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Motivation
Marketplaces and platforms in the “new” economy...

customer types resources
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I Online search: Keyword advertisement
(e.g. AdWords).

I Web browsing: Display advertisement
(banners and pop-ups).

I Ride-hailing: Driver assignment.

I Many other revenue management
applications.

I Interested here in
centrally managed markets.
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Problem Definition
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I Bipartite graph with

I V : right side (ads), fixed and known;

I N : left side (impressions), “types” that
may appear.

I We sequentially observe T i.i.d. uniform
samples drawn from N .

I An appearing node must be matched or
discarded.

I For this talk, assume
|V | = |N | = T = n.

I Objective is maximizing expected number
of matches, or matching weight.
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Online Bipartite Matching
Brief review of related work

I Karp/Vazirani/Vazirani (90)

I Adversarial model (no distribution). Randomized ranking
policy is optimal, with 1− 1/e competitive ratio.

I Applications in online search and revenue management renew
CS interest. First studied model is i.i.d.

I Feldman/Mehta/Mirrokni/Muthukrishnan (09):
First algorithm guarantee that “beats” 1− 1/e.

I Improvements and extensions: Bahmani/Kapralov (10),
Haeupler/Mirrokni/Zadimoghaddam (11), Manshadi/Oveis
Gharan/Saberi (12)...

I Jaillet/Lu (13): Currently best-known guarantee.

I Our goal: Upper bounds via polyhedral relaxations, employ in
policy design.
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An Initial Relaxation
Feldman/Mehta/Mirrokni/Muthukrishnan (09)

I zij : Probability policy ever matches impression i to ad j.

max
z≥0

∑
i,j

wijzij (w encodes compatibility)

s.t.
∑
i

zij ≤ 1 (can match j once)∑
j

zij ≤ T/n = 1 (expect to see i once)

I Bipartite matching polytope for “expected graph”.
I Simple policy: Solve for max-weight matching, match only

these edges.

I Each edge matched w.p. 1− (1− 1/n)n ≈ 1− 1/e.
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Improving the Relaxation

I Idea: Add additional valid inequalities satisfied by feasible
policies.

I Similar to achievable region approach in applied probability,
e.g. Bertsimas/Niño Mora (96), Coffman/Mitrani (80).

i j

I First example (Haeupler/Mirrokni/Zadimoghaddam, 11):
Upper bounds

zij ≤ 1− (1− 1/n)n

are valid.

I Impression i never appears w.p. (1− 1/n)n.



Facial Dimension

Proposition

The upper bound inequalities

zij ≤ 1− (1− 1/n)n

are facet-defining for the polytope of achievable probabilities∗.

Proof sketch.
Consider the following n2 “affinely independent” policies:

(i, j) Match edge when possible, nothing else.

(i′, j′) Match either edge when possible, nothing else.

(i, j′) Match i to j on first appearance, then to j′ on
second; nothing else.

(i′, j) Match (i, j) when possible; in last stage match i′

instead if it appears.

∗ Yes, it’s a full-dimensional polytope.



Right Star Inequalities

jI ...

I Any set of neighbors I of ad j will never
appear w.p. (1− |I|/n)n, thus∑

i∈I
zij ≤ 1− (1− |I|/n)n

is valid.

I Separate greedily in poly-time.

Proposition

If I 6= N , the inequality has facial dimension n2 − |I|.

Proposition

If I = N , the inequality corresponds to j’s degree constraint, and
is facet-defining.
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Left Star Inequalities

i J...

I For any set of neighbors J of impression
i, ∑

j∈J
zij ≤ E[min{|J |, B(n, 1/n)}]

is valid, where B is a binomial r.v.

I Same greedy separation.

Theorem
The inequality is facet-defining for all J .

Proof sketch.
Construct |J | policies using an ordering of J . Corresponding
sub-matrix is a circulant, thus non-singular. Apply previous
argument to remaining edges.
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Complete Subgraph Inequalities

I J...
...

I For any I ⊆ N , J ⊆ V ,∑
ij∈I×J

zij ≤ E[min{|J |, B(n, |I|/n)}]

is valid.

I Greedy separation for fixed I or J , full
separation with MIP.

I Inequalities are not facet-defining except in cases previously
mentioned.



What More Do We Need?
Are 0-1 inequalities enough?

1

2

3

a

b

I Calculated this instance’s convex hull
with PORTA.

I The polytope has 13 non-trivial facets,
only four of which are covered by our
previous inequalities.

I No other facet has 0-1 structure.



Computational Experiments
Static relaxations

I Geometric mean of gap w.r.t. benchmark for different
instances.

