Polyhedral Approaches to Online Bipartite Matching

Alejandro Toriello

joint with Alfredo Torrico, Shabbir Ahmed

Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Department of Analytics and Operations National University of Singapore March 21, 2019

Motivation

Marketplaces and platforms in the "new" economy...
customer types resources

3

Motivation

Marketplaces and platforms in the "new" economy...

customer types resources $>$ Online search: Keyword advertisement (e.g. AdWords).

3

Motivation

Marketplaces and platforms in the "new" economy...
customer types resources \downarrow Online search: Keyword advertisement (e.g. AdWords).

- Web browsing: Display advertisement (banners and pop-ups).

Motivation

Marketplaces and platforms in the "new" economy...
customer types resources \downarrow Online search: Keyword advertisement (e.g. AdWords).

- Web browsing: Display advertisement (banners and pop-ups).
- Ride-hailing: Driver assignment.

Motivation

Marketplaces and platforms in the "new" economy...
customer types resources \downarrow Online search: Keyword advertisement (e.g. AdWords).

- Web browsing: Display advertisement (banners and pop-ups).
- Ride-hailing: Driver assignment.
- Many other revenue management applications.
- Interested here in centrally managed markets.

Problem Definition

impression types ads

$$
t=3
$$

Problem Definition

impression types ads

$$
t=3
$$

Problem Definition

impression types ads

(3)

$$
t=3
$$

Problem Definition

impression types ads

$$
t=2
$$

Problem Definition

impression types ads

$$
t=2
$$

Problem Definition

impression types ads

$$
t=1
$$

Problem Definition

impression types ads

$$
t=1
$$

Problem Definition

impression types ads

$$
t=0
$$

Problem Definition

impression types ads

- Arrival models:
- Adversarial (most conservative)
- Unknown permutation
- Unknown i.i.d.
- Known i.i.d. (least conservative)

Problem Definition

- Bipartite graph with

- V : right side (ads), fixed and known;
- N : left side (impressions), "types" that may appear.

Problem Definition

- Bipartite graph with

- V : right side (ads), fixed and known;
- N : left side (impressions), "types" that may appear.
- We sequentially observe T i.i.d. uniform samples drawn from N.
- An appearing node must be matched or discarded.
- For this talk, assume

$$
|V|=|N|=T=n
$$

- Objective is maximizing expected number of matches, or matching weight.

Online Bipartite Matching

Brief review of related work

- Karp/Vazirani/Vazirani (90)
- Adversarial model (no distribution). Randomized ranking policy is optimal, with $1-1$ /e competitive ratio.
- Applications in online search and revenue management renew CS interest. First studied model is i.i.d.
- Feldman/Mehta/Mirrokni/Muthukrishnan (09): First algorithm guarantee that "beats" $1-1 / e$.
- Improvements and extensions: Bahmani/Kapralov (10), Haeupler/Mirrokni/Zadimoghaddam (11), Manshadi/Oveis Gharan/Saberi (12)...
- Jaillet/Lu (13): Currently best-known guarantee.
- Our goal: Upper bounds via polyhedral relaxations, employ in policy design.

Outline

Preliminaries

Static Relaxations

Dynamic Relaxations

Conclusions and Ongoing Work

An Initial Relaxation

Feldman/Mehta/Mirrokni/Muthukrishnan (09)

- $z_{i j}$: Probability policy ever matches impression i to ad j.

$$
\max _{z \geq 0} \sum_{i, j} w_{i j} z_{i j} \quad(w \text { encodes compatibility })
$$

An Initial Relaxation

Feldman/Mehta/Mirrokni/Muthukrishnan (09)

- $z_{i j}$: Probability policy ever matches impression i to ad j.

$$
\begin{array}{rr}
\max _{z \geq 0} & \sum_{i, j} w_{i j} z_{i j} \\
\text { s.t. } & \sum_{i} z_{i j} \leq 1
\end{array}
$$

An Initial Relaxation

Feldman/Mehta/Mirrokni/Muthukrishnan (09)

- $z_{i j}$: Probability policy ever matches impression i to ad j.

$$
\begin{array}{rlr}
\max _{z \geq 0} & \sum_{i, j} w_{i j} z_{i j} & (w \text { encodes compatibility) } \\
\text { s.t. } & \sum_{i} z_{i j} \leq 1 & \text { (can match } j \text { once) } \\
& \sum_{j} z_{i j} \leq T / n=1 & \text { (expect to see } i \text { once) }
\end{array}
$$

