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Abstract

Analysts predict impending shortages in the health care workforce, yet wages for health care workers

already account for over half of U.S. health expenditures. It is thus increasingly important to adequately

plan to meet health workforce demand at reasonable cost. Using infinite linear programming method-

ology, we propose an infinite-horizon model for health workforce planning in a large health system

for a single worker class, e.g. nurses. We give a series of common-sense conditions any system of

this kind should satisfy, and use them to prove the optimality of a natural lookahead policy. We then

use real-world data to examine how such policies perform in more complex systems; in particular, our

experiments show that a natural extension of the lookahead policy performs well when incorporating

stochastic demand growth.
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1 Introduction

Health workforce planning plays a key role in the United States and worldwide. Analysts project that by

2020 the U.S. will experience a shortage of up to 100,000 physicians, up to one million nurses and up to

250,000 public health professionals [57]. Adequate staffing of medical units has been shown to have a direct

impact in the quality of patient care [43], and also accounts for a considerable fraction of health care costs,

with wages for health care workers representing 56% of the $2.6 trillion spent on health care in the United

States in 2010 [36].

As the U.S. population continues to age [56] and demand for health care continues to grow, different

sectors of the population will compete for constrained and costly health care resources. It thus becomes

increasingly important to understand how the health care needs of the population are linked to long-term

workforce management plans of doctors, nurses and other medical personnel. The challenge is to ensure

that sufficient resources are available in the future to meet the growing health care needs of the population,

while accounting for the costs associated with meeting these needs. These workforce levels should meet

the demand for resources in the present and be positioned to meet demand for the foreseeable future [50],

an essentially infinite horizon. Furthermore, workforce plans should account for lags implied by training

new members of the workforce, attrition stemming from retirements, firings and resignations, and also the

adequate supervision of workers at different levels of the workforce hierarchy by their superiors.

Current practice has mostly focused on monitoring and evaluating health human resource systems [20],

yet a systematic framework is needed to understand the long term implications of the sequential decisions

made in those systems. Given the significant costs and the impact on health care outcomes associated with

workforce decisions, it is essential for stakeholders in large health systems to understand the role of the

planning horizon and the long-term consequences of health workforce plans.

We therefore propose to study the planning of workforce training, promotion and hiring within such

systems, with the main goal of designing a natural policy for decision makers to implement, and concurrently

determining common-sense conditions under which this policy is in fact optimal. Governments, regulatory

bodies, professional associations, representatives from the private sector and senior health system executives

may use the results presented in this paper to gain a deeper understanding on where incentives should be

placed to best meet the health workforce needs of the population. Our focus is on decisions at a health care
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policy or public policy level (i.e. not on individual hiring and firing decisions), and thus our model includes

several stylized simplifications. The problem scale we are interested in has workforces numbering in the

thousands or the tens of thousands, e.g. state or provincial health systems, large hospital conglomerates,

or the U.S. Veterans Administration. We therefore model the workforce as a continuous flow and allow

fractional quantities in our solutions.

We also assume centralized control of the system, which may only be realistic in some cases. Neverthe-

less, even for those systems in which this is not entirely the case, the conditions we list can help decision

makers with limited control in monitoring the system’s behavior and deriving policy recommendations; this

is precisely the approach [51] take to study the U.S. pediatric nurse practitioner workforce.

Although uncertainty is present in any health system’s dynamics, the model we propose is deterministic,

and represents a first step in understanding how hiring, training and promotion interact. The deterministic

model allows for some preparation against uncertainty through sensitivity analysis. In addition, the structure

of solutions suggested by our analysis can be successfully extended to models with uncertainty; we include

computational experiments on a model with stochastic demand growth to demonstrate this.

1.1 Our Contribution

We propose a discounted, infinite linear programming model for strategic workforce planning, which in-

cludes training, promotion and hiring decision for a class of health workers within a hierarchical system. The

model takes as input a demand forecast, workforce payroll, training and hiring costs, workforce hierarchy

parameters and a discount factor. Though similar finite models have appeared in earlier work [37, 38, 39],

our focus here is to derive structural results and study workforce management policies that are provably

optimal under reasonable assumptions. Specifically, we consider the following to be our main contributions:

i) We give a series of common-sense conditions any system of this kind should satisfy under our as-

sumptions, demonstrate the pathological behavior that can occur when they are not satisfied and de-

rive useful structural properties of the optimal solutions from the conditions. Though based on our

assumptions, these conditions may help guide decision making in more complex systems.

ii) We prove that a natural lookahead policy is optimal for our model. In addition to optimizing this

model in particular, the result is useful because lookahead policies mimic how more complex models
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may be managed in practice.

iii) We provide a two-part computational study based on real-world nursing workforce data. The first

component demonstrates the effectiveness of the lookahead policy in a more complex deterministic

system with additional detail, such as worker age. The second component shows that lookahead poli-

cies perform extremely well in a setting with stochastic demand growth, arguably the most important

source of uncertainty in our model.

The remainder of the paper is organized as follows: This section closes with a literature review. Section

2 formulates our model and states the conditions we assume. Section 3 uses the conditions to show some

structural properties of optimal solutions, proves the optimality of our proposed policy and discusses duality

and sensitivity. Section 4 discusses experiments that test our policy on more complex models, and Section 5

concludes outlining future research avenues. The Appendix contains technical proofs and some additional

modeling information.

1.2 Literature Review

Workforce planning models are not new to the industrial engineering and operations research literature,

with work stretching back several decades, such as [1, 9, 34, 41, 46, 52]. Workforce management models

have been developed to manage workforce in call centers [27], military personnel [29], medical school

budgets [16, 40], as well as to address cross-training and flexibility of the workforce [44, 58]. [11, 25,

55] provide overviews of workforce/manpower planning models, while [15] discuss the need of a greater

interface between operations and human resource management models and the complexities associated with

those models. Recent work continues to address workforce issues in operational or tactical time frames,

e.g. [10]; this focus on shorter horizons extends also to health care and emergency workforce planning

[14, 23, 26, 62]. The long-term workforce capacity planning models [6, 28, 54] are related to our work, yet

they concentrate only on the recruitment and retention of personnel without incorporating some of the other

decisions required to manage health care personnel. On the other hand, models such as [8, 61] concentrate

on skill acquisition and on-the job learning, focusing on a shorter time scale. The results in [59, 60] and the

recent survey [55] particularly highlight the need to research long-term health workforce planning, among

other areas.
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The work in [37, 38, 39] develops a workforce planning model of the registered nursing workforce of

British Columbia. The model ranges over a 20-year planning horizon, and provides policy recommendations

on the number of nurses to train, promote and recruit to achieve specified workforce levels. Our proposed

model includes similar decisions, but is formulated over an infinite horizon. Furthermore, whereas this past

work was only numerical, we include both a theoretical analysis on the structure of optimal policies as well

as numerical experiments.

Infinite-horizon optimization has been widely applied to various operational problems, mostly via dy-

namic programming [45, 63]. However, the last two or three decades have also seen the direct study of

infinite mathematical programming models and specifically infinite linear programs for operations manage-

ment applications. Some problems studied in the literature include inventory routing [2, 3], joint replenish-

ment [4, 5], production planning [19, 48], and equipment replacement [35]. To our knowledge, although

dynamic programming has been applied to model some workforce management issues, e.g. [28, 46], infinite

linear programming has not yet been considered in the literature to address this topic. Furthermore, work-

force management possesses differences with other resource management problems that deal mostly with

products [28], which impedes the direct application of existing results.

A general reference for infinite linear programming is [7]. Our models operate in countable dimensions,

and follow the general structure of models such as [19, 31, 32, 47, 48, 49, 53]. For a recent overview of

optimization in health care, we refer the reader to [12].

2 Model Formulation and Assumptions

We consider an infinite-horizon, discounted workforce planning model with the following characteristics.

There is a deterministic demand forecast for each period, and the population of workers at the lowest level of

the system, e.g. junior nurses, must be at least equal to that period’s demand. The system has a fixed number

of levels above this first level; worker population at each higher level must be at least a fixed fraction of

the same period’s population one level below, to ensure adequate supervision. Between one period and

the next, a fixed fraction of each level’s population leaves the system, accounting for retirements, firings

and resignations. New workers may be added to any level directly via hiring, or indirectly through student

admission and training at the first level, and promotion at higher levels; there is no down-sizing, i.e. mass
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firing to reduce workforce levels. Student populations take one period to train before entering at the first

workforce level; similarly, only workers who have been in a level for at least one period may be promoted.

We discuss how to extend our results to models with longer training in the subsequent sections.

The model is defined by the following parameters.

• n≥ 2: Number of workforce hierarchy levels.

• hk > 0: Per-period variable payroll costs for level k = 1, . . . ,n.

• ck > 0: Variable training (k = 0) or hiring (k ≥ 1) costs for level k = 0, . . . ,n.

• ck,k+1≥ 0: Variable promotion cost from level k= 1, . . . ,n−1 to k+1. Workers may only be promoted

once they have worked at a particular level for at least one period.

• γ ∈ (0,1): Discount factor, adjusted to account for cost increases. That is, if γ̄ is the nominal discount

rate and α > 1 is the cost growth rate, then γ = αγ̄; this is the reciprocal of the “health care inflation.”

• dt > 0: Forecasted level-1 workforce demand for period t = 1, . . . .

• qk,k+1 ∈ (0,1): Minimum fraction of level-k workers needed at level k+1, for k = 1, . . . ,n−1.

• pk ∈ (0,1): Per-period retention rate of workers that stay in the system at level k = 0, . . . ,n from one

period to the next. The attrition rate 1− pk is the fraction of workers at level k expected to leave the

system from one period to the next; this includes firing, retirement and quitting.

• s0
k : Students (k = 0) or workers in level k = 1, . . . ,n at the start of the current period, before attrition.

The model’s decision variables are:

• st
k: Students (k = 0) or workers in level k = 1, . . . ,n at end of period t = 1, . . . .

• xt
k: Students admitted (k = 0) or workers hired at level k = 1, . . . ,n in period t = 1, . . . .

• xt
k,k+1: Workers promoted from level k = 1, . . . ,n−1 to k+1 in period t = 1, . . . .

