
The Value Function of an Infinite-Horizon

Single-Item Lot-Sizing Problem

Alejandro Toriello∗

Daniel J. Epstein Department of Industrial and Systems Engineering

University of Southern California

toriello at usc dot edu

George Nemhauser
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

george dot nemhauser at isye dot gatech dot edu

October 17, 2011

Abstract

We characterize the value function of a discounted, infinite-horizon
version of the single-item lot-sizing problem. As corollaries, we show
that this value function inherits several properties of finite, mixed-
integer program value functions; namely, it is subadditive, lower semi-
continuous and piecewise linear.

Keywords: value function, mixed-integer program, infinite optimiza-
tion, production lot-sizing

1 Introduction

This paper characterizes the value function of a discounted, infinite-horizon
version of the classical single-item uncapacitated lot-sizing problem (LSP).
Suppose we need to manage the production schedule for a single item that
experiences constant per-period demand d > 0. There is no production or
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inventory capacity, and all demand must be met each period, either with
items produced that period, or items in inventory. Every period we produce,
we incur a fixed cost f > 0 and a variable cost of c > 0 per unit produced.
Items left over at the end of the period after demand is met incur a holding
cost of h > 0 per unit. The initial stock on hand is s ≥ 0. We can model
this problem as

C(s, d) = min
∞∑
t=1

γt−1(fδ(zt) + czt + hst) (1a)

s.t. zt + st−1 − st = d,∀ t = 1, . . . (1b)

s0 = s (1c)

zt, st ≥ 0, ∀ t = 1, . . . , (1d)

where st and zt respectively represent ending stock and production during
period t, γ ∈ [0, 1) is a discount factor, δ(z) = 1 when z > 0 and δ(z) =
0 otherwise. We take the set of feasible solutions to be a subset of the
sequences (zt, st) with finitely converging objective (cf. [1].) Because the
objective is a cost minimization, we use the notation C to denote the optimal
value of (1) as a function of s and d; however, we refer to C as a value
function. We include the degenerate case d = 0 so the domain of C is the
closed cone R2

+.
Problem (1) and its many variations have a long history in operations

research. The structure of optimal solutions in the finite, dynamic case was
studied in the seminal work of Wagner and Whitin [2], and many researchers
have since attempted to generalize their results for more complex models.
Most authors have given results pertaining to optimal solutions’ structure,
and related issues such as regeneration points and replenishment intervals
(see Theorem 1 below.) The interested reader may consult the texts [3, 4]
and references therein.

However, in infinite-horizon problems the value function itself has re-
ceived relatively little attention. One important exception is [5], where the
authors give a closed-form expression for the value function of a continuous-
time, average-cost EOQ model; our results yield the analogue in the discrete-
time, discounted case. This knowledge about the value function is useful for
exact or approximate optimization in many dynamic applications, as well as
for sensitivity analysis.

From the mixed-integer programming (MIP) perspective, we show that
C inherits several important characteristics from finite MIP value functions:
C is subadditive, lower semicontinuous and piecewise linear. Whereas value
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functions of finite MIP’s have been studied extensively (e.g. [6]), relatively
little is known about value functions in the infinite case. Our results for the
simple infinite model (1) are a first step towards addressing this gap.

2 Optimal Solutions

The following theorem summarizes the structure of optimal solutions for (1).
These results are well-known throughout the mixed-integer programming,
dynamic programming and inventory control community, and similar results
exist for different variations of LSP. [2] has the original proofs for a finite
variant of the problem; however, the arguments carry over to (1) with minor
changes.

Theorem 1. Suppose d > 0, and let t∗ = b sdc+ 1. Any optimal solution to
(1) satisfies the following statements.

i) zt = 0, ∀ t < t∗.

ii) zt∗ > 0, and st∗−1 + zt∗ = kt∗d for some kt∗ ∈ N = (1, 2, . . . ).

iii) st−1zt = 0,∀ t > t∗, and if zt > 0, then zt = ktd, for some kt ∈ N.

