincide, equating them to π. The variables λ correspond to the underlying

linear system dynamics, and are linked to the rest of the model only through π in constraints (7b)

and (7c). We next formalize some of these structural properties.

4.1 Structural Properties of Dual Solutions

Lemma 4. Let r ∈ T and U ⊆ N . For some initial state ŝa(r), suppose (λ, π, µ, σ) is dual feasible

for f r(U, ŝ
a(r)
U ). Then π is a probability measure over Tr; in particular, if π` = 0 for some ` ∈ Tr,

then πt = 0 for all t ∈ T`. Moreover, for any ` ∈ Tr with π` > 0 and D` 6= ∅,(
πt

π`

)
t∈D`

∈
⋂
i∈U
Q`i . (8)

Proof. The first statement directly follows from constraints (7d)-(7k). For the second, fix ` ∈ Tr
such that D` 6= ∅ and π` > 0. By (7e)-(7g) and (7j), any dual feasible solution (λ, π, µ, σ) of
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f r(U, ŝ
a(r)
U ) must satisfy

π` =
∑
q∈Q`

i

µ`,qi for i ∈ U,

πt =
∑
q∈Qt

i

µt,qi =
∑
q∈Q`

i

µ`,qi qt for i ∈ U, t ∈ D`,

µ`,qi ≥ 0 for i ∈ U, q ∈ Q`i .

Since π` > 0, it follows that any dual feasible solution (λ, π, µ, σ) of f r(U, ŝ
a(r)
U ) must satisfy

∑
q∈Q`

i

µ`,qi
π`

= 1 for i ∈ U,

πt

π`
=
∑
q∈Qt

i

µt,qi
π`

=
∑
q∈Q`

i

(
µ`,qi
π`

)
qt for i ∈ U, t ∈ D`,

µ`,qi
π`
≥ 0 for i ∈ U, q ∈ Q`i ,

which is equivalent to (8). �

The next lemma establishes that optimal solutions to f r(U, ŝ
a(r)
U ) are time consistent.

Lemma 5. Fix r ∈ T and U ⊆ N . Let (ξ̂, ẑ, x̂, ŝ) and (λ̂, π̂, µ̂, σ̂) be primal and dual optimal

solutions to f r(U, ŝ
a(r)
U ) for some initial state ŝa(r), respectively. Then for any ` ∈ Tr \ {r} such that

π̂` > 0, (ξ̄, z̄, x̄, s̄) = (ξ̂T` , ẑT` , x̂T` , ŝT`) is a primal optimal solution to f `(U, ŝ
a(`)
U ), and (λ̄, π̄, µ̄, σ̄) =

(λ̂T` , π̂T` , µ̂T` , σ̂T`)/π̂` is a dual optimal solution to f `(U, ŝ
a(`)
U ).

Proof. Fix ` ∈ Tr. It is clear that (ξ̄, z̄, x̄, s̄) is a primal feasible solution of f `(U, ŝ
a(`)
U ). We show

that (λ̄, π̄, µ̄, σ̄) is dual feasible for f `(U, ŝ
a(`)
U ). The solution (λ̂, π̂, µ̂, σ̂) satisfies constraints (7b)-(7e)

and (7g)-(7k) in f r(U, ŝ
a(r)
U ), and so (λ̄, π̄, µ̄, σ̄) satsifies these same constraints in f `(U, ŝ

a(`)
U ), since

these constraints in f `(U, ŝ
a(`)
U ) are a subset of those in f r(U, ŝ

a(r)
U ) and π̂` > 0. From (7e), we have

that ∑
q∈Q`

i

µ̄`,qi =
∑
q∈Q`

i

µ̂`,qi
π̂`

= 1 for i ∈ U,

and so (λ̄, π̄, µ̄, σ̄) also satisfies constraints (7f) in f `(U, ŝ
a(`)
U ). Therefore, (λ̄, π̄, µ̄, σ̄) is dual feasible

for f `(U, ŝ
a(`)
U ).

The objective function value of the dual solution (λ̄, π̄, µ̄, σ̄) in f `(U, ŝ
a(`)
U ), multiplied by π̂`, is

π̂`
[
λ̄`
∑
i∈U

(d`i −B`
i ŝ
a(`)
i ) +

∑
t∈T`\{`}

λ̄t
∑
i∈U

dti

]
= λ̂`

∑
i∈U

(d`i −B`
i ŝ
a(`)
i ) +

∑
t∈T`\{`}

λ̂t
∑
i∈U

dti

= λ̂`
∑
i∈U

(A`i x̂
`
i − C`i ŝ`i) +

∑
t∈T`\{`}

λ̂t
∑
i∈U

(Atix̂
t
i +Bt

i ŝ
a(t)
i − Cti ŝti)
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=
∑
t∈T`

∑
i∈U

λ̂tAtix̂
t
i +

∑
t∈T`

∑
i∈U

[ ∑
τ∈Dt

λ̂τBτ
i − Cti

]
ŝti

(i)
=
∑
t∈T`

∑
i∈U

π̂tctix̂
t
i +

∑
t∈T`

∑
i∈U

π̂thtiŝ
t
i

=
∑
t∈T`

π̂t
∑
i∈U

(ctix̂
t
i + htiŝ

t
i)

