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Abstract

We consider a cooperative game defined by an economic lot sizing problem with concave
ordering costs over a finite time horizon, in which each player faces demand for a single product
in each period and coalitions can pool orders. We show how to compute a dynamic cost allocation
in the strong sequential core of this game, i.e. an allocation over time that exactly distributes
costs and is stable against coalitional defections at every period of the time horizon.

1 Introduction and Motivation

Production and inventory management are areas in which cooperation among independent agents
has an intuitive appeal. For example, independent retailers sharing a warehouse may want to
combine orders from a common supplier to enjoy economies of scale derived from larger order
quantities. Viewed from a system-wide perspective, combining orders lowers the total cost, but the
order consolidation cannot be achieved unless the independent retailers can agree on a “fair” way
to split this cost. Over the last decade or more, cooperative game theory research in production,
distribution and inventory models has endeavored to determine fair cost allocations under a variety
of settings.

The economic lot sizing problem is one of the canonical production and inventory models studied
in operations research and management science, almost since the field’s inception (Wagner and
Whitin 1958). In a cooperative setting, this model would capture the situation described above,
with each retailer facing its own demand over the planning horizon that must be satisfied with
product orders or inventory, but with coalitions of retailers being able to order product together.
The cooperative game derived from this model was proposed in van den Heuvel et al. (2007) and
subsequently studied in Chen and Zhang (2006), Gopaladesikan et al. (2012). However, all of these
papers approach the problem from a static perspective; that is, the authors assume an optimal
solution is implemented over the entire horizon, and seek an up-front static cost allocation in the
core of this cooperative game.
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Unfortunately, a static cost allocation – even one in the core – suffers from a number of significant
drawbacks. First, it assumes each retailer would be able to cover its portion of the entire planning
horizon’s cost up front, a significant financial burden that is unrealistic in many settings. Second,
once the allocated costs are collected from the participating retailers, there may be incentives for
individual retailers or coalitions to defect later on in the planning horizon if they find themselves in
an advantageous position. Finally, a static allocation ignores the typical rolling horizon approach to
these models, in which one or a few periods’ solutions are implemented, and then a new model is
formulated with updated parameters. Within a rolling horizon approach, it is unclear how a static
allocation could be implemented.

Our goal in this paper is to develop dynamic cost allocations for the economic lot sizing problem.
Unlike their static counterparts, dynamic allocations can be constrained to allocate costs as they are
incurred. They can also be designed so that no coalition ever has an incentive to defect throughout
the entire planning horizon. Furthermore, because the costs are allocated as they are incurred,
dynamic allocations can also be incorporated into a rolling horizon framework. Our allocation
depends conceptually on extending the core concept to dynamic settings (e.g. see Kranich et al.
2005), and continues our work in Toriello and Uhan (2013) for multi-period models with linear costs.

Cooperative game theory has been successfully applied in many related models, and we cannot
hope to adequately review them here. Instead, we refer the interested reader to Cachon and
Netessine (2006), Nagarajan and Sošić (2008). Two in-depth references on lot sizing and more
general production planning and inventory management are Pochet and Wolsey (2006), Zipkin
(2000). This paper has two remaining sections. In Section 2, we introduce the model and review
some relevant results. Then, in Section 3, we define the strong sequential core, the dynamic version
of the core, and show how to compute such a dynamic allocation.

2 The Economic Lot Sizing Game

We consider the following deterministic economic lot sizing setting with multiple retailers. A set of
retailers N := {1, . . . , n} faces deterministic demand for a single product over a finite discrete time
horizon. In particular, each retailer i ∈ N needs to satisfy demand dti in periods t = r, . . . , T ; we
start in period r instead of period 1 because we will eventually vary the starting period. In every
period t = r, . . . , T , each retailer can order x units at a total cost of ct(x); the function ct is concave
and nondecreasing with ct(0) = 0. Each retailer can also hold one unit of product in inventory in
period t = r, . . . , T at a cost of ht. Finally, each retailer i ∈ N has an initial inventory of ŝr−1i . For
notational convenience, we define

d
[j,k]
R :=

∑
i∈R

k∑
t=j

dti for R ⊆ N, r ≤ j ≤ k ≤ T, ŝr−1R :=
∑
i∈R

ŝr−1i .

Here and throughout, we take a summation in which the initial index is greater than the ending

index to be vacuous and equal to zero; for example, d
[j,j−1]
R = 0.

