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Abstract

We present a time decomposition for inventory routing problems. The methodology is based

on valuing inventory with a concave piecewise linear function and then combining solutions to

single-period subproblems using dynamic programming techniques. Computational experiments

show that the resulting value function accurately captures the inventory’s value, and solving the

multi-period problem as a sequence of single-period subproblems drastically decreases compu-

tational time without sacrificing solution quality.
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1 Introduction

Fixed-charge network flow models are among the most difficult and well-studied in discrete op-

timization [25]. From a supply chain management perspective, fixed-charge networks isolate and

abstract the interplay of fixed and variable costs inherent in many transportation models. Lot-

sizing models are another fixture in optimization and operations research [12, 26]. By studying

the relation between production and inventory holding costs, these models capture the long-term

consequences of short-term decisions. Traditionally, the decisions in fixed-charge network flow and

lot-sizing models are studied and implemented separately. More recently, the inventory routing

problem (IRP) [5, 10, 23] has combined the two decision classes into a single, more holistic model.

This paper formulates and studies a generic IRP, and investigates a solution approach that

incorporates an approximate value function into a mixed-integer programming (MIP) framework.

By combining the techniques from MIP and approximate dynamic programming (ADP), we hope

to circumvent difficulties typically encountered when solving multi-period models: The inventory

value function allows us to shorten planning horizons, thus yielding a model size tractable to MIP

methodology.

Within this context, the choice of a value function must balance two competing interests. The

function must be simple enough to fit within a MIP framework, yet complex enough to capture

the influence inventory has on the model. We have chosen to use a separable, piecewise linear

concave value function. From a modeling perspective, these functions can be implemented in a

MIP with only a small number of auxiliary continuous variables, and therefore do not alter the

model’s difficulty. From a practical perspective, the concavity captures the diminishing marginal

value one expects in a model of this type, where, for instance, inventory at a consumer is more

valuable the closer the consumer is to a stock-out. Finally, from a theoretical perspective, piecewise

linear concave functions are related to pure IP value functions, which were shown in [4] to be formed

from linear functions by repeated applications of three operations: non-negative linear combinations

of two numbers, taking the minimum of two numbers, and taking the floor of a number. In this

light, our approximate value functions mimic true value functions, but avoid the floor operation to

maintain continuity and approximate the minimum operation with separable, concave slopes.

Approximate piecewise linear concave value functions have already been studied for several
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resource allocation problems [27, Chapter 12]. In these applications, the single-period, or transition

model, can usually be formulated as a linear program (LP). When a transition model is solved,

the optimal dual solution is used as a proxy for a resource’s value. After solving a transition, the

dual solution is used to refine the approximate value function via an algorithm that preserves the

function’s concavity [32].

In our case, the single-period transition model is still a MIP, and the previous technique is

no longer applicable, as dual multipliers are unavailable. Our approach instead updates the entire

approximate value function via a combination of sampling and data fitting. A similar approach with

classical least-squares linear fitting was used in [18] to value American options. Within each value

function update, we randomly choose several starting inventory vectors, and solve several single-

period transitions beginning from each sampled starting point. We record each inventory vector

together with the resulting approximate value as measured by our approximate value function.

After enough observations, we solve a constrained data fitting problem that yields the best-fit

separable piecewise linear concave value function for our observations. We update our current

value function by merging it with the best-fit function using a step-size rule. This process repeats

until the resulting value function converges. To our knowledge, no other research has yet employed

data fitting to compute value functions for MIP models in this manner.

Our main contribution is an algorithmic framework to compute a separable, piecewise linear

approximate inventory value function for an IRP model. The value function allows for a decompo-

sition approach in which solutions are generated one or a few periods at a time without sacrificing

solution quality.

The rest of the paper is organized as follows. Section 2 reviews some relevant literature. Section

3 introduces our model. Section 4 details our value function and the algorithm used to compute

it. Section 5 presents the results of a computational study and Section 6 gives conclusions and

discusses future avenues of research.

2 Literature Review

One method used to solve many multi-period supply chain management models is to formulate

them as mixed-integer programs (MIP). In this approach, a certain planning horizon is chosen, and
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the model’s parameters during this horizon are assumed to be known and deterministic. Typically,

this approach is implemented within a rolling horizon framework: During each decision epoch, a

model is formulated with the most current information, the model is solved to determine a decision,

and then the parameters are updated to reflect the change in the system caused by the decision.

The length of the planning horizon implies a key tradeoff in this approach. A shorter horizon

yields a model that is easier to solve, at the expense of a myopic solution, while a longer horizon

yields more realistic solutions at the expense of more difficult, or even intractable models.