(ii)
=
∑
t∈T`

π̂t
∑
i∈U

ξ̂ti =
∑
i∈U

[ ∑
t∈T`:Dt 6=∅

π̂tξ̂ti +
∑

t∈Tr:Dt=∅
π̂tξ̂ti

]
(iii)
=
∑
i∈U

[ ∑
t∈T`:Dt 6=∅

∑
q∈Qt

i

µ̂t,qi ξ̂
t
i +

∑
t∈Tr:Dt=∅

σ̂ti ξ̂
t
i

]
(iv)
=
∑
i∈U

[ ∑
t∈T`:Dt 6=∅

∑
q∈Qt

i

µ̂t,qi (ẑti −
∑
τ∈Dt

qτ ẑτi ) +
∑

t∈Tr:Dt=∅
σ̂ti ẑ

t
i

]

=
∑
i∈U

[ ∑
q∈Q`

i

µ̂`,qi ẑ`i +
∑

t∈T`\{`}:Dt 6=∅

( ∑
q∈Qt

i

µ̂t,qi −
∑

q∈Qa(t)
i

µ̂
a(t),q
i qt

)
ẑti

+
∑

t∈T`\{`}:Dt=∅

(
σ̂ti −

∑
q∈Qa(t)

i

µ̂
a(t),q
i qt

)
ẑti

]
(v)
= π̂`

∑
i∈U

ẑ`i = π̂`
∑
i∈U

z̄`i ,

where (i), (ii), and (iv) follow from complementary slackness, and (iii) and (v) follow from dual

feasibility. Therefore, (ξ̄, z̄, x̄, s̄) and (λ̄, π̄, µ̄, σ̄) are primal and dual feasible solutions of f `(U, ŝ
a(`)
U ),

respectively, with the same objective function value, and so they are in fact optimal solutions. �

4.2 Implications on the Strong Sequential Core

Corollary 6. For any r ∈ T and U ⊆ N , let (ξ̂, ẑ, x̂, ŝ) and (λ̂, π̂, µ̂, σ̂) be primal and dual optimal

solutions to f r(U, ŝ
a(r)
U ) for some initial state ŝa(r), respectively. Then∑

i∈U
φri (ξ̂i) =

∑
i∈U

Eπ̂[ξ̂i] =
∑
i∈U

∑
t∈Tr

π̂tξ̂ti . (9)

Proof. Follows from the proof of Lemma 5. �

By Theorem 2, if χ̂ is in the strong sequential core for solution (x̂, ŝ), then χ̂ is an optimal

solution for f1(N, ŝ0). The above corollary states that any such allocation must be risk-aligned ;

that is, the same measure over T must yield the worst-case expected cost for all players. In other

words, an allocation in the strong sequential core must assign costs so that all players expect the

same worst-case measure over possible outcomes. Furthermore, Lemma 4 implies that, wherever it is

positive, the conditional probabilities implied by this worst-case measure must lie in the intersection

of all players’ uncertainty sets.

The following result states that the strong sequential core must be empty if some coalition’s sets

of possible probability distributions do not intersect at some node.

Corollary 7. Suppose there exists a coalition U ⊆ N , a node r ∈ T with Dr 6= ∅, and a node

` ∈ Tr with D` 6= ∅ such that

(a)
⋂
i∈U Q`i = ∅,

16



(b) qt > 0 for all q ∈
⋂
i∈U Q

a(t)
i and t ∈ P(r, `) \ {r}.

In addition, suppose SrU (ŝ
a(r)
U ) is non-empty for some initial state ŝa(r). Then f r(U, ŝ

a(r)
U ) is

unbounded from below. Furthermore, if (a) holds for any ` ∈ T , the strong sequential core is empty.

Proof. Fix a coalition U ⊆ N , a node r ∈ T with Dr 6= ∅, and a node ` ∈ Tr with D` 6= ∅ such

that (a) and (b) hold. We show that the dual of f r(U, ŝ
a(r)
U ) is infeasible by contradiction: suppose

(λ, π, µ, σ) is a dual feasible solution of f r(U, ŝ
a(r)
U ). We have that

πt =
∑
q∈Qt

i

µt,qi =
∑

q∈Qa(t)
i

µ
a(t),q
i qt for i ∈ U, t ∈ P(r, `).

Since (b) holds, we must have πt > 0 for all t ∈ P(r, `), and in particular, π` > 0. It follows by

Lemma 4 that (λ, π, µ, σ) must satisfy (8) which contradicts (a). Therefore, the dual of f r(U, ŝ
a(r)
U )

must be infeasible, and so f r(U, ŝ
a(r)
U ) is unbounded from below.

When (a) alone holds, the above argument with r = ` in conjunction with Theorem 2 implies

that the strong sequential core is empty. �

Under condition (a) of this corollary, a coalition completely disagrees on how likely the children

of node ` will realize, conditioned upon arriving at `. This allows for infinite risk arbitrage in

f `(U, ŝ
a(`)
U ), where each player bets an arbitrary amount on his own beliefs against scenarios he sees

as impossible. In practical terms, players cannot hope to cooperate if their attitudes towards risk at

some potential node are completely incompatible.

We next address how to use dual solutions to construct an allocation. These allocations depend

in particular on the grand coalition’s risk-aligned worst-case measure π̂. The following assumption

addresses what may happen when this measure gives zero probability mass to some parts of the

scenario tree.

Assumption 8. At least one of the following holds:

(a) qt > 0 for all q ∈
⋂
i∈N Q

a(t)
i and t ∈ T \ {1}.

(b) {λ̂t : λ̂tAti ≤ 0, λ̂tCti ≥ 0} = {0} for all i ∈ N and t ∈ T .

The first assumption forces the risk-aligned worst-case measure to have positive support over

the entire scenario tree T . The second forces any leaf node t assigned zero probability mass by π̂

– that is, π̂t = 0 – to in turn have its corresponding dual variable λ̂t = 0 as well. This proceeds

inductively backwards through any subtree with zero probability mass. Under this assumption,

the following lemma hints at how an optimal dual solution can be used to construct an allocation

satisfying the conditions of Theorem 2.

