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Abstract

We study the i.i.d. online bipartite matching problem, a dynamic version of the classical
model where one side of the bipartition is fixed and known in advance, while nodes from the other
side appear one at a time as i.i.d. realizations of a uniform distribution, and must immediately
be matched or discarded. We consider various relaxations of the polyhedral set of achievable
matching probabilities, introduce valid inequalities, and discuss when they are facet-defining.
We also show how several of these relaxations correspond to ranking policies and their time-
dependent generalizations. We finally present a computational study of these relaxations and
policies to determine their empirical performance.

1 Introduction

Bipartite matching is one of the fundamental combinatorial optimization models, with a century-
long history of research and applications in many areas. In online or dynamic optimization, a
widely studied variant has the right side of the bipartition fixed and known to the decision maker
ahead of time, while the nodes in the left side appear one after another dynamically, and must
immediately be matched to a remaining compatible right-hand node or discarded. This model
has applications in a variety of resource allocation and revenue management areas, particularly in
online search advertisement, where right-hand nodes represent ads and left-hand nodes are search
terms that the search engine wants to show compatible ads to. Partly because of the connection to
online search, the computer science community has been interested in this model for several years
beginning in [13], which showed that for a maximum cardinality objective, a randomized ranking
policy achieves the best possible competitive ratio 1 − 1/e, assuming an adversary chooses which
left-hand nodes appear; see e.g. [6] for a corrected and simplified proof.

The adversarial model of node arrival is relatively pessimistic, and more recent research has
focused on models where arrivals are at least partly governed by a distribution. In the simplest
case, each arriving node is an i.i.d. sample from a known distribution. Work on this model and its
variants began in [9], which presented two simple algorithms. The first one is a suggested matching
algorithm, and has a tight competitive ratio of 1−1/e, matching the best possible performance from
the adversarial case. Moreover, [9] also showed that in the i.i.d. model it is possible to improve this
ratio, by presenting a two suggested matchings algorithm; [4] then further improved the performance
analysis of this algorithm and studied its generalizations. Subsequently [16] used Monte Carlo
sampling to construct an adaptive algorithm that yields a better performance guarantee. The
best currently known analysis is from [12], which use a simple max-flow relaxation to generate a
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randomized adaptive algorithm. Other papers that study more general online bipartite matching
models include [10, 11, 15]. For more references and a complete description of related problems,
we refer to the reader to [17].

While these works sometimes employ simple relaxations to design policies, to our knowledge no
researchers have specifically looked at the generation of good upper bounds for the problem.

• Our first contribution is to study the set of matching probabilities achievable by some fea-
sible policy, which is implicitly encoded as the projection of a doubly exponential polyhedron,
and to derive relaxations by identifying various classes of valid inequalities. This focus on
the achievable region is used in applied probability, for example to study models in queueing
and multi-armed bandits (e.g. [5, 7]), but to our knowledge it has not been applied to online
matching.

• Our second contribution is then to show that optimal dual solutions of our relaxations
imply specific policies, including simple ranking or time-dependent ranking policies in certain
cases. This connection is established by enforcing intuitive value function approximations on
the linear programming formulation of the problem’s dynamic program.

The general technique of approximating a dynamic programming value function to obtain relax-
ations and policies is applicable in many sequential decision making problems, and dates back to
[1, 8, 19, 22]. It has been used to derive relaxations and policies in many discrete dynamic opti-
mization settings, such as economic lot scheduling [3], inventory routing [1, 2] and the traveling
salesman problem [20, 21].

In the remainder of the paper, Section 2 states the problem and its formulations, and Section 3
discusses our proposed inequalities. Section 4 then shows how the relaxations imply policies, and
Section 5 summarizes the results of our computational study. Section 6 then concludes and outlines
future research avenues.

2 Model Description and Formulation

We are concerned with online bipartite matching (OBM) between two node sets, N and V , with
edge set E ⊆ N × V . This process occurs dynamically in the following way. The right-hand set
V , with |V | = m, is known and given ahead of time. The left-hand set N with |N | = n represents
node types that may appear, but we do not know which ones will appear and how often. We
know only that T elements in total will appear sequentially, each one drawn independently from
the (stationary) uniform distribution over N . In other words, at each decision epoch a new node
appears, and the probability that it belongs to any of the types in N is 1/n. A left-hand node’s
type indicates which elements of V it is connected to, and if the same type appears more than
once, each node is a separate copy. The assumption that the distribution is uniform is without loss
of generality as long as the original distribution has rational probabilities, since we can duplicate
nodes to put the problem in this form. Several past works on this OBM model (e.g. [9]) require
T = n so that the expected number of appearances of any left-hand type is one, but we do not need
this assumption. Each time a left-hand node appears, it must be immediately (and irrevocably)
matched to an available compatible node in V or discarded. The objective is to maximize the
expected number of matches. Following convention from previous literature and the motivating
application of search engine advertisement, we sometimes call i ∈ N an impression, and each j ∈ V
an ad.
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We can more generally consider weights on edges, with the objective of maximizing the expected
total weight of matched edges. Our upper bound results in Section 3 extend to this case. However,
for the sake of simplicity, in the remainder of the paper we focus exclusively on the cardinality case.

For any impression i ∈ N , let Γ(i) ⊆ V denote i’s neighbors, and define Γ(j) for ad j ∈ V
analogously; also, let η be the random variable with uniform distribution over N . We can now give
a dynamic programming (DP) formulation for this OBM model. Let v∗t (i, S) denote the optimal
expected value given that i ∈ N appears when the set of ads S ⊆ V is available and t − 1 draws
from N still remain. Then, for all t = 1, . . . , T , i ∈ N and S ⊆ V ,

v∗t (i, S) = max

{
maxj∈S∩Γ(i){1 + Eη[v∗t−1(η, S\j)]}
Eη[v∗t−1(η, S)],

(1)

where v∗0(·, ·) is identically zero, and the model’s optimal expected value is given by Eη[v∗T (η, V )].
The first term in this recursion corresponds to matching i with one of its remaining neighbors
j ∈ S ∩ Γ(i); the second corresponds to discarding i. As with any DP, the optimal value function
v∗ induces an optimal policy: At any state (t, i, S), we choose an action that attains the maximum
in (1). It is easy to see that an optimal policy always matches an impression whenever possible, so
that the discarding action is only taken when no compatible ad remains.