Our strategic workforce planning problem then has the following formulation.

inf C(s,x) =
∞

∑
t=1

γ
t−1
( n

∑
k=0

ckxt
k +

n−1

∑
k=1

ck,k+1xt
k,k+1 +

n

∑
k=1

hkst
k

)
(1a)
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s.t. st
1 ≥ dt , ∀ t = 1, . . . (1b)

st
k+1−qk,k+1st

k ≥ 0, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (1c)

p1st−1
1 − st

1 + p0xt−1
0 − xt

12 + xt
1 = 0, ∀ t = 1, . . . (1d)

pkst−1
k − st

k + xt
k−1,k− xt

k,k+1 + xt
k = 0, ∀ k = 2, . . . ,n−1, ∀ t = 1, . . . (1e)

pnst−1
n − st

n + xt
n−1,n + xt

n = 0, ∀ t = 1, . . . (1f)

pkst−1
k − xt

k,k+1 ≥ 0, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (1g)

st ,xt ≥ 0, ∀ t = 1, . . . , (1h)

where st
0 = xt

0 for t = 0, . . . . We take the feasible region to be the subset of solutions for which the objective

is well defined and finite [48]. In the model, the objective (1a) minimizes discounted cost over the infinite

horizon. The demand satisfaction constraint (1b) ensures enough level-1 workers are present to satisfy

projected demand each period, while (1c) ensures the minimum required fraction of level-(k+ 1) workers

are present to supervise level-k workers. The flow balance constraints (1d–1f) track workers present at each

level from one period to the next, and (1g) limits the promoted workers from level k to k+1 to those present

in level k for at least one period. The domain constraints (1h) ensure non-negativity of worker levels, hires,

promotions and student admissions.

Whereas most of the model’s parameters are stationary and can thus be explicitly given or recorded, the

demand forecast is an infinite sequence that cannot be explicitly given. In practical terms this forecast can

only be modeled implicitly, for instance by giving a first-period demand and a per-period growth rate. While

our results hold for an arbitrary sequence satisfying our assumptions, our policy requires explicit knowledge

of only the first few values of the sequence (two in the model as currently stated, but see Corollary 3.4 below

for an extension). For a discussion of related issues with non-stationary data in infinite-horizon optimization,

see e.g. [30].

We next list several conditions the model should satisfy. These conditions are common in many real

world settings or are reasonable approximations, and are necessary for most of our subsequent results.

Many are also necessary to avoid pathological behavior. We begin with technical assumptions.

Assumption 2.1 (Technical assumptions).
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i) Finite total demand: Total discounted demand converges.

∞

∑
t=1

γ
t−1dt < ∞ (2a)

ii) Linear costs: The objective function is linear with respect to the decision variables s and x.

The former assumption is necessary to have a finite objective and thus a feasible problem. The latter

is required to apply linear programming techniques. Though large changes in a system’s workforce could

render some costs non-linear (e.g. a large increase in hiring leading to an increase in hiring and payroll

costs because of the labor market’s supply), our results suggest that in the long run moderate decisions

predominate, and thus the assumption of linearity is reasonable.

Assumption 2.2 (Growing demand). The sequence (dt) is non-decreasing.

dt ≤ dt+1, ∀ t = 1, . . . (2b)

This assumption reflects most contemporary health care systems in which demand is expected to grow

for the foreseeable future, and ensures that training and promotion will be perpetually necessary within the

system. As discussed by [21], given changes in the demographics of the population, as well as expanded

coverage under the Affordable Care Act, demand for primary care services in the United States is expected to

grow by 14% by 2025. This expected growth in demand for health care workers is not unique to the United

States; it is estimated that an additional 1.9 billion people will seek access to health care by 2035 [17]. In

more general cases, even if demand is only expected to be eventually non-decreasing, our conclusions can

be applied starting at the period where non-decreasing growth begins, with a finite model accounting for the

system in preceding periods.

The first non-technical assumption concerns the relative costs of payroll, promotion and hiring.

Assumption 2.3 (Promotion is preferable). Even when factoring attrition, payroll costs and discounting,

promotion is cheaper than hiring.

c0

γ p0
≤ c1,

ck +hk

γ pk
+ ck,k+1 ≤ ck+1, ∀ k = 1, . . . ,n−1 (2c)
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If this assumption does not hold at some level in the hierarchy, there is no incentive to train and promote

from within beyond that point. This condition should be satisfied by many workforce systems, both in health

care and in other industries.

The next assumption is slightly more specific to the health care industry, but still common in other

industries.

Assumption 2.4 (Non-increasing retention). The hierarchy does not tend to become top-heavy:

pk ≥ pk+1, ∀ k = 1, . . . ,n−1 (2d)

This assumption is natural in health care hierarchies such as nursing, where higher-level workers are

usually older, since older workers tend to retire or leave the system for other reasons at a higher rate. The

assumption is more problematic, for example, in industries where tenure guarantees at an intermediate level

imply an unnaturally high attrition at lower levels.

For some of our results, it is necessary to further strengthen the previous assumption.

Assumption 2.4’ (Equal retention). Retention and attrition are equal at all hierarchy levels:

pk = pk+1, ∀ k = 1, . . . ,n−1 (2d’)

Though it appears restrictive, in many real-world systems the top and bottom retention rates in fact only

differ by a few percentage points [37, 38, 39].

Assumption 2.5 (Non-decreasing payroll). Salaries increase within the hierarchy, even when accounting

for attrition:

hk

1− γ pk
≤ hk+1

1− γ pk+1
, ∀ k = 1, . . . ,n−1 (2e)

As the next example shows, this condition prevents undesirable behavior.

Example 1 (Down-sizing by promotion). Consider a two-level system which is drastically over-staffed. Let

dt = ε for all t, where ε > 0 is a small positive number, and let s0
1≫ ε . If (2e) is not satisfied, it may be
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optimal because of (2d) to promote all but ε workers to level 2, effectively down-sizing the workforce by

promoting most of it, and achieving lower costs in the process. Such behavior could lead to detrimental side

effects, such as poor morale in the remaining workforce.

Assumption 2.6 (Moderate demand growth). Demand does not grow too quickly:

dt+1

dt
≤ pmin

qmax
, ∀ t = 1, . . . , (2f)

where pmin = mink pk and qmax = maxk qk,k+1.

Intuitively, the assumption ensures enough worker population at each level to promote to the next level

as demand grows; it is easily satisfied in most systems. For example, if n = 2, p1 = p2 = 0.8 and q12 = 0.25,

(2f) requires the demand growth to be no more than 320% per period, a condition met in virtually any

system. Furthermore, as the next example shows, when this assumption is not met, the planning horizon

necessary to compute an optimal solution may be arbitrarily long.

Example 2 (Excessive demand growth). We consider a two-level system that experiences excessive demand

growth for a given number of periods, and constant demand thereafter. To simplify the numbers in the

example, we set p1 = p2 = q12 = 1. For a fixed m≥ 2 let

dm
1 = 1, dm

t =


2t−1−1, t = 2, . . . ,m

2m−1−1, t = m+1, . . .
,

and s0
0 = 0, s0

1 = s0
2 = 1; note that dt+1/dt > p1/q12 = 1 for t = 2, . . . ,m−1. Table 1 details the first demand

values in the sequence, for m = 3,4,5. The table also lists a solution that satisfies demand without any

hiring, which can be made optimal by choosing large enough hiring costs. Although projected demand for

the first three periods is identical in all cases, the optimal number of students admitted in the first period

changes with m; for general m, we get x1
0 = (2m−2−1)/2m−3. In other words, the current period’s decision

may depend on a horizon of arbitrary length m.

As Example 2 suggests, the condition (2f) can be relaxed; we include the best possible condition of this

kind we could derive in the Appendix (see the proof of Claim A.3). However, (2f) is much simpler to state
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t 1 2 3 4 5 · · ·
d3

t 1 1 3 3 3 · · ·
xt

0 1 3 0 0 0 · · ·
st

1 1 3/2 3 3 3 · · ·
st

2 1 3/2 3 3 3 · · ·
d4

t 1 1 3 7 7 · · ·
xt

0 3/2 7/2 7 0 0 · · ·
st

1 1 3/2 7/2 7 7 · · ·
st

2 1 3/2 7/2 7 7 · · ·
d5

t 1 1 3 7 15 · · ·
xt

0 7/4 15/4 15/2 15 0 · · ·
st

1 1 15/8 15/4 15/2 15 · · ·
st

2 1 15/8 15/4 15/2 15 · · ·

Table 1: Sample demand sequences and solutions with no hiring for m = 3,4,5 in Example 2.

and suffices for any practical situation.

3 Optimal System Behavior

We begin our characterization of optimal solutions of (1) by outlining structural properties satisfied in mod-

els that meet our assumptions. We include only simple proofs here and relegate any complex proof to the

Appendix.

Lemma 3.1 (No unnecessary hiring). Suppose the model parameters satisfy Assumptions 2.1 through 2.3.

There is an optimal solution of (1) in which no hiring takes place when promotion is possible:

xt
1 = 0, ∀ t = 2, . . . (3a)

(pkst−1
k − xt

k,k+1)x
t
k+1 = 0, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (3b)

Proof. If a solution does not satisfy either condition, a simple substitution produces another solution with

equal or lesser objective that does satisfy the conditions. �

Lemma 3.2 (No excess training or promotion). Suppose Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 hold. Fur-

thermore, suppose either Assumption 2.4 holds and n = 2, or Assumption 2.4’ holds. Then there is an
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optimal solution of (1) in which no excess promotion or student admittance occurs:

(st
1−dt)xt−1

0 = 0, ∀ t = 2, . . . (4a)

(st
k+1−qk,k+1st

k)x
t
k,k+1 = 0, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (4b)

Like the preceding lemma, Lemma 3.2 follows from applying a substitution or perturbation to any

solution that does not satisfy it. However, unlike in the hiring case, a perturbation in promotion has ripple

effects in higher levels of the hierarchy and in later periods that render it much more complex.

With these two structural properties in place, we are able to characterize optimal solutions of (1). Con-

sider the two-period restriction of (1) given by

min
n

∑
k=0

ck(x1
k + γx2

k)+
n−1

∑
k=1

ck,k+1(x1
k,k+1 + γx2

k,k+1)+
n

∑
k=1

hk(s1
k + γs2

k) (5a)

s.t. st
1 ≥ dt , ∀ t = 1,2 (5b)

st
k+1−qk,k+1st

k ≥ 0, ∀ k = 1, . . . ,n−1, ∀ t = 1,2 (5c)

p1st−1
1 − st

1 + p0xt−1
0 − xt

12 + xt
1 = 0, ∀ t = 1,2 (5d)

pkst−1
k − st

k + xt
k−1,k− xt

k,k+1 + xt
k = 0, ∀ k = 2, . . . ,n−1, ∀ t = 1,2 (5e)

pnst−1
n − st

n + xt
n−1,n + xt

n = 0, ∀ t = 1,2 (5f)

pkst−1
k − xt

k,k+1 ≥ 0, ∀ k = 1, . . . ,n−1, ∀ t = 1,2 (5g)

st ,xt ≥ 0, ∀ t = 1,2, (5h)

A one-period lookahead policy constructs a solution to (1) by iteratively solving (5), fixing the variables for

t = 1, stepping one period forward by relabeling t← t+1 for all variables and parameters, and repeating the

process. In practice, this corresponds to a decision maker planning the current period’s promotion, training

and hiring based on current demand and the next period’s forecasted demand, while ignoring demand for

subsequent periods.