Lemma 9. Fix r ∈ T . Let (ξ̂, ẑ, x̂, ŝ) and (λ̂, π̂, µ̂, σ̂) respectively be primal and dual optimal

solutions to f r(N, ŝa(r)) for some initial state ŝa(r), and suppose Assumption 8 holds. Define the
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allocation

χ̂ti =


1

π̂t

[
λ̂t(dti −Bt

i ŝ
a(t)
i ) +

∑
τ∈Dt

λ̂τBτ
i ŝ
t
i

]
if π̂t > 0,

0 if π̂t = 0

(10)

for each i ∈ N and t ∈ Tr. If ∑
i∈N

φri (χ̂
Tr
i ) = f r(N, ŝa(r)),

then for every node ` ∈ Tr such that π̂` > 0,∑
i∈N

χ̂`i =
∑
i∈N

(c`i x̂
`
i + h`i ŝ

`
i), (11a)∑

i∈N
φ`i(χ̂

T`
i ) = f `(N, ŝa(`)), (11b)∑

i∈U
φ`i(χ̂

T`
i ) ≤ f `(U, ŝa(`)) for U ⊆ N. (11c)

Proof. First, we show that (11a) holds. At each node ` ∈ Tr such that π̂` > 0, we have

π̂`
∑
i∈N

χ̂`i = λ̂`
∑
i∈N

(d`i −B`
i ŝ
a(`)
i ) +

∑
t∈D`

λ̂t
∑
i∈N

Bt
i ŝ
`
i
(i)
= λ̂`

∑
i∈N

(A`i x̂
`
i − C`i ŝ`i) +

∑
t∈D`

λ̂t
∑
i∈N

Bt
i ŝ
`
i

=
∑
i∈N

λ̂`A`i x̂
`
i +

∑
i∈N

[ ∑
t∈D`

λ̂tBt
i − λ̂`C`i

]
ŝ`i

(ii)
= π̂`

∑
i∈N

c`i x̂
`
i + π̂`

∑
i∈N

h`i ŝ
`
i ,

(12)

where (i) holds due to primal feasibility and (ii) holds due to complementary slackness in f r(N, ŝa(r)).

Next, using the robust representation of coherent risk measures in (1) and the recursive definition

of the composite risk measures in (2), we formulate φ`i(χ̂
T`
i ) for each player i ∈ N and node ` ∈ Tr

as the following primal-dual pair of linear semi-infinite programs:

φ`i(χ̂
T`
i ) = min

zi
z`i

s.t. zti −
∑
τ∈Dt

qτzτi ≥ χ̂ti for t ∈ T` : Dt 6= ∅, q ∈ Qti,

zti ≥ χ̂ti for t ∈ T` : Dt = ∅

= max
µi,σi

∑
t∈T`:Dt 6=∅

∑
q∈Qt

i

χ̂tiµ
t,q
i +

∑
t∈T`:Dt=∅

χ̂tiσ
t
i

s.t.
∑
q∈Q`

i

µ`,qi = 1,

∑
q∈Qt

i

µt,qi =
∑

q∈Qa(t)
i

µ
a(t),q
i qt for t ∈ T` \ {`} : Dt 6= ∅,

σti =
∑

q∈Qa(t)
i

µ
a(t),q
i qt for t ∈ T` \ {`} : Dt = ∅,
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µt,qi ≥ 0 for t ∈ T` : Dt 6= ∅, q ∈ Qti,

σti ≥ 0 for t ∈ T` : Dt = ∅.

For every node ` ∈ Tr such that π̂` > 0, consider the solution (λ̂T` , µ̂T` , σ̂T` , π̂T`)/π̂`. Using a

similar argument to the proof of Lemma 5, it is straightforward to see that (µ̂T`i , σ̂
T`
i )/π̂` is a dual

feasible solution of φ`i(χ̂
T`
i ) for every player i ∈ N . As a result, by looking at the objective function

value of (µ̂T`i , σ̂
T`
i )/π̂` in the dual of φ`i(χ̂

T`
i ), we obtain

φ`i(χ̂
T`
i ) ≥ 1

π̂`

[ ∑
t∈T`:Dt 6=∅

∑
q∈Qt

i

χ̂tiµ̂
t,q
i +

∑
t∈T`:Dt=∅

χ̂tiσ̂
t
i

]
(iii)
=

1

π̂`

[ ∑
t∈T`:Dt 6=∅,

π̂t>0

χ̂tiπ̂
t +

∑
t∈T`:Dt=∅,

π̂t>0

χ̂tiπ̂
t

]
=

1

π̂`

∑
t∈T`:π̂t>0

χ̂tiπ̂
t

=
1

π̂`

∑
t∈T`:π̂t>0

[
λ̂t(dti −Bt

i ŝ
a(t)
i ) +

∑
τ∈Dt

λ̂τBτ
i ŝ
t
i

]
(13)

where (iii) holds because (λ̂, π̂, µ̂, σ̂) is feasible in the dual of f r(N, ŝa(r)).

Suppose Assumption 8(b) holds. Fix a node ` ∈ Tr such that π̂` = 0. By Lemma 4, π̂t = 0 for

all t ∈ T`, and so

λ̂tAti ≤ π̂tcti = 0 for i ∈ N, t ∈ T`,

λ̂tCti ≥
∑
τ∈Dt

λ̂τBτ
i − π̂thti =

∑
τ∈Dt

λ̂τBτ
i for i ∈ N, t ∈ T`.