The recursion (1) can be equivalently captured with the linear program that we denote D:

min
v

Eη[vT (η, V )] (2a)

s.t. vt(i, S ∪ j)− Eη[vt−1(η, S)] ≥ 1, t ∈ [T ], i ∈ N, j ∈ Γ(i), S ⊆ V \j (2b)

vt(i, S)− Eη[vt−1(η, S)] ≥ 0, t ∈ [T ], i ∈ N, S ⊆ V (2c)

v ≥ 0. (2d)

The value function v∗ defined in (1) is optimal for (2). Moreover, this LP is a strong dual for OBM,
in the sense that any feasible v has an objective greater than or equal to Eη[v∗T (η, V )].

The dual of (2) is a primal formulation; any feasible solution encodes a feasible policy and its
probability of reaching any state in the DP. That formulation is the LP

max
x,y

∑
i∈N

∑
t∈[T ]

∑
j∈Γ(i)

∑
S⊆V \j

xt,Si,j (3a)

s.t.
∑
j∈Γ(i)

x
T,V \j
i,j + yT,Vi ≤ 1

n
, i ∈ N, (3b)

∑
j∈Γ(i)∩S

x
t,S\j
i,j + yt,Si −

1

n

∑
k∈N

yt+1,S
k − 1

n

∑
k∈N

∑
j∈Γ(k)∩S

xt+1,S
k,j ≤ 0,

t ∈ [1, T − 1], i ∈ N, ∅ 6= S ⊆ V,
(3c)

∑
j∈Γ(i)∩S

x
T,S\j
i,j + yT,Si ≤ 0, i ∈ N, S ( V, (3d)

x, y ≥ 0. (3e)

Here, xt,Si,j , the variable corresponding to dual constraint (2b), represents the probability that the

policy chooses to match impression i to ad j in state (t, i, S ∪ j), and yt,Si , which corresponds
to (2c), similarly represents a discarding action. As with its dual, the LP (3) has exponentially
many variables and constraints, and is therefore difficult to work with directly. However, we can
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equivalently consider optimizing over the matching probabilities achieved by a feasible policy; this
corresponds to optimizing over a projection of the feasible region of (3),

max

{∑
i∈N

∑
j∈Γ(i)

zij : ∃ (x, y) ∈ (3b)–(3e) with zij =
∑
t∈[T ]

∑
S⊆V \j

xt,Si,j

}
, (4)

where zij is the probability that impression i is ever matched to ad j. Any such z is a vector of
matching probabilities that is achievable by at least one feasible policy. Let Q denote this projected
polyhedron in the space of z variables, and note that Q is full-dimensional in R|E|.

3 Projected Relaxations

The polyhedron Q captures the matching probabilities achievable by any feasible policy, and opti-
mizing over it would yield the expected value of an optimal policy. Although this optimization is
computationally intractable, optimizing over any relaxation of Q yields a valid dual upper bound.
In this section, we study various relaxations by presenting several classes of inequalities that are
valid for Q. We begin by presenting the simplest relaxation.

Recall that each ad j can be matched at most once, so this constrains all probabilities involving j
to not exceed one in total. Similarly, each impression type i appears in each epoch with probability
1/n, and there are T stages, so the expected number of matches for i cannot exceed T/n. This
gives us the LP

max
∑

(i,j)∈E

zij (5a)

s.t.
∑
j∈Γ(i)

zij ≤
T

n
, i ∈ N (5b)

∑
i∈Γ(j)

zij ≤ 1, j ∈ V (5c)

z ≥ 0. (5d)

In particular, when T = n, (5) gives the deterministic bipartite matching formulation over (N ∪
V,E), and more generally it encodes a simple max-flow model; see e.g. [9].

We can use similar probabilistic ideas to strengthen the relaxation. An impression i ∈ N will
not appear at all with probability (1− 1/n)T , and thus

zij ≤ 1− (1− 1/n)T , i ∈ N, j ∈ Γ(i) (6)

is valid for Q; see e.g. [11]. Though these inequalities were already known, the following result is
new to our knowledge.

Proposition 3.1. Constraints (6) are facet-defining for the polyhedron of achievable probabilities
Q.

Proof. Let α := 1− (1−1/n)T denote the inequality’s right-hand side, and define also the numbers
β := 1 − (1 − 1/n)T − T

n (1 − 1/n)T−1, γ := 1
n(1 − 1/n)T−1. Here α represents the probability

that i ∈ N appears at least once, β corresponds to the probability that i ∈ N appears at least
twice, while γ is the probability that i ∈ N does not appear during the first T − 1 epochs times the
probability it appears in the last epoch. We denote the canonical vector by eij ∈ R|E|, i.e. a vector
with a one in the coordinate (i, j) and zero elsewhere. We can construct the following |E| affinely
independent points corresponding to policies that satisfy (6) with equality:
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• The policy that simply matches (i, j) when possible and ignores other edges corresponds to
αeij .

• For any edge (i′, j′) that does not share an endpoint with (i, j), the policy that matches either
edge when possible corresponds to α(eij + ei′j′).

• For any j′ ∈ Γ(i)\j, the policy that matches (i, j) the first time i appears and then matches
(i, j′) the second time corresponds to αeij + βeij′ .

• For any i′ ∈ Γ(j)\i, the policy that matches (i, j) when possible but in the last epoch matches
(i′, j) if i′ appears and i hasn’t appeared corresponds to αeij + γei′j .

We can generalize the previous concept to any set of impressions incident to an ad j ∈ V . Let
I ⊆ Γ(j); no nodes from this set will appear at all with probability (1− |I|/n)T , and hence the set
of right-star inequalities ∑

i∈I
zij ≤ 1− (1− |I|/n)T , j ∈ V, I ⊆ Γ(j) (7)

is valid. Moreover, their separation can be achieved in polynomial time by sorting the zij in non-
increasing order of i, and testing each successive sum against the corresponding right-hand side.
Inequality (7) also shows that (5c) can never be tight for a feasible policy unless |Γ(j)| = n; in this
case (5c) coincides with (7) for I = Γ(j) = N , and we get the following result.

Proposition 3.2. If j ∈ V and Γ(j) = N , constraint (5c) is facet-defining for the polyhedron of
achievable probabilities Q.