The economic lot sizing problem for a subset of retailers R ⊆ N seeks to satisfy the de-
mands drR, . . . , d

T
R with initial inventory ŝr−1R in a way that minimizes the total ordering and inventory

cost. The economic lot sizing game is a transferable utility cooperative game (N, fr(·, ŝr−1)) in
which each retailer corresponds to a player, and the cost fr(R, ŝ

r−1) to a subset of players R ⊆ N
is the optimal value of its economic lot sizing problem. Following standard terminology in the
cooperative game theory literature, we refer to a subset of players as a coalition, and the set of all
players as the grand coalition.
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It is well-known that any instance of the economic lot sizing problem can be transformed into
an equivalent instance with zero inventory by using the initial inventory to greedily satisfy demand
in the beginning time periods (Zabel 1964). It is also well-known that when the initial inventory
is zero, there exists an optimal solution that satisfies the zero-inventory property in which orders
only occur in periods when the inventory level is zero (Wagner and Whitin 1958, Wagner 1960).
Therefore, when initial inventories are of the form

ŝr−1i = d
[r,τ−1]
i for i ∈ N

for some τ ≥ r, we can model the economic lot sizing problem for coalition R ⊆ N with the following
linear program (Chen and Zhang 2006):

fr(R, ŝ
r−1) =

τ−1∑
t=r

htd
[t+1,τ−1]
R + min

x

T∑
j=τ

T∑
k=j

[
cj
(
d
[j,k]
R

)
+

k∑
t=j

htd
[t+1,k]
R

]
xjk (1a)

s.t.

t∑
j=r

T∑
k=t

xjk = 1 for t = τ, . . . , T, (1b)

xjk ≥ 0 for j, k : τ ≤ j ≤ k ≤ T, (1c)

where xjk is a decision variable that indicates an order in period j to meet demands in periods j, . . . , k,
for all j, k such that τ ≤ j ≤ k ≤ T . Although the decision variables are continuous, this
interpretation is well-defined: Chen and Zhang (2006) showed that there always exists an optimal
solution to (1) such that xjk ∈ {0, 1} for all j, k. The first term of the objective (1a) is the cost of
greedily using the initial inventory ŝr−1R to satisfy demand in periods r, . . . , τ − 1, and the coefficient
of xjk in the second term of the objective is the cost of satisfying demand in periods j, . . . , k with
an order in period j. The constraints (1b) ensure that demand is satisfied in each period τ, . . . , T .
We slightly abuse notation and use fr(R, ŝ

r−1) to refer to the model (1) as well as its optimal value.
The dual of fr(R, ŝ

r−1) is

fr(R, ŝ
r−1) =

τ−1∑
t=r

htd
[t+1,τ−1]
R + max

α

T∑
t=τ

dtRαt (2a)

s.t.

k∑
t=j

dtRαt ≤ cj
(
d
[j,k]
R

)
+

k∑
t=j

htd
[t+1,k]
R (2b)

for j, k : τ ≤ j ≤ k ≤ T.

Gopaladesikan et al. (2012) proposed a polynomial-time combinatorial algorithm that solves
fr(R, ŝ

r−1) and its dual (actually, an affine transformation of its dual), and used the primal
and dual optimal solutions in conjunction with some structural properties established by Chen and
Zhang (2006) to compute an allocation in the core of the economic lot sizing game (N, fr(·, ŝr−1)).
We summarize these results in the lemma below.

Lemma 1 (Chen and Zhang 2006, Gopaladesikan et al. 2012). Let x∗ and α∗ respectively be optimal
solutions to fr(R, s

r−1) and its dual, obtained using the algorithm by Gopaladesikan et al. (2012).
Then, x∗ and α∗ satisfy the following properties:

(a) α∗t + ht+1 ≥ α∗t+1 for t = τ, . . . , T .
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(b) For all d̄R = (d̄ rR, . . . , d̄
T
R ) such that d̄ tR ≤ dtR for t = r, . . . , T ,

k∑
t=j

d̄ tRα
∗
t ≤ cj

(
d̄
[j,k]
R

)
+

k∑
t=j

htd̄
[t+1,k]
R for j, k : τ ≤ j ≤ k ≤ T.

(c) There exist replenishment intervals {(a1, b1), . . . , (am, bm)} such that a1 = τ , bm = T , a` ≤ b`
and b` + 1 = a`+1 for all ` = 1, . . . ,m, and

x∗a`b` = 1 for ` = 1, . . . ,m,

b∑̀
t=a`

dtRα
∗
t = ca`

(
d
[a`,b`]
R

)
+

b∑̀
t=a`

htd
[t+1,b`]
R for ` = 1, . . . ,m.

3 Dynamic Cost Allocation

Now suppose that the time horizon starts in period r = 1, with each player having zero initial
inventory, and the players agree to implement an optimal solution x∗ to f1(N, 0) with corresponding
dual optimal solution α∗ and replenishment intervals {(a1, b1), . . . , (am, bm)} with a1 = 1 and
bm = T , obtained by the algorithm of Gopaladesikan et al. (2012).

