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Abstract

We consider a version of the knapsack problem in which an item size is random and revealed
only when the decision maker attempts to insert it. After every successful insertion the decision
maker can choose the next item dynamically based on the remaining capacity and available items,
while an unsuccessful insertion terminates the process. We propose a new semi-infinite relaxation
based on an affine value function approximation, and show that an existing pseudo-polynomial
relaxation corresponds to a non-parametric value function approximation. We compare both
theoretically to other relaxations from the literature and also perform a computational study.
Our main empirical conclusion is that our new relaxation provides tight bounds over a variety
of different instances and becomes tighter as the number of items increases.

1 Introduction

The deterministic knapsack problem is one of the fundamental discrete optimization models studied
by researchers in operations research, computer science, industrial engineering, and management
science for many decades. It arises in a variety of applications, and also appears as a sub-problem or
sub-structure in more complex optimization problems and algorithms. Relaxations of the knapsack
problem have in particular been studied both as benchmarks for the problem itself, and also within
general mixed-integer programming to derive valid inequalities. Work in this vein includes classical
studies on valid inequalities for the knapsack polytope, such as covers and lifted covers (see [32] and
references therein), and more recent results concerning extended formulations, relaxation schemes
and extension complexity, e.g. [6, 34].

Knapsack problems under uncertainty have also received attention, both to model resource
allocation applications with uncertain parameters, and also as substructures of more general discrete
optimization models under uncertainty, such as stochastic integer programs [36]. Specifically, recent
trends in both methodology and application have focused attention on models in which the uncertain
data is not revealed at once after an initial decision stage, but rather is dynamically revealed
over time based on the decision maker’s choices; such models have applications in scheduling [12],
equipment replacement [13] and machine learning [18, 19, 27], to name a few.

The model we study here is a knapsack problem with stochastic item sizes and this dynamic
revealing of information: The decision maker has a list of available items, but only has a probability
distribution for each item’s size. Each size is revealed or realized only after the decision maker
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attempts to insert it, and the insertion is successful (and the process continues) only if the size is
less than or equal to the remaining capacity in the knapsack. This dynamic paradigm contrasts with
more static approaches, such as a chance-constrained model in which the decision maker chooses
an entire set of items whose total size fits in the knapsack with at least a pre-specified probability
[17].

Providing the decision maker with the flexibility to observe sizes as they are realized possibly
increases the attainable expected value while satisfying the knapsack capacity with certainty. How-
ever, this additional model flexibility also implies additional complexity from both a practical and
theoretical point of view; a feasible solution to this problem comes in the form of a policy that must
prescribe what to do under any potential circumstance, rather than simply a subset of items. This
additional difficulty has motivated work to both design efficient policies with good performance,
and also to devise reasonably tight, yet tractable relaxations. Our results focus mostly on the latter
question, and consist of the following main contributions:

i) We introduce a semi-infinite relaxation for the problem under arbitrary item size distributions,
based on an affine value function approximation of the linear programming encoding of the
problem’s dynamic program. We show that the number of constraints in this relaxation is at
worst countably infinite, and is polynomial in the input for distributions with finite support
(assuming the distributions are part of the input).

ii) When item sizes have integer support, we show that a non-parametric value function approx-
imation gives the relaxation from [27], which has pseudo-polynomially many variables and
constraints.

iii) We theoretically and empirically compare these relaxations to others from the literature and
show that both are quite tight. In particular, our new relaxation is notably tighter than a
variety of benchmarks and compares favorably to the theoretically stronger pseudo-polynomial
relaxation when this latter bound can be computed.

Our computational study employs a variety of policies related to or derived from various relaxations.
Our results also show that even quite simple policies perform very well, especially as the number of
items grows. More generally, our results may indicate a way to derive relaxations for more complex
stochastic integer programs with dynamic aspects, such as those studied in [42].

The remainder of the paper is organized as follows. We conclude this section with a brief
literature review. Section 2 formulates the problem and handles preliminaries. Section 3 introduces
the semi-infinite relaxation and proves its structural results. Section 4 then discusses deriving the
stronger relaxation when item sizes have integer support. Section 5 explains how to extend our
methods to a more general model where an item’s value may be stochastic and correlated to its
size. Section 6 outlines the results of our empirical study, and Section 7 concludes. An Appendix
contains detailed computational results.

1.1 Literature Review

In its full generality, this problem was first proposed and studied by [10, 12], though earlier research
had studied the problem specifically with exponential item size distributions [13]. The computer
science community has focused on problems of this kind, developing bounding techniques and
approximation algorithms; in addition to [10, 12], other results in this vein include [5, 11, 18, 19, 27].

The knapsack problem and its generalizations have been studied for half a century or more, with
many applications in areas as varied as budgeting, finance and scheduling; see [22, 29]. Knapsack
problems under uncertainty have specifically received attention for several decades; [22, Chapter
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14] surveys some of these results. For general packing under uncertainty see [11, 42]. As with opti-
mization under uncertainty in general, models and solution approaches can be split into those that
choose an a priori solution, sometimes also called static models [30], and models that dynamically
choose items based on realized parameters, also called adaptive [11, 12]. Different authors have also
studied uncertainty in different components of the problem. For example, a priori or static models
with uncertain item values include [8, 20, 31, 37, 39], static models with uncertain item sizes include
[16, 17, 23, 24], and [30] study a static model with uncertainty in both value and size. Dynamic
or adaptive models for knapsacks with uncertain item sizes include the previously mentioned work
[5, 10, 12, 13, 18, 19], while [21] study a dynamic model with uncertain item values. Other variants
include stochastic and dynamic models [25, 26, 33] in which items are not available ahead of time
but arrive dynamically according to a stochastic process.

The idea of obtaining relaxations of dynamic programs using value function approximations in
the Bellman recursion dates back to [35, 41]. The technique gained wider use within the operations
research community beginning with [1, 9], to obtain relaxations and also corresponding policies. It
has since then been applied in a variety of stochastic dynamic programming models with discrete
structure, such as inventory routing [2] and the traveling salesman problem [40]. To our knowledge,
this work is the technique’s first application for a stochastic knapsack model; as with many dynamic
programs, the model’s idiosyncratic state and action spaces require specific analysis to derive the
relaxations and the subsequent results.

2 Problem Formulation

Let N := {1, . . . , n} be a set of items. For each item i ∈ N we have a non-negative random variable
Ai with known distribution representing its size, and a deterministic value ci > 0. Item sizes are
independent, and we can accommodate random values by using their expectation, as long as size
and value are independent for each item. Section 5 below discusses how to extend our techniques to
the case when an item’s size and value may be correlated; see also [18, 19, 27]. We have a knapsack
of deterministic capacity b > 0, and we would like to maximize the expected total value of inserted
items. An item’s size is realized when we choose to insert it, and we receive its value only if the
knapsack’s remaining capacity is greater than or equal to the realized size. Given any remaining
capacity s ∈ [0, b], we may choose to insert any available item, and the decision is irrevocable; see
[18, 19, 27] for models that allow preemption. If the insertion is unsuccessful, i.e. the realized size
is greater than the remaining capacity, the process terminates.

The problem can be modeled as a dynamic program (DP). The classical DP formulation for the
deterministic knapsack [14] chooses an arbitrary ordering of the items and evaluates them one at a
time, deciding whether to insert each one or not. However, to respond to realized item sizes it may
be necessary to consider all available items together without imposing an order. We therefore use
a more general DP formulation with state space given by (M, s), where ∅ 6= M ⊆ N represents
items available to insert and s ∈ [0, b] is the remaining knapsack capacity. The optimal expected
value is υ∗N (b), where the optimal value function υ∗ is defined recursively as

υ∗M (s) := max
i∈M

{
P(Ai ≤ s)(ci + E[υ∗M\i(s−Ai)|Ai ≤ s])

}
, (1)

and we take υ∗∅(s) := 0. The linear programming (LP) formulation of this equation system is

min
υ

υN (b) (2a)

s.t. υM∪i(s)− P(Ai ≤ s)E[υM (s−Ai)|Ai ≤ s] ≥ ciP(Ai ≤ s),
∀ i ∈ N,M ⊆ N \ i, s ∈ [0, b]

(2b)
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υ ≥ 0. (2c)

In this doubly infinite LP the domain of each υM : [0, b]→ R+ is an appropriate functional space
[3].

Notation To alleviate the notational burden in the remainder of the paper, we identify singleton
sets with their unique element when there is no danger of confusion. We denote an item size’s
cumulative distribution function by Fi(s) := P(Ai ≤ s) for i ∈ N , and its complement by F̄i(s) :=
P(Ai > s). Similarly, the quantity Ẽi(s) := E[min{s,Ai}] is the mean truncated size of item i ∈ N
at capacity s ∈ [0, b] [10, 12, 42], and features prominently in our discussion. Intuitively, when the
knapsack’s remaining capacity is s, we should not care about item i’s distribution above s, since
any realization of greater size results in the same outcome – an unsuccessful insertion.

3 Semi-Infinite Bound

The stochastic knapsack problem contains its deterministic counterpart as a special case, and is
therefore at least NP-hard. Moreover, [42] shows that several variants of the problem are in fact
PSPACE-hard. In general, therefore, we cannot expect to solve the LP (2) directly. However, any
feasible υ provides an upper bound υN (b) on the optimal expected value. One possibility is to
approximate the value function with an affine function,

υM (s) ≈ qs+ r0 +
∑
i∈M

ri, (3)

where r ∈ RN∪0+ and q ∈ R+. In this approximation, q is the marginal value of the remaining
knapsack capacity, r0 represents the intrinsic value of having the knapsack available, and each ri
represents the intrinsic value of having item i ∈M available to insert.