Proof. For t < t∗, if zt > 0 we can always postpone production and decrease
the objective. This also implies zt∗ > 0 by feasibility. For t > t∗, if we pro-
duce an amount that is not an integer multiple of d, we can always decrease
production to the largest integer multiple of d and postpone the remaining
production to the next period of positive production while improving the
objective. This implies we only produce when incoming inventory equals
zero. If s − (t∗ − 1)d > 0, a similar argument shows that st∗−1 + zt∗ is an
integer multiple of d. �

The theorem states that optimal solutions have a replenishment interval
structure: Production is always equal to the cumulative demand for an
interval of consecutive periods; for (1), replenishment intervals are always
equal because the data is stationary, except in degenerate cases when two
interval lengths are optimal.

3 The Value Function

The most basic non-trivial case occurs when the initial inventory is zero.
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Proposition 2. Suppose d > 0. Then

C(0, d) = min
k∈N

{
1

1− γk

(
f + kcd+ hd

k−1∑
`=1

γ`−1(k − `)
)}

.

For any d, at most two consecutive integers k(d), k(d) + 1 minimize the
quantity inside the brackets.

Proof. This proof uses standard dynamic programming techniques; see, e.g.,
[7]. By Theorem 1, we know that production must occur in integer multiples
of d, and thus all future inventories will be integer multiples of d. We can
thus consider a finite-state and -action dynamic program with state space
S = {0, . . . ,K}, where the integer K is chosen large enough. The set of
feasible actions are the “do nothing” action for all positive states, and the
actions corresponding to a replenishment of length k, k = 1, . . . ,K in the
zero state. The quantity inside the minimization bracket is precisely the
present value of replenishing inventory every k periods into perpetuity, and
the minimum over all such quantities gives the optimal policy. Moreover,
using the identity

k−1∑
`=1

γ`−1(k − `) =
k(1− γ)− (1− γk)

(1− γ)2
, ∀ k ∈ N,

the expression in the brackets reduces to Ak+B
1−γk − C, for appropriately cho-

sen positive constants A, B and C. This function can easily be shown to
be strictly convex for k ≥ 1 and eventually increasing. Therefore the mini-
mum over all natural numbers can be achieved by at most two consecutive
numbers. �

This result shows that, for a fixed d, we can reformulate (1) as a MIP
in a similar fashion to the finite case. We add binary decision variables
xt ∈ {0, 1}, replace the objective (1a) with

min
∞∑
t=1

γt−1(fxt + czt + hst) (2)

and add the constraints

Mdxt − zt ≥ 0,∀ t = 1, . . . (3)

As long as Md ≥ k(d)d, at least one optimal solution will remain feasible in
the reformulation.

4



Corollary 3.

i) C(s, d) = C(0, d)− cs,∀ 0 ≤ s < d,∀ d > 0.

ii) C(s, d) = h(s− d) + γC(s− d, d),∀ s ≥ d,∀ d.

Proof. (i) For simplicity, assume the optimal replenishment length is unique,
and let k(d) ∈ N be the length. It suffices to prove that any optimal solution
satisfies z1 = k(d)d− s. Suppose not; by Theorem 1, z1 = k′d− s, for some
k′ 6= k(d). Then

f + c(k′d− s) + hd

k′−1∑
`=1

γ`−1(k′ − `) + γk
′
C(0, d) ≤

f + c(k(d)d− s) + hd

k(d)−1∑
`=1

γ`−1(k(d)− `) + γk(d)C(0, d)

However, s can be eliminated from both sides, and the resulting relation
implies that k′ is an optimal replenishment length, contradicting our as-
sumption.

(ii) Follows directly from Theorem 1(i). �

The next theorem summarizes the preceding results into a single formula.

Theorem 4. C is given by

C(s, 0) =
hs

1− γ
, ∀ s ≥ 0 (4)

C(0, d) = min
k∈N

{
1

1− γk

(
f + kcd+ hd

k−1∑
`=1

γ`−1(k − `)
)}

, ∀ d > 0 (5)

C(s, d) = s

(
h

(
1− γk

1− γ

)
− γkc

)
− d
(
h

k∑
`=1

`γ`−1 − γkkc
)

+ γkC(0, d), ∀ kd ≤ s < (k + 1)d,∀ k ∈ Z+.

(6)

Proof. The first equation is directly obvious but also follows by setting t∗ =
∞ in the proof of Theorem 1. The second equation is a restatement of
Proposition 2. The last equation follows by Corollary 3(i) and recursive
applications of Corollary 3(ii). �
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Figure 1: Single-item LSP value function for fixed d > 0 with k(d) = 2.