Proof. Let j ∈ V be any ad. We can construct the following |E| affinely independent points
corresponding to policies that satisfy (5c) with equality:

• For any i ∈ Γ(j), α is the probability that this impression appears at least once. Take
the policy that matches (i, j) whenever possible (with probability α), and if i never appears
matches the impression k ∈ Γ(j) \ i that appears in the last draw, with probability 1

n−1(1−
α) respectively for each k 6= i. Therefore, we have n points of the form αeij + 1

n−1(1 −
α)
∑

k∈Γ(j)\i ekj for each edge (i, j).

• The remaining policies are constructed similarly to the proof of Proposition 3.1.

Let us denote ε = 1
n−1(1−α). So, we have a block matrix of size |E| × |E|, in which the first n×n

block corresponds to the first group of policies, and has the following form

C =


α ε ε · · · ε
ε α ε · · · ε
...

. . .
...

ε ε ε · · · α

 .

Let us compute the determinant of C. Add rows 2 through n to row 1 to get

det(C) = det


1 1 1 · · · 1
ε α ε · · · ε
...

. . .
...

ε ε ε · · · α

 .
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Multiply the first row by −ε and add it to every other row. Then,

det(C) = det


1 1 1 · · · 1
0 α− ε 0 · · · 0
...

. . .
...

0 0 0 · · · α− ε

 = (α− ε)n−1,

which is greater than zero for all T > 0. Therefore, this block matrix is invertible, which implies the
points corresponding to the first group of policies are affinely independent. The remaining points
are also affinely independent, as they are the same as in the previous proof.

In general, inequalities of the form (7) are not facet-defining, except for those cases presented
in Proposition 3.1 and 3.2.

Proposition 3.3. If I 6= N , the face of Q induced by constraint (7) has dimension |E| − |I|.

Proof. Let j ∈ V and I ⊆ Γ(j) with I 6= N . Using the same notation as in previous propositions,
construct the following points that satisfy (7) with equality:

• The policy that matches the first i ∈ I that appears to j produces the point 1
|I|(1 − (1 −

|I|/n)T )
∑

i∈I eij .

• For any other edge we can construct points as we did in Proposition 3.1.

This gives us |E| − |I| + 1 affinely independent points. Furthermore, the only way to achieve the
probability 1−(1−|I|/n)T from the edges between I and j is to follow the outlined policy: The first
time any node from I appears, it must be matched to j. Conditioning on an arrival from I, any of its
members are equally likely to appear; so any point on this face must have zij = 1

|I|(1− (1−|I|/n)T )
for every i ∈ I. This implies we cannot produce more affinely independent points.

Let us examine the analogous situation on the other side. For an impression i ∈ N , consider
a set J ⊆ Γ(i) of adjacent ads. Since i may appear more than once, the previous argument does
not apply. However, we can still upper bound the corresponding probabilities by considering the
expected number of matches we can hope to make with i in J . As before, i will never appear with
probability (1− 1/n)T . Similarly, i will appear exactly once (and can thus only be matched once)
with probability T

n (1 − 1/n)T−1. This continues until we consider the event that i appears |J | or
more times, because we cannot match i more than these many times in J . Let B(T, 1/n) denote
a binomial random variable with T trials and probability of success 1/n. The preceding argument
shows that the left-star inequalities∑

j∈J
zij ≤ E [min {|J |, B(T, 1/n)}] , i ∈ N, J ⊆ Γ(i) (8)

are valid. In addition, the same greedy algorithm used for (7) applies to separate them, this time
sorting in non-decreasing order of j.

Theorem 3.4. Constraints (8) are facet-defining for Q when |J | < T .

Proof. Consider i ∈ N and J = {j1, . . . , jr} ⊆ Γ(i), where r := |J | < T . Denote by αk the
probability that i appears at least k times, i.e.

α1 = 1−
(

1− 1

n

)T
, α2 = 1−

(
1− 1

n

)T
− T

n

(
1− 1

n

)T−1

, etc.
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So, it is clear that

E [min {r,B(T, 1/n)}] =
r∑

k=1

αk.

Therefore, we can consider the following |E| affinely independent points:

• Take the |J | policies that match just node i, each time it appears, with nodes j ∈ J following
each of the permutations given by the ordering; that is, the first permutation is (j1, . . . , jr),
the second is (j2, . . . , jr, j1), and so forth until the r-th permutation, (jr, j1, . . . , jr−1). So,
point

∑r
k=1 αkeijk corresponds to the first policy, αreij1 +

∑r−1
k=1 αkeijk+1

to the second, and
so on. Thus, we need to prove that the matrix

C =


α1 αr αr−1 . . . α2

α2 α1 αr . . . α3
...

...
...

...
...

αr αr−1 αr−2 . . . α1


is invertible, where α1 > α2 > . . . > αr. This type of matrix is called a circulant, and
non-singularity follows from Proposition 24 in [14].

• For all j′ ∈ Γ(i)\J , we simply match (i, j′) after matching all nodes in J ; this corresponds
for instance to

∑r
k=1 αkeijk + αr+1eij′ . Note that |J | < T , so αr+1 > 0.

• The points for the remaining edges follow an analogous construction to Proposition 3.1.

When |J | ≥ T , we have E [min {|J |, B(T, 1/n)}] = T/n, and therefore (8) for J ( Γ(i) is
dominated by (5b). We can, however, use a similar proof to determine when this inequality is also
facet-defining.

Corollary 3.5. Constraints (8) for J = Γ(i) are facet-defining for Q regardless of T , and thus
(5b) is facet-defining when |Γ(i)| ≥ T .

The proof for this corollary does not need an affinely independent point for (i, j) with j 6∈ J
(since J = Γ(i)), and hence does not require |J | < T .

Finally, consider two sets I ⊆ N and J ⊆ V . In the best case, they induce a complete
bipartite subgraph, and we can proceed as before. No edges within the two sets will be matched at
all with probability (1− |I|/n)T , exactly one will be matched with probability |I|n (1− |I|/n)T−1,
and so forth. Generalizing, let B(T, |I|/n) denote a binomial random variable with T trials and
probability |I|/n of success. Then∑

(i,j)∈E∩(I×J)

zij ≤ E [min {|J |, B(T, |I|/n)}] , I ⊆ N, J ⊆ V, (9)

are valid. This general set of inequalities contains both (7) and (8) as special cases, by respectively
taking J = {j} and I = {i}. Moreover, for any fixed I or J they can be separated using the same
greedy algorithm, now applied to sums of the z variables; more generally, they can be separated
with an integer program that maximizes the left-hand side for every fixed value of |I| and |J |.
These inequalities are not necessarily facet-defining, except for the cases we have already pointed
out.