Proposition 3.1. The best possible bound given by approximation (3) is the solution of the semi-
infinite linear program

min
q,r

qb+ r0 +
∑
i∈N

ri (4a)

s.t. qẼi(s) + r0F̄i(s) + ri ≥ ciFi(s), ∀ i ∈ N, s ∈ [0, b] (4b)

r, q ≥ 0. (4c)

Proof. Using (3),

υM∪i(s)− P(Ai ≤ s)E[υM (s−Ai)|Ai ≤ s]

= qs+ r0 +
∑

j∈M∪i
rj − Fi(s)E

[
q(s−Ai) + r0 +

∑
j∈M

rj

∣∣∣∣Ai ≤ s]
= qsF̄i(s) + qFi(s)E[Ai|Ai ≤ s] + r0F̄i(s) + ri + F̄i(s)

∑
j∈M

rj

= qẼi(s) + r0F̄i(s) + ri + F̄i(s)
∑
j∈M

rj

≥ qẼi(s) + r0F̄i(s) + ri,

with equality holding when M = ∅ or F̄i(s) = 0. �
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Example 3.2 (Deterministic Knapsack). Suppose the item sizes are deterministic, so the problem
becomes the well-known deterministic knapsack. Let ai ∈ [0, b] be item i’s size; we then have

qẼi(s) + r0F̄i(s) + ri =

{
qs+ r0 + ri, s < ai

qai + ri, s ≥ ai.

When s < ai, constraints (4b) are dominated by non-negativity since ciFi(s) = 0, and hence we can
set r0 = 0. The constraints for all s ≥ ai map to a single deterministic constraint, and we obtain
the LP

min
q,r

qb+
∑
i∈N

ri

s.t. qai + ri ≥ ci, ∀ i ∈ N
r, q ≥ 0.

This is the dual of the deterministic knapsack’s LP relaxation. Our bound therefore generalizes
this LP relaxation to the dynamic setting with stochastic item sizes.

To solve (4), we must efficiently manage the uncountably many constraints. For each item
i ∈ N , the separation problem is

max
s∈[0,b]

{
(r0 + ci)Fi(s)− qẼi(s)

}
. (5)

The CDF Fi is upper semi-continuous, and the mean truncated size function Ẽi is continuous,
concave and non-decreasing, so the maximum is always attained. Efficient separation then depends
on the item’s distribution.

Proposition 3.3. If Fi is piecewise convex in the interval [0, b], we can solve the separation problem
(5) by examining only values corresponding to the CDF’s breakpoints between convex intervals.

Proof. Because of the concavity of Ẽi, if Fi is convex, the most violated inequality will always be
at s ∈ {0, b}. More generally, if the CDF is piecewise convex, within each convex interval the most
violated inequality will be at the endpoints. �

Even if the CDF is not piecewise convex, it is almost everywhere differentiable [38, Theorem
3.4]. Therefore, we can still partition [0, b] into at most a countable number of segments within
which it is either convex or concave. By Proposition 3.3, we only need to check the endpoints of any
convex segment. We may assume without loss of generality that the CDF is differentiable within
each concave segment (since otherwise we can further partition the segment).

Proposition 3.4. Within a segment (s, ŝ) ⊆ [0, b] where Fi is concave and differentiable, (5) can
be solved by evaluating s, ŝ and all solutions to

(r0 + ci)
d

ds
Fi(s) = qF̄i(s) s ∈ (s, ŝ). (6)

Proof. Let g(s) := (r0 + ci)Fi(s)− qẼi(s). Then

g(s) = (r0 + ci + qs)Fi(s)− qFi(s)E[Ai|Ai ≤ s]− qs

= (r0 + ci + qs)Fi(s)− q
∫ s

0
adFi(a)− qs.
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It follows that g is differentiable when Fi is differentiable. Deriving with respect to s,

d

ds
g(s) = (r0 + ci)

d

ds
Fi(s) + qs

d

ds
Fi(s) + qFi(s)− qs

d

ds
Fi(s)− q

= (r0 + ci)
d

ds
Fi(s) + qFi(s)− q = (r0 + ci)

d

ds
P(Ai ≤ s)− qF̄i(s). �

Even lacking piecewise convexity in the CDF, it may be possible to efficiently account for all
constraints. We discuss some specific distributions next.

Example 3.5 (Finite Distribution). Suppose Ai can take on a finite number of possible values
{ak}Kk=1, where 0 ≤ a1 < · · · < aK . In this case, the CDF is piecewise constant, and thus piecewise
convex, so the constraints can be modeled explicitly as long as K is considered part of the problem
input.

Example 3.6 (Uniform Distribution). Suppose Ai is uniformly distributed between [a, â], where
0 ≤ a < â ≤ b. (The requirement â ≤ b is for ease of exposition.) Fi is again piecewise convex, and
we obtain

(r0 + ci)Fi(s)− qẼi(s) =


−qs ≤ 0, s ∈ [0, a)
1

â−a
(
1
2qs

2 + s(r0 + ci − qâ) + 1
2qa

2 − (r0 + ci)a
)
, s ∈ [a, â)

r0 + ci − 1
2q(â+ a), s ∈ [â, b].

Therefore the most violated inequality is always at s ∈ {0, â}. For s = 0, the inequality is dominated
by the non-negativity constraints, so we only need to add the constraint 1

2q(â + a) + ri ≥ ci; we
can once again set r0 = 0.

Example 3.7 (Exponential and Geometric Distributions). If Ai is exponentially distributed with
rate λ > 0, Fi is concave. Nevertheless, we get

(r0 + ci)Fi(s)− qẼi(s) =

(
r0 + ci −

q

λ

)
(1− e−λs),

which is maximized at s ∈ {0, b}. As before, the case s = 0 is dominated by non-negativity, so we
only add the constraint 1

λq(1 − e
−λb) + r0e

−λs + ri ≥ ci(1 − e−λb); it can be shown that r0 = 0
here as well without loss of optimality. An analogous argument shows that only the inequalities at
s ∈ {0, b} are necessary when Ai follows a geometric distribution.

Example 3.8 (Conditional Normal Distribution). Suppose Ai follows a normal distribution with
mean µ ≥ 0 and standard deviation σ > 0, conditioned on being non-negative. Fi is then convex in
[0, µ] and concave thereafter. Moreover, it is straightforward to see that (r0 + ci)Fi(s) − qẼi(s) is
convex in [0, µ+ qσ2/(r0 + ci)] and concave afterwards. Because this function’s limit as s→∞ is
r0+ci−qE[Ai], it must be increasing in [µ+qσ2/ci,∞). It follows that the most violated inequality
is always at s ∈ {0, b}, so we only add the constraint (4b) for s = b. As with the other examples
where this is the only constraint needed, it can be shown that r0 = 0 without loss of optimality.

The next example shows that r0 can drastically affect the bound given by (4).

Example 3.9 (Bernoulli Distribution). Suppose the knapsack has unit capacity, and each item has
unit value and size following a Bernoulli distribution with parameter p ∈ (0, 1). From Example 3.5,
each item i has constraints only at s ∈ {0, 1}. Suppose we impose r0 = 0; then for any n ≥ 1, the
(restricted) optimal solution of (4) is r̂i = ciFi(0) = 1−p for each i ∈ N and q̂ = (1− r̂i)/Ẽi(1) = 1,
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yielding the objective
∑

i∈N r̂i + q̂ = 1 + n(1− p). On the other hand, the optimal value for any n
is bounded above by the expected number of Bernoulli trials before the second success, which is

p2
∞∑
k=0

(k + 1)2(1− p)k =
2− p
p

.

Once we include r0 in (4), the optimal solution becomes r∗0 = ciFi(0)/F̄i(0) = (1 − p)/p, q∗ =
ciFi(1)/Ẽi(1) = 1/p and r∗i = 0 for all i ∈ N , yielding an objective value of (2 − p)/p, which is
asymptotically tight.

3.1 Primal Relaxation

The finite-support dual of (4) yields a “relaxed primal”, and gives further insight into the approx-
imation:

max
x

∑
i∈N

∑
s∈[0,b]

cixi,sFi(s) (7a)

s.t.
∑
i∈N

∑
s∈[0,b]

xi,sẼi(s) ≤ b (7b)

∑
i∈N

∑
s∈[0,b]

xi,sF̄i(s) ≤ 1 (7c)

∑
s∈[0,b]

xi,s ≤ 1, ∀ i ∈ N (7d)

x ≥ 0, x has finite support. (7e)

This is a two-dimensional, semi-infinite, fractional multiple-choice knapsack problem [22], also called
a fractional knapsack problem with generalized upper bound constraints (see e.g. [32]). The model
has the following interpretation: For any feasible policy, xi,s represents the probability the policy
attempts to insert item i when s capacity remains; clearly, the probability of attempting to insert
i at any point cannot exceed 1 (7d). Similarly, there cannot be more than one failed insertion (7c).
Finally, for an attempted insertion, if the item’s size exceeds the remaining capacity s, suppose we
count this remaining capacity as a “fractional” insertion; then the total expected size the policy
inserts, including any “fractionally” inserted size, does not exceed the knapsack’s capacity (7b).

Lemma 3.10. Problem (7) is a strong dual for problem (4).

Proof. By [15, Theorems 5.3 and 8.4], (7) is a strong dual if the cone of valid inequalities of (4), the
characteristic cone, is closed. This cone is closed if for each i ∈ N the set of inequalities implied by
(4b) and the non-negativity constraints (4c) is closed. This is equivalent to the following set being
closed,

conv
{(

Ẽi(s), F̄i(s), 1, ciFi(s)
)

: s ∈ [0, b]
}

+ {(θ, 0, 0, 0) : θ ≥ 0}+ {(0, θ, 0, 0) : θ ≥ 0}
+{(0, 0, θ, 0) : θ ≥ 0}+ {(0, 0, 0,−θ) : θ ≥ 0},

where the sum is a Minkowski sum. The first set in the sum, which we denote Q for convenience,
represents all non-trivial valid inequalities for item i ∈ N that do not weaken any coefficient,
re-scaled so ri’s coefficient is one. The remaining sets represent any potential weakening of the
inequality, either by increasing a left-hand side coefficient, or by decreasing the right-hand side.
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Ẽi(s)

Fi(s)

p

1

(1, p)

1− p

(1− p, p)

Figure 1: Two-dimensional projection of possible inequality (4b) coefficients for q (vertical axis)
versus right-hand side (horizontal axis) when Ai has a Bernoulli distribution with parameter p. The
thick solid line and black dots represent all possible coefficient values, and the dark gray triangle
represents the convex hull of these values. This set does not include the white dot nor the dashed
line and is therefore not closed.