Because high-quality solutions typically require a longer horizon, many researchers have focused

on techniques for solving these larger, more difficult models directly. One approach common in the

integer programming community is column generation; see, for example, [7, 8, 9, 13, 21], and [11]

for a detailed discussion. Many authors have in addition studied heuristic approaches to complex

multi-period MIP models, e.g. [6, 14, 24, 28, 29].

Another approach, stemming from the Markov decision process and dynamic programming

communities, involves decomposing the multi-period model into single-period subproblems linked

by ending inventory levels. To counteract the myopic nature of solutions obtained from single-period

solves, these models include value functions for the ending inventories. However, the complexity

of large multi-period MIP’s precludes the calculation of exact value functions, and approximations

are necessary, e.g. [1, 2, 5, 16, 17, 22, 30, 31]. This approach has also been investigated for general

resource allocation problems of various types; see [3, 27] and references therein for a thorough

discussion.

3 An Inventory Routing Model

We consider an inventory routing model with multiple suppliers and consumers in which vehicles

perform trips starting at a supplier and ending at a consumer, i.e., vehicles do not start and end

at a depot. This situation occurs, for example, in maritime logistics (cf. [7, 28].)

A finite set of suppliers S and a finite set of consumers C are located far from each other, so

that the distances between two elements of the same set are much smaller than distances between

two elements of different sets. Homogeneous capacitated vehicles are available to begin a trip from

any supplier, can visit as many suppliers as necessary, and then travel to visit as many consumers
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as necessary, after which the trip ends (with no return.) At most one vehicle may begin a trip in

any period, and a vehicle’s trip begins and ends in the same period. This last assumption is not

as restrictive as it sounds, because if the travel time between S and C is assumed constant (say τ

periods), then any trip that begins on the supplier side in period t ends on the consumer side in

period t + τ , and therefore the inventories on the supplier side for period t may be identified with

consumer inventories in period t + τ .

Each supplier i ∈ S has constant inventory bounds [0, di] and a constant per period production

rate wi > 0. Similarly, each consumer j ∈ C has constant inventory bounds [0, dj ] and a constant

per period consumption rate wj > 0. Each supplier or consumer i ∈ S ∪C has a starting inventory

s0
i ∈ [0, di]. The fixed transportation costs between any two points i, j ∈ S ∪ C are cij ≥ 0, and

the per unit revenue obtained from delivering product from supplier i ∈ S to consumer j ∈ C is

rij . Since vehicles are homogeneous, we normalize product measurements so that vehicles have unit

capacity. There are no per-unit transportation and no inventory holding costs.

We model each period’s transportation decision with a network G = (N,A), where N = {σ, σ′}∪

S ∪ C and

A =
(
{σ} × S

)
∪ S2 ∪ (S × C) ∪ C2 ∪ (C × {σ′}).

Here, σ and σ′ are artificial source and sink nodes. Define A′ = S2 ∪ (S × C) ∪ C2 ⊆ A to be

the set of real arcs. For period t and a ∈ A, let xt
a ∈ {0, 1} denote whether a vehicle travels on

arc a. Let yt ∈ {0, 1} denote the aggregate indicator variable that is equal to one if and only if

a trip occurs in period t. Let qt
ij denote the amount of product from supplier i ∈ S delivered to

consumer j ∈ C in period t, and let zt
a denote the amount of product in the vehicle when it travels

over arc a ∈ A′ in period t. (Note that the definition of z does not differentiate by product.)

Let st
i ∈ [0, di] denote the inventory at i ∈ S ∪ C at the end of period t. We use the notation

δ+(i) = {a ∈ A : i is the tail of a} and δ−(i) = {a ∈ A : i is the head of a}.

Let T = {1, . . . , T} be the set of periods in the planning horizon. The IRP is modeled as:

max
∑
t∈T

( ∑
i∈S,j∈C

rijq
t
ij −

∑
a∈A′

cax
t
a

)
(1a)

s.t. yt =
∑
i∈S

xt
σi,∀ t ∈ T (1b)
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∑
a∈δ+(i)

xt
a −

∑
a∈δ−(i)

xt
a = 0,∀ i ∈ S ∪ C, t ∈ T (1c)

st
i = st−1

i + wi −
∑
j∈C

qt
ij ,∀ i ∈ S, t ∈ T (1d)

st
j = st−1

j − wj +
∑
i∈S

qt
ij ,∀ j ∈ C, t ∈ T (1e)

zt
a ≤ xt

a,∀ a ∈ A′, t ∈ T (1f)∑
a∈δ+(i)

zt
a −

∑
a∈δ−(i)

zt
a =

∑
j∈C

qt
ij ,∀ i ∈ S, t ∈ T (1g)