Theorem 3.3 (Optimality of one-period lookahead policy). Suppose Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6

are satisfied. Suppose either Assumption 2.4 holds and n = 2, or Assumption 2.4’ holds. Then one-period
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lookahead policies are optimal.

Corollary 3.4 (Increased training time). Suppose students require L≥ 1 periods to train instead of one, with

all other system characteristics remaining the same. Under the conditions of Theorem 3.3, L-period looka-

head policies are optimal, where an L-period lookahead is defined analogously to a one-period lookahead

but with L additional periods instead of one.

Proof. The proof of Theorem 3.3 still applies; we are simply relabeling level-0 variables. �

These results indicate that good workforce planning decisions can be made using a minimal amount of

forecasted information, which strengthens the robustness of the resulting solution since forecasts of more

distant demand naturally tend to be less reliable. This also places our result within the context of solution

and forecast horizons; see, e.g., [18] for formal definitions and discussion.

Moreover, lookahead policies mimic how such large workforce systems can be managed in practice.

The optimization of the lookahead model (5) is split into two separate sets of decisions: First, the model

decides how to meet the current period’s demand (period 1) at minimum cost given the current workforce

levels and the new entering workforce; this is a more tactical, short-term decision in which the only recourse

is hiring and promotion. Then, based on this decision, the model strategically projects ahead one period to

decide the number of students to admit into training, so that the next period’s demand can be met also at

minimum cost. In (5), the second-period variables are only used to determine this admission quantity, and

are not in fact implemented.

Although the lookahead policy given by (5) optimally solves the original infinite-horizon problem, it is

worth noting that this policy is quite simple to implement. At every period, it involves only the solution of

a small, two-period LP; for example, in a system with four hierarchy levels, the number of variables in the

model is 24, a model size that can be solved even in spreadsheet optimization packages in a few seconds

or less. This suggests that these policies could be useful in more complex settings; we explore this idea

experimentally in Section 4.

Another important question related to (1) is duality. A dual satisfying the typical complementary rela-

tionships can shed additional light on the structure of optimal solutions to (1). Furthermore, optimal dual

prices may also be useful as indicators of the model’s sensitivity to parameters such as demand. However,
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the infinite horizon implies significant technical complications and gives rise to pathologies not encountered

in the finite case.

Extending the typical LP dual construction to (1) yields

sup D(µ,λ ,η) =
∞

∑
t=1

dt µ
t
1− p0s0

0λ
1
1 −

n−1

∑
k=1

pks0
k(λ

1
k +η

1
k,k+1)− pns0

nλ
1
n (6a)

s.t. µ
t
k−qk,k+1µ

t
k+1−λ

t
k + pkλ

t+1
k + pkη

t+1
k,k+1 ≤ γ

t−1hk, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (6b)

µ
t
n−λ

t
n + pnλ

t+1
n ≤ γ

t−1hn, ∀ t = 1, . . . (6c)

p0λ
t
1 ≤ γ

t−2c0, ∀ t = 2, . . . (6d)

λ
t
k ≤ γ

t−1ck, ∀ k = 1, . . . ,n, ∀ t = 1, . . . (6e)

−λ
t
k +λ

t
k+1−η

t
k,k+1 ≤ γ

t−1ck,k+1, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (6f)

µ
t ,η t ≥ 0, λ

t unrestricted, ∀ t = 1, . . . , (6g)

where we similarly define the feasible region as a subset of the points for which the objective is well defined

and finite. However, this model does not satisfy strong or even weak duality with (1).

Example 3 (No weak duality; adapted from [53]). Suppose s0
n > 0 and let M > 0. Define λ̂ t

n = −M/pt
n,

∀ t = 1, . . . , and set all other variables to zero. The solution is feasible for (6), and its objective function

value is positive and goes to infinity as M→∞. However, (1) is clearly feasible and bounded below by zero.

The following result addresses this problem.

Theorem 3.5. Suppose we can change the equality constraints (1d–1f) to greater-than-or-equal constraints

(and thus impose λ t ≥ 0) for all but a finite number of indices t without affecting optimality in (1). Let (ŝ, x̂)

and (µ̂, λ̂ , η̂) be feasible for (1) and (6) respectively.

i) Weak duality: D(µ̂, λ̂ , η̂)≤C(ŝ, x̂).

ii) Strong duality: Both solutions are optimal and D(µ̂, λ̂ , η̂) = C(ŝ, x̂) if and only if complementary

slackness holds (in the usual sense) and transversality [48, 49, 53] holds:

liminf
t→∞

p0λ̂
t+1
1 x̂t

0 +
n−1

∑
k=1

pk(λ̂
t+1
k + η̂

t+1
k )ŝt

k + pnλ̂
t+1
n ŝt

n = 0. (7)
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Proof. If all constraints eventually become greater-than-or-equal, then the off-diagonal constraint matrix of

(1) in inequality form is eventually non-negative, implying that [48, Assumption 3.1] holds, and thus the

results follow from [48, Theorems 3.3 and 3.7]. �

Corollary 3.6. The conditions of Theorem 3.5 apply, and therefore weak and strong duality hold, if demand

is eventually non-decreasing.

The results in [48] imply we can use optimal solutions of (6) as shadow prices to perform sensitivity

analysis on (1).

Example 4 (Sensitivity analysis). Consider a two-level system in which the incoming worker populations

in period 1 require some promotion from level 1 to level 2, with enough level-1 workers remaining after

promotion to meet demand in period 1 but not later. Based on these initial conditions and Assumptions 2.1

through 2.6, Lemmas 3.1 and 3.2 imply the following structure to the optimal solution:

xt
1 = xt

2 = 0, xt
0,x

t
12 > 0, xt

12 < p1st−1
1 , st

2 = q12st
1, ∀ t = 1, . . .

s1
1 > d1; st

1 = dt , ∀ t = 2, . . .

The solution for (6) that satisfies complementary slackness and transversality is:

µ
1
1 = 0

µ
t
1 =

γ t−2c0

p0

(
1− γ p1 +q12(1− γ p2)

)
+ γ

t−1q12c12(1− γ p2)

+ γ
t−1(h1 +q12h2), ∀ t = 2, . . .

µ
1
2 =

1
1+q12

(
c0

p0
(p1− p2)+ c12(1− γ p2)+(h2−h1)

)
µ

t
2 = γ

t−2(1− γ p2)

(
c0

p0
+ γc12

)
+ γ

t−1h2, ∀ t = 2, . . .

λ
1
1 =

1
1+q12

(
c0

p0
(p1 +q12 p2)−q12c12(1− γ p2)− (h1 +q12h2)

)
λ

t
1 =

γ t−2c0

p0
, ∀ t = 2, . . .

λ
1
2 =

1
1+q12

(
c0

p0
(p1 +q12 p2)+ c12(1+ γq12 p2)− (h1 +q12h2)

)
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λ
t
2 = γ

t−2
(

c0

p0
+ γc12

)
, ∀ t = 2, . . .

η
t
12 = 0, ∀ t = 1, . . .

It can be verified that this solution is dual feasible provided the assumptions hold. Suppose in particular

that demand grows based on a rate 1 < β < 1/γ , so that dt = β t−1d1. It follows that

∞

∑
t=1

dt µ
t
1 = d1

[
c0

γ p0

(
1− γ p1 +q12(1− γ p2)

)
+q12c12(1− γ p2)+h1 +q12h2

]
βγ

1−βγ
.

This expression indicates how the optimal cost would change if either d1 or β vary slightly from their given

values.

4 Computational Study

To evaluate the efficacy of our proposed models and policies, we performed computational experiments

based on the British Columbia nursing workforce described in [37, 38, 39]. Health care human resource

data is more readily available from Canadian provinces because of their centralized control of health care.

However, similar data from U.S. systems can be used within a model such as ours to derive policy recom-

mendations, e.g. [51], even though U.S. health systems are usually de-centralized.

We first discuss the performance of lookahead policies applied to more complex, albeit deterministic,

settings. We then develop a simulation model that considers uncertainty in demand growth and evaluate the

performance of our lookahead policies in this setting.

4.1 Deterministic experiments

While model 1 provides useful insights into the behavior of strategic workforce planning models, possible

extensions include the differentiation of workers by age (as it affects attrition rates), and the extension of the

length of student training (to four years). In order to evaluate the performance of our lookahead policies,

we began by solving the problem over a 25-year planning horizon (a full information model) and used the

solution to the first 20 years as our benchmark. We then compared the results to a solution obtained by

implementing a four-year lookahead policy of this extended model.
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Figure 1 outlines the structure of the extended model and its parameters (see further model description

in the Appendix). Students are admitted into the training program, where they take four years to train before

entering the workforce. The probabilities of students continuing their education depend on the school year

of the student (with greater attrition in the first year of the program). After graduation, students enter the first

workforce level as direct care nurses. In level 1, the number of workers has to meet current demand. This

demand is met by workers that have not retired or been promoted, graduates from the training program and

workers hired externally. Level 2 consists of nurse managers, a supervisory position to the first level; nurse

managers are either hired externally or promoted from the first workforce level. To account for transition

shock and adaptation to the profession [24], we assume that Level-1 workers must have worked for at least

one year before being promoted into the second workforce level. In both levels, retention rates depend on

the age of the workers. The average retention in level 2 is slightly higher than the average retention in level

1, which would violate Assumption 2.4 if the averages applied to all age groups. Furthermore, since the

parameter is age-dependent in this model, the actual retention in each level depends on the age distribution

of the worker population. This difference in attrition rates did not impact our results, further supporting the

robustness of our findings. We set the discount factor to γ = 0.95.

We tested the model in nine scenarios. Among the nine scenarios, the baseline scenario represents the

estimated demand in British Columbia, Canada, starting in 2007; we calculated demand by extrapolating

the population growth between 1996 and 2006 [13]. Scenarios 1 through 4 evaluate the impact of different

demand growth rates. Scenario 5 evaluates the impact of limiting the growth of the training program.

Scenarios 6, 7 and 8 evaluate the performance of the lookahead policy in extreme conditions where demand

has a peak, hiring growth is limited, and costs are varied. The parameter characteristics and descriptions of

the scenarios are summarized in the following list.

Baseline Scenario Fixed demand growth rate of 1.25% per year. Projected demand growth in British

Columbia, Canada.

Scenario 1 Fixed demand growth rate of 0.01% per year. Very low demand growth.

Scenario 2 Fixed demand growth rate of 2.5% per year. High demand growth.

Scenario 3 Linearly accelerating demand growth from 0% per year to 2.5% per year over 25 years.
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Students
4 years in school

Admissions
$57,991/student

Workforce Level 1
Meet growing demand 
Payroll cost $87,600/worker/yr

Entering Probability
91%

Hiring Level 1
$113,880/worker

Workforce Level 2
Supervise Level 1 workers (1 level 2 : 10.5 level 1)
Payroll cost $95,104/worker/yr
Has worked in Level 1 for at least 1 yr

Hiring Level 2
$283,800/worker

Attrition Rate
by School Year

10%, 2%, and 5% 
in year 1, 2, and 3 

Age-dependent Attrition
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$2

8,
50

0/
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Age-dependent Attrition

Decisions
Unit Cost

Figure 1: Flow chart of model used in computational examples.