Note that Q by itself is not necessarily closed; see Figure 1 for an example. We will construct a
convergent sequence in Q and show that its limit can be achieved, perhaps by weakening a stronger
inequality. For t ∈ N, let (ρtk) and (stk) for k = 1, . . . , 4 respectively be a sequence of convex
multiplier 4-tuples and knapsack capacity 4-tuples yielding a convergent sequence(∑

k

ρtkẼi(s
t
k),
∑
k

ρtkF̄i(s
t
k), 1, ci

∑
k

ρtkFi(s
t
k)

)
→ (`q, `r0 , 1, `RHS) as t→∞.

(Q is at most three-dimensional, so each convex combination requires at most four terms.) By
iteratively replacing the sequence with a subsequence if necessary, we may assume stk → ŝk and
ρtk → ρ̂k for each k. Then

`q =
∑
k

ρ̂kẼi(ŝk), `r0 ≥
∑
k

ρ̂kF̄i(ŝk) `RHS ≤ ci
∑
k

ρ̂kFi(ŝk),

where we respectively use the continuity, lower semi-continuity and upper semi-continuity of Ẽi, F̄i
and Fi. We can then recover the limit inequality by weakening r0’s coefficient or the right hand
side if necessary. �

We next compare (7) to a bound from the literature. The following linear knapsack relaxation
appeared in [12]:

max
x

∑
i∈N

cixi,bFi(b) (8a)

s.t.
∑
i∈N

xi,bẼi(b) ≤ 2b (8b)

0 ≤ xi,b ≤ 1, i ∈ N. (8c)

Even though this formulation only has one variable per item, we keep the two-index notation for
consistency. The variables also have similar interpretations; xi,b in (8) represents the probability
that a policy attempts to insert an item at any point.

Theorem 3.11. The optimal value of (7) is less than or equal to the optimal value of (8).
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Intuitively, (8) seems weaker because it must double the knapsack capacity. In fact, for certain
distributions, such as the ones covered in Examples 3.2, 3.6, 3.7 and 3.8, (7) is simply (8) with the
original capacity of b.

Proof. Multiplying constraint (7c) by b and adding it to constraint (7b), we can relax (7) to

max
x

∑
i∈N

∑
s∈[0,b]

cixi,sFi(s)

s.t.
∑
i∈N

∑
s∈[0,b]

xi,s
(
Ẽi(s) + bF̄i(s)

)
≤ 2b

∑
s∈[0,b]

xi,s ≤ 1, ∀ i ∈ N

x ≥ 0, x has finite support.

The proof is finished by showing that Ẽi(s)+bF̄i(s) ≥ Ẽi(b) for any s ∈ [0, b], because after applying
this further relaxation the optimal solution would have xi,s = 0 for s 6= b. Indeed,

Ẽi(s) + bF̄i(s) = Fi(s)E[Ai|Ai ≤ s] + sF̄i(s) + b
(
F̄i(s)− F̄i(b)

)
+ bF̄i(b)

= Fi(s)E[Ai|Ai ≤ s] + sF̄i(s) + b
(
Fi(b)− Fi(s)

)
+ bF̄i(b)

≥ Fi(s)E[Ai|Ai ≤ s] +
(
Fi(b)− Fi(s)

)
E[Ai|s < Ai ≤ b] + bF̄i(b)

= Ẽi(b),

where in the inequality we use sF̄i(s) ≥ 0 and b ≥ E[Ai|s < Ai ≤ b]. �

Corollary 3.12 ([12, Theorem 4.1]). The multiplicative gap between the optimal value of the
stochastic knapsack problem υ∗N (b) and the bound given by (4) and (7) is at most 32/7 ≈ 4.57.

Example 3.2 shows that the relaxation (7) reduces to the deterministic knapsack’s LP relaxation
when item sizes are deterministic. This LP’s gap is well known to be two [22, 29], and thus (7)’s
gap cannot be less than two.

[12] also present a stronger polymatroid relaxation which has constraints similar to (8) applied
to every subset of items. We are not able to prove that (7) dominates this bound; however, we
discuss an empirical comparison of the two bounds in Section 6.

4 A Stronger Relaxation of Pseudo-Polynomial Size

Item sizes may have integer support in many cases. The knapsack capacity b can then be taken
to be integer as well, and it may be small enough that enumerating all possible integers up to
it is computationally tractable. If both assumptions hold, we can produce better value function
approximations of pseudo-polynomial size. For a state (M, s) with s ∈ Z+, consider now the
approximation

υM (s) ≈
∑
i∈M

ri +

s∑
σ=0

wσ, (9)

where r ∈ RN+ and w ∈ Rb+1
+ ; the ri’s have the same interpretation from before as intrinsic values of

each item, and each wσ represents the incremental intrinsic value of having σ capacity left instead
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of σ − 1. For a fixed M , this approximation allows a completely arbitrary non-decreasing function
of the capacity s; in particular, we can recover (3) by setting w0 = r0 and wσ = q for σ > 0, and
this shows that (9) can produce a tighter relaxation.

Proposition 4.1 ([27]). The model

max
x

∑
i∈N

b∑
s=0

cixi,sFi(s) (10a)

s.t.
∑
i∈N

b∑
s=σ

xi,sF̄i(s− σ) ≤ 1, σ = 0, . . . , b (10b)

b∑
s=0

xi,s ≤ 1, i ∈ N (10c)

x ≥ 0 (10d)

gives an upper bound for the optimal value υ∗N (b) when item sizes have integer support.

The decision variables here have an identical interpretation to (7); xi,s is the probability the
policy attempts to insert item i when s capacity remains in the knapsack. The probability of
attempting to insert i still cannot exceed 1 (10c). Similarly, the σ-th unit of capacity can be used
at most once (10b). While this result is known from [27], our interpretation of the bound as arising
from the approximation (9) is new.

Proof. Substituting (9) into (2b), we obtain

υM∪i(s)− Fi(s)E[υM (s−Ai)|Ai ≤ s]

=
∑

j∈M∪i
rj +

∑
σ≤s

wσ − Fi(s)
∑
j∈M

rj −
∑
s′≤s

[(
Fi(s

′)− Fi(s
′ − 1)

) ∑
σ≤s−s′

wσ

]
= ri + F̄i(s)

∑
j∈M

rj +
∑
σ≤s

wσF̄i(s− σ) ≥ ri +
∑
σ≤s

wσF̄i(s− σ) ≥ ciFi(s),

where as before the first inequality holds at equality when M = ∅ or F̄i(s) = 0. The best bound
from an approximation given by (9) satisfying these conditions is thus

min
r,w

∑
i∈N

ri +
b∑

σ=0

wσ (11a)

s.t. ri +
s∑

σ=0

wσF̄i(s− σ) ≥ ciFi(s), i ∈ N, s = 0, . . . , b (11b)

r, w ≥ 0, (11c)

precisely the dual of (10). (Because item sizes have integer support, the number of constraints in
this model can be taken as finite, and thus classical LP duality applies.) �

The interpretation of (10) via the value function approximation (9) also allows us to compare
it to another pseudo-polynomial bound from the literature. The following relaxation appeared in
[18, 19]:

max
x

∑
i∈N

b∑
s=0

cixi,sFi(s) (12a)
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s.t.
∑
i∈N

b∑
s=σ

xi,sẼi(b− σ) ≤ 2(b− σ), σ = 0, . . . , b (12b)

b∑
s=0

xi,s ≤ 1, i ∈ N (12c)

x ≥ 0. (12d)

Intuitively, this formulation applies the idea for (8) not only for the full capacity b, but also by
assuming the knapsack has σ fewer units of capacity for every σ = 0, . . . , b.

Theorem 4.2. The optimal value of (10) is less than or equal to the optimal value of (12).

This theorem is a stronger version of a similar result in [27], which showed that (10) is tighter
than (12) in a worst-case sense.

Proof. Augment approximation (9) with redundant linear splines at every integer capacity, yielding

υM (s) ≈
s∑

σ=0

qσ(s− σ)+ +
∑
i∈M

ri +

s∑
σ=0

wσ,

where q ≥ 0. These new functions cannot improve the approximation, since for any M (9) already
captures an arbitrary non-decreasing function of capacity. Nevertheless, adding these redundant
variables makes the proof simpler. Following a similar argument to Propositions 3.1 and 4.1, this
approximation results in the relaxation

max
x

∑
i∈N

b∑
s=0

cixi,sFi(s)

s.t.
∑
i∈N

b∑
s=σ

xi,sẼi(s− σ) ≤ b− σ, σ = 0, . . . , b

∑
i∈N

b∑
s=σ

xi,sF̄i(s− σ) ≤ 1, σ = 0, . . . , b

b∑
s=0

xi,s ≤ 1, i ∈ N

x ≥ 0,

which is equivalent to (10) because the first set of constraints is redundant. The proof now follows
by applying the argument from Theorem 3.11 to every σ = 0, . . . , b. �

5 Correlated Item Values

Our formulation so far only allows an item’s value to be random if it is independent of the size,
by using its expectation as a deterministic value. A more general setting studied in the literature
includes for each item i ∈ N a random value Ci that may be correlated to its size Ai, where we
now require knowledge of the joint distribution over (Ai, Ci). (Value-size pairs remain indepen-
dent across items.) To simplify exposition, we assume throughout this section that each of these
distributions has finite support.