∑
a∈δ−(j)

zt
a −

∑
a∈δ+(j)

zt
a =

∑
i∈S

qt
ij ,∀ j ∈ C, t ∈ T (1h)

yt ∈ {0, 1},∀ t ∈ T (1i)

xt
a ∈ {0, 1},∀ a ∈ A, t ∈ T (1j)

qt
ij ≥ 0,∀ i ∈ S, j ∈ C, t ∈ T (1k)

zt
a ≥ 0,∀ a ∈ A′, t ∈ T (1l)

st
i ∈ [0, di],∀ i ∈ S ∪ C, t ∈ T . (1m)

The objective (1a) maximizes net profit over the planning horizon. The trip limit constraint

(1b) ensures than no more than one vehicle starts a trip every period. The vehicle flow balance

constraint (1c) requires that a vehicle exits a supplier or a consumer if it visits it. The supplier

and consumer inventory balance constraints (1d) and (1e) track inventory levels from one period

to the next. The variable upper bound constraint (1f) ensures that product flows on an arc only if

a vehicle travels on it. The continuous product balance constraints (1g) and (1h) track the amount

of product on a vehicle and relate it to the delivery variables. (Because all pickups occur before any

delivery, we can use the qt
ij variables in both constraint classes and do not need to differentiate flow

by product.) Note that the variable domain constraints (1i)–(1m) along with the variable upper

bounds (1f) and product balances (1g) and (1h) ensure that the total amount delivered and the

total on the vehicle over any arc do not exceed the vehicle’s unit capacity.

The formulation detailed above does not explicitly include subtour elimination constraints of
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the form ∑
a⊆R2

xt
a ≤ |R| − 1,∀ R ⊆ S or R ⊆ C.

However, since c ≥ 0, the product balance constraints (1g) and (1h) prevent any subtour from

appearing in an optimal solution.

For T large enough, the model is infeasible if
∑

i∈S wi 6=
∑

j∈C wj . However, this requirement

can be relaxed by adding a third-party supplier i0 and a third-party consumer j0, and modifying

the model accordingly. One approach is to set wi0 = wj0 = 0, di0 = dj0 =∞, h0
j0

= 0 and h0
i0

= M ,

for some large enough M > 0. These parameters effectively mean that supply and consumption at

the third-party points is unlimited, and delivery to and from these points can be treated as a slack

in the model. Even with a third-party supplier and consumer, however, the model still requires∑
i∈S wi ≤ 1 and

∑
j∈C wj ≤ 1; that is, the total supply per period and the total consumption per

period must not exceed the vehicle’s capacity.

As stated, the model includes no value for inventory at the end of the planning horizon. In

practical terms, this implies that optimal solutions to (1) exhibit an end effect ; inventories will

be replenished periodically up until a given period, after which no more deliveries occur. This

behavior is timed so that no inventory exceeds its bounds within the planning horizon, but creates

a completely impractical solution with ending inventories close to their bounds. To work around

this effect, models are usually solved on a rolling horizon basis, where the length T of the planning

horizon far exceeds the number of periods for which a solution is needed. Once a solution to the

model is obtained, only the decisions for the first few periods are actually implemented. Afterwards,

the model parameters are updated to reflect the passage of time and the implemented decisions,

and a new instance is formulated and solved.

The end effect can be eliminated by including a value for the ending inventory in the objective

(1a), say V (sT ), where sT = (sT
i )i∈S∪C . Moreover, if this value function accurately captures the

different inventories’ effect on the model, the planning horizon T can potentially be shortened to

include only the periods for which decisions are immediately necessary. Because the difficulty and

solve times of these MIP models tend to increase exponentially with T , shortening the planning

horizon can have drastic effects on the time required to solve the model and on the quality of the

resulting solutions. In the next section, we discuss how to incorporate a practical, accurate value
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function into the model.

4 An Approximate Inventory Value Function

The inherent value of inventory is usually measured as the inventory’s effect on future decisions,

either in long-term average cost, or as a discounted future value defined recursively. In the discount

model, the inventory value function V : [0, d]→ R satisfies a Bellman equation

V (sS , sC) = max
(x,q,z)∈X

{ ∑
i∈S,j∈C

rijqij −
∑
a∈A′

caxa + γV (sS + wS − qS , sC − wC + qC)
}

, (2)

where 0 < γ < 1 is a discount factor, X is the projection of the feasible set of (1) with T = 1

to the (x, q, z) variables, sS = (si)i∈S , and other aggregate vectors are defined analogously. (Time

indices have been suppressed for simplicity.) Unfortunately, this value function cannot be computed

exactly.

Given these difficulties, research in approximate dynamic programming (ADP) [27] has focused

on approximating value functions in order to obtain practical value estimates. In general terms, an

ADP algorithm seeks to estimate the true value V with an approximation Ṽ that satisfies given

structural requirements. To find a “good” estimate Ṽ , the state space [0, d] of possible starting

inventories is sampled repeatedly and the observed value is used to refine Ṽ .