All the inequalities described so far have 0-1 coefficients; a natural question is whether all of Q’s
facets can be written with 0-1 coefficients. However, this is not true even for very small instances.
We have constructed Q in PORTA for an instance with T = 3, N = {1, 2, 3}, V = {a, b} and
E = {1a, 1b, 2b}. Not counting the non-negativity constraints, Q has 13 facets, but only the four
identified in (8) have 0-1 coefficients.

7



4 Policies Derived from Bounds

Any value function approximation v implies a policy by substituting it into (1): At any encountered
state (t, i, S), choose an ad that maximizes the right-hand side,

arg max
j∈S∩Γ(i)

{1 + Eη[vt−1(η, S \ η)]} = arg max
j∈S∩Γ(i)

Eη[vt−1(η, S \ η)],

or discard the impression if S∩Γ(i) = ∅; recall that an optimal policy only discards an impression if
no match is possible. We next focus on policies based on the relaxations in the previous section, by
generating approximations of the true value function that are feasible in the dynamic programming
LP (2) but efficient to compute. We also show that several of these approximations lead to ranking
policies (cf. [13]) and their generalizations. A ranking policy is specified by an ordering or permu-
tation of V : Assuming we label ads in the permutation’s order as V = {1, . . . ,m}, at any decision
epoch (t, i, S) we match the appearing impression i to min{j : j ∈ S ∩ Γ(i)}, the lowest-indexed
compatible ad that is available. Such policies are appealing from a practical perspective, as they
are completely specified by a permutation and can be implemented efficiently.

Our first two policies are ranking policies, and it then follows from [10] that their competitive
ratio is 1 − 1/e when m = n = T . The competitive ratio of a policy is the infimum, over all
instances, of the policy’s expected value divided by the expected value of the offline optimum, i.e.
the maximum matching on the realized graph. The offline optimum provides an upper bound on
the optimal policy’s expected value, so a competitive ratio guarantee for a policy also guarantees
the same multiplicative performance with respect to the optimal policy.

To begin, suppose we approximate the value at any state by considering the impression that
has just appeared and the remaining available ads. Specifically, suppose qi ≥ 0 represents the value
of having i ∈ N appear and be available to match. Similarly, let rj ≥ 0 be the value we assign to
each available ad j ∈ V . This leads to an approximation of the expected value of state (t, i, S) as

vt(i, S) ≈ qi + (t− 1)Eη[qη] +
∑
j∈S

rj . (10)

In the approximation, i has just appeared, and thus the state has value qi. In addition, there are
t− 1 more draws remaining, so we will get the expected value of qη that many more times. Finally,
each j ∈ S still available to match contributes its value rj .

Proposition 4.1. Suppose we restrict the feasible region of D by forcing solutions to have the form
(10), where the decision variables are now qi, i ∈ N and rj, j ∈ V . The resulting LP is equivalent
to

min
q,r≥0

Tn∑
i∈N

qi +
∑
j∈V

rj : qi + rj ≥ 1, (i, j) ∈ E

 , (D1)

the dual of (5).

Proof. To prove the proposition, we must establish two facts. First, the objective function (2a) of
D reduces to (D1)’s objective under restriction (10); and second, the feasible region of D collapses
to the feasible region of (D1) under restriction (10).

First, for the objective function (2a) we have

Eη

qη + (T − 1)Eη[qη] +
∑
j∈V

rj

 =
T

n

∑
i∈N

qi +
∑
j∈V

rj .
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For the feasible region, we take each constraint class from D separately. For any t ∈ [T ], i ∈ N ,
j ∈ Γ(i), and S ⊆ V \j in the matching constraint (2b), we get

qi + (t− 1)Eη[qη] +
∑
`∈S

r` + rj − Eη

[
(t− 1)qη +

∑
`∈S

r`

]
= qi + rj ≥ 1.

Similarly, the discarding constraint (2c) has

qi + (t− 1)Eη[qη] +
∑
`∈S

r` − Eη

[
(t− 1)qη +

∑
`∈S

r`

]
= qi ≥ 0.

We also require rj ≥ 0, since the value function must be non-negative. Altogether, this yields D1,
the dual of (5).

Let (q(10), r(10)) be an optimal extreme point solution of (D1). This feasible region is the convex
hull of node covers of (N × V,E); thus (q(10), r(10)) is the incidence vector of a cover, and when
T = n it is a minimum cardinality cover. Suppose we are at state (t, i, S) and employ the value
function approximation (10) given by this solution in the dynamic programming recursion (1) to
choose an action. Assuming S ∩ Γ(i) 6= ∅, this yields

arg max
j∈S∩Γ(i)

{
1 + Eη

[
(t− 1)q(10)

η +
∑
`∈S\j

r
(10)
`

]}
= arg min

j∈S∩Γ(i)
r

(10)
j ,

where the equivalence follows simply by removing terms that do not depend on j. This corresponds
to a cover ranking policy: Given an optimal node cover, we match an arriving impression if possible
to a non-cover ad, and only match it to an ad in the cover when no remaining non-cover ad is
compatible. Note that any ranking that orders ads so that non-cover ads appear before ads in the
cover induces a cover ranking policy.

Corollary 4.2. If m = n = T , a cover ranking policy has a competitive ratio of 1− 1/e.

Proof. This follows from [10], who show that any ranking algorithm (which they term “greedy”)
has this competitive ratio.

This first approximation (10) does not capture the interaction between impressions and ads.
Suppose we add a value pij ≥ 0 to a state whenever i ∈ N appears and j ∈ S is one of the remaining
ads. The new value function approximation is

vt(i, S) ≈ qi + (t− 1)Eη[qη] +
∑
j∈S

(
rj + pij +

(
1− (1− 1/n)t−1

) ∑
k∈N\i

pkj

)
. (11)

Since i ∈ N is the current impression, the approximation includes a value pij for all remaining ads
j. (This value will be zero if (i, j) 6∈ E, but we include it to simplify the expressions.) Furthermore,
each other impression k ∈ N \ i will appear at least once in the remaining epochs with probability
1− (1− 1/n)t−1, so we include these values as well, discounted by that probability; we only count
these values once, because an ad can only be matched once.