Applying this recursively from the leaves of T`, it follows that λ̂t = 0 for all t ∈ T`. Therefore, under

either condition of Assumption 8, from (13) we have that for any ` ∈ Tr such that π̂` > 0,

φ`i(χ̂
T`
i ) ≥ 1

π̂`

∑
t∈T`:π̂t>0

[
λ̂t(dti −Bt

i ŝ
a(t)
i ) +

∑
τ∈Dt

λ̂τBτ
i ŝ
t
i

]

=
1

π̂`

∑
t∈T`

[
λ̂t(dti −Bt

i ŝ
a(t)
i ) +

∑
τ∈Dt

λ̂τBτ
i ŝ
t
i

]

=
1

π̂`

[∑
t∈T`

λ̂tdti −
∑
t∈T`

λ̂tBt
i ŝ
a(t)
i +

∑
t∈T`

∑
τ∈Dt

λ̂τBτ
i ŝ
t
i

]
=

1

π̂`

[∑
t∈T`

λ̂tdti − λ̂`B`
i ŝ
a(`)
i

]
.

(14)

Applying (14) first to the case where ` = r (note that π̂` = π̂r = 1 > 0), we obtain

∑
i∈N

φri (χ̂
Tr
i ) ≥

∑
i∈N

[∑
t∈Tr

λ̂tdti − λ̂rBr
i ŝ
a(r)
i

]
(iv)
= f r(N, ŝa(r))

(v)
=
∑
i∈N

φri (χ̂
Tr
i ),

where (iv) holds because (λ̂, π̂, µ̂, σ̂) is a dual optimal solution of f r(N, ŝa(r)), and (v) holds by

assumption. Therefore, we can conclude that for each player i ∈ N , (µ̂i, σ̂i) is a dual optimal
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solution of φri (χ̂
Tr
i ) for each player i ∈ N . Furthermore, it is clear from the structure of the dual

of φri (χ̂
Tr
i ) that the principle of optimality holds, and so (µ̂T`i , σ̂

T`
i )/π̂` is a dual optimal solution of

φ`i(χ̂
T`
i ) for every node ` ∈ Tr with π̂` > 0. In other words, by (14) we have that

φ`i(χ̂
T`
i ) =

1

π̂`

[∑
t∈T`

λ̂tdti − λ̂`B`
i ŝ
a(`)
i

]
for i ∈ N, ` ∈ Tr : π̂` > 0.

Putting this together, we show (11b) holds. For every node ` ∈ Tr such that π̂` > 0, we have

∑
i∈N

φ`i(χ̂
T`
i ) =

∑
i∈N

1

π̂`

[∑
t∈T`

λ̂tdti − λ̂`B`
i ŝ
a(`)
i

]
(vi)
= f `(N, ŝa(`)),

where (vi) holds because (λ̂T` , µ̂T` , σ̂T` , π̂T`)/π̂` is a dual optimal solution of f `(N, ŝa(`)) by Lemma 5.

Finally, we show (11c) holds: for every node ` ∈ Tr such that π̂` > 0, we have

∑
i∈U

φ`i(χ̂
T`
i ) =

∑
i∈U

1

π̂`

[∑
t∈T`

λ̂tdti − λ̂`B`
i ŝ
a(`)
i

]
(vii)

≤ f `(U, ŝ
a(`)
U ) for U ⊆ N,

where (vii) holds because (λ̂T` , µ̂T` , σ̂T` , π̂T`)/π̂` is a dual feasible solution of f `(U, ŝ
a(`)
U ). �

Finally, we give the main result of this section, an algorithm that under certain sufficient

conditions, uses dual optimal solutions to compute an allocation that is in the strong sequential

core.

Theorem 10. Let (ξ̂, ẑ, x̂, ŝ) be a primal optimal solution of f1(N, ŝ0). Consider the following

algorithm.

1: Initialize the queue of nodes R = (1).

2: while R 6= ∅ do

3: Dequeue r from R.

4: Solve f r(N, ŝa(r)). Let (λ̂, µ̂, σ̂, π̂) be a dual optimal solution.

5: For every player i ∈ N and node t ∈ Tr such that π̂t > 0, let

χ̂ti =
1

π̂t

[
λ̂t(dti −Bt

i ŝ
a(t)
i ) +

∑
τ∈Dt

λ̂τBτ
i ŝ
t
i

]
.

6: Find the coarsest decomposition of the remaining nodes {t ∈ Tr : π̂t = 0} into

subtrees. Enqueue the root nodes of these subtrees to R.

7: end while

Suppose Assumption 8 holds and∑
i∈N

φri (χ̂
Tr
i ) = f r(N, ŝa(r)) for r ∈ T .

20



Then the algorithm above constructs an allocation in the strong sequential core.

Proof. For any iteration of the above algorithm, we can always decompose the nodes {t ∈ Tr : π̂t = 0}
into subtrees, because of Lemma 4. Therefore, the algorithm is well-defined and defines an

allocation χ̂ti exactly once for every player i ∈ N and node t ∈ T . Through repeated applications

of Lemma 9, it follows that χ̂ is a feasible allocation for the coalition N starting at node 1 that

satisfies (5). Therefore, by Theorem 2, the allocation χ̂ constructed by the algorithm above is in

the strong sequential core. �

Combining Theorem 2 and Theorem 10, we obtain the following corollary.