11



Under these more general assumptions, the LP formulation (2) becomes

min
υ

υN (b)

s.t. υM∪i(s)− Fi(s)E[υM (s−Ai)|Ai ≤ s] ≥ Fi(s)E[Ci|Ai ≤ s],
∀ i ∈ N,M ⊆ N \ i, s ∈ [0, b]

υ ≥ 0,

and the DP recursion defining the optimal value function υ∗ is analogous. Similarly, the value
function approximations (3) and (9) remain the same, and yield analogous relaxations to (7) and
(10) respectively where the objective function coefficient for each variable xi,s is now the item’s
conditional expected value Fi(s)E[Ci|Ai ≤ s]. Assuming item sizes have integer support, there is no
substantive change to model (10), and this more general version is already treated in [18, 19, 27].

For the affine approximation, however, the relaxation

max
x

∑
i∈N

∑
s∈[0,b]

xi,sFi(s)E[Ci|Ai ≤ s]

s.t.
∑
i∈N

∑
s∈[0,b]

xi,sẼi(s) ≤ b∑
i∈N

∑
s∈[0,b]

xi,sF̄i(s) ≤ 1

∑
s∈[0,b]

xi,s ≤ 1, ∀ i ∈ N

x ≥ 0, x has finite support,

has the slightly altered separation problem

max
s∈[0,b]

{
Fi(s)

(
r0 + E[Ci|Ai ≤ s]

)
− qẼi(s)

}
for every item i ∈ N . Separation now also depends on the conditional expected value function
s 7→ Fi(s)E[Ci|Ai ≤ s]. If size-value pairs have finite support, this function is piecewise constant,
and its breakpoints occur in the same points as the CDF Fi. Therefore, at optimality the relaxation
will only have positive xi,s values for those s where Ai has probability mass, just as in the case
where value is deterministic.

6 Computational Experiments

We next present the setup and results of a series of experiments intended to compare the upper
bounds presented in the previous sections and benchmark them against various policies related to
the bounds.

6.1 Bounds and Policies

We first describe each of the bounds and policies we investigated. We tested the bounds given
by (7), which we refer to as MCK (for multiple-choice knapsack), and (10), which we call PP
(for pseudo-polynomial). To include a bound independent of our techniques, we also computed
a simulation-based perfect information relaxation (PIR) [7], obtained by repeatedly simulating
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a realization of each item’s size and solving the resulting deterministic knapsack problem, then
computing the sample mean of the optimal value across all realizations; this estimated quantity is
an upper bound because it allows the decision maker earlier access to the uncertain data, i.e. it
violates non-anticipativity. For this and all other simulations we used 400 realizations. We did not
include bounds (8) and (12) in light of Theorems 3.11 and 4.2.

We also considered the following bound from [12]:

max
x

∑
i∈N

cixi,bFi(b)

s.t.
∑
i∈J

xi,bẼi(b) ≤ 2b

(
1−

∏
i∈J

(
1− Ẽi(b)/b

))
, J ⊆ N

0 ≤ xi,b ≤ 1, i ∈ N.

By employing an appropriate variable substitution, this LP can be recast as a linear polymatroid
optimization problem and solved with a greedy algorithm. This bound clearly dominates (8), and
[12] also show that it has a worst-case multiplicative gap of 4 with the optimal value υ∗N (b). We
haven’t yet been able to show an analogue of Theorem 3.11, so we planned to also include this bound
in the experiments. However, after preliminary tests, this bound did significantly worse than MCK;
it was always at least 14% worse than the best comparable bound (either MCK or PIR), and was
often 40%-60% worse. We therefore did not include it in the larger set of experiments.

As for policies, we considered several derived from the various bounds. Arguably the simplest
policy for this problem is a greedy policy, which attempts to insert items in non-increasing order of
their profitability ratio at full capacity, ciFi(b)/Ẽi(b), the ratio of expected value to mean truncated
size. In addition to its appealing simplicity, this policy is motivated by various theoretical results.
First, it generalizes the deterministic knapsack’s greedy policy, which is well-known to have a worst-
case multiplicative gap of 1/2 under a simple modification [29]. Also, [13] showed that this policy is
in fact optimal when item sizes follow exponential distributions. Finally, [12] analyzed a modified
version of it with a simple randomization and showed that it achieves a worst-case multiplicative
gap of 7/32 (this is the basis for the analysis of (8)). We also implemented an adaptive greedy
version of the policy that does not fix an ordering of the items, but rather at every encountered
state (M, s) computes the profitability ratios at current capacity ciFi(s)/Ẽi(s) for remaining items
i ∈M and chooses a maximizing item.

In addition to yielding bounds by restricting (2), the value function approximations (3) and (9)
can of course be used to construct policies, by substituting them into the DP recursion (1). We
refer to these two policies as the MCK and PP dual policies, to match the bound names. The MCK
dual policy uses an optimal solution (q∗, r∗) to (4) to choose an item; at state (M, s), the policy
chooses

arg max
i∈M

{
Fi(s)

(
ci + r∗0 +

∑
k∈M\i

r∗k + q∗
(
s− E[Ai|Ai ≤ s]

))}
.

Similarly, the PP dual policy uses an optimal solution (r∗, w∗) to (11), and at state (M, s) chooses

arg max
i∈M

{
Fi(s)

(
ci +

∑
k∈M\i

r∗k

)
+

s∑
σ=0

w∗σFi(s− σ)

}
;

recall that this bound assumes item sizes have integer support.
Though we investigated both bounds, we did not implement the MCK dual policy, because this

policy actually exhibits quite undesirable behavior. Specifically, suppose item sizes are determin-
istic; then (7) becomes the deterministic knapsack’s linear relaxation, and its optimal solution has
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items set to 1 based on a non-increasing order of the deterministic profitability ratio ci/ai, with at
most one fractional item (the one that fills the knapsack’s capacity). In this case, it is not difficult
to show that the MCK dual policy is actually indifferent between all items with positive value in
the optimal solution of (7). While this lack of distinction between items is not as problematic in the
deterministic case (as all items set to 1 would always fit), the policy exhibits analogous behavior for
other item size distributions for which (4) has r0 = 0 at optimality, such as uniform distributions, if
all sizes are less than b with certainty. This undesirable behavior was also reflected in preliminary
results, where the MCK dual policy performed poorly. We therefore did not include it in further
experiments.

6.2 Data Generation and Parameters

To our knowledge, there is no available test bed of stochastic knapsack instances; however, there
are various sources of deterministic instances or instance generators available. Therefore, to obtain
instances for our experiments, we used deterministic knapsack instances as a “base” from which we
generated stochastic instances. From each deterministic instance we generated eight stochastic ones
by varying the item size distribution and keeping all other parameters. If a particular deterministic
instance’s item i had size ai (always assumed to be an integer), we generated the following four
continuous distributions:

E Exponential with rate 1/ai.

U1 Uniform between [0, 2ai].

U2 Uniform between [ai/2, 3ai/2].

N Normal with mean ai and standard deviation ai/3, conditioned on being non-negative.

Similarly, we generated four discrete distributions:

D1 0 or 2ai each with probability 1/2.

D2 0 with probability 1/3 or 3ai/2 with probability 2/3.

D3 0 or 2ai each with probability 1/4, ai with probability 1/2.

D4 0, ai or 3ai each with probability 1/5, ai/2 with probability 2/5.

Note that all distributions are designed so an item’s expected size equals ai. Since the PP bound
and dual policy assume integer support, we could only test them on the second set of instances. To
ensure integer support for instances of type D2 and D4, after generating the deterministic instance
we doubled all item sizes ai and the knapsack capacity.

The deterministic base instances came from two data sources. We took eight small instances
from http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html; these
range from five to twenty-five items. We generated 40 larger instances using the “advanced” in-
stance generator from www.diku.dk/~pisinger/codes.html (see [28]). The generator is a C++
script that takes in five arguments: number of items, range of coefficients, type, instance number,
number of tests in series. The last two input parameters are used to adjust the problem fill rate,
that is, the ratio between the sum of all item sizes and capacity; we set these to maintain a fill
rate in [2, 5]. The “type” parameter refers to the relationship between item sizes and profits. We
used two types; in the first, sizes and values are uncorrelated; in the second, sizes and values are
“strongly correlated”. (The generator’s authors observe that deterministic instances tend to be
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more difficult when sizes and values are correlated.) We generated 10 uncorrelated instances with
100 items, 10 uncorrelated instances with 200 items, 10 strongly correlated instances with 100
items, and 10 strongly correlated instances with 200 items. For these 40 generated instances, we
re-scaled the capacity to 1000, and scaled and rounded the item sizes accordingly; we performed this
normalization for consistency, since the the dimension of (10) depends on the knapsack capacity
and thus influences the computing of the PP bound.

We used CPLEX 12.6.1 for all LP solves, running on a MacBook Pro with OS X 10.7.5 and a
3.06 GHz Intel Core 2 Duo processor. To estimate the PIR bound and all the policies’ expected
values, we used the sample mean from 400 simulated knapsack instances. For all tests on instances
with the conditional normal distribution, we simulated sizes according to a normal distribution with
mean ai and standard deviation of ai/3. Whenever a simulated item size was negative, we changed
it to 0. Although this procedure does not exactly model the conditional normal distribution, the
changes in the simulated instances are minor given that the probability of being non-negative is
approximately 0.999.