An Initial Relaxation

Feldman/Mehta/Mirrokni/Muthukrishnan (09)

- $z_{i j}$: Probability policy ever matches impression i to ad j.

$$
\begin{array}{rrr}
\max _{z \geq 0} & \sum_{i, j} w_{i j} z_{i j} & (w \text { encodes compatibility) } \\
\text { s.t. } & \sum_{i} z_{i j} \leq 1 & \text { (can match } j \text { once) } \\
& \sum_{j} z_{i j} \leq T / n=1 & \text { (expect to see } i \text { once) }
\end{array}
$$

- Bipartite matching polytope for "expected graph".
- Simple policy: Solve for max-weight matching, match only these edges.
- Each edge matched w.p. $1-(1-1 / n)^{n} \approx 1-1 / e$.

Improving the Relaxation

- Idea: Add additional valid inequalities satisfied by feasible policies.
- Similar to achievable region approach in applied probability, e.g. Bertsimas/Niño Mora (96), Coffman/Mitrani (80).

- First example (Haeupler/Mirrokni/Zadimoghaddam, 11): Upper bounds

$$
z_{i j} \leq 1-(1-1 / n)^{n}
$$

are valid.

- Impression i never appears w.p. $(1-1 / n)^{n}$.

Facial Dimension

Proposition

The upper bound inequalities

$$
z_{i j} \leq 1-(1-1 / n)^{n}
$$

are facet-defining for the polytope of achievable probabilities*.
Proof sketch.
Consider the following n^{2} "affinely independent" policies:
(i, j) Match edge when possible, nothing else.
$\left(i^{\prime}, j^{\prime}\right)$ Match either edge when possible, nothing else.
$\left(i, j^{\prime}\right)$ Match i to j on first appearance, then to j^{\prime} on second; nothing else.
$\left(i^{\prime}, j\right)$ Match (i, j) when possible; in last stage match i^{\prime} instead if it appears.

* Yes, it's a full-dimensional polytope.

Right Star Inequalities

- Any set of neighbors I of ad j will never appear w.p. $(1-|I| / n)^{n}$, thus

$$
\sum_{i \in I} z_{i j} \leq 1-(1-|I| / n)^{n}
$$

is valid.

- Separate greedily in poly-time.

Right Star Inequalities

- Any set of neighbors I of ad j will never appear w.p. $(1-|I| / n)^{n}$, thus

$$
\sum_{i \in I} z_{i j} \leq 1-(1-|I| / n)^{n}
$$

is valid.

- Separate greedily in poly-time.

Proposition

If $I \neq N$, the inequality has facial dimension $n^{2}-|I|$.

Proposition

If $I=N$, the inequality corresponds to j 's degree constraint, and is facet-defining.

Left Star Inequalities

- For any set of neighbors J of impression i,

$$
\sum_{j \in J} z_{i j} \leq \mathbb{E}[\min \{|J|, B(n, 1 / n)\}]
$$

is valid, where B is a binomial r.v.

- Same greedy separation.

Left Star Inequalities

- For any set of neighbors J of impression i,

$$
\sum_{j \in J} z_{i j} \leq \mathbb{E}[\min \{|J|, B(n, 1 / n)\}]
$$

is valid, where B is a binomial r.v.

- Same greedy separation.

Theorem
The inequality is facet-defining for all J.

Proof sketch.

Construct $|J|$ policies using an ordering of J. Corresponding sub-matrix is a circulant, thus non-singular. Apply previous argument to remaining edges.

Complete Subgraph Inequalities

- For any $I \subseteq N, J \subseteq V$,

$$
\sum_{i j \in I \times J} z_{i j} \leq \mathbb{E}[\min \{|J|, B(n,|I| / n)\}]
$$

is valid.

- Greedy separation for fixed I or J, full separation with MIP.
- Inequalities are not facet-defining except in cases previously mentioned.

What More Do We Need?

Are 0-1 inequalities enough?

- Calculated this instance's convex hull with PORTA.
- The polytope has 13 non-trivial facets, only four of which are covered by our previous inequalities.
- No other facet has 0-1 structure.

Computational Experiments

Static relaxations

- Geometric mean of gap w.r.t. benchmark for different instances.