Proposition 4.3. Suppose we restrict the feasible region of D by forcing solutions to have the form
(11), where the decision variables are now qi, i ∈ N , rj, j ∈ V and pij, (i, j) ∈ E. The resulting
LP is equivalent to

min
T

n

∑
i∈N

qi +
∑
j∈V

rj +
(

1−
(

1− 1

n

)T) ∑
(i,j)∈E

pij

9



s.t. qi + rj + pij ≥ 1, (i, j) ∈ E, (D2)

q, r, p ≥ 0,

the dual of the LP obtained by adding constraints (6) to (5).

Proof. The proof follows in a similar fashion to the proof of Proposition 4.1. First, we have the
following expectation

Eη

pηj +
(
1− (1− 1/n)t−1

) ∑
k∈N\η

pkj

 =
(
1− (1− 1/n)t

)∑
i∈N

pij ,

which immediately shows that for t = T the term

Eη[vT (η, V )] =
T

n

∑
i∈N

qi +
∑
j∈V

rj +
(

1−
(

1− 1

n

)T) ∑
(i,j)∈E

pij

is the objective (2a). Furthermore, for any t ∈ [T ], i ∈ N , j ∈ Γ(i), and S ⊆ V \j, we have

∑
l∈S∪j

(
pil +

(
1− (1− 1/n)t−1

) ∑
k∈N\i

pkl

)

− Eη

[∑
l∈S

(
pηl +

(
1− (1− 1/n)t−2

) ∑
k∈N\η

pkj

)]

= pij +
(
1− (1− 1/n)t−1

) ∑
k∈N\i

pkj

+
∑
l∈S

(
pil +

(
1− (1− 1/n)t−1

) ∑
k∈N\i

pkj

)
−
(
1− (1− 1/n)t−1

)∑
k∈N

∑
l∈S

pkl

= pij +
(
1− (1− 1/n)t−1

) ∑
k∈N\i

pkj + (1− 1/n)t−1
∑
l∈S

pij ≥ pij ,

with equality holding when t = 1 and S = ∅. It follows that the restriction of the feasible region of
(2) with this approximation yields the model (D2), the dual of (5) with the additional constraints
(6).

Let (q(11), r(11), p(11)) be an extreme point optimal solution for (D2), and suppose we use the
approximation given by this optimal solution in (1); we call this a probability bound policy. At
state (t, i, S) with S ∩ Γ(i) 6= ∅, after removing terms that do not depend on j, this results in the
optimization problem

arg max
j∈S∩Γ(i)

∑
`∈S\j

(
r

(11)
` +

(
1− (1− 1/n)t−1

)∑
k∈N

p
(11)
k`

)
=

arg min
j∈S∩Γ(i)

{
r

(11)
j +

(
1− (1− 1/n)t−1

)∑
k∈N

p
(11)
kj

}
.

Though it is not immediately clear, this policy is also a ranking policy.

Theorem 4.4. The probability bound policy is a ranking policy. Therefore, when m = n = T it
has a competitive ratio of 1− 1/e.

10



Proof. Let (q(11), r(11), p(11)) be an extreme point optimal solution for (D2); then it is binary because

(D2) is the dual of a network flow. Moreover, by optimality it follows that if p
(11)
ij = 1, then

q
(11)
i = r

(11)
j = 0. In particular, for any j ∈ V , at most one of r

(11)
j and

∑
k p

(11)
kj can be positive,

and
(1− (1− 1/n)T−1)

∑
k

p
(11)
kj < 1,

because otherwise we can set r
(11)
j = 1 and p

(11)
ij = 0 for all i ∈ N and obtain a new solution with

a better objective.
Define a ranking of ads that orders them in non-decreasing order of

εj(T − 1) := r
(11)
j + (1− (1− 1/n)T−1)

∑
k

p
(11)
kj .

We claim the probability bound policy chooses nodes to match based on this ranking. To see this,
observe that because the solution is binary, εj(T − 1) can take at most n + 2 values: It can be

zero or one, or (1− (1− 1/n)T−1)
∑

k p
(11)
kj , where

∑
k p

(11)
kj ∈ {0, . . . , n}. The proof then follows by

noting that the ordering of the εj(t) values is the same for all t = 2, . . . , T − 1.

Note that a probability bound policy does not necessarily perform strictly better than a cover
ranking policy. For instance, suppose m = n = T and the graph is an even cycle. In this case, it is

easy to see that p
(11)
ij = 0 for all edges (i, j), and thus the two solutions coincide.

We next generalize this approach to include all right-star inequalities.

Theorem 4.5. Consider the value function approximation

vt(i, S) ≈ qi + (t− 1)Eη[qη]

+
∑
j∈S

(
rj +

∑
I⊆Γ(j)
I3i

pIj +
∑
I⊆Γ(j)
I 63i

(
1− (1− |I|/n)t−1

)
pIj

)
, (12)

where q ∈ RN+ , r ∈ RV+, and pIj ∈ R+ for j ∈ V and I ⊆ Γ(j). Restricting the feasible region of D
with this approximation yields

min
T

n

∑
i∈N

qi +
∑
j∈V

rj +
∑
j∈V

∑
I⊆Γ(j)

(1− (1− |I|/n)T )pIj

s.t. qi + rj +
∑

I⊆Γ(j),
I3i

pIj ≥ 1, (i, j) ∈ E, (D3)

q, r, p ≥ 0,

the dual of the LP obtained by adding constraints (7) to (5).

