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Abstract

We consider a version of the knapsack problem in which an item size is random and revealed
only when the decision maker attempts to insert it. After every successful insertion the decision
maker can dynamically choose the next item based on the remaining capacity and available items,
while an unsuccessful insertion terminates the process. We build on a semi-infinite relaxation
introduced in previous work, known as the Multiple Choice Knapsack (MCK) bound. Our first
contribution is an asymptotic analysis of MCK showing that it is asymptotically tight under
appropriate assumptions. In our second contribution, we examine a new, improved relaxation
based on a quadratic value function approximation, which introduces the notion of diminishing
returns by encoding interactions between remaining items. We compare this bound to others
from the literature, including the best known pseudo-polynomial bound. The quadratic bound
is theoretically more efficient than the pseudo-polynomial bound, yet empirically comparable to
it in both value and running time.

1 Introduction

The deterministic knapsack problem is a fundamental discrete optimization model that has been
studied extensively in areas such as computer science, operations research and industrial engineer-
ing. Recently, knapsack models under uncertainty have been the subject of much research, both
to model resource allocation problems with uncertain parameters, and as a subproblem in more
general discrete optimization problems under uncertainty, such as stochastic integer programming.
In particular, dynamic knapsack problems, where decisions occur sequentially and problem param-
eters may be revealed dynamically, have been a topic of ongoing interest; such models have seen
many applications, including in scheduling [9], equipment replacement [10], and machine learning
[14, 15, 24].

The dynamic knapsack model variant we analyze here has stochastic item sizes that are only
revealed to the decision maker after they attempt to insert an item. Throughout the process, the
remaining items and their respective size distributions are available, and the process only continues
if an attempted item’s realized size fits within the remaining capacity. This differs from more
static models, in which the decision maker decides on a particular subset of items ahead of time,
essentially attempting to insert the set all at once, and the question is whether that set fits in the
knapsack with a desired probability, e.g. [12].



Having the flexibility to choose subsequent items in light of the revealed sizes of previous items
intuitively can lead to a higher overall expected value than a more static approach. However, this
added freedom raises the complexity of the problem both in practice and theory. A feasible solution
to this problem now takes the form of a policy that dictates what the decision maker should attempt
to insert under any possible state, as opposed to deciding on a subset of items to insert a priori.
Such added difficulty motivates work to develop reasonably tight and tractable relaxations, as well
as high-quality, efficient policies. In particular, [4] introduced a Multiple-Choice Knapsack (MCK)
semi-infinite relaxation that stems from an affine value function approximation; our goal in this
paper is to provide theoretical analysis to understand this relaxation’s quality and to improve it
when a gap remains. Our contributions can be summarized as:

i) We prove the MCK bound is asymptotically tight by comparing it to a natural greedy policy
under two distinct but related regimes. Therefore, the computationally efficient MCK model
provides increasingly tighter bounds for instances with larger numbers of items. In addition,
this result provides an alternative proof of the asymptotic optimality of the greedy policy,
recently shown in [2].

ii) We introduce a quadratic relaxation that builds on MCK by encoding interactions between
pairs of remaining items, and show that it maintains polynomial solvability. For instances with
a medium number of items, where MCK has a gap but dynamic programming is intractable,
the quadratic bound is comparable to the best known pseudo-polynomial bound [24] in both
value and running time, even making considerable improvement in some cases.

The remainder of the paper is organized as follows. We conclude this section with a brief
literature review. Section 2 states the problem formulation and preliminaries, including the relevant
previous results. Section 3 provides the asymptotic analysis of the MCK bound. Section 4 then
studies the improved quadratic bound, examining structural results and outlining a computational
study. Section 5 concludes, and an appendix contains proofs and computational experiment data
not included in the main article.

1.1 Literature Review

The knapsack problem and its generalizations have been studied for over half a century, having
applications in areas as varied as budgeting, finance, and scheduling; see [19, 25]. The knapsack
problem under various forms of uncertainty has specifically received attention as well; [19, Chapter
14] surveys some of these results. In general, optimization under uncertainty can be modeled via
either a static approach that chooses a solution a priori, or a dynamic (sometimes called adaptive
[7, 8, 9]) approach that chooses a solution sequentially based on realized parameters. Examples
of a priori knapsack models with uncertain item values include [5, 16, 27, 31, 32], a priori models
with uncertain item sizes include [11, 12, 20, 21], and an a priori model with both uncertain values
and sizes can be found in [26]. Dynamic models for knapsacks with uncertain item sizes include
[3, 7,9, 10, 14, 15], while [18] study a dynamic model with uncertain item values. Another variant,
the stochastic and dynamic knapsack, examines the case where items are not initially given but
rather arrive dynamically according to a stochastic process; see [22, 23, 28] .