Bound/Policy 20-Cycle 200-Cycle Small Large Dense Large Sparse
EG 1.27 1.27 1.32 1.00 1.22

EG + UB 1.27 1.27 1.09 1.00 1.12
EG + RS 1.13 1.10 1.05 1.00 1.08
EG + LS 1.16 1.14 1.06 1.00 1.10

EG + RS + LS 1.13 1.10 1.05 1.00 1.07
Sim. Bound 1.05 1 1.00 1 1

DP 1 - 1 - -

Matching 0.83 0.80 0.86 0.64 0.78
2-Matching∗ 0.99 0.95 0.96 0.75 0.88

Best static policy 0.99 0.95 1.00 0.95 0.96

Small → n = 10, large → n = 100.

∗ From Feldman/Mehta/Mirrokni/Muthukrishnan (09)



Computational Experiments
Static relaxation takeaways

I Significant gap left to close, especially in sparser instances.

I Right stars close more of the gap than left stars, contrasting
facial dimension results.

I We’ll use EG + RS as “static” bound benchmark.



Dynamic Relaxations

I ztij : Probability we match i to ad j in stage t = n, . . . , 1.
(Count stages down.)

I Objective becomes

max
∑
i,j,t

wijz
t
ij

I Project to static probabilities via∑
t

ztij = zij

I Use shorthand

Z
[t2,t1]
IJ :=

∑
i∈I

∑
j∈J

t2∑
τ=t1

zτij
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Dynamic Relaxations
Simplest valid inequality

Proposition

ZtiV ≤ 1/n, i ∈ N, t ∈ [n]

is valid and facet-defining.

Proof sketch.
Probability i appears in t is 1/n.
For any (i, t) and any (k, `, τ), can choose a policy with zτk` = 1/n
and equality.

Corollary ∑
j∈V

zij = Z
[n,1]
iV ≤ n/n = 1,

i.e. implies static inequality.
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Dynamic Relaxations
A more involved example

I Matching i to j in t implies two independent events:

P(i→ j in t) ≤ P(i appears in t)×P(j not matched in [t+1, n]).

I Equivalent to

ztij ≤ 1/n
(
1− Z [n,t+1]

Nj

)
.



Dynamic Relaxations
Linking consecutive periods

Theorem

Z
[n,t+1]
Nj + nztitj ≤ 1, i ∈ N, j ∈ V, t ≤ n− 1

is valid and facet-defining.

Theorem
These two inequality classes imply EG + RS static relaxation.

I New LP has Θ(n3) variables and constraints, versus
Θ(n2) and Θ(n2n).
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Linking Many Periods

I Connect any number of consecutive periods:

Z
[n,t+1]
Nj + nztitj ≤ 1 t ≤ n− 1

Z
[n,t+2]
NJ + nZt+1

it+1J
+ n2ZtitJ ≤ 1 + n |J | = 2, t ≤ n− 2

...
...

ZnNJ +
n−1∑
t=1

nn−tZtitJ ≤
n−1∑
t=1

nt−1 |J | = n− 1

Theorem
All such inequalities are valid and facet-defining.

I Can be generalized further... but difficult to separate and
numerically unstable.
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Heuristic Policies
Based on dynamic ad values

I Recall two-period inequality:

Z
[n,t+1]
Nj + nztij ≤ 1 ↔ rtij

Use corresponding dual multiplier, “value” of having j
available in t when i appears.

I Policy maximizes net value: If i appears in stage t, choose

arg max
available j

{
wij − 1/n

∑
k∈N

∑
τ<t

rτkj

}
or none if negative.

I Similar to dynamic bid price policies in revenue management
(e.g. Adelman, 07).
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Computational Experiments
Dynamic relaxation and policy

Bound/Policy Small Large Dense Large Sparse

EG + RS 1.08 1.00 1.08

Dynamic LP 1.04 0.97 1.03

Sim. Bound 1.03 1 1

DP 1 - -

Dynamic Policy 1.00 0.96 0.96

Best static policy 0.99 0.95 0.95

Small → n = 10, large → n = 100, 20 of each.

I Dynamic relaxation and policy improve across the board.

I Bound improves in every instance tested.



Conclusions

I Polyhedral relaxations offer way to derive bounds for dynamic
matching and resource allocation.

I Also offer insight into high-quality policy design.

I Even for bipartite matching, structure appears very complex
vis-à-vis deterministic case.

I Must combine combinatorial and probabilistic techniques.

I Exploring use in other dynamic resource allocation contexts.

atoriello@isye.gatech.edu

www.isye.gatech.edu/∼atoriello3


	Preliminaries
	Static Relaxations
	Dynamic Relaxations
	Conclusions and Ongoing Work