Proof. The proof follows the same structure as the proofs of Propositions 4.1 and 4.3. First, we
have the following expectation

Eη

 ∑
I⊆Γ(j),
I3η

pIj +
∑

I⊆Γ(j),
I 63η

(
1− (1− |I|/n)t−1

)
pIj

 =
∑
I⊆Γ(j)

(1− (1− |I|/n)t)pIj

11



which immediately shows that for t = T the term

Eη[vT (η, V )] =
T

n

∑
i∈N

qi +
∑
j∈V

rj +
∑
j∈V

∑
I⊆Γ(j)

(1− (1− |I|/n)T )pIj ,

is the objective (2a). Furthermore, for any t ∈ [T ], i ∈ N , j ∈ Γ(i), and S ⊆ V \j, we have

∑
l∈S∪j

( ∑
I⊆Γ(l),
I3i

pIl +
∑

I⊆Γ(l),
I 63i

(
1− (1− |I|/n)t−1

)
pIl

)

− Eη

[∑
l∈S

( ∑
I⊆Γ(l),
I3η

pIl +
∑

I⊆Γ(l),
I 63η

(
1− (1− |I|/n)t−2

)
pIl

)]

=
∑

I⊆Γ(j),
I3i

pIj +
∑

I⊆Γ(l),
I 63i

(
1− (1− |I|/n)t−1

)
pIj +

∑
l∈S

∑
I⊆Γ(l),
I3i

(1− |I|/n)t−1pIl

≥
∑

I⊆Γ(j),
I3i

pIj ,

with equality holding when t = 1 and S = ∅. It follows that the restriction of the feasible region of
(2) with this approximation yields the model (D3), the dual of (5) with the additional constraints
(7).

Let (q(12), r(12), p(12)) be optimal for (D3). At state (t, i, S) with S ∩ Γ(i) 6= ∅, using the value
function approximation (12) we obtain the optimization problem

arg max
j∈S∩Γ(i)

∑
`∈S\j

(
r

(12)
` +

∑
I⊆Γ(`)

(1− (1− |I|/n)t−1)p
(12)
I`

)

= arg min
j∈S∩Γ(i)

{
r

(12)
j +

∑
I⊆Γ(j)

(1− (1− |I|/n)t−1)p
(12)
Ij

}
.

The proof of Theorem 4.4 does not apply here, because the coefficients multiplying the pIj values
may decay at different rates with respect to t, depending on the cardinality of |I|. Nevertheless, the
policy is a time-dependent ranking policy: At any epoch t, the policy’s ranking is given by a linear

combination of the r
(12)
j and p

(12)
Ij values; the influence of the p values in the ranking is highest in

the first epoch, and decays until vanishing in the last one. As with a (static) ranking policy, we
can pre-compute the T rankings and implement the policy efficiently.

We can state a similar correspondence between constraints (8) and a value function approxi-
mation.

Theorem 4.6. Consider the value function approximation

vt(i, S) ≈ qi + (t− 1)Eη[qη] +
∑
j∈S

rj

+
∑
J⊆Γ(i)

piJE[min{|J ∩ S|, B(t− 1, 1/n) + 1}]

12



+
∑
k∈N\i

∑
J⊆Γ(k)

pkJE[min{|J ∩ S|, B(t− 1, 1/n)}], (13)

where q ∈ RN+ , r ∈ RV+, piJ ∈ R+ for i ∈ N and J ⊆ Γ(i). Restricting the feasible region of D with
this approximation yields

min
T

n

∑
i∈N

qi +
∑
j∈V

rj +
∑
i∈N

∑
J⊆Γ(i)

piJE[min{|J |, B(T, 1/n)}]

s.t. qi + rj +
∑

J⊆Γ(i),
J3j

piJ ≥ 1, (i, j) ∈ E, (D4)

q, r, p ≥ 0,

the dual of the LP obtained by adding constraints (8) to (5).

Proof. First, we have the following expectation

Eη
[ ∑
J⊆Γ(η)

pηJE[min{|J ∩ S|, B(t− 1, 1/n) + 1}]

+
∑
k∈N\η

∑
J⊆Γ(k)

pkJE[min{|J ∩ S|, B(t− 1, 1/n)}]
]

=
∑
i∈N

∑
J⊆Γ(i)

piJE[min{|J ∩ S|, B(t, 1/n)}],

which immediately shows that for t = T the term

Eη[vT (η, V )] =
T

n

∑
i∈N

qi +
∑
j∈V

rj +
∑
i∈N

∑
J⊆Γ(i)

piJE[min{|J |, B(T, 1/n)}]

is the objective (2a) by taking t = T and S = V . Furthermore, for any t ∈ [T ], i ∈ N , j ∈ Γ(i),
and S ⊆ V \j, we have

vt(i, S ∪ j) = . . .+
∑
J⊆Γ(i)

piJE[min{|J ∩ (S ∪ j)|, B(t− 1, 1/n) + 1}]

+
∑
k∈N\i

∑
J⊆Γ(k)

pkJE[min{|J ∩ (S ∪ j)|, B(t− 1, 1/n)}].

First, notice that if J 3 j then |J∩(S∪j)| = 1+|J∩S|, otherwise if J 63 j then |J∩(S∪j)| = |J∩S|,
so ∑

J⊆Γ(i)

piJE[min{|J ∩ (S ∪ j)|,B(t− 1, 1/n) + 1}]

=
∑

J⊆Γ(i),
J3j

piJE[min{1 + |J ∩ S|, B(t− 1, 1/n) + 1}]

+
∑

J⊆Γ(i),
J 63j

piJE[min{|J ∩ S|, B(t− 1, 1/n) + 1}].
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In the same way we have∑
k∈N\i

∑
J⊆Γ(k)

pkJE[min{|J ∩ (S ∪ j)|, B(t− 1, 1/n)}]

=
∑
k∈N\i

∑
J⊆Γ(k),
J3j

pkJE[min{1 + |J ∩ S|, B(t− 1, 1/n)}]

+
∑
k∈N\i

∑
J⊆Γ(k),
J 63j

pkJE[min{|J ∩ S|, B(t− 1, 1/n)}].