For (1), a practical approximation Ṽ of the value function must fit well within the MIP frame-

work. One type of function that incorporates into a MIP model without difficulty is a separable

piecewise linear concave function of the form

Ṽ (s) = η +
∑

i∈S∪C

vi(si) (3)

vi(si) =
m−1∑
k=1

vk
i (bk

i − bk−1
i ) + vm

i (si − bm−1
i ), for si ∈ [bm−1

i , bm
i ), (4)

where 0 = b0
i < b1

i < · · · < bp
i = di is an a priori partition of the domain [0, di], η ∈ R and

v1
i ≥ v2

i ≥ · · · ≥ vp
i . For simplicity, we assume that all inventory domains are partitioned into p ∈ N

buckets, although this is not necessary.

It is well known in linear optimization that a separable piecewise linear concave function (3)
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can be incorporated into the objective of a maximization LP or MIP. For (1), we define auxiliary

continuous variables sT
i,k for k = 1, . . . , p and i ∈ S ∪ C, and modify the model as follows:

γη + max
∑
t∈T

( ∑
i∈S,j∈C

rijq
t
ij −

∑
a∈A′

cax
t
a

)
+ γ

∑
i∈S∪C

p∑
k=1

vk
i sT

i,k (5a)

s.t. (1b)–(1m) (5b)

sT
i =

p∑
k=1

sT
i,k,∀ i ∈ S ∪ C (5c)

sT
i,k ∈ [0, bk

i − bk−1
i ],∀ k = 1, . . . , p. (5d)

Since v1
i ≥ · · · ≥ vp

i , any optimal solution to the model will increase the auxiliary variables in order

from sT
i,1 to sT

i,p, to achieve the largest possible contribution to the objective. For the remainder

of the paper, we use PT (s, v, η) to denote an instance of (5), where T denotes the length of the

planning horizon, s0 = s, and (v, η) is used in (5a). We assume all other model parameters are

fixed and v satisfies v1
i ≥ · · · ≥ vp

i , for each i ∈ S ∪ C. As an example, (1) with starting inventory

s0 = s corresponds to PT (s, 0, 0).

4.1 An Approximate Dynamic Programming Algorithm

Given an instance of (1), our goal is to calculate a separable piecewise linear concave value function

Ṽ that approximately captures the value of inventory as defined in (2). Suppose our current

“best guess” is Ṽ = (v, η). We improve upon this incumbent by repeated applications of the

following sequence of tasks: Sample a random inventory vector s and record its approximate value

as measured by the optimal value of the one-period problem P1(s, v, η). Update s to the optimal

ending inventory and repeat. Do this several times and from several different random starting

inventory vectors s to obtain a collection of inventory vectors and associated approximate values.

Find the separable, concave piecewise linear function that best fits this collection, and use it to

update the incumbent Ṽ via a step-size rule. Repeat the entire procedure to successively refine Ṽ .

Before formally stating the algorithm, we introduce the following terminology and notation:

• ν∗(PT (s, v, η)): Optimal objective value of PT (s, v, η).

• s∗(PT (s, v, η)): Optimal ending inventory of PT (s, v, η).
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• (v0, η0): Initial inventory value function. If none is available, set (v0, η0) = (0, 0) or to another

appropriate default satisfying v1
i,0 ≥ · · · ≥ vp

i,0,∀ i.

• fmax: Number of times we fit a value function to a set of inventory vectors and approximate

values.

• ymax: Number of random inventory samples (i.e. sample paths) per data set.

• umax: Number of solves starting from each sample (i.e. length of each sample path).

• αf , f = 1, . . . , fmax: Step size rule used to merge best-fit value function with incumbent value

function. The step size we have used in our algorithm is given by McClain’s rule [20, 27]:

αf =


1, f = 1

αf−1

1+αf−1−β , f ≥ 2
(6)

where 0 < β � 1 is a parameter. Initially, αf behaves like a harmonic series, giving the first

few iterations large weight. However, as f grows αf converges to β > 0, and thus in the long

term later iterations outweigh early ones.

The details are provided in Algorithm 1.

Algorithm 1 Approximating the Inventory Value Function
set (v, η)← (v0, η0)
for f = 1, . . . , fmax do

for y = 1, . . . , ymax do
sample random inventory vector s from [0, d]
set sf,y,1 ← s
for u = 1, . . . , umax do

solve P1(sf,y,u, v, η)
set νf,y,u ← ν∗(P1(sf,y,u, v, η)), sf,y,u+1 ← s∗(P1(sf,y,u, v, η))

end for
end for
solve fitting problem (8) with

(sf,y,u, νf,y,u), u = 1, . . . , umax, y = 1, . . . , ymax

to get best-fit value function (v̂, η̂)
set v ← αf v̂ + (1− αf )v, η ← αf η̂ + (1− αf )η

end for
return (v, η)
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The set of piecewise linear concave functions defined in (3) is convex. Thus, when we update

the incumbent value function using the formula

v ← αf v̂ + (1− αf )v

η ← αf η̂ + (1− αf )η,
(7)

where the first equation is evaluated component-wise, we preserve concavity as long as the initial

value function (v0, η0) belongs to the set.