Regarding our dynamic variant of the stochastic knapsack problem in particular, [10] first stud-
ied the version with exponentially distributed item sizes, and showed that the greedy policy that
inserts items based on their value-to-mean-size ratio is optimal in this case. More recently, [7, 9]
studied the problem in its full generality, providing two linear programming bounds with polynomi-
ally many variables, showing that both were within a constant multiplicative gap, and investigating



greedy approximate policies. Afterwards, [14, 15, 24] researched bounds under the assumption of
integer size support, evaluating the performance of LP relaxations of pseudo-polynomial size and
developing randomized policies based on their optimal solutions. Their framework applied to vari-
ants beyond the problem studied here, including correlated random item values, preemption, and
the multi-armed bandits problem with budgeted learning.

Using value function approximations to obtain relaxations of dynamic programs dates back to
[1, 6, 30, 33]. The results in [4] provide the technique’s first application for a stochastic knapsack
model, evaluating various bounds. The investigation of asymptotic properties of relaxations via a
comparison to a natural greedy policy was initially empirically suggested by computational results
in [4]; the asymptotic optimality of the greedy policy was then shown by [2] using information
relazation duality techniques.

2 Problem Formulation and Preliminaries

As with the deterministic knapsack problem, suppose we have a knapsack with capacity b > 0 and
item set N := {1,2,...,n}. Each item 7 has a deterministic value ¢; > 0. Item sizes are now
independent random variables A; > 0, each drawn from an arbitrary but known distribution. An
item size is realized after the decision maker attempts to insert it. When attempting to insert
an item 4, the decision maker is faced with two outcomes: If i fits, value ¢; is collected and the
remaining capacity is updated; or, i is too large, and the process ends, i.e. we only allow one failed
insertion. A policy stipulates what item to insert, and may depend on the remaining items and
remaining capacity. The objective is to maximize the expected value of successfully inserted items.

This problem can be modeled as a dynamic program (DP). Each possible state the decision
maker faces can be defined by the non-empty set of remaining items M C N and remaining
capacity s € [0,b]. For a given state (M, s), the possible actions allowed consist of attempting to
insert an item ¢ € M. If we define v},(s) as the optimal expected value at state (M, s), the Bellman
recursion is

var(s) = max P(A; < s)(e; + E[vyp(s — Ai)]A; < s]), (1)
with the base case vj(s) = 0. Intuitively speaking, should the attempted item i have size greater
than s, we collect nothing, but should it fit we collect both the item’s value ¢; and the optimal
expected value of the subsequent state, that is, (M \ i,s — A;). The linear programming (LP)
formulation of this problem is

mvin un () (2a)
s.t. vpui(s) = P(A; < 8)(e + Eluar(s — Ai)|A4; < s)), (2b)
i€ N, MCN\i, sel0b (2c)

va 1 [0,0] Ry, MCN. (2d)

This is a doubly infinite LP, as there are a continuum of constraints over all s € [0, ], and variables
vps are real-valued functions.

Notation To simplify notation, we denote an item size’s cumulative distribution function by
Fi(s) := P(A; < s) for i € N, and its complement by F;(s) := P(A; > s). Additionally, the mean
truncated size of item i € N at capacity s € [0,b] is the quantity E;(s) := E[min{s, 4;}] [7, 9, 34];
this quantity frequently comes up in the rest of the paper. Intuitively, if the remaining capacity is
s, we should not care about the distribution of item i’s size above s, as any such realization will
result in a failed insertion.



2.1 Multiple-Choice Knapsack Bound

The doubly infinite LP (2) cannot in general be efficiently solved. However, any feasible solution
to the LP provides a valid upper bound on the optimal solution. Earlier work in [4] examines the
bound resulting from approximating the optimal value function as

v (s) = gs+ro+ Zri, (3)
i€M
where rg represents the inherent value of keeping the knapsack available, r; is the value of having
item ¢ available, and ¢ is the marginal value of the remaining capacity.

Proposition 2.1 ([4]). The best possible bound given by approximation (3) is the solution of the
semi-infinite LP

min gb+ rg + Z T (4a)

o ieN
s.t. qu(S)—FTQ?i(S)-FTi ZCZ'FZ'(S), VieN,se€ [O,b] (4b)
r,q > 0. (4c)

The finite-support strong dual of (4) provides an approximation with a more intuitive problem

max Z Z cizisFi(s) (5a)

structure:

1€N s€(0,b]
st Y > wisEi(s) <b (5b)
1€EN s€[0,b]
>N aisFi(s) <1 (5¢)
1€EN s€[0,b]
> wmil <1, VieN (5d)
s€[0,0]
x >0, « has finite support. (5e)

This is a two-dimensional, fractional multiple-choice knapsack problem [19], henceforth referred to
as the MCK bound. MCK is efficiently solvable for many common distributions, such as those
whose cumulative distribution function is piecewise convex [4]. This work also includes an exten-
sive computational study indicating that MCK becomes tighter as the number of items increases,
motivating the asymptotic analysis in Section 3. However, many instances still exhibit a noticeable
bound/policy gap; Section 4 thus examines a new bound that tightens this gap while maintaining
computational efficiency.