Hence, for vt(i, S ∪ j) we obtain

vt(i, S ∪ j) = . . .+
∑

J⊆Γ(i),
J3j

piJE[min{1 + |J ∩ S|, B(t− 1, 1/n) + 1}] (A)

+
∑

J⊆Γ(i),
J 63j

piJE[min{|J ∩ S|, B(t− 1, 1/n) + 1}] (B)

+
∑
k∈N\i

∑
J⊆Γ(k),
J3j

pkJE[min{1 + |J ∩ S|, B(t− 1, 1/n)}] (C)

+
∑
k∈N\i

∑
J⊆Γ(k),
J 63j

pkJE[min{|J ∩ S|, B(t− 1, 1/n)}], (D)

and from previous observations we know

Eη [vt−1(η, S)] =
∑
i∈N

∑
J⊆Γ(i)

piJE[min{|J ∩ S|, B(t− 1, 1/n)}]

=
∑
J⊆Γ(i)
J3j

piJE[min{|J ∩ S|, B(t− 1, 1/n)}] (A′)

+
∑
J⊆Γ(i)
J 63j

piJE[min{|J ∩ S|, B(t− 1, 1/n)}] (B′)

+
∑
k∈N\i

∑
J⊆Γ(k)
J3j

pkJE[min{|J ∩ S|, B(t− 1, 1/n)}] (C′)

+
∑
k∈N\i

∑
J⊆Γ(k)
J 63j

pkJE[min{|J ∩ S|, B(t− 1, 1/n)}]. (D′)

First, we clearly have (D)− (D′) = 0, and (B)− (B′), (C)− (C ′) ≥ 0. Also, we obtain

(A)− (A′) =
∑

J⊆Γ(i),
J3j

piJ .

In other words we have∑
J⊆Γ(i)

piJE[min{|J ∩ (S ∪ j)|, B(t− 1, 1/n) + 1}]
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+
∑
k∈N\i

∑
J⊆Γ(k)

pkJE[min{|J ∩ (S ∪ j)|, B(t− 1, 1/n)}]

−
∑
i∈N

∑
J⊆Γ(i)

piJE[min{|J ∩ S|, B(t− 1, 1/n)}]

≥
∑

J⊆Γ(i),
J3j

piJ ,

with equality holding when t = 1 and S = ∅. So, it follows that

vt(i, S ∪ j)− Eη[vt−1(η, S)] ≥ qi + rj +
∑

J⊆Γ(i),
J3j

piJ ≥ 1.

Therefore, the restriction of the feasible region of (2) with this approximation yields (D4), the dual
of (5) with the additional constraints (8).

This approximation generalizes the intuition behind approximation (11) to subsets of ads. Sup-
pose we model the value piJ of impression i interacting with a set of compatible ads J ⊆ Γ(i). When
i appears in epoch t, we expect no more than E[min{|J ∩ S|, B(t− 1, 1/n) + 1}] matches between
i and J from that point forward: The number of matches cannot exceed the number of remaining
ads in the set, |J ∩ S|, but it also cannot exceed the number of times we expect i to appear, the
current appearance plus B(t−1, 1/n) more. A similar argument applies to any impression that did
not appear in this epoch.

This value function approximation (13) seems not to define a dynamic ranking policy; let
(q(13), r(13), p(13)) be optimal for (D4). At state (t, i, S) with S ∩ Γ(i) 6= ∅, employing the approxi-
mation (13) in (1) results in

arg max
j∈S∩Γ(i)

{∑
`∈S\j

r
(13)
` +

∑
i∈N

∑
J⊆Γ(i)

p
(13)
iJ E[min{|J ∩ (S \ j)|, B(t− 1, 1/n)}]

}
.

Because the coefficients multiplying the p variables depend explicitly on the set S of remaining ads,
it is impossible to compute these expressions a priori to obtain a ranking. We have nevertheless
also implemented this policy in our computational experiments, outlined in the next section.

Finally, we can combine and generalize our previous approximations to derive a correspondence
to (9).

Theorem 4.7. Consider the value function approximation

vt(i, S) ≈ qi + (t− 1)Eη[qη] +
∑
j∈S

rj

+
∑
I⊆N
I3i

∑
J⊆V

pIJE[min{|J ∩ S|, B(t− 1, |I|/n) + 1}] (14)

+
∑
I⊆N
I 63i

∑
J⊆V

pIJE[min{|J ∩ S|, B(t− 1, |I|/n)}],

where q ∈ RN+ , r ∈ RV+, pIJ ∈ R+ for I ⊆ N and J ⊆ V . Restricting the feasible region of D with
this approximation yields

min
T

n

∑
i∈N

qi +
∑
j∈V

rj +
∑
I⊆N

∑
J⊆V

pIJE[min{|J |, B(T, |I|/n)}]
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s.t. qi + rj +
∑
I⊆N,
I3i

∑
J⊆V,
J3j

piJ ≥ 1, (i, j) ∈ E, (D5)

q, r, p ≥ 0,

the dual of (5) with the additional constraints (9).

The proof of Theorem 4.7 is analogous to Theorem 4.6, but also uses parts of the proof of
Theorem 4.5. Finally, this approximation defines a policy similar to the one given by (13).

5 Computational Results

In this section we outline the experiments we conducted to test the proposed bounds and policies.
All of the test instances we constructed have T = n = m, and consist of the following:

1. A cycle of size 20 (n = 10).

2. A cycle of size 200 (n = 100).

3. 20 small instances with n = 10, each one randomly generated by having a possible edge in
N × V be present independently with a probability of 10%.

4. 20 large dense instances with n = 100, each one randomly generated by having a possible
edge in N × V be present independently with a probability of 10%.

5. 20 large sparse instances with n = 100, each one randomly generated by having a possible
edge in N × V be present independently with probability of 2.5%.

We use “small” instances with n = 10 because the exact DP recursion (1) is still computationally
tractable, yet it becomes intractable for even slightly bigger instances. Furthermore, the dimension
of the polyhedron Q grows as O(n2), and all of our inequality classes are separable in polynomial
time, except for (9). We can solve the LP’s for “large” instances with n = 100 in a few seconds,
but as n grows the dimension of the problem itself becomes the bottleneck. For example, for our
large dense instances, the expected number of variables is 1, 000; a similarly constructed instance
with n = 500 would already have 25, 000 variables in expectation.

We tested various bounds on the instances by solving the initial relaxation (5) and then adding
the inequalities we introduced in Section 3. For the policies, we simulated 20,000 realizations of the
small instances and 200 realizations of the large instances, and we report the sample average of each
policy. To benchmark our results, for the small instances we computed the optimal expected value
given by the DP (1), and for the larger instances we calculated the sample mean of the maximum
expected off-line matching, by computing the maximum cardinality matching of each simulated
realization; this yields an upper bound on any policy as it affords the decision maker early access
to information. As policy comparisons, we implemented two heuristics: The single-matching policy
computes a maximum cardinality matching in (N × V,E), and matches only these edges, ignoring
all others; this heuristic has an approximation ratio of 1− (1− 1/n)T (approximately 1− 1/e when
T = n) [9]. The two-matching policy is a heuristic modification of the algorithm from [9] that uses
a maximum cardinality 2-matching in (N × V,E).