Scenario 4 Linearly decelerating demand growth from 2.5% per year to 0% per year over 25 years.

Scenario 5 Fixed demand growth rate of 1.25% per year and student population growth limited to no more

than 1% per year. Major restrictions in training growth.

Scenario 6 Fixed demand growth rate of 1.25% per year in years 1 through 9 and 11 through 25, demand

doubled in year 10. Level-1 hiring growth limited to no more than 50% per year. This scenario

simulated a sudden jump of demand, which might be due to a drastic change in roles and scope of

practice of the workforce. We assumed that drastic changes in the number of workers hired could not

be made without incurring very large recruitment costs.

Scenario 7 Fixed demand growth rate of 1.25% per year in years 1 through 9 and 11 through 25, demand

doubled in year 10. Level-1 hiring growth limited to no more than 50% per year, and zero student

admission cost. In addition to the jump in demand and limited hiring growth, we eliminated the

admission cost to increase the incentive to admit students in advance and thus potentially undermine
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the four-year lookahead model.

Scenario 8 Fixed demand growth rate of 1.25% per year in years 1 through 9 and 11 through 25, demand

doubled in year 10. Level-1 hiring growth limited to no more than 50% per year, and zero level-1

payroll cost. In addition to the jump in demand and limited hiring growth, we eliminated the level-1

payroll cost to increase the incentive to admit students in advance and thus potentially undermine the

four-year lookahead model.

We compared the solutions obtained using the full information model and the lookahead model. Figure

2 shows results for the baseline scenario and scenarios 1 through 5. In these scenarios, we obtained the same

solutions using the full information and the lookahead models. The lookahead model was robust in these

scenarios, even if Assumption 2.4 was slightly violated by our system’s parameters. Even in Scenario 5,

where education growth was drastically limited, the full information model did not differ from the lookahead

policy because training students a year in advance incurred extra payroll costs, making early training more

expensive than hiring. Though education growth was limited, hires served as a back-up action in Scenario 5

and made the lookahead and the full information methods operate identically.

Figure 3 shows results for scenarios 6, 7, and 8; in this case, the lookahead policy resulted in slightly

higher total costs. Compared to the full information solution, the percentage differences in total cost were

only 0.026%, 0.129%, and 0.014% respectively. The lookahead model resulted in more admissions, more

level-2 hirings, and fewer level-1 hirings than the full information model. Since level-1 hiring was limited,

fewer level-1 workers were hired and more students were trained as an alternative. Level-2 workers were

hired when the model reached a point where promotions could not meet the level-2 workforce demand due

to the insufficient number of level-1 workers. The lookahead model failed to anticipate future changes in

demand, not training sufficient students nor hiring sufficient level-1 workers in advance.

Overall, the lookahead policy showed robustness in the nine scenarios modeled. In the most extreme

scenarios, where demand had a sudden jump and hirings or admissions were limited, the lookahead policy

and the full information policy still showed very little difference, particularly in total cost.
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Figure 2: Breakdown of the total number of admissions and hirings in baseline scenario and scenarios 1
through 5 over the course of 20 years.
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4.2 Experiments with stochastic demand growth

To further evaluate the lookahead policy, we examined the performance of our model in a stochastic setting

where the demand growth rate in each year (denoted ρ) is an i.i.d. random variable uniformly distributed

between 0% and 2.5% (the mean growth rate is thus kept at 1.25%, as in the deterministic baseline scenario

[39]).

We applied the lookahead policy sequentially. After the simulated demand dt is realized in year t, we

project year (t+1)’s demand to be d̂t+1 =
(
1+(1+δ )E[ρ]

)
dt , where δ is a forecast factor used to represent

the planner’s level of risk-aversion. When δ > 0, the planner assumes demand grows faster than the mean;

for δ < 0, the planner assumes the demand grows slower than the mean; for δ = 0, the planner plans for

the expected growth. After solving the lookahead model for years t and t +1, the process steps forward one

year, true demand in t +1 is observed, and hiring decisions are made if the workforce is insufficient to meet

the demand. The algorithm proceeds to the next period and the look-ahead policy is sequentially applied.

This procedure iterates until period 20. In our simulation, each policy was solved with 2000 replications.

We considered two benchmarks for the lookahead policies. The first is the full information model; as

in the deterministic experiments, the full information solution solves a single LP with full (deterministic)

access to the uncertain parameters. In the stochastic case, this implies solving one full information LP for

every simulated replication and averaging the resulting costs. Because this solution has earlier access to the

uncertain data, it provides a lower bound on any policy’s cost.

In addition, we included as a second benchmark a naı̈ve policy implemented without resorting to our

LP. This policy sets workforce level targets for the current period based on demand or incoming level-1

workforce, whichever is greater, and meets these levels by promoting as much as possible before hiring.

The policy then determines student admissions using the following simple rule: If the level-1 workforce

exactly meets demand, admissions are scaled up from the previous year based on expected demand growth.

Conversely, if the level-1 workforce exceeds demand, admissions are scaled down by the same percentage

that the workforce exceeds demand by. For example, if workforce is 105% of demand, admissions are set to

95% of the previous year’s number.

As shown in Figure 4, by varying the forecast factor δ over 1% increments between −100% and 100%,

the lookahead policy achieves lowest cost at δ ∗ = −33% (the best delta policy). All lookahead policies
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were within 1.3% of the full information total cost (within 0.8% at δ ∗ = −33%). These cost differences

appear small because payroll cost makes up more than 90% of the total. In particular, there is a fixed

amount of unavoidable payroll cost needed to satisfy demand, regardless of any decisions. By subtracting

the unavoidable payroll cost from the total cost, we are left with the controllable costs, i.e. promotion cost,

hiring cost, admission cost, and payroll cost in excess of the unavoidable. The lookahead policies are

all within 42% of the full information controllable cost, and the policy with δ ∗ = −33% is within 26%.

Conversely, the naı̈ve heuristic exceeds the full information benchmark by 1.4% in total cost, and by 46%

in controllable cost. The extreme lookahead policies (with δ = ±100%) perform only slightly better than

the naı̈ve heuristic, 42% versus 46% above full information in controllable costs, while the best lookahead

policy is only 26% above, indicating that an intelligent choice of forecast factor can significantly impact

the policy’s performance: Based on our cost estimates, the use of a lookahead policy with the best forecast

factor would represent annual savings of up to $14.8 million per year compared to the naı̈ve heuristic, or up

to $252 million over the 20-year planning horizon, assuming a discount factor of 0.95.
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Figure 4: Gaps for forecast factor δ lookahead policy and naı̈ve heuristic compared to full information cost,
in terms of (a) total cost and (b) controllable cost.

In our simulation, δ ∗ is less than 0. This implies that it is more favorable to adopt a policy that plans

for demand growth smaller than the mean. To explain the rationale behind this behavior, Figure 5 shows

the breakdown of the total cost as a proportion of the full information cost, and Figure 6 shows a similar

breakdown in terms of controllable cost. The model assumes the workforce cannot be downsized, and pay-
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Figure 5: Breakdown of total cost under different policies: payroll costs dominate the other costs.
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Figure 6: Breakdown of controllable cost under different policies: look-ahead policies stay within 40% from
full information model with minimal gap of 22% at δ ∗ = 33%.

roll cost makes up more than 90% of the total. Therefore, an oversized workforce will remain in the system

many years and will thus increase the cost dramatically. To further explore this idea, we also simulated a

policy with no training that directly hires 100% of its workforce. However, the no-training policy performed

far worse, with a gap of 4.7% in terms of total cost or 150% in controllable cost. Furthermore, the full in-

formation solution does not have any excess hiring costs, as these can be completely avoided with complete

access to information; therefore, it is likely that the true optimal cost is closer to our best lookahead policy

than to this lower bound.
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5 Conclusions

This paper contributes a new modeling framework for strategic health workforce planning. Through infinite-

horizon optimization, we are able to model the long-term implications of training, hiring and promotion

decisions made within a health care system. Our results (cf. Theorem 3.3 and Corollary 3.4) indicate that

very short planning horizons suffice to determine optimal decisions when employing the model in a rolling

horizon framework. We obtained these results under a set of mild assumptions (Assumptions 2.1 through

2.6) that correspond to reasonable real-world conditions, such as the requirement that payroll increase in the

workforce hierarchy. Using real-world data from British Columbia, we further demonstrate how lookahead

policies perform well in a variety of situations that generalize our base model, specifically in the case of

uncertain demand growth. These results are particularly useful, as the lookahead solution mirrors workforce

management policies that could be implemented in practice. Models such as the one we propose can be used

to obtain qualitative checks on whether a particular health workforce system is behaving optimally, or what

conditions it must meet to do so. For example, in [51] the authors apply a similar model to derive policy

recommendations for the U.S. pediatric nurse practitioner workforce.

A next step in our work is to directly model and optimize the system’s uncertainty, specifically in demand

growth or retention rates [42]. It is important to understand whether the conditions we develop in this work

and their structural consequences (or appropriate modifications) still hold in more general settings. The more

nuanced analysis required in this case may give insight into the impact of uncertainty on health workforce

costs and management decisions; for example, [22, 33] investigate similar questions for short-term nurse

staffing. From a theoretical perspective, the infinite linear programming tools we use still apply in the

presence of uncertain demand growth or retention, provided these can be modeled as finite-support random

variables.

Because this work is applied to guide strategic health workforce decisions, we can formulate more

realistic models by incorporating other elements. For instance, (1) could be expanded to include a variety of

health care providers and changes in scopes of practice. Assuming that the interaction of all worker types

with demand is linear, multiple worker types can be incorporated in models similar to (1), by differentiating

across both type and level, where each worker type includes its own hierarchy with its own supervision

constraints (1c) and dynamics, but the multiple types serve patient demand jointly.
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By providing an initial understanding of this infinite-horizon model, our goal is to move a step forward

in the field of strategic health workforce planning, and to motivate others to continue doing research in this

important application.
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A Proof of Lemma 3.2

All the arguments below apply to solutions that satisfy Lemma 3.1.

A.1 Proof when n = 2

A.1.1 Proof of (4b)

Assume a feasible solution is given for which (4b) is violated in some period. We start from the earliest such

period, relabeling it as period 1 without loss of generality, and make the following changes:

∆xt
1,2 =


−ε, t = 1

p2+p1q1,2
1+q1,2

ε, t = 2

(p1+p2q1,2)
t−3

(1+q1,2)t−1 (p1− p2)
2q1,2ε, t = 3, . . .