2.2 Pseudo-Polynomial Bound

When item sizes have integer support, [24] proposes a pseudo-polynomial (PP) bound,

b
mxax Z Z CiZL'@S Fi(S) (6&)

1€N s=0

b
s.t. ZZx¢7SI_:Z-(s—U) <1, c=0,...,b (6b)

iEN s=0



b
d wil <1, ieN (6c)
s=0
x>0, (6d)

which arises from the value function approximation

’UM(S) ~ Z i + ng. (7)
=0

ieM

When available, this bound is provably tighter than MCK [4] and serves as a benchmark to de-
termine the strength of polynomially solvable bounds. We use both PP and MCK to gauge the
strength of the new quadratic bound in Section 4.

3 Asymptotic Analysis

We first define necessary terms and assumptions used in the analysis. The greedy ordering [10]
sorts items with respect to their value-to-mean-size ratio, ¢;/E[A;], in non-increasing order. The
greedy policy attempts to insert items in this order until either all of the items have successfully
been inserted or an attempted insertion violates capacity.

Our analysis in this section slightly generalizes the original problem setup by assuming the
decision maker has access to an infinite sequence of items sorted according to the greedy ordering;
in other words, N = {1,2,...} = Nand ¢;/E[A4;] > ¢i+1/E[Ai+1]. We can thus study the asymptotic
behavior of policy and bound as functions of capacity only. This problem setup differs from results
in [2], where the item set N also grows as part of the analysis; our results are arguably stronger
in the sense that they do not depend on the order in which items become available to the decision
maker (as the entire sequence is always available). To further compare our techniques to [2], we
include a second analysis under their regime below in Section 3.1.

We must further clarify how we define v* for the infinite item case, as the original formulation
is defined recursively for finitely many items. Let vp, }(b) and MCK{,(b) denote the value function
and MCK bound, respectively, with respect to the first n items according to the greedy ordering.
Note that both of these quantities are monotonically nondecreasing sequences with respect to n,
and for fixed b, vf;l](b) < MCK{,) (b) holds for every n [4]. We thus define v} (b) := limy, 0 U[';ﬂ(b),
and similarly define MCK(b) := lim;,—,oc MCK{,,)(b). To show that both of these limits exist and
are finite, it suffices to find a finite upper bound for MCK{,(b) for all n; such a bound is provided
below.

Let Greedy(b) refer to the expected policy value as a function of the knapsack capacity b; note
this is already well defined for the infinite item case since the greedy ordering is assumed to be
fixed. We use the greedy policy to show that MCK (5) is asymptotically tight; in the process, this
also proves that the greedy policy is asymptotically optimal, yielding an alternate proof to [2]. To
proceed with the analysis, we make the following assumptions.

Assumption 3.1. Among all items i,
i) expectation is uniformly bounded from above and below, 0 < p < E(A4;) < i, and
i) variance is uniformly bounded from above, Var(4;) <V,

for some constants p, i, V.



Assumption 3.2. The sum of item values grows fast enough: Y ., ¢; = Q(k:%“). For example,
having a uniform non-zero lower bound for all ¢; suffices.

Assumption 3.3.
o= sup [E[A;]4; > s] —s] < . (8)
s€[0,00)
i=1,2,...
Intuitively, this last assumption governs the behavior of the size distributions’ tails; we discuss
some examples below.
We separate the analysis into four auxiliary results. The first result is a probability statement
used in later proofs.

Remark 3.4. Denote E[A;] by the shorthand E;. Then,

El’ — EZ(S)

N — E[A|A; > 5] — s,
Fils [A;]A; > s] — s

Proof. By definition,

Ei— Ei(s) _ Ei— (Fis)s + Fi(s)E[Ai|Ai < s]) _ Ei — E[Ai[4; < ] N

The fraction in the right hand side above simplifies to

Fi(s) a Fi(s)Fi(s) -
_ E[AifAi < s]Fi(s)(Fi(s) — 1) + E[Ai]Ai > s]Fi(s)Fi(s)
)Fi(s)

J 0

I_:Z‘(S
The second step establishes an upper bound for MCK.