Corollary 11. Let (ξ̂, ẑ, x̂, ŝ) and (λ̂, π̂, µ̂, σ̂) be primal and dual optimal solutions to f1(N, ŝ0),

respectively. If π̂t > 0 for all t ∈ T , the allocation

χ̂ti =
1

π̂t

[
λ̂t(dti −Bt

i ŝ
a(t)
i ) +

∑
τ∈Dt

λ̂τBτ
i ŝ
t
i

]
for i ∈ N, t ∈ T

is in the strong sequential core if and only if∑
i∈N

φ1i (χ̂i) = f1(N, ŝ0).

4.3 Risk-Neutral Players

Consider the special case in which the players are risk neutral. That is, for each player i ∈ N and

node r ∈ T , the risk measure φri is simply the conditional expectation with respect to a given

conditional probability distribution (pt|r)t∈Tr on Tr. In this case, the optimization model f r(U, ŝ
a(r)
U )

simplifies to

f r(U, ŝ
a(r)
U ) = min

x,s

∑
i∈U

∑
t∈Tr

pt|r(ctix
t
i + htis

t
i)

s.t.
∑
i∈U

Arix
r
i −

∑
i∈U

Cri s
r
i =

∑
i∈U

dri −
∑
i∈U

Br
i ŝ
a(r)
i ,∑

i∈U
Atix

t
i +
∑
i∈U

Bt
is
a(t)
i −

∑
i∈U

Ctis
t
i =

∑
i∈U

dti for t ∈ Tr \ {r},

xti ≥ 0, sti ≥ 0 for i ∈ U, t ∈ Tr.

In other words, f r(U, ŝ
a(r)
U ) here is the minimum expected cost of a solution in SrU (ŝ

a(r)
U ).

Theorem 2 implies that the strong sequential core is the set of all allocations χ that satisfy∑
i∈N

χri =
∑
i∈N

(ctix̂
t
i + htiŝ

t
i) for r ∈ T , (15a)∑

i∈U

∑
t∈Tr

pt|rχti ≤ f r(U, ŝ
a(r)
U ) for r ∈ T , U ⊆ N. (15b)
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The constraints (15a) require that the dynamic allocation χ exactly covers the cost incurred when

node r ∈ T is realized, and the constraints (15b) require that at any node in the scenario tree, every

coalition’s expected cost allocation from that point forward does not exceed its expected cost if it

defects from the grand coalition and continues on its own. Risk neutrality means that the conditions

of Corollary 11 apply, which implies the following result.

Corollary 12 (Xu and Veinott 2013). When players are risk neutral, the strong sequential core is

non-empty, and allocation χ̂ defined in (10) is in the strong sequential core.

Xu and Veinott (2013) consider a class of games that generalize dynamic linear programming

games, but require risk-neutral players. They study the solution concept defined by the set of

allocations described in (15), which they name the sequential stochastic core. They also show that a

dual-based dynamic allocation similar to (10) is in this set.

5 Application to Newsvendor Games

We next apply our results to cost sharing in newsvendor settings. The newsvendor problem and its

extensions have been widely studied from a cooperative game theoretic perspective (e.g. Chen 2009,

Chen and Zhang 2009, Hartman and Dror 2005, Hartman et al. 2000, Montrucchio and Scarsini

2007, Müller et al. 2002, Özen et al. 2008, Slikker et al. 2005). Similarly, several authors have

studied the optimization of risk-averse newsvendor models and their generalizations (e.g. Ahmed

et al. 2007, Chen et al. 2009, Choi and Ruszczyński 2008; 2011, Choi et al. 2011, Gotoh and Takano

2007, Xin et al. 2013). However, to the best of our knowledge, no one has studied cost allocation

among risk-averse players in any inventory setting, including the newsvendor model.

In this setting, the players in N are independent retailers, each of which is planning to meet

one-time demand for a common product one period in the future by placing an order in the present

period. The scenario tree T consists of the present node 1 and its children D1; every node t ∈ D1

represents a possible realization of each player’s demand given by dti. Without loss of generality, we

assume scenarios are ordered such that t ≤ t′ implies
∑

i∈N d
t
i ≤

∑
i∈N d

t′
i .

The first-period unit ordering and holding costs are given respectively by c and h. The second-

period unit backlog cost, incurred when the order does not meet demand, is b, whereas excess

inventory above realized demand has a unit salvage value of v (i.e. a cost of −v ≤ 0). We assume

v < c+ h < b to avoid unrealistic cases. We assume these parameters are identical for all players,

and that the second-period costs b and −v are invariant across scenarios t ∈ D1, which is typical

in newsvendor models. We also assume all players share a common risk measure φ given by a

closed, convex set of probability measures Q1 over D1. Henceforth, whenever possible we suppress

unnecessary indices, referring for instance to these two sets simply as Q and D. Finally, we assume

the players have no initial stock.

For this two-period process, we can write the dynamic risk of allocation ξ to player i ∈ N as

φ(ξi) = ξ1i + ρ(ξDi ), where we also suppress indices for φ and ρ. Furthermore, since the conditional
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risk measure is identical across players, Corollary 3 implies that we can simplify the primal (6) of

the optimization problem f1(N, 0) faced by the grand coalition in the first period to

f1(N, 0) = min
x,s

(c+ h)
∑
i∈N

x1i + max
π∈Q

∑
t∈D

πt
∑
i∈N

(bxti − vsti)

s.t.
∑
i∈N

(x1i + xti − sti) =
∑
i∈N

dti for t ∈ D,

x, s ≥ 0.

The dual (7) reduces to

f1(N, 0) = max
λ,π

∑
t∈D

λt
∑
i∈N

dti

s.t. πtv ≤ λt ≤ πtb for t ∈ D,∑
t∈D

λt ≤ c+ h,

π ∈ Q.