Table 1 summarizes the results. For each instance class, in each row we present the geometric
mean of each bound or policy’s ratio to the best available benchmark (the DP value for small
instances and the expected maximum matching for large ones). We also report the sample standard
deviation of the ratios in parenthesis.
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Bound/Policy 20-Cycle 200-Cycle Small Large Dense Large Sparse

(5) 1.2681 1.2659 1.3151 (0.081) 1.0018 (0.0011) 1.2167 (0.010)

(5) + (6) 1.2681 1.2659 1.0886 (0.042) 1.0018 (0.0011) 1.1227 (0.011)

(5) + (7) 1.1319 1.0980 1.0536 (0.038) 1.0006 (0.0006) 1.0794 (0.009)

(5) + (8) 1.1606 1.1370 1.0570 (0.031) 1.0013 (0.0009) 1.0961 (0.011)

(5) + (7) + (8) 1.1319 1.0980 1.0536 (0.038) 1.0004 (0.0005) 1.0717 (0.009)

(5) + (9) 1.1319 1.0980 1.0288 (0.023) - -

Exp. Matching 1.0514 1 1.0030 (0.005) 1 1

(1) 1 - 1 - -

Matching 0.8259 0.8025 0.8566 (0.053) 0.6351 (0.0007) 0.7768 (0.028)

2-Matching 0.9859 0.9496 0.9616 (0.037) 0.7500 (0.0023) 0.8793 (0.030)

(10) 0.9861 0.9474 0.9883 (0.020) 0.9232 (0.0048) 0.9306 (0.008)

(11) 0.9861 0.9474 0.9963 (0.005) 0.9232 (0.0048) 0.9358 (0.008)

(12) 0.9861 0.9474 0.9974 (0.005) 0.9471 (0.0091) 0.9560 (0.006)

(13) 0.9980 0.9539 0.9732 (0.032) 0.9409 (0.0036) 0.8635 (0.070)

Table 1: Summary of experiment results.

With respect to the bounds, the right-star inequalities (7) improve the basic bound (5) more
than the left-star ones (8), even though the latter are facet-defining. For small instances, the
complete subgraph inequalities (9) can further cut the gap to under 3%; however, we weren’t able
to compute this bound in a reasonable time for larger instances because of the significant additional
computational burden. For the dense large instances, our bounds are all quite close to the expected
maximum matching benchmark, which is unsurprising since in most realizations of these instances
there is a perfect or near-perfect matching.

In terms of policies, the best performer overall is the time-dependent ranking policy corre-
sponding to the right-star inequalities and approximation (12). However, the non-ranking policy
corresponding to the left-star inequalities and approximation (13) does perform better on the two
cycle instances. In contrast, the single-matching heuristic policy does not perform well, and even the
2-matching heuristic’s performance significantly worsens for the large instances; this may indicate
the benefit of having more than two choices per impression in larger graphs.

The next set of experiments generalizes the previous cycle instances to k-regular graphs con-
structed in the following way: We labeled impressions and ads from 0 to n − 1, and for each
i ∈ {0, . . . n− 1} we set Γ(i) = {i, i+ 1, . . . , i+ k − 1}( mod n). We present the results in Table 2
for bipartite graphs with n = m = 100 and k = 3, 4, 5, 6. We compare bounds and policies with
respect to the sample mean of the maximum expected off-line matching. As with the previous large
instances, we again did not compute the exact optimal solution or the last bound corresponding to
(5) + (9).

In terms of bounds, we again observe that inequality (7) improves the basic bound (5) more
than the other classes of inequalities, including (8). Nonetheless, as k increases, both bounds
(right-star and left-star) are much tighter. Also, we observe that (6) does not improve the bound

from (5). This is expected; when n = T , in (D2) we will have p
(11)
ij = 0 for all edges incident to

nodes of degree 2 or greater (all nodes in these instances), since their objective coefficient satisfies
1− (1− 1/n)n ≥ 1− 1/e.

Regarding the policies, (10), (11) and (12) perform exactly in the same way. This is unsurprising,
because the graphs’ symmetry means none of the policies can differentiate among the ads. On the
other hand, the left-star policy (13) does better than the rest of the policies, as we observed also in
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Bound/Policy 3-regular 4-regular 5-regular 6-regular

(5) 1.1687 1.1202 1.0951 1.0696

(5) + (6) 1.1687 1.1202 1.0951 1.0696

(5) + (7) 1.1131 1.1013 1.0886 1.0674

(5) + (8) 1.1424 1.1157 1.0944 1.0695

(5) + (7) + (8) 1.1131 1.1013 1.0886 1.0674

Exp. Matching 1 1 1 1

Matching 0.7409 0.7102 0.6943 0.6781

2-Matching 0.8630 0.8343 0.8129 0.8030

(10) 0.9347 0.9303 0.9295 0.9254

(11) 0.9347 0.9303 0.9295 0.9254

(12) 0.9347 0.9303 0.9295 0.9254

(13) 0.9429 0.9396 0.9426 0.9454

Table 2: Ratios for k-regular bipartite graphs.

the cycle instances. Once again, the single-matching and 2-matching policies perform much worse
than the ranking policies.

6 Conclusions

We have studied relaxations for the i.i.d. online bipartite matching problem, by deriving several
classes of valid inequalities for the polyhedron of attainable probabilities. We have also determined
which of these inequalities are facet-defining, and used them to design heuristic policies, many of
which turn out to be of ranking type.

Our results motivate a variety of questions for future work. In particular, we mention at the end
of Section 3 that, even in very small instances, all facets not included in our study exhibit a more
complicated structure. For example, they cannot be written as 0-1 inequalities. More polyhedral
results are still needed, and they may require the study of sub-structures in the underlying graph
or may need to include the timing of policies’ choices; our preliminary results in this vein reveal
quite complex inequalities.

A more general question is to apply methods like the ones in this paper to other online matching
and resource allocation problems. One prominent example is the AdWords problem [10, 18], but
there are several other models in advertising and revenue management that may benefit from such
an approach.
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