We intended to test the PP bound and dual policy on all instances with discrete distributions,
but encountered computational difficulty. Even for smaller instances, a naive implementation of
(10) would run out of memory. We therefore implemented a column generation algorithm, but
even this took a significant amount of time per instance. Roughly speaking, D1 instances were the
easiest to solve (usually between 60 and 90 minutes), then D3 (120 to 150 minutes), then D2 (4.5
to 6.5 hours), and D4 instances were the most difficult (12 to 16 hours or even more); the increased
computation time required for D2 and D4 instances can partly be explained by the need to double
the knapsack capacity and thus the number of variables and constraints. We therefore chose a
subset of the instances to test; of the small instances, we tested all except p08, since this instance
has a very large capacity. From the larger instances, we chose four each of the uncorrelated and
strongly correlated instances with 100 items. From all of these base instances, we tested the PP
bound and dual policy on all four discrete instance types, D1 through D4. Table 5 in the Appendix
includes computation times for the larger instances.

6.3 Summary and Results

Tables 1 and 2 contain a summary of our experiments for the different bounds and policies. Table
1 excludes the PP bound and dual policy, but covers all tested instances, while Table 2 includes
the PP bound and dual policy but covers only the instances in which these were investigated. The
tables are interpreted as follows. For each instance, we choose the smallest bound as baseline, and
divide all bounds and policy expected values by this baseline. The first set of columns presents the
geometric mean of this ratio, calculated over all instances represented in that row. We show the
ratios as percentages for ease of reading; thus, policy ratios should be less than or equal to 100%,
while bound ratios should be greater than or equal to 100%. The one exception is the instances
with exponentially distributed sizes (type E); because we know from [13] that the greedy policy is
optimal, we use this value as a baseline. Also, for these instances the profitability ratio is invariant
with respect to remaining capacity, and thus the greedy and adaptive greedy policies are equivalent;
hence we do not report adaptive greedy performance for these instances.

For the second set of columns, we count the number of successes – one among the bounds and
one among the policies – and divide by the total number of instances represented in that row. A
success for a particular instance indicates the bound with the smallest ratio and the policy with
the largest ratio. If two ratios are within 0.1% of each other, we consider them equivalent; thus,
the presented success rates for each row do not necessarily sum to 100%.

From the results we see that MCK is exclusively better than PIR in the summary statistics;
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Table 1: Summary of all tested instances, excluding PP bound and dual policy.
Distribution Base PIR MCK Greedy Adapt. PIR Success MCK Success Greedy Success Adapt. Success

E small 147.59% 104.13% 100.00% - 0.00% 100.00% 100.00% -
100cor 183.62% 100.07% 100.00% - 0.00% 100.00% 100.00% -
100uncor 121.62% 100.55% 100.00% - 0.00% 100.00% 100.00% -
200cor 188.47% 100.00% 100.00% - 0.00% 100.00% 100.00% -
200uncor 121.90% 100.28% 100.00% - 0.00% 100.00% 100.00% -

U1 small 126.74% 100.37% 89.69% 89.31% 12.50% 87.50% 100.00% 87.50%
100cor 154.20% 100.00% 98.78% 98.78% 0.00% 100.00% 100.00% 100.00%
100uncor 111.28% 100.00% 99.07% 99.07% 0.00% 100.00% 100.00% 100.00%
200cor 158.23% 100.00% 99.55% 99.56% 0.00% 100.00% 90.00% 100.00%
200uncor 111.96% 100.00% 99.70% 99.70% 0.00% 100.00% 100.00% 100.00%

U2 small 112.55% 100.44% 86.95% 89.31% 12.50% 87.50% 12.50% 87.50%
100cor 123.53% 100.00% 98.53% 98.65% 0.00% 100.00% 80.00% 100.00%
100uncor 103.14% 100.00% 98.93% 99.36% 0.00% 100.00% 0.00% 100.00%
200cor 126.15% 100.00% 99.20% 99.30% 0.00% 100.00% 60.00% 100.00%
200uncor 103.23% 100.00% 99.44% 99.75% 0.00% 100.00% 0.00% 100.00%

N small 116.11% 100.32% 87.56% 89.48% 12.50% 87.50% 12.50% 87.50%
100cor 126.58% 100.00% 98.81% 98.96% 0.00% 100.00% 50.00% 90.00%
100uncor 104.31% 100.00% 99.14% 99.48% 0.00% 100.00% 0.00% 100.00%
200cor 128.85% 100.00% 99.42% 99.53% 0.00% 100.00% 50.00% 100.00%
200uncor 104.41% 100.00% 99.64% 99.90% 0.00% 100.00% 0.00% 100.00%

D1 small 111.00% 101.67% 75.04% 78.46% 50.00% 50.00% 12.50% 87.50%
100cor 174.50% 100.00% 95.31% 97.15% 0.00% 100.00% 0.00% 100.00%
100uncor 121.89% 100.00% 96.91% 97.85% 0.00% 100.00% 0.00% 100.00%
200cor 180.87% 100.00% 97.70% 98.79% 0.00% 100.00% 0.00% 100.00%
200uncor 124.18% 100.00% 98.55% 99.04% 0.00% 100.00% 0.00% 100.00%

D2 small 111.59% 100.68% 83.79% 86.73% 12.50% 87.50% 0.00% 100.00%
100cor 152.61% 100.00% 96.81% 97.88% 0.00% 100.00% 0.00% 100.00%
100uncor 115.43% 100.00% 98.03% 98.92% 0.00% 100.00% 0.00% 100.00%
200cor 155.03% 100.00% 98.30% 98.97% 0.00% 100.00% 0.00% 100.00%
200uncor 116.48% 100.00% 98.82% 99.43% 0.00% 100.00% 0.00% 100.00%

D3 small 120.37% 100.74% 83.55% 87.22% 12.50% 87.50% 0.00% 100.00%
100cor 156.19% 100.00% 97.47% 98.75% 0.00% 100.00% 0.00% 100.00%
100uncor 114.73% 100.00% 98.24% 98.86% 0.00% 100.00% 0.00% 100.00%
200cor 160.73% 100.00% 98.85% 99.53% 0.00% 100.00% 0.00% 100.00%
200uncor 115.86% 100.00% 99.19% 99.54% 0.00% 100.00% 0.00% 100.00%

D4 small 122.67% 100.00% 80.52% 82.91% 0.00% 100.00% 12.50% 87.50%
100cor 185.47% 100.00% 95.98% 97.26% 0.00% 100.00% 0.00% 100.00%
100uncor 121.38% 100.00% 97.29% 97.77% 0.00% 100.00% 0.00% 100.00%
200cor 195.01% 100.00% 97.84% 98.58% 0.00% 100.00% 0.00% 100.00%
200uncor 123.26% 100.00% 98.42% 98.76% 0.00% 100.00% 0.00% 100.00%

Table 2: Summary of instances selected for PP bound.
Distribution Base MCK Greedy Adapt. PP Dual Greedy Success Adapt. Success PP Dual Success

D1 small 109.57% 79.11% 82.82% 85.33% 0.00% 28.57% 71.43%
100cor 100.00% 95.78% 97.59% 97.22% 0.00% 75.00% 25.00%
100uncor 100.00% 97.22% 97.95% 95.24% 0.00% 100.00% 0.00%

D2 small 104.82% 86.40% 89.24% 87.98% 0.00% 42.86% 57.14%
100cor 100.08% 97.37% 98.39% 97.84% 0.00% 75.00% 75.00%
100uncor 100.05% 98.57% 99.29% 97.72% 0.00% 100.00% 0.00%

D3 small 104.65% 85.55% 89.42% 92.15% 0.00% 28.57% 85.71%
100cor 100.01% 97.64% 98.70% 99.00% 0.00% 25.00% 75.00%
100uncor 100.01% 98.26% 98.83% 97.63% 0.00% 100.00% 0.00%

D4 small 110.77% 88.09% 90.60% 91.14% 0.00% 28.57% 71.43%
100cor 101.54% 96.98% 98.03% 97.90% 0.00% 75.00% 50.00%
100uncor 100.76% 98.02% 98.43% 96.90% 0.00% 100.00% 0.00%
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the success rates demonstrate that there are few cases in which PIR is better (mostly in the small
instances) but even here PIR is much worse than MCK on average. While PIR is sometimes a
good bound, e.g. for uncorrelated instances of type U2, it can often be much worse than MCK,
as much as 80% or 90% worse for correlated instances of type D4, for example. We conjecture
that MCK’s better performance is due in part to an averaging effect: Assuming a large enough fill
rate (recall the large instances maintain a fill rate between 2 and 5), individual items influence the
solution less as the number of items increases. Whereas MCK uses expected values, PIR is allowed
to observe realizations and thus choose each realization’s more valuable items. When the number
of items is large, this additional information may give the decision maker too much power and thus
weaken the bound. It is worth mentioning that the information relaxation techniques introduced
in [7] suggest a way to penalize PIR’s early observation of size realizations in order to improve the
bound. For this model, recent results in [4] indicate that when the penalty is chosen properly, the
resulting bound can be significantly tightened.

For the bounds reported in Table 2, we focus on comparing MCK to PP. We explain at the
start of Section 4 that PP is always less than or equal to MCK; therefore, we report here only
MCK as a percentage of PP. In contrast to the wide gaps we sometimes see between PIR and
MCK, MCK is very close to PP even though the latter bound employs a much larger number of
variables and constraints and is computationally much more demanding. Interestingly, PP seems to
offer the most benefit in smaller instances, where MCK can be as much as 10% weaker on average.
Conversely, the bounds are quite close in the larger instances; MCK was within 1% of PP for all
but one, where the gap was 1.54%. This seems to match the original intent of PP, which was to
consider instances in which b is small and can be taken explicitly as part of the input [27].