,

∆st
1 =


ε, t = 1

(p1+p2q1,2)
t−2

(1+q1,2)t−1 (p1− p2)ε, t = 2, . . .
,

∆st
2 =


−ε, t = 1

(p1+p2q1,2)
t−2

(1+q1,2)
t−1 (p1− p2)q1,2ε, t = 2, . . .

.

The resulting solution is feasible for small positive ε . Furthermore, we achieve an objective improve-

ment

∆C = c1,2

(
−1+ γ

p2 + p1q1,2

1+q1,2
+

∞

∑
t=3

(p1 + p2q1,2)
t−3

(1+q1,2)t−1 q1,2(p1− p2)
2
γ

t−1

)
ε

+h1

(
1+

∞

∑
t=2

(p1 + p2q1,2)
t−2

(1+q1,2)t−1 (p1− p2)γ
t−1

)
ε
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+h2

(
−1+q1,2

∞

∑
t=2

(p1 + p2q1,2)
t−2

(1+q1,2)t−1 (p1− p2)γ
t−1

)
ε

= c1,2
(1+q1,2)(1− p1γ)(p2γ−1)

1+q1,2− (p1 + p2q1,2)γ
ε

+
(1+q1,2)((1− γ p2)h1− (1− γ p1)h2)

1+q1,2− (p1 + p2q1,2)γ
ε

< 0,

where the last inequality follows by Assumption 2.5.

The rationale behind the construction is to choose training and promotion perturbations so that staff at

the two levels increase proportionally in later periods, which implies feasibility; on the other hand, the cost

decrease exceeds the increase when discounts and monotonic payrolls are applied, which leads to the lower

objective.

A.1.2 Proof of (4a)

Since (4b) can be achieved without resorting to (4a), we consider the solutions where (4b) is satisfied while

(4a) is not. Again we rename the earliest such period to be period 1. We have x0
0 > 0.

Case 1: x2
1,2 < p1s1

1.

Construct a new feasible solution with the formulas below:

∆xt
0 =


− ε

p0
, t = 0

p1
p0

ε, t = 1

0, t = 2, . . .

,

∆st
1 =


−ε, t = 1

0, t = 2, . . .
.

The resulting objective improvement is

∆C = c0

(
− 1

p0γ
+

p1

p0

)
ε−h1ε
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< 0.

Case 2: x2
1,2 = p1s1

1.

We first note that at most one of xt+1
1,2 = p1st

1 and st+1
1 = dt+1 can be true provided (4b) for any t ≥ 1.

Assuming both equalities hold for some t, we then have st+1
2 ≥ p2st

2 + xt+1
1,2 = p2st

2 + p1st
1. Since xt+1

1,2 > 0

implies st+1
2 = q1,2st+1

1 by (4b), we further have dt+1 = st+1
1 ≥ p2st

2+p1st
1

q1,2
≥ p2q1,2dt+p1dt

q1,2
=
(

p2 +
p1

q1,2

)
dt , but

this contradicts Assumption 2.6.

Let i be the smallest possible period with xi
1,2 < p1si−1

1 . From the above observation we have st
1 > dt , t ≤

i−1. Thus we can perturb as follows to obtain a new feasible solution:

∆xt
0 =



− ε

p0
, t = 0

− p1(p1+p2q1,2)
t−1

p0qt
1,2

ε, t = 1, . . . , i−2

p1(p1+p2q1,2)
i−2

p0qi−2
1,2

ε, t = i−1

0, t = i, . . .

,

∆xt
1,2 =



−p1ε, t = 2

− p2
1(p1+p2q1,2)

t−3

qt−2
1,2

ε, t = 3, . . . , i−1

p1 p2(p1+p2q1,2)
i−3

qi−3
1,2

ε, t = i

0, t = i+1, . . .

,

∆st
1 =



−ε, t = 1

− p1(p1+p2q1,2)
t−2

qt−1
1,2

ε, t = 2, . . . , i−1

0, t = i, . . .

,

∆st
2 =


− p1(p1+p2q1,2)

t−2

qt−2
1,2

ε, t = 2, . . . , i−1

0, t = i, . . .
.
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The corresponding objective improvement is

∆C = c0

(
− 1

p0γ
−

i−2

∑
t=1

p1(p1 + p2q1,2)
t−1γ t−1

p0qt
1,2

+
p1(p1 + p2q1,2)

i−2γ i−2

p0qi−2
1,2

)
ε

+h1

(
−1−

i−1

∑
t=2

p1(p1 + p2q1,2)
t−2γ t−1

qt−1
1,2

)
ε

+h2

(
−

i−1

∑
t=2

p1(p1 + p2q1,2)
t−2γ t−1

qt−2
1,2

)
ε

+c1,2

(
−p1γ−

i−1

∑
t=3

p2
1(p1 + p2q1,2)

t−3γ t−1

qt−2
1,2

+
p1 p2(p1 + p2q1,2)

i−3γ i−1

qi−3
1,2

)
ε

< c0

(
−

p1 pi−2
2 γ i−2

p0
−

i−2

∑
t=1

p2
1(p1 + p2q1,2)

t−1 pi−2−t
2 γ i−2

p0qt
1,2

+
p1(p1 + p2q1,2)

i−2γ i−2

p0qi−2
1,2

)
ε

+c1,2

(
−p1 pi−2

2 γ
i−1−

i−1

∑
t=3

p2
1(p1 + p2q1,2)

t−3 pi−t
2 γ i−1

qt−2
1,2

+
p1 p2(p1 + p2q1,2)

i−3γ i−1

qi−3
1,2

)
ε

= 0.

A.2 Problem structure when n≥ 3

Given a solution that violates Lemma 3.2, our goal is to construct a new solution that is both feasible and

incurs a lower total cost. While the big picture appears similar to the proof when n = 2, things are much

more complicated here: the effect of ∆st
k may not end at level k+ 1; instead it can force xt+2

k+1,k+2 and thus

st+2
k+2 to change, which will propagate to higher levels; even worse, lower levels may also be influenced since

there may be multiple violated levels and the perturbation may not start from level 1. Therefore, it is unlikely

that we can rely on one-time substitutions as before.

Instead, our strategy is to construct a perturbation period by period. To develop such a dynamic approach

we first introduce three sets of new variables:

• rt
k =

st
k

pt , ∀ k = 0, . . . ,n, ∀ t = 1, . . .,

• zt
k =

xt
k

pt , ∀ k = 0, . . . ,n, ∀ t = 1, . . .,

• zt
k,k+1 =

xt
k,k+1
pt , ∀ k = 1, . . . ,n−1, ∀ t = 1, . . ..
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The original problem can be reformulated as follows.

inf W (r,z) =
∞

∑
t=1

γ
t−1 pt

( n

∑
k=0

ckzt
k +

n−1

∑
k=1

ck,k+1zt
k,k+1 +

n

∑
k=1

hkrt
k

)
(8a)

s.t. rt
1 ≥ dt/pt ∀ t = 1, . . . (8b)

rt
k+1 ≥ qk,k+1rt

k, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (8c)

rt−1
1 − rt

1 + zt−1
0 − zt

1,2 + zt
1 = 0, ∀ t = 1, . . . (8d)

rt−1
k − rt

k + zt
k−1,k− zt

k,k+1 + zt
k = 0, ∀ k = 2, . . . ,n−1, ∀ t = 1, . . . (8e)

rt−1
n − rt

n + zt
n−1,n + zt

n = 0, ∀ t = 1, . . . (8f)

zt
k,k+1 ≤ rt−1

k , ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . (8g)

rt ,zt ≥ 0, ∀ t = 1, ..., (8h)

where rt
0 = zt

0 for t = 0, . . .. The constraints above can be divided into three sets: demand/ratio constraints

(8b–8c), promotion bounds (8g), and network flow constraints (including flow conservation (8d–8f) and

nonnegativity (8h)). Graphically, if we consider the r variables as flows between successive periods and

the z variables as flows between successive levels, a feasible solution can be represented by an infinite

time-space network. The equivalence of the reformulated problem and the original problem stems from a

one-to-one correspondence between their solutions. Therefore, any result obtained from one version applies

to the other as well.

Next we identify four structural characteristics of our problem(s). Claim A.1 describes the cost of certain

structures and will help justify the superiority of a perturbed solution; Claim A.2 is a dominance property

and will enable us to consider a relatively small set of solutions for perturbation; Claims A.3 and A.4 analyze

necessary conditions for feasibility and will shed light on how to perturb.

Claim A.1. For the reformulated problem, any flow circulating counterclockwise (either in a cycle, on a

doubly-infinite path, or on a one-way infinite path) incurs negative cost.

Proof. zt
0, ∀ t = 1, . . . can be reduced to a common super source node representing level 0 in the network.

Define a basic unit in the grid-like network as either case below:
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t t +1

k

k+1
t t +1

0

1

.

The corresponding total costs per unit counterclockwise flow are

γ
t−1 pt(hk−hk+1)+ ptck,k+1(pγ

t − γ
t−1)< 0,

−γ
t−1h1 pt +(−γ

t−1c0 pt + γ
tc0 pt+1)< 0,

respectively. We will refer to the two types of basic units as basic square and basic triangle, respectively.

Any cycle can be decomposed into a finite number of basic squares and/or triangles; any doubly-infinite

path can be decomposed into a countable number of basic squares; and any one-way infinite path can be

decomposed into a countable number of basic squares and/or triangles. Since counterclockwise flows around

both basic units incur negative costs, the same is true for arbitrary cycles/infinite paths. �

Claim A.2. For t ≥ 1, let `t and `t+1 be levels such that st
`t+1 > q`t ,`t+1st

`t
, xt

`t ,`t+1 > 0, and st+1
`t+1+1 >

q`t+1,`t+1+1st+1
`t+1

. Assuming `t and `t+1 exist, for any k with min{`t , `t+1} ≤ k ≤ max{`t , `t+1} there exists

some t ′ ≤ t such that xt ′
k,k+1 > 0. A solution cannot be optimal if both st+1

`t+1 = q`t ,`t+1st+1
`t

and xt+1
k,k+1 = 0 hold

for some k with min{`t , `t+1} ≤ k ≤max{`t , `t+1}.

Proof. Clearly `t 6= `t+1. Consider level i, the largest such k if `t > `t+1, or the smallest such k if `t < `t+1.

Case 1: i = `t .

Let ∆zt+1
`t ,`t+1 = −∆zt

`t ,`t+1 = ε . Since xt+1
`t ,`t+1 = 0, we know xt+1

`t+1,`t+2 < pst
`t+1 and thus feasibility is not

violated. By Claim A.1 this corresponds to a counterclockwise flow around a basic square and incurs less

total cost.

Case 2: i 6= `t .

We first have

st+1
i+1 = pst

i+1− xt+1
i+1,i+2 ≤ pst

i+1,
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st+1
i ≥ pst

i + xt+1
i−1,i ≥ pst

i.