Under the change of variables λ̄t = λt − πtv for t ∈ D, for fixed π the dual is a fractional knapsack

problem. By defining a critical index

t(π) := max

{
t ∈ D :

∑
τ≥t

πτ ≥ c+ h− v
b− v

}
,

we can write a dual optimal solution for a fixed π ∈ Q as

λt(π) =


πtb if t ∈ D : t > t(π),

πtv if t ∈ D : t < t(π),

c+ h− b
∑

τ>t(π) π
τ − v

∑
τ<t(π) π

τ if t ∈ D : t = t(π).

The dual objective value for any π ∈ Q is therefore

(c+ h)
∑
i∈N

d
t(π)
i + b

∑
t>t(π)

πt
∑
i∈N

(dti − d
t(π)
i )− v

∑
t<t(π)

πt
∑
i∈N

(d
t(π)
i − dti),

i.e. the expected cost (under the distribution π) of ordering the total demand for scenario t(π) in the

first period and then paying the corresponding backlog cost or receiving the corresponding salvage

value in the second period. Based on the above discussion, for a fixed π ∈ Q, there exists a primal

optimal solution that satisfies ∑
i∈N

x1i =
∑
i∈N

d
t(π)
i ;
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∑
i∈N

xti =


∑

i∈N (dti − d
t(π)
i ) if t > t(π),

0 otherwise;

∑
i∈N

sti =


∑

i∈N (d
t(π)
i − dti) if t < t(π),

0 otherwise.

Let π̂ be optimal for the dual of f(N, 0), so that the optimal first-period order is
∑

i∈N x
1
i =∑

i∈N d
t(π̂)
i . Let us also assume the players divide this order in the natural way, ŝ1i = d

t(π̂)
i . Then

the dynamic allocation χ̂ defined in Section 4 is

χ̂1
i = (c+ h)d

t(π̂)
i , χ̂ti =


b(dti − d

t(π̂)
i ) if t ∈ D : t > t(π̂),

−v(d
t(π̂)
i − dti) if t ∈ D : t < t(π̂),

0 if t ∈ D : t = t(π̂).

Suppose player i’s demand satisfies

dti ≥ d
t(π̂)
i if t > t(π̂) and dti ≤ d

t(π̂)
i if t < t(π̂). (16)

Then the allocation mirrors what player i would pay if he operated alone and ordered d
t(π̂)
i in the

first period. For any scenarios that do not satisfy (16), either he must pay a further cost in the

salvage case, or he receives a credit in the backlog case.

If the players are risk-neutral, the results in Section 4.3 guarantee that this allocation is in the

strong sequential core. In this case, the distribution π̂ is in fact equal to a fixed distribution p, and

the expected cost of any coalition’s allocation does not exceed that coalition’s optimal expected cost

(under the same distribution p) if it were to defect from the grand coalition and act independently.

If the players are risk-averse, however, the situation becomes more complicated; to establish the

conditions of Theorem 10 we need additional assumptions about Q.

For the remainder of this section, we assume that the risk measure ρ is comonotonic; that is, in

addition to being coherent, the measure must satisfy one additional condition:

(M5) Comonotonicity: ρ(X + Y ) = ρ(X) + ρ(Y ) if X,Y ∈ RD are comonotone; that is, if

(Xt −Xt′)(Y t − Y t′) ≥ 0 for all t, t′ ∈ D.

We can fully characterize comonotonic risk measures using a Choquet capacity (Choquet 1955). This

is a function κ : 2D → R satisfying the following properties:

(CC1) Monotonicity: κ(I) ≤ κ(I ′) for I ⊆ I ′ ⊆ D.

(CC2) Normalization: κ(∅) = 0, κ(D) = 1.

(CC3) Submodularity: κ(I) + κ(I ′) ≥ κ(I ∩ I ′) + κ(I ∪ I ′) for I, I ′ ⊆ D.

Lemma 13 (Schmeidler 1986). A coherent risk measure ρ is comonotonic if and only if

Q =

{
q ∈ RD≥0 :

∑
t∈D

qt = κ(D) = 1,
∑
t∈I

qt ≤ κ(I) for I ⊆ D
}
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for some Choquet capacity κ.

In other words, this theorem states that ρ is comonotonic precisely when Q is the base polyhedron of

a Choquet capacity κ. These polyhedra are well-studied and optimizing over them can be achieved

with a greedy algorithm (Edmonds 1970).

Based on the discussion above, we can write the optimal value for f1(N, 0) as

f1(N, 0) = max
π∈Q

min
t∈D

{
(c+ h)

∑
i∈N

dti + b
∑
τ>t

πτ
∑
i∈N

(dτi − dti) + v
∑
τ<t

πτ
∑
i∈N

(dτi − dti)
}

. (17)

Note that t(π) is an optimal solution to the inner minimization problem. In the outer maximization

problem, the objective function is concave in π because it is the minimum of a collection of affine

functions, one per t ∈ D. However, for any t ∈ D, because we assume that scenarios are ordered such

that τ ≤ τ ′ implies
∑

i∈N d
τ
i ≤

∑
i∈N d

τ ′
i , the coefficients

∑
i∈N (dτi − dti) of each πτ are in the same

non-decreasing order. So, if Q is a base polyhedron, the same extreme point is optimal regardless of

which affine function is minimal. This extreme point can be obtained by a greedy algorithm that

increases each variable πτ as much as possible, in the order of non-increasing objective function

coefficients.