Bound/Policy	20-Cycle	$200-$ Cycle	Small	Large Dense	Large Sparse
EG	1.27	1.27	1.32	1.00	1.22
EG + UB	1.27	1.27	1.09	1.00	1.12
EG + RS	1.13	1.10	1.05	1.00	1.08
EG + LS	1.16	1.14	1.06	1.00	1.10
EG + RS + LS	1.13	1.10	1.05	1.00	1.07
Sim. Bound	1.05	1	1.00	1	1
DP	1	-	1	-	-
Matching	0.83	0.80	0.86	0.64	0.78
2-Matching*	0.99	0.95	0.96	0.75	0.88
Best static policy	0.99	0.95	1.00	0.95	0.96

Small $\rightarrow n=10$, large $\rightarrow n=100$.

* From Feldman/Mehta/Mirrokni/Muthukrishnan (09)

Computational Experiments

Static relaxation takeaways

- Significant gap left to close, especially in sparser instances.
- Right stars close more of the gap than left stars, contrasting facial dimension results.
- We'll use EG + RS as "static" bound benchmark.

Dynamic Relaxations

- $z_{i j}^{t}$: Probability we match i to ad j in stage $t=n, \ldots, 1$. (Count stages down.)
- Objective becomes

$$
\max \sum_{i, j, t} w_{i j} z_{i j}^{t}
$$

Dynamic Relaxations

$>z_{i j}^{t}$: Probability we match i to ad j in stage $t=n, \ldots, 1$. (Count stages down.)

- Objective becomes

$$
\max \sum_{i, j, t} w_{i j} z_{i j}^{t}
$$

- Project to static probabilities via

$$
\sum_{t} z_{i j}^{t}=z_{i j}
$$

Dynamic Relaxations

$>z_{i j}^{t}$: Probability we match i to ad j in stage $t=n, \ldots, 1$. (Count stages down.)

- Objective becomes

$$
\max \sum_{i, j, t} w_{i j} z_{i j}^{t}
$$

- Project to static probabilities via

$$
\sum_{t} z_{i j}^{t}=z_{i j}
$$

- Use shorthand

$$
Z_{I J}^{\left[t_{2}, t_{1}\right]}:=\sum_{i \in I} \sum_{j \in J} \sum_{\tau=t_{1}}^{t_{2}} z_{i j}^{\tau}
$$

Dynamic Relaxations

Simplest valid inequality

Proposition

$$
Z_{i V}^{t} \leq 1 / n, \quad i \in N, t \in[n]
$$

is valid and facet-defining.
Proof sketch.
Probability i appears in t is $1 / n$.
For any (i, t) and any (k, ℓ, τ), can choose a policy with $z_{k \ell}^{\tau}=1 / n$ and equality.

Dynamic Relaxations

Simplest valid inequality

Proposition

$$
Z_{i V}^{t} \leq 1 / n, \quad i \in N, t \in[n]
$$

is valid and facet-defining.

Proof sketch.

Probability i appears in t is $1 / n$.
For any (i, t) and any (k, ℓ, τ), can choose a policy with $z_{k \ell}^{\tau}=1 / n$ and equality.

Corollary

$$
\sum_{j \in V} z_{i j}=Z_{i V}^{[n, 1]} \leq n / n=1
$$

i.e. implies static inequality.

Dynamic Relaxations

A more involved example

- Matching i to j in t implies two independent events:
$\mathbb{P}(i \rightarrow j$ in $t) \leq \mathbb{P}(i$ appears in $t) \times \mathbb{P}(j$ not matched in $[t+1, n])$.
- Equivalent to

$$
z_{i j}^{t} \leq 1 / n\left(1-Z_{N j}^{[n, t+1]}\right)
$$

Dynamic Relaxations

Linking consecutive periods

Theorem

$$
Z_{N j}^{[n, t+1]}+n z_{i_{t} j}^{t} \leq 1, \quad i \in N, j \in V, t \leq n-1
$$

is valid and facet-defining.

Dynamic Relaxations

Linking consecutive periods

Theorem

$$
Z_{N j}^{[n, t+1]}+n z_{i_{t} j}^{t} \leq 1, \quad i \in N, j \in V, t \leq n-1
$$

is valid and facet-defining.

Theorem

These two inequality classes imply $E G+R S$ static relaxation.