If `t > `t+1, then xt+1
i+1,i+2 > 0 by definition of i, and hence st+1

i+1 < pst
i+1, which together with st+1

i+1 ≥

qi,i+1st+1
i indicates that st

i+1 > qi,i+1st
i . Similarly, if `t < `t+1, then xt+1

i−1,i > 0 and again st+1
i > pst

i indicates

that st
i+1 > qi,i+1st

i . If xt
i,i+1 = 0, then st

i+1 > qi,i+1st
i further indicates that st−1

i+1 > qi,i+1st−1
i . Recursively

utilizing this fact for t− 1, t− 2, . . ., finally we can find a period t0 ≥ t ′ (t0 = t if xt
i,i+1 > 0) where st0

i+1 >

qi,i+1st0
i and xt0

i,i+1 > 0. Now construct a new solution by letting ∆zt+1
i,i+1 = −∆zt0

i,i+1 = ε; it is feasible due

to slack and zero promotions at level i in periods t0 + 1, . . . , t, and its lower cost is guaranteed by Claim

A.1. �

Claim A.3. For t ≥ 1, For t ≥ 1, let g be a level such that xt+1
g,g+1 = 0, g ≤ n. If st+1

g = qg−1,gst+1
g−1 = . . . =

q1,gst+1
1 , where qk,` = qk,k+1qk+1,k+2 · · ·q`−1,`, then at most one of xt+1

k,k+1 = pst
k and st+1

1 = dt+1 can be true

for each k ≤ g−1.

Proof. Assume both equalities hold. Adding together equations (1e) for levels k+ 1, . . . ,g in period t + 1,

plugging in xt+1
k,k+1 = pst

k and st+1
g = qg−1,gst+1

g−1 = . . .= q1,gst+1
1 , we have

st+1
1

g

∑
i=k+1

q1,i ≥ pst
1

g

∑
i=k

q1,i. (9)

Note that

∑
g
i=k q1,i

∑
g
i=k+1 q1,i

=
q1,k

∑
g
i=k+1 q1,i

+1

=
1

∑
g
i=k+1 qk,i

+1

≥ 1

∑
g−k
i=1 qi

max

+1

=
1+∑

g−k
i=1 qi

max

qmax(1+∑
g−k−1
i=1 qi

max)
.

Combined with (9), this results in

st+1
1 ≥

1+∑
g−k
i=1 qi

max

qmax(1+∑
g−k−1
i=1 qi

max)
pst

1 >
p

qmax
st

1 ≥
p

qmax
dt ≥ dt+1
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by Assumption 2.6. We have arrived at a contradiction. �

Claim A.4. For t ≥ 1, let k be an arbitrary level, and g = min{i : xt+1
i,i+1 = 0, k+1≤ i≤ n}. If xt+1

k,k+1 = pst
k

and st+1
g = qg−1,gst+1

g−1 = . . .= q`+1,gst+1
`+1, 0≤ `≤ k−1, then xt+1

`,`+1 > 0.

Proof. The result follows directly by Lemma 3.1 if xt+1
`+1 > 0. Consider when xt+1

`+1 = 0. ` = k− 1 is trivial

since xt+1
k−1,k = st+1

k > 0. For `≤ k−2, we show that xt+1
`,`+1 > pq`+1,kst

`+1 by induction.

Base case: Here ` = k−2. st+1
k−1 = pst

k−1 + xt+1
k−2,k−1− st+1

k = pst
k−1 + xt+1

k−2,k−1−qk−1,kst+1
k−1 implies st+1

k−1 =

pst
k−1+xt+1

k−2,k−1
1+qk−1,k

. qk−1,gst+1
k−1 = st+1

g = pst
g + xt+1

g−1,g > pst
g ≥ pqk−1,gst

k−1 implies st+1
k−1 > pst

k−1. Therefore,
pst

k−1+xt+1
k−2,k−1

1+qk−1,k
> pst

k−1, and thus xt+1
k−2,k−1 > pqk−1,kst

k−1 > 0.

Induction: Assume that the claim holds for `, 1≤ `≤ k−2, i.e. xt+1
`,`+1 > pq`+1,kst

`+1, then

st+1
` = pst

`+ xt+1
`−1,`− xt+1

`,`+1

< pst
`+ xt+1

`−1,`− pq`+1,kst
`+1

< pst
`+ xt+1

`−1,`− pq`,kst
`.

On the other hand, q`,gst+1
` = st+1

g > pst
g ≥ pq`,gst

` implies st+1
` > pst

`. Therefore, xt+1
`−1,` > pq`,kst

` > 0,

i.e. the claim holds for `−1 as well. �

A.3 A perturbation procedure for n≥ 3

(4a) is a special case of (4b) if we define st
0 = dt , xt

0,1 = pxt−1
0 , q0,1 = 1; the only difference is that xt

0,1 have

no upper bound. Pick the earliest period where (4b) is violated, as before we rewrite it as period 1 and

redefine sucessive periods as 2,3, . . .. Let m be any violated level in period 1. Below is the key notation we

will use:

• jt : a level that has ever seen staff reduction and has full promotions in period t; mathematically this

means xt
jt , jt+1 = pst−1

jt and ∆st ′
jt < 0 for some t ′ < t.

• `t : a level with ratio slack and for which there is a jt where all levels in between have positive

promotions in period t, i.e. st
`t+1 > q`t ,`t+1st

`t
and xt

k,k+1 > 0, ∀ k = `t , . . . , jt .
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• ¯̀t : an `t where the ratio relationship would be violated if not perturbed in period t + 1, i.e. st+1
¯̀t+1 +

p∆st
¯̀t+1 < q ¯̀t , ¯̀t+1(s

t+1
¯̀t

+ p∆st
¯̀t
) and ¯̀t ∈ Lt . An implicit constraint is st+1

¯̀t+1 = q ¯̀t , ¯̀t+1st+1
¯̀t

.

• Jt , Lt , L̄t : the set of all jt , the set of all `t , and the set of all ¯̀t , respectively. L̄t ⊆ Lt .

• max jt : the largest element in Jt , i.e. max{ j : j ∈ Jt}, with other maxima and minima defined analo-

gously.

Suppose we have perturbed periods 1, . . . , t−1 and the current perturbed solution satisfies constraints in

these periods. Clearly all jt should be perturbed to guarantee feasibility. By Claims A.3 and A.4 there must

exist an `t for each jt , and thus it is a candidate for the perturbation in period t to stop. The perturbation in

period t− 1 also causes infeasibility at ¯̀t−1 in period t, which constitutes an additional source for further

perturbation. Obviously we can set J1 = L1 = {m}, L̄0 = ∅. Procedure 1 illustrates how to identify Jt , Lt

and L̄t−1 when t ≥ 2.

Procedure 1 Jt , Lt , and L̄t−1 when t ≥ 2

1: Jt = Lt = L̄t−1 =∅,L
′
t−1 = {`t−1 : ∆xt−1

`t−1,`t−1+1 < 0}
2: for `t−1 ∈ Lt−1 do
3: if st

`t−1+1 + p∆st−1
`t−1+1 < q`t−1,`t−1+1(st

`t−1
+ p∆st−1

`t−1
) then

4: L̄t−1 = L̄t−1∪{`t−1}
5: end if
6: end for
7: for k = min{i : i ∈

⋃
t ′≤t−1 Jt ′ ∪L

′

t ′} to max{i : i ∈
⋃

t ′≤t−1 Jt ′ ∪L
′

t ′}+1 do
8: if xt

k,k+1 = pst−1
k and ∆st ′

k < 0 for some t ′ < t then
9: Jt = Jt ∪{k}

10: g = min{i : xt+1
i,i+1 = 0, k+1≤ i≤ n}

11: for i≤ g−1 do
12: if st

i+1 > qi,i+1st
i and xt

k,k+1 > 0,∀ k = i, . . . ,g−1 then
13: Lt = Lt ∪{i}
14: end if
15: end for
16: end if
17: end for

We are now ready to construct perturbing operations. Since Lemma 3.1 and Claim A.2 have identified

several non-optimal cases, we only consider solutions that satisfy the conditions therein.

Perturbation for period 1 is trivial: ∆r1
m+1 = −∆r1

m = ∆z1
m,m+1 = −ε . For an arbitrary t ≥ 2 before the

possible end period, ∆zt
k,k+1 consists of two parts: a change due to full promotions at jt , and a change due

39



to tight ratio relationships at ¯̀t−1. The calculation of ∆z consequently depends on the locations of jt , `t and

¯̀t−1. If there is an ¯̀t−1 /∈ Lt , then the levels between any pair of jt and ¯̀t−1 must have been reached at some

point before t, thus by Claim A.2 we know xt
k,k+1 > 0, ∀ k = ¯̀t−1, . . . , `t ,∀ `t ∈ Lt . Otherwise L̄t−1 = ∅.

Hence although there may be multiple jt , `t and ¯̀t−1, and a large number of possible locations, it suffices to

check the following four cases:

`t

¯̀t−1

jt

jt
¯̀t−1 +1

¯̀t−1−1

jt

jt

¯̀t−1

`t

¯̀t−1−1

jt

¯̀t−1

`t

jt
¯̀t−1 +1

jt

`t

`t

jt
jt
`t

In the above graph, promotions are positive at levels connected by the vertical lines, a gap between levels

indicates zero promotions, and the direction of the arrows is consistent with the perturbation flows. Claims

A.5 through A.8 validate the operations we use in each case.

Claim A.5. Assuming a perturbed solution is feasible for periods 1, . . . , t−1, if there exists an `t ∈ Lt with

`t ≥max{max jt ,max ¯̀t−1 +1} and xt
k,k+1 > 0 for k with min{min jt ,min ¯̀t−1 +1} ≤ k≤ `t , then a solution

also feasible for period t can be obtained by sequentially applying equations

∆zt
k,k+1 = min{∆zt

k−1,k +∆rt−1
k −∆rt

k−1qk−1,k,∆rt−1
k }, (10a)

∆rt
k = ∆zt

k−1,k +∆rt−1
k −∆zt

k,k+1, (10b)

to k = kb, . . . ,ke, and finally letting

∆rt
ke+1 = ∆zt

ke,ke+1 +∆rt−1
ke+1, (10c)

where kb = min{min jt ,min ¯̀t−1 +1}, ke = min{`t : `t ≥max{max jt ,max ¯̀t−1 +1}}.
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Proof. We can choose the smallest such `t as a common level for the perturbation driven by all jt and ¯̀t−1

to stop in period t. To fix potential infeasibility caused by full promotions or tight ratio relationships, it

is reasonable to decrease the promotions at these levels and update employment accordingly. The level to

start such operations should of course be min{min jt , min ¯̀t−1 + 1}. The decreasing effect will finally be

conveyed to the `t we choose.