Proposition 14. Suppose the players’ common risk measure is comonotonic, and that their demands

are pairwise comonotone; in particular, t ≤ t′ implies dti ≤ dt
′
i for i ∈ N . In addition, suppose

we obtain an optimal distribution π̂ ∈ Q to f(N, 0) as written in (17) using the greedy algorithm

described above. Then the dynamic allocation χ̂ is in the strong sequential core.

Proof. For player i ∈ N , the allocation’s risk is

φ(χ̂i) = max
π∈Q

{
(c+ h)d

t(π̂)
i + b

∑
t>t(π̂)

πt(dti − d
t(π̂)
i ) + v

∑
t<t(π̂)

πt(dti − d
t(π̂)
i )

}
= (c+ h)d

t(π̂)
i + b

∑
t>t(π̂)

π̂t(dti − d
t(π̂)
i ) + v

∑
t<t(π̂)

π̂t(dti − d
t(π̂)
i ).

The second equality follows because the players’ demand is pairwise comonotone, and thus the

coefficients of each πτ within the maximization are non-increasing in the same order as in (17),

which then implies that π̂ remains optimal. This in turn implies
∑

i∈N φ(χ̂i) = f1(N, 0), i.e. the

conditions of Theorem 10 hold. �

Unfortunately, the conditions that this result requires for the strong sequential core to be

non-empty – particularly the comonotonicity of demand – are precisely those in which players benefit

the least from cooperating. Assuming all players have access to the same newsvendor costs, the risk

φ(χ̂i) that player i perceives from allocation χ̂i is precisely what his risk would be when operating

alone. However, the following examples illustrate that even apparently small generalizations of these

conditions can already render the strong sequential core empty.
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Example 15 (Newsvendor game with complementary demand). Consider a two-player newsvendor

game with ordering and holding costs c+ h = 1, backlog cost b and salvage value v. We have two

second-period scenarios, D = {2, 3}, and the two players’ demands are exactly complementary: d31 =

d22 = 1 and d21 = d32 = 0. The common risk measure is defined by the setQ = conv{(q, 1−q), (1−q, q)},
where q ≥ 1/2 without loss of generality. Note that any risk measure over two scenarios is

comonotonic. We further assume q ≥ (1− v)/(b− v).

Drawing upon the previous discussion, we can write the risk experienced by player 1 starting in

the first period as

f1({1}, 0) = min
0≤x≤1

max
{
x+ q(−vx) + (1− q)

(
b(1− x)

)
, x+ (1− q)(−vx) + q

(
b(1− x)

)}
= min

0≤x≤1
max

{
x
(
1− qv − (1− q)b

)
+ (1− q)b, x

(
1− (1− q)v − qb

)
+ qb

}
,

where x represents the amount that player 1 orders in the first period. It is straightforward to show

that under the assumption that q ≥ (1− v)/(b− v), it is optimal for player 1 to order one unit in

the first period. By symmetry, the same holds for player 2. It is clear that it is also optimal for the

grand coalition to order one unit in the first period.

Assuming the grand coalition orders together, let ŝ11 = s be the quantity owned by player 1 at

the end of the first period, and as a result, ŝ21 = 1− s is the quantity owned by player 2 at the end

of the first period. The following table gives the values of f r(U, ŝ
a(r)
U ):

r 1 2 3

f r({1}, ŝa(r)1 ) 1− (1− q)v −vs b(1− s)
f r({2}, ŝa(r)2 ) 1− (1− q)v bs −v(1− s)

f r({1, 2}, ŝa(r){1,2}) 1 0 0

We will use these values to determine conditions on allocations in the strong sequential core. From

the second-period optimality constraints (5c), we immediately get

χ2
1 + χ2

2 = 0, χ3
1 + χ3

2 = 0;

i.e. the second-period allocation is a side payment from one player to the other. The first-period

time-consistent stability constraints (5b) then imply

1 ≥ φ(χ1) + φ(χ2) = χ1
1 + max{qχ2

1 + (1− q)χ3
1, (1− q)χ2

1 + qχ3
1}

+ χ1
2 + max{qχ2

2 + (1− q)χ3
2, (1− q)χ2

2 + qχ3
2}

≥ χ1
1 + χ1

2 + q(χ3
1 + χ2

2) + (1− q)(χ2
1 + χ3

2)

= χ1
1 + χ1

2 + (2q − 1)(χ3
1 + χ2

2).

Moreover, the first-period feasibility constraint (5a) requires χ1
1 + χ1

2 ≥ 1, which together with the
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previous inequality yields

(2q − 1)(χ3
1 + χ2

2) ≤ 1− (χ1
1 + χ1

2) ≤ 0.

Therefore, if q > 1/2 – that is, if the players aren’t neutral to risk – we get the condition χ3
1 +χ2

2 ≤ 0.

However, the second-period time-consistent stability constraints (5b) require

−χ3
1 = χ3

2 =≤ −v(1− s), −χ2
2 = χ2

1 ≤ −vs ⇒ χ3
1 + χ2

2 ≥ v,

and thus the strong sequential core is empty when v > 0.

This example highlights how difficult it may be for risk-averse individuals to cooperate. When

there is zero salvage value, the strong sequential core is non-empty; the set will have second-period

allocations equal to zero. However, by increasing salvage to any positive value 0 < v < 1 (a change

that could help both players and hurts neither), cooperation becomes impossible. Furthermore,

the strong sequential core is empty for any risk measure in our example that is not risk neutral;

if (1 − v)/(b − v) ≤ 1/2, we can take q = 1/2 + ε for an arbitrarily small ε > 0, and the strong

sequential core would still be empty.

Demand in a newsvendor setting with two players is unlikely to be purely complementary. Our

next example examines a similar situation with independently distributed demand.