Lemma 3.5. Let by := 3, E[A;]. Under Assumptions 3.1 and 3.3, for any n,

MCK[n](bk) < Z CZP(Az < bk) + ¢,

where ¢ is a constant independent of k and n.

Proof. Fix k and n. Without loss of generality, we may assume n > k, since we can establish the
upper bound MCKp,j(bx) < MCK{y(bg) for all n < k. For the sake of brevity we will abuse some
notation in the proof, denoting by as b (and E[A;] as E;). Recalling (4) is the dual to the MCK
bound (5), we proceed to find a dual feasible solution.

We start at the case ¢ > k. Let us set r; = 0, which corresponds to allotting no value to items
after item k in the greedy ordering. We must satisfy

qINEZ-(s) +1oFi(s) > ¢;Fi(s), Vs €]0,00).

Motivated by the possible case where F;(s) = 1, if we set ¢ = ¢x/Ex > ¢;/E;, variable ro must now
satisfy

roFi(s) > ¢iFi(s) — qEi(s) = ¢; — ¢iFi(s) — qu(s) + (E—Z)Ez — (E—Z) E;



_ [c,. (E';)E] e [E —Ei(s )} — eFils).

Should F;(s) = 0, the constraint reduces to 0 > 0. Thus, assuming F;(s) # 0, there are three terms
in the right hand side of the above inequality. Since ry must upper bound such constraints for all
i and s, we drop the first and last terms, both of which are non-positive. This yields constraints

Ei — El(s)

roza( o )zé—i(E[Ai\Ai>s]—s>, Vi>k, se€l0,b], (9)

where the equality holds by Remark 3.4.
Next, we examine the case ¢ < k. To find a valid choice of r;, we again are motivated by the

(possible) case where F;(s) = 1, which implies

Ck

qu(s) +roFi(s) + 7 > ciFi(s) = qEi+1i > ¢ = 1 > — E
k

—E;.

This is a non-negative value for r; since the greedy ordering yields

Ck
=

Ci Ck
EZ-:EZ»[———} > 0.
E; Epl —

These choices of ¢ and r; present a dual objective of the desired form:

qb+2n—b( )+ZE(CZ ) ZC ZE( ) (Ei)
_ch ZE(Ck>+ZE(Ck>=ZCi+Ek<Ek)

i<k i<k
SIS LIS
i<k i<k i<k

Furthermore, noting that F;(b) = P(A; > b;) = P(4; > dick Bi) S P(A; > kp) < Ei/kp < i/kp,
the sum >, c;F;(b) can be upper bounded with

clE c1 i = itk cfi?
2 ciFilh) () < SESFib) < A5 = S
i<k i<k Bk K K

which is constant with respect to k and i. Therefore, the second sum in the objective can be upper
bounded and absorbed into the ¢y term.

It thus suffices to show that a valid choice for dual variable ry exists such that it is constant
with respect to k (and by), for then we can also absorb r( into ¢y, completing the proof. Continuing
the case where i < k, the constraints in (4) require that ry satisfy

roFi(s) > ¢iFi(s) — ri — qEi(s).

Should F;(s) = 0, the choices of r; and g reduce the constraint to 0 > 0. If F;(s) # 0, the condition
is
s ciFi(s) —ri — qINEi(s) B ciFi(s) —ci + %Ez - %;(8)
' Fi(s) B Fi(s)
—ciFy(s) + g [E; — Ei(s)]

= — _Ci

FZ<S)

+ R IE[A] A > 5] - 8],
Ex



where the last equality follows from Remark 3.4. This holds if ry satisfies
ro > E—k[E[AAAi > s] —s], Vi€ [n],s €0,
k

which is exactly constraint (9) in the case that i > k. Recalling Assumption 3.3, setting ro = c1¢,/E1
satisfies (9) for all values of ¢ and s. Since rg is constant with respect to k& and n (and by), we can
set cg = c1(f1?/pu® + ¢jy/E1). This result holds for all n, completing the proof. 0

The above result proves that the limit MCK(by) exists and is finite. Let Sy denote the sum of
the first k sizes according to the greedy ordering, Sy, := >, A;. The expected value of the greedy
policy when restricted to the first k£ items under capacity by, is trivially >, ., ¢P(S; < by). This is
a lower bound for the actual greedy policy, which considers all of the items instead of the first k.
By Lemma 3.5, for each by we have a lower bound of

Greedy(by,) - > i<k CiP(Si < by)
MCK(by) — Zigk ciP(A; < b))+ co

The ratio in the left-hand side above is always at most 1 since the numerator is a feasible policy
and the denominator is an upper bound on the optimal policy. We next examine the asymptotic
nature of the lower bound.