We consider level k to determine ∆zt
k,k+1. Since ∆rt−1

k , ∆rt
k−1, and ∆zt

k−1,k (in particular, ∆zt
kb−1,kb

= 0)

are all known as we reach node (k, t), we can solve


∆zt

k−1,k +∆rt−1
k = ∆zt

k,k+1 +∆rt
k

∆rt
k ≥ ∆rt

k−1qk−1,k

∆zt
k,k+1 ≤ ∆rt−1

k

,

and choose the largest possible ∆zt
k,k+1 (so that |∆zt

k,k+1| is as small as possible), which yields (10a). The

three constraints above represent flow conservation, ratio relationships, and promotion bounds respectively.

∆rt
k can then be determined via flow conservation, i.e. (10b). (10c) is a result of stopping perturbation at

ke. �

Claim A.6. Assuming a perturbed solution is feasible for periods 1, . . . , t−1, if there exists an `t ∈ Lt with

`t ≤min{min jt ,min ¯̀t−1−1} and xt
k,k+1 > 0 for k with `t ≤ k≤max{max jt ,max ¯̀t−1−1}, then a solution

also feasible for period t can be obtained by sequentially applying equations

∆zt
k,k+1 = min{∆zt

k+1,k+2 +∆rt
k+2/qk+1,k+2−∆rt−1

k+1,∆rt−1
k }, (11a)

∆rt
k+1 = ∆zt

k,k+1 +∆rt−1
k+1−∆zt

k+1,k+2, (11b)

to k = kb, . . . ,ke, and finally letting

∆rt
ke
= ∆rt−1

ke
−∆zt

ke,ke+1, (11c)
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where kb = max{max jt ,max ¯̀t−1−1}, ke = max{`t : `t ≤min{min jt ,min ¯̀t−1−1}}.

Proof. We can choose the largest such `t as a common level for the perturbation driven by all jt and ¯̀t−1

to stop in period t. Again we fix potential infeasibility by decreasing promotions. But unlike the previous

claim, we operate in a top-down fashion since the perturbation is expected to end at the `t ∈ Lt we choose.

We consider level k+ 1 to determine ∆zt
k,k+1. Since ∆rt−1

k+1, ∆rt−1
k , ∆rt

k+2, and ∆zt
k+1,k+2 (in particular,

∆zt
kb+1,kb+2 = 0) are all known as we reach node (k+1, t), we can solve


∆zt

k,k+1 +∆rt−1
k+1 = ∆zt

k+1,k+2 +∆rt
k+1

∆rt
k+1 ≤ ∆rt

k+2/qk+1,k+2

∆zt
k,k+1 ≤ ∆rt−1

k

,

and choose the largest possible ∆zt
k,k+1, which yields (11a). ∆r can then be determined via flow conservation,

i.e. (11b) and (11c). �

Claim A.7. Assuming a perturbed solution is feasible for periods 1, . . . , t−1, if there exists an `t ∈ Lt with

min{min jt ,min ¯̀t−1+1} ≤ `t ≤max{max jt ,max ¯̀t−1−1} and xt
k,k+1 > 0 for k with min{min jt ,min ¯̀t−1+

1} ≤ k ≤ max{max jt ,max ¯̀t−1− 1}, then a solution also feasible for period t can be obtained by sequen-

tially applying equations (10) to levels min{min jt ,min ¯̀t−1 + 1} ≤ k ≤ `t − 1, equations (11) to levels

`t +1≤ k ≤max{max jt ,max ¯̀t−1−1}, and finally letting

∆zt
`t ,`t+1 =

min{∆rt−1
`t

+∆zt
`t−1,`t

−∆rt
`t−1q`t−1,`t , ∆zt

`t+1,`t+2 +∆rt
`t+2/q`t+1,`t+2−∆rt−1

`t+1, ∆rt−1
`t
}

(12a)

∆rt
`t
= ∆zt

`t−1,`t
+∆rt−1

`t
−∆zt

`t ,`t+1 (12b)

∆rt
`t+1 = ∆zt

`t ,`t+1 +∆rt−1
`t+1−∆zt

`t+1,`t+2. (12c)

Proof. This is a hybrid of the previous two claims. By a similar analysis the perturbation should only
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cover levels from min{min jt ,min ¯̀t−1 + 1} to max{max jt ,max ¯̀t−1− 1}. We can treat any such `t as a

breakpoint above which Claim A.6 applies and below which Claim A.5 applies. It only remains to perturb

level `t itself. To guarantee feasibility we can choose the minimum of the values provided by Claims A.5

and A.6 to determine ∆zt
`t ,`t+1, and ∆rt

`t+1 and ∆rt
`t

can then be calculated by flow conservation. This yields

(12). �

Claim A.8. Assuming a perturbed solution is feasible for periods 1, . . . , t−1, if there are zero promotions

between successive levels `t , . . . , jt or jt , . . . , `t , then a solution also feasible for period t can be obtained

by applying (10) to each succession `t , . . . , jt or (11) to each succession jt , . . . , `t , as long as the jt values

partition Jt .

Proof. By Claim A.2 there is no ¯̀t−1 and so we only consider the impact of full promotions at jt . The

applicability of the claims follows immediately from the fact that each succession here is an instance of

Claim A.5 or A.6.

We need to ensure, though, that each jt is included in exactly one succession. Starting from max jt , if

there exists some `t with `t ≥max jt and xt
k,k+1 > 0 for k with max jt ≤ k ≤ `t , there may be a lower jt that

satisfies this condition as well; hence we can decrease promotions from the lowest such jt to any such `t ,

and use the formulas from Claim A.5 to determine ∆zt
k,k+1 and ∆rt

k. Otherwise, by Claims A.3 and A.4 there

must exist some `t with `t < max jt and xt
k,k+1 > 0 for k with `t ≤ k≤max jt , and so we can use the formulas

from Claim A.6 to determine ∆zt
k,k+1 and ∆rt

k+1 until reaching the highest such `t . After either case is done,

we can move downwards to the next jt that has not been visited, and apply the same argument again. This

process goes on until reaching min jt . �

We now state our perturbation procedure as Procedure 2. Note that if in some period we find xt
k+1,k+2 <

pst−1
k+1 for each perturbed level k (including when Jt = L̄t−1 =∅), the procedure can end in this period, and

from then on the perturbed solution will remain the same as the initial solution; otherwise, the procedure

will iterate forward infinitely but converge to a new feasible solution. Claim A.9 justifies the lower cost of

the final perturbed solution.

Claim A.9. Procedure 2 modifies the given solution by adding to it a series of negative cost cycles or infinite

paths in the time-space network.
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Proof. Except for the possible end period, all the perturbations are initiated by decreasing the z values. Pick

any node (k, t) with negative ∆r flows in the perturbation network. Each time we conduct an operation as in

Claims A.5 to A.8, by flow conservation ∆rt
k is passed to either ∆rt−1

k or ∆zt
k−1,k, resulting in a left arc and a

downward arc, respectively. As this propagates, two cases may occur.

Case 1: We reach some `t (t ≤ t) where the flow turns right, then follows a right-down-right pattern, and

finally turns upwards at the perturbation’s end period. This constitutes a counterclockwise cycle as

described in Claim A.1.

Case 2: The flow may continue shifting in a right-down-right pattern perpetually, which constitutes a coun-

terclockwise infinite path as described in Claim A.1. �

Procedure 2 Perturbation when n≥ 3 and pk = pk+1,∀ k = 1, . . . ,n−1
1: ∆r1

m+1 =−∆r1
m = ∆z1

m,m+1 =−ε , J1 = L1 = {m}, L̄0 =∅, t = 2,ep = 0
2: while ep = 0 do
3: if xt

k+1,k+2 < pst−1
k+1 for every perturbed level k then

4: ep = 1
5: else
6: Run Procedure 1 to identify Jt , Lt , and L̄t−1
7: if Claim A.5 is applicable then
8: Perturb according to Claim A.5
9: else if Claim A.6 is applicable then

10: Perturb according to Claim A.6
11: else if Claim A.7 is applicable then
12: Perturb according to Claim A.7
13: else
14: Perturb according to Claim A.8
15: end if
16: Update ∆x,∆s,x,s
17: t = t +1
18: end if
19: end while
20: for perturbed levels k in increasing order do
21: ∆zt

k,k+1 = ∆rt−1
k +∆zt

k−1,k
22: Update ∆x,∆s,x,s
23: end for
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A.4 A technical note on the perturbation amount ε

We have constructed perturbation operations that are feasible for small enough ε . To obtain a valid perturbed

solution, however, we need to guarantee that ε > 0. Because the perturbation may range over infinitely many

periods, it could be that the required ε eventually converges to zero. We next argue why this is not the case.

If the perturbation ends in some period, it essentially works in finite dimensions and thus ε > 0. On the

other hand, if the procedure iterates infinitely, ε depends on the x and s values. In particular, the values of the

training variables, promotion variables, and slack between consecutive levels matter since we are decreasing

them. To eliminate the possibility of ε converging to zero, it suffices to bound those values from below

wherever they are perturbed.

When n = 2, the proof of (4b) reduces the promotion in period 1 and increases it in later periods. The

increments depend on the reduction in period 1 and so depend on how much we can decrease there, which

clearly is positive. In the proof of (4a), ε depends on st+1
1 −dt+1 if xt+1

1,2 = p1st
1, and p1st

1−xt+1
1,2 if st+1

1 = dt+1.

In the former case, st+1
1 −dt+1 =

p2st
2+p1st

1
q1,2

−dt+1 ≥ (pmin +
pmin
qmax

)dt−dt+1 ≥ pmindt , which is bounded away

from zero since dt ≥ d1 > 0. In the latter case, the perturbation ends in period t + 1 so the perturbation is

finite.

Now consider when n ≥ 3. Recall that in all the cases considered for perturbation, we perturb levels

between jt and `t , or ¯̀t−1 and `t , or both. For any level k with `t ≤ k ≤ jt , the proof of Claim A.4 actually

provides a lower bound independent of t, i.e. xt+1
k,k+1 > pqk+1, jt s

t
k+1 ≥ pq1, jt d1. Furthermore, if we redefine

g = min{i : xt+1
i,i+1 ≤C, jt +1≤ i≤ n}, where C > 0 can be any constant less than mint ′=1,...,t{pst ′

i } for each

i (such as C = pq1,nd1), the bound still holds, and hence the x variables at levels k with jt ≤ k ≤ `t are also

bounded below by a constant independent of t.

The same trick can be applied to any level k between `t and ¯̀t−1, i.e. the lower bounds on the x variables

in Claim A.2 can be strengthened from zero to the same constant C above. Finally, Claim A.3 is still correct

for xt+1
g,g+1 ≤C as long as C < pqn−1

max d1. This enables us to use a g that still satisfies the properties in both

claims as the level starting from which a search of `t is conducted in Procedure 1.