As for policies, the adaptive greedy policy is in general better than the greedy policy. Setting
aside instances of type E, where greedy is optimal and the two are equivalent, adaptive greedy is
roughly equivalent to greedy for instances of type U1 and U2, and noticeably better than greedy
for type N and for all instances with discrete distributions. This result is in line with what we
expect, as adaptive greedy should be more robust to the variation in realized item sizes. However,
we also note that the gap between greedy and adaptive greedy seems to decrease as the number of
items increases; the experiments thus suggest that the greedy policy is sufficient when the number
of items is large enough. This intuition was recently confirmed in [4], which showed that the greedy
policy is asymptotically optimal. The PP dual policy has mixed results compared to the greedy
policies. It performs better than adaptive greedy on small instances, but is worse on the larger
instances, similarly to what we see with the MCK and PP bounds.

In general, our results indicate that small instances might be harder, in the sense that the
simple MCK bound and greedy policies perform better as the number of items grows, while the
more complex PP bound and dual policy appear to offer the most benefit when the number of
items is small. Of course, if an instance is small enough, it may be possible to directly solve the
recursion (1), at least when sizes have integer support. It is thus in the “medium” instance size
range that PP may be most useful.

7 Conclusions

We have studied a dynamic version of the knapsack problem with stochastic item sizes originally
formulated in [12, 13], and proposed a semi-infinite, multiple-choice linear knapsack relaxation.
We have shown how both this and a stronger pseudo-polynomial relaxation from [27] arise from
different value function approximations being imposed on the doubly-infinite LP formulation of
the problem’s DP recursion. Our theoretical analysis shows that these bounds are stronger than
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comparable bounds from the literature, while our computational study indicates that the multiple-
choice knapsack relaxation is quite strong in practice and in fact becomes tighter as the number of
items increases.

Our results motivate additional questions. In particular, the fact that the simplest bound and
policy that we tested grow better as the number of items increases indicates it may be possible
to perform an asymptotic analysis of the two and show that they are optimal as the item number
tends to infinity, under appropriate assumptions. The recent results in [4], which appeared after
our manuscript was initially submitted, verify that this is indeed the case for the policy, and further
suggest a similar result is possible for the bound.

On the other hand, our results for the smaller instances also show that even the tightest bound
and best-performing policy can leave significant gaps to close. This motivates the investigation of
strengthened relaxations, perhaps analogous to a classical cutting plane approach for deterministic
knapsack problems. However, deriving such inequalities is not obvious in our context. Finally, our
techniques point to a general procedure to obtain relaxations for dynamic integer programs with
stochastic variable coefficients, such as the multi-row knapsack models studied in [42].

Acknowledgements

A. Toriello thanks Will Haskell and Sheldon Ross for many helpful discussions when this research
was in a preliminary stage. All three authors thank the editor and reviewers for their positive and
helpful feedback. D. Blado’s work was partially supported by the National Science Foundation
through a Graduate Research Fellowship.

References

[1] D. Adelman, Price-Directed Replenishment of Subsets: Methodology and its Application to
Inventory Routing, Manufacturing and Service Operations Management 5 (2003), 348–371.

[2] , A Price-Directed Approach to Stochastic Inventory/Routing, Operations Research 52
(2004), 499–514.

[3] E.J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces, John Wiley
& Sons, Inc., Chichester, England, 1987.

[4] S.R. Balseiro and D.B. Brown, Approximations to stochastic dynamic programs via information
relaxation duality, Working paper. Available at http://faculty.fuqua.duke.edu/~dbbrown/
bio/papers/balseiro_brown_approximations_16.pdf, 2016.

[5] A. Bhalgat, A. Goel, and S. Khanna, Improved Approximation Results for Stochastic Knapsack
Problems, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2011, pp. 1647–1665.

[6] D. Bienstock, Approximate Formulations for 0-1 Knapsack Sets, Operations Research Letters
36 (2008), 317–320.

[7] D.B. Brown, J.E. Smith, and P. Sun, Information Relaxations and Duality in Stochastic Dy-
namic Programs, Operations Research 58 (2010), 785–801.

18



[8] R.L. Carraway, R.L. Schmidt, and L.R. Weatherford, An algorithm for maximizing target
achievement in the stochastic knapsack problem with normal returns, Naval Research Logistics
40 (1993), 161–173.

[9] D.P. de Farias and B. van Roy, The Linear Programming Approach to Approximate Dynamic
Programming, Operations Research 51 (2003), 850–865.
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Appendix

The following five tables present the raw data we used to calculate the summaries in Tables 1 and
2. Tables separate instances by their size, small instances followed by 100-item instances under
continuous distributions, 100-item instances with discrete distributions, then 200-item instances
under continuous and discrete distributions. Table 5 includes running times for the PP bound and
dual policy; these are in seconds.
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Table 3: Small instances.
Instance Items Distribution PIR MCK Greedy Adapt. PP PP Dual Policy

p01 10 E 469.43 308.38 304.32 -
U1 407.46 309.02 289.47 289.47
U2 334.49 309.02 281.94 287.36
N 347.11 308.58 284.20 287.63

p02 5 E 73.35 52.23 49.23 -
U1 66.76 52.63 44.18 44.18
U2 59.72 52.63 43.62 45.48
N 61.42 52.52 44.63 45.20

p03 6 E 214.84 159.17 154.52 -
U1 194.27 160.00 140.09 140.09
U2 175.05 160.00 128.40 133.66
N 177.41 159.76 132.24 133.11

p04 7 E 152.80 105.64 104.62 -
U1 133.61 105.70 87.11 87.11
U2 121.54 107.55 93.31 98.58
N 122.19 97.76 79.26 88.35

p05 8 E 1174.89 1151.23 990.27 -
U1 1155.69 1190.00 1006.87 1006.87
U2 1148.92 1190.00 955.95 960.33
N 1157.76 1187.67 976.79 976.39

p06 7 E 2878.60 1785.59 1687.88 -
U1 2541.71 1786.50 1633.31 1633.31
U2 2162.80 1786.50 1506.54 1524.70
N 2211.48 1783.92 1522.41 1534.91

p07 15 E 2260.73 1461.48 1476.47 -
U1 1980.37 1461.50 1390.88 1390.88
U2 1748.72 1461.50 1364.71 1388.83
N 1784.32 1459.35 1391.59 1409.44

p08 24 E 20824162.16 13580702.9 13373492.25 -
U1 18268194.11 13580982.52 13220859.93 12445090.33
U2 15901300.28 13580982.52 12868614.76 12674256.09
N 16185888.15 13560987.98 12987982.5 13169542.03

p01 10 D1 487.98 394.52 296.54 321.36 385.83 315.38
D2 429.27 352.02 300.94 308.37 346.27 307.38
D3 424.15 337.77 296.20 307.71 327.87 304.54
D4 488.86 345.97 301.53 313.49 334.23 314.79

p02 5 D1 70.11 71.00 53.99 54.81 62.50 53.92
D2 64.71 61.67 45.31 45.67 55.83 46.22
D3 67.89 58.33 47.95 49.75 54.86 49.74
D4 75.99 67.91 50.75 50.47 58.21 53.45

p03 6 D1 206.03 209.19 148.98 148.48 169.00 153.17
D2 192.01 184.71 144.33 158.80 175.67 133.81
D3 198.74 176.61 135.08 147.73 164.14 149.32
D4 221.40 199.33 155.59 156.67 168.61 157.56

p04 7 D1 140.36 141.79 87.50 99.88 140.75 108.98
D2 130.39 126.75 103.99 108.92 124.00 109.42
D3 138.11 116.86 94.75 99.35 114.35 105.32
D4 153.35 137.56 104.78 107.78 125.83 109.59

p05 8 D1 1127.91 1239.78 918.26 921.34 1173.00 960.58
D2 1155.83 1219.85 991.35 996.10 1111.33 1033.15
D3 1141.79 1211.56 941.37 946.18 1133.81 979.05
D4 1176.03 1129.89 962.53 966.43 1107.36 918.70

p06 7 D1 2751.88 2380.82 1475.97 1560.94 1922.25 1633.93
D2 2449.14 2087.00 1772.02 1776.13 1988.67 1852.03
D3 2544.08 1987.17 1540.79 1618.81 1881.90 1809.05
D4 3007.52 2306.09 1637.78 1796.06 1935.71 1820.33

p07 15 D1 2137.13 1681.26 1490.73 1546.55 1680.75 1607.05
D2 1933.20 1570.45 1461.14 1529.57 1570.45 1498.95
D3 2039.99 1533.54 1389.58 1450.84 1516.37 1461.44
D4 2304.04 1676.91 1439.27 1486.18 1554.73 1479.13

p08 24 D1 19515886.11 15394878.96 13258193.23 13743118.4
D2 17610353.34 14477273.59 12898295.79 13541522.45
D3 18882530.81 14177463.69 12996088.67 13455440.77
D4 21458854.89 15281861 13429274.26 13937656.95
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Table 4: 100 items, continuous distributions.
Instance Distribution PIR MCK Greedy Adapt.
100cor1 E 46802.50 30013.29 30027.84 -

U1 40845.14 30013.29 29709.86 29709.86
U2 35482.96 30013.29 29659.10 29681.43
N 36040.95 29969.35 29660.14 29737.86

100cor2 E 46073.75 35516.98 35523.63 -
U1 40917.92 35516.98 35067.72 35067.72
U2 37030.99 35516.98 35079.05 35343.20
N 37466.24 35466.19 35003.46 35283.59

100cor3 E 82190.42 40886.27 40457.22 -
U1 68049.76 40886.27 40482.44 40482.44
U2 52659.17 40886.27 40114.07 40172.81
N 53911.04 40826.58 40237.92 40279.47

100cor4 E 106258.17 44168.09 43572.86 -
U1 85060.89 44168.09 43708.70 43708.70
U2 58990.90 44168.09 43492.66 43533.25
N 61759.77 44103.54 43352.43 43413.47

100cor5 E 60004.28 27106.08 27231.81 -
U1 48705.49 27106.08 26657.77 26657.77
U2 35705.48 27106.08 26655.80 26632.95
N 36991.38 27066.39 26783.05 26793.98