4.2 Separable, Piecewise Linear Concave Data Fitting

Assume we have a collection of inventory vectors {s`}`=1,...,n ⊆ [0, d], and associated values ν1, . . . , νn ∈

R, where the index ` and number n indicate that these inventories and values may be any arbitrary

collection. Given a partition (bk
i )

k=0,...,p
i∈S∪C of the domain [0, d], we solve the fitting problem

min
n∑

`=1

|Ṽ (s`)− ν`|

s.t. Ṽ satisfies (3)

(8)

to obtain the value function that best fits the collection. Here, |·| is any measure of error, such as

the square or the absolute value.

To solve (8), for every s` and every i ∈ S ∪ C we determine the unique bucket m ∈ {1, . . . , p}

that satisfies s`
i ∈ [bm−1

i , bm
i ), and define an auxiliary vector

s̃`
i,k =


bk
i − bk−1

i , k = 1, . . . ,m− 1

s`
i − bk−1

i , k = m

0, k = m + 1, . . . , p

(9)
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that decomposes s`
i into its constituent buckets from the partition. Then (8) becomes

min
n∑

`=1

∣∣∣∣η +
∑

i∈S∪C

p∑
k=1

vk
i s̃`

i,k − ν`

∣∣∣∣ (10a)

s.t. v1
i ≥ v2

i ≥ · · · ≥ vp
i ,∀ i ∈ S ∪ C (10b)

η ∈ R. (10c)

Without (10b), this problem is a classical unconstrained linear data fitting problem, and has a

closed-form solution, for instance, when |·| is the squared error. However, even with the additional

constraints, the problem is a simple convex optimization problem that can be solved with readily

available optimization software.

5 Computational Results

In this section, we present the results of a series of experiments designed to test the accuracy

of Algorithm 1’s approximate inventory value function and its effectiveness in generating good

solutions to (1).

The instances used in the computational study were randomly generated based on problem

characteristics found in real-world situations. For example, to generate the transportation costs

ca, a ∈ A′, the location of each supplier and each consumer was randomly generated from the

uniform distribution over a unit square, and consumers’ horizontal coordinate was displaced by

eight units. The transportation costs were then proportional to the Euclidean distances between

the locations. Similarly, production and consumption rates wi, i ∈ S ∪C were randomly generated

so that the expected total production and the expected total consumption per period were both

approximately 85% of vehicle capacity. However, a third-party supplier and a third-party consumer

were added to the model in case the two total rates were not equal. The number of suppliers

and consumers in each instance was six and five respectively (plus third parties), a number that

is consistent with some real situations. Instances 1 through 4 have positive revenue values rij .

Experiment 3 requires instances including only transportation costs ca in the objective, so instances

5 through 7 have rij = 0,∀ i ∈ S, j ∈ C.

We generated value functions (3) for each of our instances using a straightforward implemen-
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tation of Algorithm 1, as outlined in Section 4.1. Since the number of problems P1(s, v, η) to solve

can be large, in the early iterations we solved relaxations where some integer variables were allowed

to be fractional. However, for every instance at least the last fmax

2 outer loops of Algorithm 1 solved

the P1(s, v, η) problems without any variable relaxation. The total computation time to obtain an

instance’s value function was usually about 12 to 16 hours. This time consuming calculation occurs

only once, but the resulting value function can be used to solve instances with different starting

inventory vectors. In the remainder of the section, we use (v∗, η∗) to denote the value function we

computed using Algorithm 1. All computations were performed on a Xeon 2.66 GHz workstation

with 8 Gb of RAM. CPLEX 11 was used as the optimization solver. The following parameter values

were used in Algorithm 1 to generate value functions for the instances:

• γ = 0.9999.

• p = 3.

• bk
i = kdi

p , k = 0, . . . , p.

• |·| = (·)2.

• fmax = 500.

• ymax = 120.

• umax = 10.

• β = 0.15.

The experiments evaluate (v∗, η∗) in several ways. The first experiment uses the value function

to construct a solution for a 60-period model by solving a sequence of 60 single-period models

linked by inventory levels, and compares this solution to a solution obtained by solving the entire

60-period model at once.

The next experiment performs a similar test but concentrates only on the first period’s decision.