Lemma 3.6. Under Assumptions 3.1 and 3.2,

. > i<k GiP(Si < bg)
lim = =

k—oo Zigk CZP(Al < bk) “+ co

Proof. 1t suffices to show that the numerator can be lower bounded by >, ¢ — O(Vk), as the
result will then follow from Assumption 3.2 and the trivial upper bound P(A4; < by) < 1. Recalling
by = > E; = E[Sk], we first upper bound the probability

i<k
P(Si > bi) = P(S; — E[Si] > E[Sk — Si]) < P(|S; — E[Si]| > E[Sk — Si])
Var(S;) < iV
(> E[Ai]>2 = (k= i)

i<j<k

= P((Si — E[S:))* > (E[Sk — Si))%) <

where the second inequality comes from Markov’s (or Chebyshev’s) inequality. Next, we define
upper bound ¢ := ¢1/i/E1 > ¢;. Let j be some number such that j < k, to be determined. Using
(10) yields

S aPSi<h) =D P8 <be)+ Y. aP(Si < by)

i<k i<j j<i<k
iV ¢V i . .
it
¢V x . , Vi o j+1 . . .
> 2 _ — i) = L2 —i_1) = _ _
> gk Ci e ¢ _x)de ¢k —7) ; Ci 2 [k‘ T +In(k—75—-1) 1nk:} é(k—7)
1S - 0 1S -

=3 ci_é‘g[k;ﬁﬂn(ﬁ)—mk} —e(Vk+1) =) ¢ —OWk).
i<k



The second to last equality occurs when we make the suitable choice k — j — 1 = vk, that is,
j=k—-Vk-—1. Letting (kK — j — 1) be of order Vk consequently minimizes the order of the
second and third terms (those that are not ) ., ¢;) to be of order Vk; one can easily check that
choosing a different power of k will lead to an overall higher order for either the second term or
third term. 0

Lemma 3.6 examines the limit in terms of the number of items in the knapsack, a discrete
sequence dependent on k, but we wish to show the asymptotic property over all positive values b.
Therefore, we formalize this result in terms of the increasing knapsack capacity b.

Theorem 3.7. Suppose we are given a greedily ordered infinite sequence of items satisfying As-
sumptions 3.1, 3.2, and 3.3. Then,

Greedy(b)

— =1 b . 11
MCK(b) —1asb— oo (11)

Proof. Given b, let b,_ and by refer to the nearest by, values below and above b, respectively. Then,
trivially Greedy(b) > Greedy(by_). Further, MCK(b) < MCK(by, ) since the objective of MCK is
nondecreasing with . Therefore we obtain

Greedy(b) S Greedy(by_) S Greedy(by_) S Greedy(by_)
MCK(b) - MCK(kar) - MCK(b}L) + Chy Fk+ (bk+) - MCK(bki) + co

The second inequality follows from decomposing the upper bound of MCK(by, ) into the upper
bound of MCK(by_) and the additional objective term involving item k., while the last inequality
follows because every ¢;F;(b) term can be upper bounded by a constant, as in the proof of Lemma
3.6. The final expression goes to 1 by Lemma 3.6. O

This result is consistent with the computational experiments in [4] that spurred our analysis,
which tested the MCK bound under the following distributions: bounded discrete distributions
with two to five breakpoints, uniform, and exponential. Under all such distributions, the data
suggested that MCK and Greedy were asymptotically equivalent; comparing with Assumption 3.3:

e Under the discrete and uniform distributions, the sizes exhibit uniformly bounded support.
Thus, the value ¢, defined in Assumption 3.3 exists and is finite (it is simply the upper bound
on item size support), and the theorem applies.

e Under the exponential distribution, suppose E[A4;] = 1/)\;. By the memoryless property, for
any ¢ and any s,
E[Ai|A; > s]—s=(1/Ai+s)—s=1/\ < 0.

Thus, if the item sizes have a uniformly bounded mean, ¢, exists and is finite, and the theorem
applies.

According to the analysis in the proof of Lemma 3.6, if the sum of the item values grows
as Q(g(k)), the numerator of the fraction is lower bounded by Q(g(k) — v/k); hence, the rate of
convergence is O(v'k/g(k)). For example, if g(k) = k, the rate of convergence is O(k~/?).

Corollary 3.8. The rate of convergence of (11) is O(vV'k/g(k)), where > i<k i = Qg(k)).

Assumption 3.3 is not always straightforward to check for a particular distribution, so we provide
an alternate set of sufficient conditions.