100cor6 E 8286.74 4480.44 4511.49 -
U1 6950.51 4480.44 4437.71 4437.42
U2 5584.03 4480.44 4423.21 4424.94
N 5688.12 4473.89 4427.14 4431.23

100cor7 E 52356.63 32128.94 32370.66 -
U1 44970.77 32128.94 31593.64 31593.64
U2 38720.08 32128.94 31748.74 31767.77
N 39044.63 32081.98 31742.67 31752.78

100cor8 E 65439.41 31608.91 31946.24 -
U1 53157.53 31608.91 31073.76 31073.76
U2 40607.08 31608.91 31068.39 31091.21
N 41831.26 31562.71 31173.94 31230.02

100cor9 E 31530.91 16491.00 16307.28 -
U1 26472.68 16491.00 16361.04 16361.04
U2 20837.16 16491.00 16225.89 16232.88
N 21330.34 16466.92 16300.77 16294.04

100cor10 E 123118.83 73558.26 73383.78 -
U1 105636.61 73558.26 72754.22 72754.22
U2 89404.56 73558.26 72482.59 72528.14
N 90931.11 73450.59 72719.15 72628.02

100uncor1 E 42769.68 38457.56 38229.38 -
U1 40682.51 38457.56 38215.75 38215.75
U2 39083.20 38457.56 38169.62 38265.87
N 39292.73 38403.27 38188.09 38264.49

100uncor2 E 18129.49 15212.48 15190.47 -
U1 16632.99 15212.48 15044.51 15044.51
U2 15659.71 15212.48 15065.95 15141.41
N 15775.43 15190.87 15021.03 15096.71

100uncor3 E 80130.74 65503.10 64733.69 -
U1 73939.67 65503.10 65055.60 65055.60
U2 67715.12 65503.10 64584.03 64862.53
N 68481.73 65410.69 64863.15 65078.84

100uncor4 E 111922.24 85139.17 83845.66 -
U1 99104.63 85139.17 84369.32 84369.32
U2 87870.48 85139.17 83987.41 84559.16
N 89266.56 85018.36 83877.86 84406.85

100uncor5 E 57965.38 44361.56 44315.31 -
U1 51796.03 44361.56 43716.36 43716.36
U2 46325.52 44361.56 43694.02 43905.13
N 47050.67 44298.81 43843.21 43954.99

100uncor6 E 8308.34 6950.75 6962.80 -
U1 7687.99 6950.75 6880.37 6880.37
U2 7178.39 6950.75 6888.15 6922.83
N 7227.76 6940.92 6896.62 6919.74

100uncor7 E 48193.33 42746.90 42627.88 -
U1 45494.95 42746.90 42424.58 42424.58
U2 43814.00 42746.90 42468.59 42618.12
N 43900.48 42686.66 42393.66 42532.98

100uncor8 E 63238.76 49921.48 50080.69 -
U1 57161.84 49921.48 49358.21 49358.21
U2 51907.49 49921.48 49312.42 49470.25
N 52639.12 49851.04 49375.43 49533.99

100uncor9 E 32346.23 25826.46 25474.05 -
U1 29550.41 25826.46 25574.67 25574.67
U2 26956.78 25826.46 25524.10 25636.02
N 27341.30 25789.76 25554.41 25629.55

100uncor10 E 112928.12 100349.64 99560.75 -
U1 106740.87 100349.64 99709.53 99709.53
U2 102073.99 100349.64 99555.19 99906.87
N 102725.17 100208.51 99653.15 99945.11
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Table 5: 100 items, discrete distributions.
Instance Distribution PIR MCK Greedy Adapt. PP PP Time PP Dual Policy PP Policy Time
100cor1 D1 44078.58 31111.79 29798.00 30087.17

D2 39734.36 30562.79 29844.35 30126.53
D3 42432.33 30379.70 29681.42 29938.09
D4 48581.92 30995.20 29860.49 30225.65

100cor2 D1 46747.43 36615.48 35463.69 35761.03 36615.48 4151.59 35190.17 3549.92
D2 42845.17 36066.48 35075.34 35383.89 36044.08 16575.69 34503.27 7204.37
D3 42835.04 35883.40 35327.66 35553.73 35880.92 7822.71 35464.01 4142.33
D4 47111.17 36462.66 34935.83 35019.59 36036.74 45026.36 34800.01 8278.49

100cor3 D1 82283.49 43071.27 40846.87 41608.34
D2 68298.72 41981.27 40383.90 40443.97
D3 69105.73 41617.11 40587.21 41198.20
D4 86687.28 42707.30 41218.08 42104.89

100cor4 D1 117391.61 47466.59 44318.90 45797.99
D2 93455.42 45817.59 43831.99 44884.43
D3 89015.11 45267.84 43611.86 44516.14
D4 111984.10 46307.87 43515.92 44274.00

100cor5 D1 62714.78 28754.58 27524.52 28089.91
D2 50514.96 27930.58 26841.43 27175.15
D3 49465.22 27655.83 26871.22 27313.78
D4 63768.18 28303.23 27625.25 28137.76

100cor6 D1 8111.63 4699.44 4558.40 4674.98 4699.44 5958.01 4601.82 4599.36
D2 6913.01 4590.11 4472.36 4517.99 4586.17 17836.77 4519.63 8730.71
D3 7107.33 4553.61 4458.65 4522.50 4553.00 8430.32 4509.02 4298.07
D4 8712.30 4648.74 4406.69 4477.31 4576.45 55665.90 4534.99 9986.10

100cor7 D1 49546.25 33436.44 32141.17 32363.01
D2 43752.40 32784.77 31609.47 31799.30
D3 46749.00 32566.85 32075.44 32424.55
D4 54808.02 33217.02 32228.47 32478.68

100cor8 D1 66226.71 33454.41 31511.43 32404.03
D2 54942.13 32531.91 31544.68 32034.34
D3 54220.66 32224.33 31233.43 31740.84
D4 68773.82 32946.54 31735.01 32129.03

100cor9 D1 31232.40 17358.50 16382.66 16817.33 17358.50 5850.62 16788.91 4575.07
D2 26594.32 16926.83 16348.04 16568.27 16912.50 19652.41 16597.11 10150.56
D3 26885.93 16782.25 16148.36 16358.36 16780.97 9340.53 16552.22 4361.77
D4 33311.77 17173.90 16304.31 16506.94 16870.03 54863.39 16309.74 10862.59

100cor10 D1 117896.42 76476.76 72575.76 73691.05 76476.76 7638.23 75054.18 4311.85
D2 103974.56 75021.92 73437.07 74136.90 74956.18 21293.51 74189.98 6974.64
D3 109504.05 74535.51 73005.68 73711.17 74529.54 8805.79 74141.82 5041.93
D4 130641.57 76078.30 73419.19 74356.02 74893.66 60621.26 74349.03 12521.45

100uncor1 D1 43115.77 39050.18 38114.19 38283.15 39050.18 4907.27 37556.94 4432.39
D2 41689.79 38758.85 38322.44 38544.31 38740.96 23577.82 38063.65 8963.41
D3 41423.69 38661.78 38133.94 38303.53 38660.16 8333.15 37402.40 4266.99
D4 43230.58 39021.74 38229.45 38327.39 38758.69 42589.05 37639.14 11467.26

100uncor2 D1 18305.73 15608.14 15128.88 15271.97
D2 17234.28 15412.16 15037.50 15179.70
D3 17291.71 15346.20 15077.58 15154.24
D4 18427.78 15539.47 14963.46 15052.44

100uncor3 D1 83194.39 67360.00 64770.18 65599.72
D2 77194.25 66434.19 64582.40 65345.69
D3 76370.51 66125.42 65102.31 65632.90
D4 82585.46 67221.26 65343.83 65601.12

100uncor4 D1 123509.36 88088.17 84788.51 85715.22 88088.17 4986.33 83504.80 2777.83
D2 111075.84 86618.00 84761.74 85598.76 86571.83 18304.86 84222.73 6596.08
D3 107340.42 86126.50 84122.96 84848.73 86119.50 7340.91 84475.59 3149.88
D4 116383.28 87154.15 84122.40 84715.31 86505.92 53716.99 83185.47 7839.50

100uncor5 D1 61386.43 45854.42 44556.04 45051.44
D2 55698.81 45108.73 43922.13 44418.12
D3 54356.52 44859.89 43913.47 44198.48
D4 60245.42 45503.07 44623.99 44901.59

100uncor6 D1 8480.72 7102.63 6970.49 7033.13 7102.63 4392.03 6619.18 3341.61
D2 8013.10 7025.64 6939.90 6989.11 7022.13 15157.58 6833.16 6890.15
D3 7950.84 7000.58 6869.04 6912.14 7000.25 7619.60 6825.17 3696.61
D4 8471.81 7093.54 6862.53 6889.23 7025.20 46301.52 6805.25 9100.62

100uncor7 D1 48576.04 43527.70 42340.84 42708.69
D2 46607.41 43144.45 42394.98 42700.89
D3 46716.27 43014.32 42643.76 42797.71
D4 48788.27 43459.26 42720.55 42862.96

100uncor8 D1 65960.71 51435.98 49780.27 50388.94
D2 60674.89 50681.48 49548.72 50231.46
D3 59922.36 50429.06 49508.31 49961.63
D4 65312.69 51143.14 49988.34 50285.08

100uncor9 D1 33455.01 26586.96 25502.40 25833.05
D2 31068.63 26209.79 25697.86 25913.22
D3 30813.52 26083.04 25441.93 25611.47
D4 33430.11 26438.54 25421.77 25612.58

100uncor10 D1 114587.82 102187.14 99022.08 99565.20 102187.14 4442.64 98938.86 3804.11
D2 109941.05 101282.97 99847.93 100505.43 101238.42 16119.72 99264.64 8712.19
D3 109400.87 100976.72 99540.08 99943.73 100970.68 7832.96 99153.42 4192.16
D4 114394.12 101825.76 99687.04 100010.95 101181.44 52132.86 98602.11 9252.24