Given a ten-period instance, we construct a solution by solving the first period as a stand-alone

single-period model and then the remaining nine periods together, and compare this solution to a

solution of the whole ten-period model, to determine whether the first-period decision we get by

using the value function is myopic or sub-optimal.
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In many applications, practitioners solve models with planning horizons that are much longer

than needed, implementing only the first few periods of the resulting solution. In our final exper-

iment we test the value function (v∗, η∗) against this practical approach. Suppose that the model

must determine the next five periods’ decisions; we compare the solution of a five-period model

with value function to the solution obtained by solving a longer 60-period model (without value

function) and then truncating to the first five periods.

5.1 Experiment 1: Direct Comparison

In the first experiment, we constructed five instances of P60(s, v∗, η∗) and randomly generated five

starting inventories s, for a total of 25 problem instances. We used two methods to generate

solutions:

• 1P: Construct a solution one period at a time by solving the subproblem P1(s, v∗, η∗) to

optimality and using s∗(P1(s, v∗, η∗)) as the next starting inventory. Refer to Section 4.1 for

a precise definition of these terms.

• 60P: Give the entire P60(s, v∗, η∗) instance to CPLEX, emphasizing feasibility, with a one-hour

time limit.

Table 5.1 presents the results of this experiment, with all times reported in seconds. Column Inst

indexes the instance-starting inventory pair. Columns 1P Obj and 60P Obj respectively give the

objective value of each solution. The Bound column has the best dual bound found by CPLEX

within the time limit. Columns 1P Time and 60P Time show the computation time used to obtain

the best solution via both methods.

We observe that the single-period heuristic generates competitive solutions, beating the 60P

solution in all but three instances: 1-3, 3-3 and 5-1. However, the more notable result is the drastic

time difference. The single-period heuristic is able to generate a solution in a few seconds (the

average is 27.8,) while CPLEX does not find its best 60P solution until much later, after an average

of 2,529 seconds. This drastic time difference suggests that one can generate a good solution quickly

using the single-period heuristic.

The results of the first experiment suggested an additional experiment. Instead of constructing

a solution by solving single-period instances, the same method could be applied with two-period
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Obj Time (sec.)
Inst 1P 2P 60P Bound 1P 2P 60P

1-1 -810.19 -804.50 -827.59 -753.51 11 226 1963
1-2 -817.10 -823.54 -845.76 -757.60 14 345 1040
1-3 -892.84 -874.21 -847.39 -755.11 66 21362 3284
1-4 -813.53 -803.40 -828.75 -748.21 17 308 3246
1-5 -809.03 -807.93 -838.18 -754.80 13 261 2902

2-1 -745.49 -729.36 -750.48 -676.77 10 105 804
2-2 -715.36 -715.33 -745.97 -677.38 7 73 3253
2-3 -711.62 -708.11 -737.63 -663.68 9 141 1568
2-4 -708.93 -710.70 -733.13 -668.69 7 83 2953
2-5 -726.17 -721.23 -753.60 -676.24 8 58 1610

3-1 2794.40 2795.62 2771.41 2873.24 42 3060 235
3-2 2812.60 2818.29 2786.35 2902.84 52 2517 3309
3-3 2578.34 2667.05 2669.78 2841.47 193 48455 3147
3-4 2795.49 2798.76 2759.93 2875.42 43 1671 3313
3-5 2805.63 2808.43 2771.71 2880.39 38 1830 531

4-1 3342.36 3348.26 3300.65 3421.72 21 405 3424
4-2 3353.05 3363.90 3318.68 3424.61 19 245 3380
4-3 3287.23 3296.66 3266.03 3371.86 19 459 3266
4-4 3290.45 3296.85 3271.44 3363.51 22 324 3260
4-5 3335.52 3342.43 3305.05 3410.97 20 393 2092

5-1 -820.62 -812.62 -820.42 -741.29 13 188 3406
5-2 -803.15 -796.33 -834.64 -739.56 12 141 3347
5-3 -786.86 -782.59 -799.52 -721.43 16 216 2827
5-4 -797.96 -787.52 -819.95 -730.08 12 164 1895
5-5 -812.43 -812.41 -836.13 -738.71 11 173 3178

Table 5.1: Direct Comparison.

instances linked by inventory levels:

• 2P: Construct a solution by solving the subproblem P2(s, v∗, η∗) to optimality and using

s∗(P2(s, v∗, η∗)) as the next starting inventory.

Table 5.1 shows the results of the two-period heuristic for the same instances, using the same naming

convention outlined earlier. Except for instances 1-2 and 2-4, the two-period heuristic solution has

a better objective than the single-period heuristic solution and is only worse than the 60P solution

in instances 1-3 and 3-3. The objective improvement, however, comes at the expense of a drastic

increase in computation time that seems to depend on the particular instance. For example, the

average time for all models derived from instances 2, 4 and 5 increases only by a factor of 15, from

14 seconds to 211 seconds. On the other hand, the two-period heuristic solution for instances 1-3

and 3-3 took many hours to complete, and indicates that the time required to solve even small

problems of only a few periods depends heavily on the starting inventory vector s.
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5.2 Experiment 2: Consequence of Using the Value Function

In our second experiment, we wanted to test if the solutions generated by the value function are

myopic. Using the same parameters from Experiment 1, we constructed five P10(s, v∗, η∗) instances

and used the five random starting inventories for a total of 25 problem instances. We generated

solutions with two methods:

• 1P + 9P: Solve P1(s, v∗, η∗) to optimality with CPLEX and record the optimal solution.