Proposition 3.9. Suppose the following hold:
i) Among those items with bounded support, there exists a uniform finite upper bound.
it) Among all items i without bounded support, there exists an a > 0 such that

(a) P(A; >t) > e for allt >0, and

(b) M;(a) := E[e*4] < M(«) < oo; that is, the moment generating function at o exists and
1s uniformly bounded among such 1.

iti) For all i, P(A; > 0) > z > 0. Note that for continuous distributions we can trivially take
z =1 since A; is nonnegative.

Then,
o= sup [E[4;|A; > s]—s] < oo

s€[0,00)

i=1,2,...
Proof. There are three cases for each item: an item has bounded support, unbounded support and
zero probability of being 0, or unbounded support and nonzero probability of being 0. For each
case we exhibit a uniform bound across all items of that case, then set ¢{ to the maximum of these
three absolute upper bounds.

The bounded support case is taken care of by the first condition. For the second case, consider

any item i. Since A; is a nonnegative random variable, by Markov’s inequality

E [eaAi]
eat '

P(A; > t) = P(e™i > ) <

Further, recall for nonnegative random variables the identity E[A;] = [ F(t)dt. Thus, for the
random variable (4; — s),

Eldi = sld; > o] = ho? (A >Ss>>)> n = P(Az-1> s)/t 0 eae(t+s)]dt
E[e>4] (1)< M() (1) ( ) _

P(A; > s)e@s \a/ = e—aseas \ o

The first inequality follows from the Markov bound presented earlier on P(A; > t + s), while the
second inequality follows from both parts of the second assumption. This provides an absolute
upper bound for E[A; — s|A; > s] for all values of s € (0,00), taking care of the second case of
items.

For the third case of items, it suffices to uniformly bound the case that s = 0. By the third
assumption (and earlier assumption of uniformly bounded mean) we have

E[A] /l
E[4; —0|4; > 0] = ————=
[Ai = 0[4:i > 0] = 5 =5y = 5 <o
Since the above analysis does not depend on the choice of ¢, this completes the proof. O

10



3.1 A Second Regime

The results in [2] provide an alternate asymptotic analysis of the greedy policy in which items
become available to the decision maker incrementally as capacity grows; when the number of items
k grows, each new item is added to the same subset of already available items. The authors examine
an upper bound based on information relaxation techniques, and provide a case analysis dependent
on the growth of capacity as a function of the number of available items, to show under what
conditions the greedy policy is asymptotically optimal. Motivated by this result, we show that the
MCK bound allows for similar conclusions.

Consider denoting Greedy(k,b(k)) as the expected value gained from the greedy policy given
k items and b(k) capacity; we now make explicit the fact that b is a function of k. Similarly, let
MCK(k,b(k)) be the optimal value of MCK given k items and b(k) capacity. Unlike the previous
framework, we no longer make any assumption about the ordering of items, implying in particular
that items are possibly re-sorted for each k to calculate Greedy(k,b(k)). We must therefore also
make an additional assumption.

Assumption 3.10. The value-to-mean-size ratios are uniformly bounded from above, ¢;/E; < 7,
for some constant 7.

This assumption is satisfied if the items are sorted in the greedy order, as discussed in the proofs
of Lemma 3.6 and Theorem 3.7.

Theorem 3.11. Let f(k) be a non-negative, monotonically increasing function satisfying f(k) — oo
as k — oo. If Assumptions 3.1 and 3.10 hold,

lim Greedy (k, b(k))

B0 NCK (k,b(k)

under any of the following conditions:
(a) Capacity scales as b(k) =, Ei = O(k) (linearly), and ;o ci = Q(k:%“).

b) Capacity scales as b(k) = - E; = Q(k) (f(k) is superlinear), and > ... c; =
i<f(k) i<k
Q(k%“).

(¢) Capacity scales as b(k) =, ) Ei = o(k) (f(k) is sublinear),

Y = Qmax{f(k)/f(VE), F(VR)}'T),

i<f(k)
In f(k) = o(max{f(k)/f(VE), f(Vk)}), and the following weaker version of Assumption
3.8 holds:
sup [E[AAAZ- > 5] — 8] = o(f(k)). (12)
B

In the above summations, indices i are ordered according to the greedy ordering for any given k.

Due to length and similarity to the proof of Theorem 3.7, the proof of this theorem can be
found in Appendix A. For comparison, in [2] the authors state that their assumptions are difficult to
verify, and provide sufficient conditions that are very similar to our assumptions here. For example,
they assume uniformly bounded means and variances, as in Assumption 3.1. Both results assume
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similar uniform upper bounds on the value-to-mean-size ratios. Our only additional assumptions
lower bound the item mean sizes and the growth rate of the sum of item values.