Figure 1 shows an example plot of C(s, d) for a fixed d > 0 with optimal
replenishment interval of two periods. The discontinuities in C occur along
the lines s = kd, for each k ∈ N. Within each region {(s, d) : kd ≤ s <
(k + 1)d}, C(s, d) is piecewise linear and continuous. Figure 2 shows a
sample plot with s = 0.

In the following corollary, we say that C is subadditive if C(s, d) +
C(s′, d′) ≥ C(s+ s′, d+ d′), ∀ s, s′, d, d′ ≥ 0.

Corollary 5. C satisfies the following statements:

i) C is subadditive.

ii) C is piecewise linear, with a countably infinite number of regions in
which it is affine.

iii) C is lower semicontinuous.

Before proving this result, we note that in the finite MIP case, a re-
striction of the value function to a bounded sub-domain is piecewise linear
and defined by finitely many regions in which it is affine [6, Theorem 6.1].
Conversely, the restriction of C to a bounded subset of R2

+ that contains a
neighborhood of a point on the ray d = 0 is piecewise linear but requires a
countably infinite number of regions in which it is affine to define it.

For lower semicontinuity in finite MIP value functions, the interested
reader may consult [9].
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C(0, d)
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Figure 2: Single-item LSP value function for s = 0.

Proof. (i) This proof is almost identical to the finite case; see [8]. Let s, d and
s′, d′ be pairs of starting inventories and demands, with respective optimal
solutions (zt, st) and (z′t, s

′
t). Then (ẑt, ŝt) = (zt, st) + (z′t, s

′
t) is feasible for

(1) with starting inventory and demand given by s+ s′, d+ d′ respectively,
and has an objective no greater than C(s, d) + C(s′, d′).

(ii) Follows directly from Theorem 4.

(iii) First, suppose d > 0; discontinuities occur when s is an integer multiple
of d. If s = d, then using the basic fact C(0, d) ≥ cd

1−γ , we have

C(0, d)− cd ≥ γC(0, d),

where the quantity on the left is lims↑dC(s, d) and the right-hand side is
C(d, d). A similar argument, also using C(0, d) ≥ cd

1−γ , establishes lower
semicontinuity for s = kd, k ≥ 2.

Now suppose d = 0. The proof is trivial for C(0, 0), since all other
function values are positive. So suppose s > 0, and let (ŝ, d̂) satisfy ŝ > 0,
0 < d̂ < ŝ

2 . Using the identity

k∑
`=1

`γ`−1 =
kγk+1 − kγk + 1− γk

(1− γ)2
,
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we have

C(ŝ, d̂) = ŝ

[
h

(
1− γb

ŝ

d̂
c

1− γ

)
− γb

ŝ

d̂
cc

]
+ γb

ŝ

d̂
cC(0, d̂)

− d̂
[

h

(1− γ)2

(⌊ ŝ
d̂

⌋
γb

ŝ

d̂
c+1 −

⌊ ŝ
d̂

⌋
γb

ŝ

d̂
c + 1− γb

ŝ

d̂
c
)
− γb

ŝ

d̂
c
⌊ ŝ
d̂

⌋
c

]
=

hŝ

1− γ
− hd̂

( ŝ
d̂
−
⌊ ŝ
d̂

⌋) γb ŝd̂ c
1− γ

+ d̂
( ŝ
d̂
−
⌊ ŝ
d̂

⌋)
γb

ŝ

d̂
cc

− hd̂
(

1− γb
ŝ

d̂
c

1− γ

)
+ γb

ŝ

d̂
cC(0, d̂)→ hs

1− γ
= C(s, 0),

as (ŝ, d̂)→ (s, 0). �

4 Conclusions

We have characterized the value function of an infinite-horizon, discounted,
single-item lot-sizing problem. Our results provide a link between value
function theory in mixed-integer programming and dynamic programming.
An obvious question is the extension of these structural results to other
infinite-horizon models, either in production planning or more generally in
infinite mixed-integer programming. Further work in this area could reveal
links between mixed-integer programming and dynamic programming and
allow us to extend known value function theory from finite mixed-integer
programs into the infinite realm.
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