Solve P9(s∗(P1(s, v∗, η∗), v∗, η∗) with CPLEX, emphasizing optimality with a 24-hour limit;

concatenate the two solutions.

• 10P: Solve the entire P10(s, v∗, η∗) instance with CPLEX, emphasizing optimality with a

24-hour limit.

In words, method (1P + 9P) uses the value function to generate a one-period solution and then

solves the remaining nine-period model (starting from the one-period model’s optimal ending in-

ventory). We compare this to solving the ten-period model with method 10P.

Table 5.2 gives the results of Experiment 2. As before, the naming convention for column Inst

pairs instances with starting inventories. The next two columns detail each solution’s objective;

10P denotes the objective for the solution obtained by solving the ten-period model, while (1P +

9P) denotes the objective of the solution obtained by solving the first period with a single-period

model and then solving the remaining nine-period model. The Bound column has the best bound

for the ten-period model (with value function) obtained by CPLEX as part of its optimization to

generate the 10P solution.

The results in Table 5.2 indicate that the solutions generated by the two methods are very

similar. The (1P + 9P) solution’s objective is on average only 0.55% less than the 10P objective,

and is greater in four instances: 1-1, 3-2, 4-3 and 5-5. Moreover, the largest relative gap between

objectives is only 3.74%, occurring on instance 3-4, and every other (1P + 9P) objective is within

1.5% of the 10P objective. Results are similar when we compare objectives to the CPLEX dual

bound; the average relative gap for the (1P + 9P) solution is 3.01%, while the same average for

the 10P solution is 2.47%. Both measures indicate that implementing the 1P solutions results in

an objective only about half a percentage point below what could be obtained by solving the entire

ten-period model.
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Obj (w/ val)
Inst 1P + 9P 10P Bound

1-1 -133.44 -134.55 -130.6
1-2 -138.17 -136.89 -134.29
1-3 -136.32 -135.3 -125.02
1-4 -128.16 -127.89 -124.75
1-5 -135.53 -135.29 -132.04

2-1 -118.18 -117.77 -113.97
2-2 -118.82 -118.61 -116.19
2-3 -108.16 -107.62 -104.04
2-4 -109.49 -109.08 -107.23
2-5 -117.85 -116.16 -114.84

3-1 462.63 462.68 467.07
3-2 480.46 480.2 487.15
3-3 380.83 385.82 393.72
3-4 446.18 463.5 467.14
3-5 465.69 467.41 472.05

4-1 590.29 590.55 598.82
4-2 595.63 597.39 601.12
4-3 532.89 531.75 546.46
4-4 532.22 534.67 540.14
4-5 577.41 580.57 587.33

5-1 -126.35 -125.89 -120.84
5-2 -125.24 -124.06 -120.74
5-3 -113.82 -112.83 -105.39
5-4 -116.22 -115.07 -111.44
5-5 -123.4 -123.5 -119.37

Table 5.2: Value function influence on future decisions.

5.3 Experiment 3: Solution Comparison

The preceding experiments do not compare an actual solution as it would be generated in practice.

Recall that the typical approach to solving multi-period models involves solving an instance with a

long planning horizon, e.g. T = 60, but then implementing only the decisions of the first few periods

of the resulting solution. This process is then repeated inside of a rolling horizon framework. A

more practical comparison therefore involves comparing the first few periods of solutions generated

by our method against the traditional approach.

In our third experiment, we created three instances of P5(s, v∗, η∗) and five starting inventories

s, for a total of 15 problem instances. We generated solutions via two methods:

• 5P: Solve instance P5(s, v∗, η∗) with CPLEX, emphasizing feasibility and with an eight-hour

time limit.

• Trad: Solve instance P60(s, 0, 0) (i.e. no ending value function) with CPLEX, emphasizing

feasibility with a 24-hour time limit. Truncate to the first five periods of the problem’s
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solution.

However, comparing the two solutions is not a simple matter. One can consider the objective

function value of each (without value function), but this does not take ending inventories into

account, and is thus an incomplete comparison. On the other hand, if we use our value function

(v∗, η∗) to measure the ending inventories’ value, we are weighing the results in our favor (an optimal

solution to P5(s, v∗, η∗) would always be the best solution according to this second measure.) We

therefore decided on a compromise measure that attempts to capture the inherent value of inventory

without using (v∗, η∗): If an instance has costs but not revenue in the objective (1a), then it is

always better to have less inventory at the suppliers and more inventory at the consumers, because

if a supplier has more inventory, its product must be picked up sooner (which entails a cost), and

similarly, if a consumer has less inventory, its product must be dropped off sooner (which again

entails a cost).