This alternative perspective to the asymptotic result also allows us to give conditions for which
MCK is asymptotically optimal regardless of the growth rate of capacity b(k) relative to the number
of items k. As under the first regime with Assumption 3.2, the value conditions in the above theorem
are satisfied if there exists a uniform non-zero lower bound for all ¢;. Furthermore, the supremum
condition (8) is weakened for (12) in the sublinear case, and is notably not necessary for the linear
and superlinear cases. Finally, although the sublinear case in part (c¢) of the theorem includes an
additional condition, it is easily verified for standard functions, such as log k or k% for 0 < o < 1.

3.2 Case Study: Power Law Distributions

The conditions in Assumption 3.1 and Proposition 3.9 require uniformly bounded moments; first
and second moments in the former, all moments in the latter. Motivated by this technical assump-
tion, we investigate the asymptotic performance of MCK for distributions that do not satisfy these
conditions. Suppose item sizes A; are defined by the power law distributions

a? 8a?

s
Fl(s) =1 - —* F2(s) =1 — ——¢ F3(s) =1 — — i >0
7,(8) 3+CL7;7 1(8) (S‘i‘az’)Q, 7,(8) (S+2ai>37 s 22U,

where the a; are constants. One can easily check that these are valid distribution functions, and that
each family of distributions have increasingly more bounded moments: F} has no bounded moments,
F? has only bounded mean, and F? has only bounded mean and variance. Furthermore, the F?
and F? distributions are designed to have have mean a;. We perform computational experiments
under these distributions for the MCK bound on instances with increasing numbers of items.
These distribution functions are concave, and solving the MCK bound is therefore somewhat more
involved; we provide details in Appendix B.

We use the advanced knapsack instance generator from www.diku.dk/~pisinger/codes.html
to generate deterministic knapsack instances and use the resulting deterministic sizes a; as the
basis for the distributions. The 100-item and 200-item deterministic instances are the same as
those generated and used for the experiments in [4], while the 1000-item and larger instances were
created specifically for this test. Of the newly generated instances, there were ten correlated and
uncorrelated instances each for the 1000- and 2000-item instances, while only five each for the 5000-
and 10000-item instances. (The generator’s authors observe that deterministic instances tend to
be more difficult when sizes and values are correlated.) Capacity is scaled to maintain a fill rate
between 2 and 4; the 200-item instances have capacity 1000, 1000-item instances have five times
the capacity, 5000, and so on for the larger instances.

To gauge the strength of MCK under these circumstances, we examine a slightly modified
greedy policy, which attempts to insert items in non-increasing order of their profitability ratio at
full capacity, ¢;F;(b)/E;(b), the ratio of expected value to mean truncated size. This modification
of the greedy policy is motivated by various theoretical and computational results, e.g. [2, 4, 9],
and sorting items by this ratio — as opposed to the slightly different ratio ¢;/E; used in Theorem
3.7 — is more suitable for computational purposes. Furthermore, the two ratios are effectively
equivalent as b tends to infinity, which these ever-increasing item instances simulate. In all of
the computational experiments throughout this section, we used CPLEX 12.6.1 for all LP solves,
running on a MacBook Pro with OS X 10.11.4 and a 2.5 GHz Intel Core i7 processor.

Table 1 summarizes the results based on the number of items and whether the generated deter-
ministic item values and sizes are correlated. The percentages refer to the geometric mean across
all bound/policy gap percentages of that data type (the closer to 100%, the smaller the gap). For
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full raw data on all instances, refer to Tables 4 and 5 in Appendix C. From the summary table,

Table 1: Summary Results - Power Law MCK

Case 100 items 200 1000 2000 5000 10000
Correlated: F! 110.78% 112.62% 112.51% 112.71% 110.72% 111.10%
Correlated: F? 104.97% 104.30% 103.11% 101.99% 101.74% 101.66%
Correlated: F3 103.07% 102.19% 101.17% 100.64% 100.48% 100.54%

Uncorrelated: FI 109.72% 110.81% 111.20% 110.74% 110.01% 110.41%
Uncorrelated: F2 104.13% 103.29% 102.22% 101.36% 101.41% 101.42%
Uncorrelated: F3 102.21% 101.66% 100.87% 100.47% 100.35% 100.49%

the F! instances clearly do not converge to tightness, with the gap even increasing from 100 to 200
items. The F? and F? instances seem to exhibit the asymptotic property, although at a significantly
slower rate than the previously tested distributions in [4], which did satisfy the moment generation
function assumption. Under said previous computational study and distributions, the 200-item
instances had a gap of no more than a fraction of a percent; here, the gap for F? remains above
one percent even at 10000-item instances, while the gap for F? does not reach below one percent
until 1000 items. Although F3 exhibits clear convergence, F? is debatable in that the distribution
may converge to a non-zero gap.