24



Table 6: 200 items, continuous distributions.
Instance Distribution PIR MCK Greedy Adapt.
200cor1 E 96338.10 60298.25 60166.15 -

U1 83447.70 60298.25 59870.89 59883.76
U2 72345.57 60298.25 59880.24 59982.77
N 73305.69 60209.82 59989.26 60092.64

200cor2 E 42804.74 24268.53 24315.10 -
U1 36386.10 24268.53 24231.19 24227.91
U2 29961.30 24268.53 24105.67 24113.98
N 30382.63 24233.01 24061.61 24086.15

200cor3 E 160487.58 79385.20 79848.79 -
U1 133231.17 79385.20 79010.52 79010.52
U2 102274.99 79385.20 78698.19 78727.61
N 104766.79 79269.21 78849.13 78924.35

200cor4 E 242915.02 119112.85 119238.33 -
U1 199950.22 119112.85 118310.85 118310.85
U2 153931.66 119112.85 118062.12 118110.00
N 157688.69 118938.55 118463.94 118742.97

200cor5 E 111488.65 50763.78 51076.94 -
U1 91264.23 50763.78 50779.10 50779.10
U2 66731.70 50763.78 50318.23 50351.14
N 68941.15 50689.58 50432.74 50456.02

200cor6 E 17065.10 8985.94 9015.47 -
U1 14304.83 8985.94 8969.54 8970.44
U2 11411.90 8985.94 8921.87 8928.95
N 11600.03 8972.78 8917.48 8922.45

200cor7 E 108614.77 65325.84 65922.25 -
U1 93490.58 65325.84 65118.22 65118.22
U2 79269.30 65325.84 64920.35 65033.72
N 80272.94 65230.19 64790.51 64889.80

200cor8 E 130055.50 62201.63 61390.91 -
U1 107213.96 62201.63 62183.34 62183.34
U2 80820.28 62201.63 61582.15 61695.99
N 83030.03 62110.58 61730.68 61774.10

200cor9 E 66615.12 33899.19 33749.25 -
U1 55341.71 33899.19 33601.75 33602.05
U2 43378.55 33899.19 33643.96 33662.58
N 44269.81 33849.60 33606.65 33643.12

200cor10 E 242014.96 140855.75 140610.79 -
U1 205686.65 140855.75 139359.83 139359.83
U2 173062.12 140855.75 139596.58 139810.62
N 175291.42 140649.33 139763.01 139782.13

200uncor1 E 83826.87 74467.00 74034.84 -
U1 79249.11 74467.00 74121.03 74121.03
U2 75919.43 74467.00 74199.79 74365.84
N 76324.76 74361.68 74229.32 74400.45

200uncor2 E 38095.74 32017.00 31838.94 -
U1 35427.90 32017.00 32013.82 32013.20
U2 32959.84 32017.00 31838.69 31929.72
N 33285.84 31971.64 31895.73 31954.88

200uncor3 E 151605.79 121926.52 121991.71 -
U1 139020.13 121926.52 121820.38 121820.38
U2 126906.94 121926.52 121218.31 121640.45
N 128281.47 121754.37 121467.90 121860.33

200uncor4 E 216014.95 163613.50 163269.93 -
U1 192158.61 163613.50 163316.27 163316.27
U2 168956.10 163613.50 162434.29 162972.92
N 171875.64 163381.50 162524.27 163109.14

200uncor5 E 116500.76 89506.64 89658.43 -
U1 104709.27 89506.64 89233.56 89233.56
U2 93160.65 89506.64 88888.94 89256.67
N 94495.16 89379.97 89040.21 89285.07

200uncor6 E 16061.66 13183.89 13124.95 -
U1 14799.72 13183.89 13154.57 13154.57
U2 13638.73 13183.89 13118.35 13171.13
N 13775.38 13165.22 13103.32 13136.81

200uncor7 E 98162.02 85512.00 85730.66 -
U1 92160.36 85512.00 85344.42 85342.96
U2 87635.96 85512.00 85047.56 85279.20
N 88124.33 85391.03 85111.43 85337.96

200uncor8 E 126731.98 99398.79 98822.78 -
U1 114892.19 99398.79 99214.48 99214.48
U2 103848.29 99398.79 98714.26 99114.09
N 105151.92 99257.96 98803.43 99135.01

200uncor9 E 63113.62 52263.71 52039.60 -
U1 58289.71 52263.71 51949.95 51949.95
U2 54032.26 52263.71 51990.51 52107.29
N 54479.66 52189.96 51920.80 52035.21

200uncor10 E 228662.27 200005.23 199130.12 -
U1 215045.49 200005.23 198547.30 198547.30
U2 204372.46 200005.23 199040.80 199532.21
N 205686.78 199722.65 199202.04 199547.32
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Table 7: 200 items, discrete distributions.
Instance Distribution PIR MCK Greedy Adapt.
200cor1 D1 90688.56 61396.75 60471.88 61118.87

D2 80392.29 60847.75 59973.48 60394.04
D3 87585.08 60664.67 60080.24 60431.39
D4 100236.02 61343.83 60229.68 60489.84

200cor2 D1 41009.55 24817.03 24410.57 24597.46
D2 35477.81 24543.03 24236.69 24360.78
D3 37442.18 24451.62 24311.92 24428.50
D4 45364.72 24744.38 24288.52 24522.92

200cor3 D1 162086.31 81570.20 80423.03 81219.60
D2 133748.93 80480.20 79151.98 79762.27
D3 134781.28 80116.03 79464.88 80077.16
D4 169279.67 81258.86 79164.22 79743.83

200cor4 D1 242362.08 122411.35 118933.94 120813.60
D2 202178.61 120762.35 119490.55 120327.60
D3 202501.13 120212.60 118489.64 119214.81
D4 257291.96 121803.45 120456.40 121202.45

200cor5 D1 116224.49 52412.28 50387.32 50994.89
D2 93695.69 51588.28 50121.57 50583.33
D3 92933.34 51313.53 50891.46 51311.03
D4 118255.65 52009.95 50748.44 51528.33

200cor6 D1 16667.82 9205.94 9003.34 9106.95
D2 14088.38 9095.94 8907.81 8968.55
D3 14567.33 9059.27 8941.13 9011.57
D4 18095.95 9178.19 8952.46 8994.52

200cor7 D1 102607.10 66642.84 64916.83 65453.53
D2 90080.82 65984.84 64946.43 65266.42
D3 96574.97 65765.34 64822.58 65276.06
D4 114182.03 66524.37 65017.83 65403.32

200cor8 D1 132461.57 64047.13 62223.70 63217.74
D2 108756.60 63124.63 61399.19 61918.21
D3 108834.42 62817.05 61893.55 62310.26
D4 137941.23 63603.00 61671.69 62269.95

200cor9 D1 66481.90 34778.19 33987.45 34397.40
D2 55414.74 34338.86 33860.73 34054.50
D3 56553.93 34192.36 33772.89 34057.41
D4 70323.25 34657.10 33988.19 34193.42

200cor10 D1 229580.17 143794.25 141221.53 142346.43
D2 201176.03 142326.08 140948.56 141848.39
D3 212590.51 141836.33 139834.33 140638.72
D4 255690.49 143493.23 140397.94 141323.06

200uncor1 D1 84447.87 75162.20 74102.30 74307.92
D2 81096.68 74813.83 74230.71 74522.35
D3 81238.31 74700.25 74330.17 74590.06
D4 84706.40 75093.47 74297.73 74582.78

200uncor2 D1 38811.55 32417.83 32048.10 32157.17
D2 36597.59 32219.29 31917.73 32063.47
D3 36613.97 32152.18 31985.14 32093.07
D4 38989.23 32374.63 31867.19 31942.49

200uncor3 D1 158094.32 123827.63 122889.66 123655.48
D2 145651.06 122875.33 121582.47 122542.66
D3 144406.92 122558.61 121787.37 122154.81
D4 156247.13 123656.16 121416.58 121944.74

200uncor4 D1 238200.06 166562.50 163103.08 163965.87
D2 213766.66 165092.33 163313.96 164468.05
D3 205287.22 164600.83 162319.57 162955.55
D4 225416.49 166012.44 163373.89 164113.67

200uncor5 D1 123852.35 90999.64 89043.21 89447.13
D2 112132.05 90253.81 88750.38 89442.92
D3 110653.75 90004.98 89358.15 89756.49
D4 120673.15 90768.88 89096.84 89682.88

200uncor6 D1 16517.84 13364.33 13183.64 13256.00
D2 15352.69 13274.02 13092.94 13171.47
D3 15329.02 13244.44 13167.72 13218.32
D4 16503.13 13349.34 13146.05 13179.44

200uncor7 D1 98688.98 86349.50 85006.35 85282.14
D2 94372.49 85930.83 84892.45 85265.85
D3 94534.69 85791.25 85087.12 85288.38
D4 99266.65 86283.90 84831.98 84951.58

200uncor8 D1 132038.75 101076.29 99315.64 100116.67
D2 121102.25 100237.79 98209.04 98988.87
D3 120143.78 99958.20 98840.34 99262.39
D4 131384.51 100801.51 98603.26 98916.01

200uncor9 D1 65358.21 52999.90 52366.24 52726.75
D2 61017.13 52632.55 52057.64 52412.13
D3 60666.27 52509.96 52029.22 52215.54
D4 64814.11 52888.59 52202.51 52374.32

200uncor10 D1 231720.24 202053.73 199875.06 200492.32
D2 221326.69 201050.06 199941.10 200897.58
D3 220687.45 200708.65 198916.38 199506.77
D4 232013.10 201812.81 199357.95 199830.64
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