Table 5.3 details the results of the third experiment, using base instances with no revenue. The

naming convention for column Inst is the same as for Table 5.1. Columns 5P Obj and Trad Obj

respectively show the objective value of each method’s solution (without value function). Columns

5P Time and Trad Time show the time needed to find each solution, in minutes. The four

columns under S Inv and C Inv show each solution’s total ending inventory for suppliers and

consumers, respectively.

Obj Time (min.) S Inv C Inv
Inst 5P Trad 5P Trad 5P Trad 5P Trad

5-1 -75.6 -77.07 425 1394 1.72 2.91 2.34 2.09
5-2 -75.49 -77.39 9 1344 2.59 2.78 2.78 2.67
5-3 -63.29 -64.57 434 1417 3.68 3.68 3.56 2.57
5-4 -60.73 -78.66 0.5 1407 2.85 2.09 2.30 2.89
5-5 -76.15 -80.28 100 1242 1.93 2.66 2.54 2.54

6-1 -81.47 -84.02 95 1317 1.60 2.93 2.34 2.29
6-2 -82.55 -81.54 17 1213 2.59 3.47 2.78 2.50
6-3 -67.05 -69.38 4 1437 3.68 3.84 3.56 3.4
6-4 -66.25 -67.34 29 1365 2.68 3.67 2.3 2.18
6-5 -82.94 -83.5 0.1 1375 1.74 2.74 2.54 2.54

7-1 -81.49 -83.06 10 1432 1.71 3.19 2.39 2.38
7-2 -83.74 -83.78 14 1124 2.55 2.84 2.83 2.68
7-3 -67.96 -54.69 435 1315 3.65 4.63 3.6 2.48
7-4 -83.87 -68.25 3 1405 1.63 2.81 3.35 2.34
7-5 -83.31 -83.4 123 1428 1.82 2.43 2.59 2.58

Table 5.3: Solution comparison.

We observe that the 5P solution method clearly outperforms the traditional approach. The
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average objective values are very similar (-75.46 for the 5P solution and -75.8 for the traditional

solution,) with the 5P solution beating the traditional solution in all but three instances, 6-2, 7-3,

and 7-4. However, the average ending inventories show a marked difference. The average total

ending supplier inventory is 2.43 for 5P versus 3.11 for the traditional solution, and the analogous

statistic for consumer inventory is 2.79 versus 2.54. So on average, the 5P solutions end with 22%

less inventory at suppliers and 9.6% more inventory at the consumers, even though they spend less

to achieve this. The last statement can be underlined by one additional fact: For all instances

except 5-4, 6-2, 7-3 and 7-4, the 5P solution dominates the traditional solution, implying that the

5P solutions do more with less in most instances, and not just on the average.

As in Experiment 1, the drastic difference in computation time is noteworthy. The 5P solutions

are generated in an average of 113 minutes, as opposed to the traditional solutions, which take an

average of 22.5 hours, close to the 24-hour limit. In fact, only for instances 5-1, 5-3 and 7-3 do

the 5P times approach the eight-hour limit; in the rest of the cases the solution is found relatively

quickly, at an average of only 31 minutes. As before, the shorter computation times suggest that

the value function can be used to generate a good solution quickly.

6 Conclusions

We have introduced an innovative time decomposition of IRP models that combines techniques

from mixed-integer programming and approximate dynamic programming. Our results indicate

that the value function obtained from our algorithm closely captures the true value of inventory

for the model (1). Our experiments also show that the value function can be used to generate

high-quality solutions far more efficiently than traditional methods.

Our research gives rise to many interesting new questions. On the integer programming side,

the ability to effectively solve instances with a large number of periods by solving a sequence of

instances with a small number of periods suggests focusing on techniques for solving the instances

with a small number of periods to optimality, for example using problem-specific cutting planes or

extended formulations.

On the dynamic programming side, we can ask whether more complex value functions can

better capture inventory’s true value. Specifically, a separable function does not address situations
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in which two or more inventories are close to bounds and costlier decisions must be made. A

non-separable value function implies a fitting problem of the kind introduced in [19]; see also

[15]. Another interesting question is whether our approach can be adapted to include the dynamic

generation and modification of function breakpoints, in a manner similar to the techniques outlined

in [27].

Finally, from a practical perspective the next natural step is to adapt the value function approach

to more realistic models. This additional realism could come in the form of stochastic and/or

non-constant parameters, time-expanded networks, and many other complications that real-world

models possess. Each of these additions implies integer programming or dynamic programming

challenges.
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