Since the proofs of the claims only utilize the linear relationships between s and x, we can obtain similar

bounds for the slack between consecutive s variables. All the lower bounds depend only on d1 and fixed

parameters like n, p and q. It follows that the ε in the infinite case is indeed positive.
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B Proof of Theorem 3.3

We will construct a one-period lookahead policy based on Lemmas 3.1 and 3.2, and then demonstrate that

the resulting solution is unique.

B.1 A one-period lookahead policy

The notation we use is summarized below:

• Bt
i,i+1: upper promotion bound for level i in period t.

• I: a list of levels where promotion bounds would be violated if hiring were not allowed.

Claim B.1. Consider a subsystem consisting of levels from j to k+1, 0≤ j≤ k≤ n−1 in period t. Assume

st−1
i , i = j, . . . ,k+ 1 and st

j are known. If p j+1st−1
j+1 < q j, j+1st

j and pi+1st−1
i+1 ≤ qi,i+1 pist−1

i , i = j+ 1, . . . ,k,

then the unique solution to the following equations provides a solution that satisfies promotion bounds at

levels in I:

p j+1st−1
j+1 + xt

j, j+1− xt
j+1, j+2 + xt

j+1 = q j, j+1(st
j− xt

j, j+1) (13a)

pi+1st−1
i+1 + xt

i,i+1− xt
i+1,i+2 + xt

i+1 = qi,i+1(pist−1
i + xt

i−1,i− xt
i,i+1 + xt

i),

i = j+1, . . . ,k−1
(13b)

pk+1st−1
k+1 + xt

k,k+1 + xt
k+1 = qk,k+1(pkst−1

k + xt
k−1,k− xt

k,k+1 + xt
k), (13c)

where xt
i = 0 if i /∈ I and xt

i,i+1 = Bt
i,i+1 if i ∈ I.

Proof. Clearly any solution to the above linear system satisfies promotion bounds at any i∈ I. Nonnegativity

of the x variables is guaranteed by the deficiency of staff at level j and the tight ratio relationships (with

respect to retention from period t− 1) at levels j, . . . ,k. For a specific solution x, a policy can be obtained

46



by letting

st
i =


st

i− xt
i,i+1, i = j

pist−1
i + xt

i−1,i− xt
i,i+1 + xt

i, i = j+1, . . . ,k

pist−1
i + xt

i−1,i + xt
i, i = k+1

. (14)

Let the coefficient matrix be such that column ` (`= 1, . . . ,k− j+1) records the coefficients of xt
j+`−1, j+`

if j+ `−1 /∈ I and xt
j+` otherwise. The elements are

am` =



−q j+`, j+`+1, m = `+1

1 if j+ `−1 ∈ I and 1+q j+`−1, j+` otherwise, m = `

0 if j+ `−1 ∈ I and −1 otherwise, m = `−1

0, otherwise

.

Define Dm (m = 1, . . . ,k− j+1) as the determinant of the submatrix composed of the first m rows and

the first m columns. For m≥ 3, we have the recursion

Dm =


Dm−1, j+m−1 ∈ I

(1+qm+ j−1,m+ j)Dm−1−qm+ j−1,m+ jDm−2, otherwise
.

By induction we know Dk− j+1 ≥ Dk− j ≥ . . .≥ D1 > 0, and hence the solution is unique. �

We now construct a feasible one-period lookahead policy by solving subproblems composed of levels

1, . . . ,k+1 sequentially until k = n−1. During each loop, we first check if the resulting solution is feasible

without promotion at level k, if yes then we are done. Otherwise, we try to get a solution which uses only

promotions, i.e. solve (13) with I = ∅. If this happens to be feasible, then we update the st and xt values

and exit; otherwise we calculate a feasible solution by allowing hiring, i.e. solve (13) with I 6=∅. For each

k, we keep iterating these steps for subproblems composed of levels j, . . . ,k+ 1 so that we can stop at the

highest j and the lower levels are not affected. When determining promotion and hiring, we force the ratio

constraints to be tight so that we use the smallest possible xt . In other words, we promote and hire only if
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necessary. A formal statement is described in Procedure 3.

Procedure 3 A one-period lookahead policy

1: st
i = dt if i = 0 and pist−1

i if i≥ 1, Bt
0,1 = 0 if t = 1 and ∞ if t ≥ 2, Bt

i,i+1 = pist−1
i , i = 1, . . . ,n−1

2: k = 0
3: while k ≤ n−1 do
4: j = k
5: while j ≥ 0 and st

j+1 < q j, j+1st
j do

6: I =∅
7: Bt

j, j+1 = Bt
j, j+1− xt

j, j+1
8: Solve (13)
9: I = {i : xt

i,i+1 > Bt
i,i+1, j ≤ i≤ k}

10: if I 6=∅ then
11: while I is changed do
12: Solve (13)
13: Update I
14: end while
15: end if
16: Update s with (14)
17: j = j−1
18: end while
19: k = k+1
20: end while

We end this section with two comments. First, the procedure is applicable to both n = 2 and n ≥ 3.

Second, once i enters I at some iteration, it will be there forever: The first time i enters I, xt
i,i+1 must be

decreased (from infeasibility) to full promotion and so st
i must be increased in the next iteration (which

is true since the only possibility for st
i not to be increased is then to decrease xt

i or xt
i−1,i, but this would

induce infeasibility between st
i and lower levels). To further satisfy the ratio relationships at levels i to k,

st
`+1(i ≤ ` ≤ k) cannot be decreased either, which in turn forces the promotions at these levels to be full if

they were. This implies the procedure terminates.

B.2 Optimality of the one-period lookahead policy

Claim B.2. Recursively applying Procedure 3 yields the unique solution that satisfies Lemmas 3.1 and 3.2.

Proof. Clearly the solution satisfies the lemmas. Suppose there are multiple feasible solutions for which the

lemmas hold. We compare an arbitrary one of them, say (u,y), with (s,x) obtained from Procedure 3. By

Lemma 3.1 yt
k+1 > 0 only if yt

k,k+1 = pkut−1
k . Start from the earliest period, say t, where there is a difference
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between xt and yt . Pick the lowest different level, say i. We have st
k = ut

k,∀ k≤ i−1, and st ′ = ut ′ ,∀ t ′≤ t−1.

We first note that yt
i,i+1 < xt

i,i+1 or yt
i < xt

i cannot be true; otherwise we should be able to obtain a smaller

xt as Procedure 3 finishes since a feasible solution must satisfy the ratio and bound constraints at every level.

We next show that yt
i,i+1 > xt

i,i+1 or yt
i > xt

i cannot be true, either. Since (u,y) is feasible, by (1e)

yt
i,i+1 > xt

i,i+1 or yt
i > xt

i implies ut
k > st

k for some k ≥ i, so there is over promotion/hiring and the lemmas

must be violated somewhere in (u,y). �

C Extended model used in the computational examples

We modified (1) for our computational examples as follows. Let:

• T ≥ 1: Length of planning horizon.

• L≥ 1: Length of the training program.

• a: Age of the student or worker, al ≤ a≤ au.

• p0,i ∈ (0,1): Per-period rate of continuing education for students in school year i = 1, . . . ,L− 1, or

per-period rate of graduating and going to the workforce for students in school year i = L.

• pk,a ∈ (0,1): Per-period retention rate of workers of age a = al, . . . ,au that stay in the system at level

k = 0, . . . ,n from one period to the next.

• mk,a: The age distribution of students (k = 0) or workers (k = 1, . . . ,n) of age a = al, . . . ,au.

• st
0,i,a: Students of age a = al, . . . ,au in school year i = 1, . . . ,L at end of period t = 1, . . . ,T .

• st
k,a: Workers of age a = al, . . . ,au in level k = 1, . . . ,n at end of period t = 1, . . . ,T .

Our modified problem has the following formulation.

min C(s,x) =
T

∑
t=1

γ
t−1
( n

∑
k=0

ckxt
k +

n−1

∑
k=1

ck,k+1xt
k,k+1 +

n

∑
k=1

hk

au

∑
a=al

st
k,a

)
s.t.

au

∑
a=al

st
1,a ≥ dt , ∀ t = 1, . . . ,T
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au

∑
a=al

st
k+1,a−qk,k+1

au

∑
a=al

st
k,a ≥ 0, ∀ k = 1, . . . ,n−1, ∀ t = 1, . . . ,T

st
0,1,a−m0,axt

0 = 0, ∀ a = al, . . . ,au, ∀ t = 1, . . . ,T

st
0,i,a− p0,i−1st−1

0,i−1,a−1 = 0, ∀ i = 2, . . . ,L ∀ a = al +1, . . . ,au−1, ∀ t = 1, . . . ,T

st
0,i,au
− p0,i−1(st−1

0,i−1,au
+ st−1

0,i−1,au−1) = 0, ∀ i = 2, . . . ,L, ∀ t = 1, . . . ,T

st
1,a− p1,a−1st−1

1,a−1−m1,axt
1− p0,Lst−1

0,L,a−1 +m2,axt
1,2 = 0,

∀ a = al +1, . . . ,au−1, ∀ t = 1, . . . ,T

st
1,au
− p1,aust−1

1,au
− p1,au−1st−1

1,au−1−m1,auxt
1− p0,L(st−1

0,L,au
+ st−1

0,L,au−1)

+m2,axt
1,2 = 0, ∀ t = 1, . . . ,T

pk,a−1st−1
k,a−1− st

k,a +mk,axt
k−1,k−mk+1,axt

k,k+1 +mk,axt
k = 0, ∀ k = 2 . . . ,n−1,

∀ a = al +1, . . . ,au−1, ∀ t = 1, . . . ,T

pk,au−1st−1
k,au−1 + pk,aust−1

k,au
− st

k,au
+mk,auxt

k−1,k−mk+1,auxt
k,k+1 +mk,auxt

k = 0,

∀ k = 2 . . . ,n−1, ∀ t = 1, . . . ,T

pn,a−1st−1
n,a−1 +mn,a(xt

n−1,n + xt
n)− st

n,a = 0, ∀ a = al +1, . . . ,au−1,

∀ t = 1, . . . ,T

pn,au−1st−1
n,au−1 + pn,aust−1

n,au
+mn,au(x

t
n−1,n + xt

n)− st
n,au

= 0, ∀ t = 1, . . . ,T

pk,a−1st−1
k,a−1−mk+1,axt

k,k+1 ≥ 0, ∀ k = 1, . . . ,n−1,

∀ a = al +1, . . . ,au, ∀ t = 1, . . . ,T

st
0,i,a = 0, ∀ i = 2, . . . ,L ∀ a = al, . . . ,al + i−2, ∀ t = 1, . . . ,T

st
k,a = 0, ∀ k = 2, . . . ,n−1, ∀ a = al, . . . ,al + k+L−2, ∀ t = 1, . . . ,T

xt ,st ≥ 0, ∀ t = 1, . . . ,T
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