Example 16 (Newsvendor game with independent demand). Consider the two-player newsvendor

game with cost parameters as in Example 15, where now each player has i.i.d. Bernoulli demand.

We identify each of the four second-period scenarios with a two-digit binary number indicating each

player’s demand realization, D = {00, 01, 10, 11}; for example, scenario 10 means player 1’s demand

occurs and player 2’s does not. Suppose the backlog cost b is large enough that it is optimal for the

grand coalition to order two units in the first period. In addition, suppose both players hold one

unit of inventory at the end of this period, i.e. ŝ11 = ŝ12 = 1.

Let χ be an arbitrary allocation in the strong sequential core. Applying conditions (5a) and

(5b) to each second-period scenario, it is simple to show that a player’s allocation must be zero if

his demand realizes, and −v if it does not. This yields the following allocations and grand coalition

costs:

r 00 01 10 11

χr1 −v −v 0 0

χr2 −v 0 −v 0

f r({1, 2}, ŝ1) −2v −v −v 0

Therefore, χr1 + χr2 = f r({1, 2}, ŝ1) for all r ∈ D, and so

f1({1, 2}, 0) = 2 + ρ
(
[f r({1, 2}, ŝ1]r∈D

)
= 2 + ρ(χD1 + χD2 ).
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Applying (5a) in the first period, we obtain

φ(χ1) + φ(χ2) = χ1
1 + χ1

2 + ρ(χD1 ) + ρ(χD2 ) ≥ 2 + ρ(χD1 ) + ρ(χD2 ).

Putting this all together with (5b) in the first period, it follows that any allocation χ in the strong

sequential core must satisfy

ρ(χD1 + χD2 ) ≥ ρ(χD1 ) + ρ(χD2 ).

Note that χD1 and χD2 are not comonotone, and therefore by subadditivity it is possible that

ρ(χD1 + χD2 ) < ρ(χD1 ) + ρ(χD2 ), implying that the strong sequential core is empty. In fact, this latter

inequality is strict precisely when cooperation among the two players lowers their total risk. So the

strong sequential core is non-empty only when cooperation brings no benefit to the players because

their risk measure perceives cooperation as equally preferable to operating alone.

As these results on newsvendor games suggest, although the strong sequential core of a dynamic

linear programming game is always non-empty when the players are risk neutral, the strong sequential

core may be empty when players are risk averse, and only non-empty when players least benefit from

cooperation. Similar observations have been made in other contexts. For example, Predtetchinski

et al. (2004) and Predtetchinski (2007) both showed that in certain infinite-horizon settings, the

strong sequential core is nonempty when the discount factor is sufficiently high, which can be

interpreted as when the players behave more like risk-neutral players. Habis and Herings (2011a)

demonstrated that in so-called two-period finance economies, the strong sequential core is only

nonempty in economically uninteresting cases.

6 Conclusions

We introduced the general class of dynamic linear programming games to model situations in which

risk-averse agents cooperate over time. To evaluate whether cooperation in a particular setting

is plausible, we generalized the strong sequential core concept into this risk-averse setting and

gave a characterization using finitely many inequalities and an auxiliary optimization model that

minimizes a coalition’s total risk. Our results can be qualitatively summarized by observing that

risk aversion often appears to be in conflict with cooperation; specifically, risk-neutral players can

always construct an allocation in the strong sequential core, whereas risk aversion can imply an

empty strong sequential core even in situations where the grand coalition’s total risk is reduced by

cooperating, and even when each player’s attitude towards risk is arbitrarily close to neutral. Our

exploration of newsvendor games with risk-averse players confirms this general notion: In situations

where players can expect to benefit from cooperating, such as when demand is complementary or

independent, the strong sequential core can easily be empty. Conversely, we can only guarantee that

the strong sequential core of these newsvendor games is non-empty when demand is comonotone,

precisely the setting in which players benefit the least from cooperation.

Our results motivate some interesting directions for further research. Although our study of
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newsvendor games illustrates the difficulty of having risk-averse players cooperate even in simple

settings, one could argue that the notion of cooperation imposed by the strong sequential core is too

restrictive. We can investigate whether cooperation is easier under relaxed notions of cooperation,

such as the weak sequential core (Habis and Herings 2011b, Kranich et al. 2005), which only blocks

deviations by coalitions that are not vulnerable to subsequent defections. We can also start with

solution concepts for static cooperative games with relaxed notions of coalitional stability, such

as the least core (Maschler et al. 1979) and the α-core (Faigle and Kern 1993), and consider their

dynamic risk-averse analogues. Alternatively, we can move away from core-like solution concepts

that impose coalitional stability and explore dynamic risk-averse analogues of other kinds of solution

concepts such as the Shapley value (Shapley 1953). Unfortunately, finding sensible analogues of

these solution concepts is unlikely to be a clear-cut task. For instance, Timmer et al. (2003) proposed

three solution concepts for stochastic cooperative games (Suijs et al. 1999a), inspired by three

equivalent formulations of the Shapley value for static cooperative games; they show that when

costs are stochastic, these three solution concepts can in fact be different.

Another interesting direction is to find subclasses of dynamic linear programming games with

risk-averse players that are more amenable to cooperation than the newsvendor games we discussed

above. Such an analysis might help to clarify when cooperation is possible. More generally, we can

ask whether the tradeoff between cooperation and risk-averse optimization can be made explicit,

say by establishing the required level of suboptimality for a solution with a stable allocation.
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U. Özen, J. Fransoo, H. Norde, and M. Slikker. Cooperation between multiple newsvendors with
warehouses. Manufacturing & Service Operations Management, 10:311–324, 2008.
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