- New LP has $\Theta\left(n^{3}\right)$ variables and constraints, versus $\Theta\left(n^{2}\right)$ and $\Theta\left(n 2^{n}\right)$.

Linking Many Periods

- Connect any number of consecutive periods:

$$
Z_{N j}^{[n, t+1]}+n z_{i_{t} j}^{t} \leq 1 \quad t \leq n-1
$$

Linking Many Periods

- Connect any number of consecutive periods:

$$
\begin{array}{rlrl}
Z_{N j}^{[n, t+1]}+n z_{i_{t} j}^{t} & \leq 1 & t & \leq n-1 \\
Z_{N J}^{[n, t+2]}+n Z_{i_{t+1} J}^{t+1}+n^{2} Z_{i_{t} J}^{t} & \leq 1+n & |J|=2, t & \leq n-2
\end{array}
$$

Linking Many Periods

- Connect any number of consecutive periods:

$$
\begin{array}{cr}
Z_{N j}^{[n, t+1]}+n z_{i_{t} j}^{t} \leq 1 & t \leq n-1 \\
Z_{N J}^{[n, t+2]}+n Z_{i_{t+1} J}^{t+1}+n^{2} Z_{i_{t} J}^{t} \leq 1+n & |J|=2, t \leq n-2 \\
\vdots & \vdots \\
Z_{N J}^{n}+\sum_{t=1}^{n-1} n^{n-t} Z_{i_{t} J}^{t} \leq \sum_{t=1}^{n-1} n^{t-1} & |J|=n-1
\end{array}
$$

Linking Many Periods

- Connect any number of consecutive periods:

$$
\begin{array}{cr}
Z_{N j}^{[n, t+1]}+n z_{i_{t} j}^{t} \leq 1 & t \leq n-1 \\
Z_{N J}^{[n, t+2]}+n Z_{i_{t+1} J}^{t+1}+n^{2} Z_{i_{t} J}^{t} \leq 1+n & |J|=2, t \leq n-2 \\
\vdots & \vdots \\
Z_{N J}^{n}+\sum_{t=1}^{n-1} n^{n-t} Z_{i_{t} J}^{t} \leq \sum_{t=1}^{n-1} n^{t-1} & |J|=n-1
\end{array}
$$

Theorem
All such inequalities are valid and facet-defining.

- Can be generalized further... but difficult to separate and numerically unstable.

Heuristic Policies

Based on dynamic ad values

- Recall two-period inequality:

$$
Z_{N j}^{[n, t+1]}+n z_{i j}^{t} \leq 1 \quad \leftrightarrow \quad r_{i j}^{t}
$$

Use corresponding dual multiplier, "value" of having j available in t when i appears.

Heuristic Policies

Based on dynamic ad values

- Recall two-period inequality:

$$
Z_{N j}^{[n, t+1]}+n z_{i j}^{t} \leq 1 \quad \leftrightarrow \quad r_{i j}^{t}
$$

Use corresponding dual multiplier, "value" of having j available in t when i appears.

- Policy maximizes net value: If i appears in stage t, choose

$$
\underset{\text { available } j}{\arg \max }\left\{w_{i j}-1 / n \sum_{k \in N} \sum_{\tau<t} r_{k j}^{\tau}\right\}
$$

or none if negative.

- Similar to dynamic bid price policies in revenue management (e.g. Adelman, 07).

Computational Experiments

Dynamic relaxation and policy

Bound/Policy	Small	Large Dense	Large Sparse
EG + RS	1.08	1.00	1.08
Dynamic LP	1.04	0.97	1.03
Sim. Bound	1.03	1	1
DP	1	-	-
Dynamic Policy	1.00	0.96	0.96
Best static policy	0.99	0.95	0.95

Small $\rightarrow n=10$, large $\rightarrow n=100,20$ of each.

- Dynamic relaxation and policy improve across the board.
- Bound improves in every instance tested.

Conclusions

- Polyhedral relaxations offer way to derive bounds for dynamic matching and resource allocation.
- Also offer insight into high-quality policy design.
- Even for bipartite matching, structure appears very complex vis-à-vis deterministic case.
- Must combine combinatorial and probabilistic techniques.
- Exploring use in other dynamic resource allocation contexts.

$$
\begin{gathered}
\text { atoriello@isye.gatech.edu } \\
\text { www.isye.gatech.edu/~atoriello3 }
\end{gathered}
$$