In previous approaches to economic lot sizing games (Chen and Zhang 2006, Gopaladesikan
et al. 2012, van den Heuvel et al. 2007), the authors assume the entire cost of the optimal solution
is allocated up front at the start of the horizon. Instead, we make the more realistic assumption
that ordering costs must be allocated in the same period an order takes place, and holding costs for
each period must be allocated in that same period. Finally, we assume the players agree that at any
point in time, each player owns the inventory that was ordered to meet its own demand; in other
words, for each ` = 1, . . . ,m, the inventory of player i ∈ N is

ŝa`−1i = 0, (3a)

ŝr−1i = d
[r,b`]
i for r = a` + 1, . . . , b`. (3b)

Definition 2 (Kranich et al. 2005, Toriello and Uhan 2013). In a dynamic allocation χ =
(χti)i∈N,t=1,...,T , player i ∈ N is allocated a cost of χti in period t. The strong sequential core
of the economic lot sizing game (N, (fr)r=1,...,T ) is the set of dynamic allocations χ that satisfy the
following conditions for some optimal solution x∗ to f1(N, 0):

(a) Stage-wise efficiency : For each ` = 1, . . . ,m,∑
i∈N

χa`i = ca`
(
d
[a`,b`]
N

)
+ ha`d

[a`+1,b`]
N , (4a)∑

i∈N
χti = htd

[t+1,b`]
N for t = a` + 1, . . . , b`. (4b)

In other words, the costs incurred in each period must be fully distributed among the grand
coalition.

(b) Time-consistent stability : For each period r = a`, . . . , b` for some ` = 1, . . . ,m,

∑
i∈R

T∑
t=r

χti ≤ fr(R, ŝr−1) for R ⊆ N, (4c)
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where the initial inventories ŝr−1 are as defined in (3). In other words, at any point in the
time horizon, the cost allocated to any coalition from that point forward does not exceed its
cost if it abandons the grand coalition and continues on its own.

We define the dynamic allocation χ̂ as follows:

χ̂a`i =

b∑̀
t=a`

dti

(
α∗t −

t−1∑
u=a`

hu

)
+ ha`d

[a`+1,b`]
i

χ̂ti = htd
[t+1,b`]
i for t = a` + 1, . . . , b`

for ` = 1, . . . ,m. (5)

Theorem 3. The dynamic allocation χ̂ defined in (5) is in the strong sequential core of the economic
lot sizing game (N, (fr)r=1,...,T ).

Proof. First, we show that χ̂ is stage-wise efficient. For any ` = 1, . . . ,m,

∑
i∈N

χ̂a`i =
∑
i∈N

[ b∑̀
t=a`

dti

(
α∗t −

t−1∑
u=a`

hu

)
+ ha`d

[a`+1,b`]
i

]

=

b∑̀
t=a`

dtN

(
α∗t −

t−1∑
u=a`

hu

)
+ ha`d

[a`+1,b`]
N

=

b∑̀
t=a`

dtNα
∗
t −

b∑̀
t=a`

t−1∑
u=a`

hud
t
N + ha`d

[a`+1,b`]
N

=

b∑̀
t=a`

dtNα
∗
t −

b∑̀
t=a`

b∑̀
u=t+1

htd
u
N + ha`d

[a`+1,b`]
N

=

b∑̀
t=a`

dtNα
∗
t −

b∑̀
t=a`

htd
[t+1,b`]
N + ha`d

[a`+1,b`]
N

(i)
= ca`

(
dt[a`,b`]

)
+ ha`d

[a`+1,b`]
N ,

where (i) follows from Lemma 1(c). In addition, we have for all ` = 1, . . . ,m:∑
i∈N

χ̂ti =
∑
i∈N

htd
[t+1,b`]
i = htd

[t+1,b`]
N for t = a` + 1, . . . , b`.

Next, we show that χ̂ is time-consistently stable. Fix r ∈ {ap + 1, . . . , bp, ap+1}, for some
p ∈ {0, 1, . . . ,m} (ignoring a0 + 1, . . . , b0 and am+1). For any R ⊆ N , we have that

∑
i∈R

T∑
t=r

χ̂ti =

bp∑
t=r

htd
[t+1,bp]
R +

m∑
`=p+1

( b∑̀
t=a`

dtR

(
α∗t −

t−1∑
u=a`

hu

)
+

b∑̀
t=a`

htd
[t+1,b`]
R

)

=

bp∑
t=r

htd
[t+1,bp]
R +

m∑
`=p+1

( b∑̀
t=a`

dtRα
∗
t −

b∑̀
t=a`

t−1∑
u=a`

hud
t
R +

b∑̀
t=a`

htd
[t+1,b`]
R

)

=

bp∑
t=r

htd
[t+1,bp]
R +

m∑
`=p+1

( b∑̀
t=a`

dtRα
∗
t −

b∑̀
t=a`

b∑̀
u=t+1

htd
u
R +

b∑̀
t=a`

b∑̀
u=t+1

htd
u
R

)
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=

bp∑
t=r

htd
[t+1,bp]
R +

m∑
`=p+1

b∑̀
t=a`

dtRα
∗
t

(ii)

≤ fr(R, ŝ
r−1)

where (ii) holds because Lemma 1(b) implies that α∗ is a dual feasible solution for fr(R, ŝ
r−1).
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