4 Quadratic Bound

Recalling the original problem formulation (2) for the stochastic knapsack problem, any feasible
v provides an upper bound vy (b) on the optimal expected value. One possibility is the MCK
relaxation [4], which approximates the value function with the affine function (3). The alternate
approximation (7) of the value function uses an arbitrary non-decreasing function of remaining
capacity s; this yields the PP bound from [24]. In this section, we examine the efficacy of a
value function approximation that extends (3) and compare its performance to MCK and PP. We
introduce quadratic variables that model diminishing returns stemming from having pairs of items
in the remaining set M:

v (s) %qs+r0+2ri— Z The- (13)

ieM {k,0YCM

Assuming r > 0, this approximation is submodular with respect to M for any fixed capacity
s, and our motivation for the approximation is at least twofold. First, we intuitively expect the
marginal value of an item’s availability to decrease as more items are already available at the same
capacity, simply because there is a smaller chance all the items can fit. Submodularity exactly
captures this notion of diminishing returns. Second, submodular minimization is known to be
polynomially solvable (see e.g. [13, 29]), suggesting the resulting approximation should maintain
theoretical efficiency, which PP does not; we further explore and verify this below. Furthermore,
the nature of the approximation’s approach is different from PP, adding an extra layer of interest
to comparing the two bounds: Whereas PP differs from MCK by more precisely valuing remaining
capacity at each (M, s) state, the quadratic approach focuses more on the combinatorial properties
of the current state, i.e. the interactions between pairs of remaining items. Given our asymptotic
results from Section 3, and considering that both MCK and PP leave a significant gap in instances
of small to medium size [4], our goal with this new approximation is to tighten the gap while
maintaining polynomial solvability.
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4.1 Structural Properties

We apply the value function approximation (13) to the left hand side of the constraints in (2) to
produce

vpui(s) — P(A; < s)Elups(s — A;)|A4; < 8]

=qs—+ro+ Z i — Z T'kl—Fi<8)E[q(S—AZ‘)+7’Q+ZT’J’— Z Tkl

jEMUI {k,I}CMUi jeEM {k,I}CM

AZSS:|

= gsFi(s) + qFa()E[Ai| As < s+ — > i+ roFi(s) + Fi(s) Dy —Fils) > 1w

keM jeEM {kI}CM
B b= S il [rw S Y m}.
keM jeM {k}yCM

Thus, the resulting semi-infinite LP is

min ¢s + ro + Z T — Z Tk (14a)

q,r

iEN {kIYCN
togfi(s) £ Y Pl |0+ Yo r— 3D nl
keM JEM  {kl}CM (14b)
ZCZ‘FZ‘(S), \V/iEN,MgN\i,SG[O,b]
q,7>0 (14c)

To solve (14) above, henceforth referred to as the Quadratic (Quad) bound, we must efficiently
manage the uncountably many constraints. We next provide a characterization of the CDF that
allows us to solve (14) efficiently in many cases of interest.

Proposition 4.1. If F; is piecewise convex in [0,b], to solve (14) it suffices to enforce constraints
only at s values corresponding to the CDF’s breakpoints between convex intervals.

Proof. Fix (i, M); the separation problem is equivalent to

;gﬁ}g}{(?ﬂochrl—er— > m> —qE()}

jeM {k}yCM

Suppose the coefficient of F;(s) in the separation problem above is nonnegative. Then by the
concavity of INEi, if F; is convex, the objective is maximized in at least one of the endpoints s € {0, b}.
Therefore, satisfying the constraints at the endpoints implies the constraints over all of [0,b] are
satisfied. By extension, if F; is piecewise convex, only constraints at the endpoints of each convex
interval are necessary.

It thus suffices to establish that, in any feasible solution, the coefficient of F;(s) in the separation
problem is nonnegative. That is, we wish to show for fixed ¢ and M,

ro+ ¢ + Z?’j— Z T = vp(0) + ¢ > 0.
jeEM (k}CM

This follows from the feasibility of the solution for (14); this LP is a restriction of the original LP (2),
therefore v is feasible for (2), and a standard DP induction argument shows vy (0) > v3,(0) > 0
for any M C N. We reproduce the argument here in brief: In the base case M = @, we have
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vz(0) =19 > 0 = v}(0) by definition. For larger M, applying the constraints in (2) and induction
yields
vm(0) = max Fi(0)(¢; + vary(0)) = maxFi(0)(ei +vjp;(0)) = v}y (0). D

Several commonly used distributions have piecewise convex CDF’s, including discrete and uni-
form distributions. In particular, this result implies that for discrete distributions with integer
support (which the PP bound assumes) we need only examine constraints corresponding to integer
s values. In specific cases when the CDF is not piecewise convex, it is also possible to argue that
only the constraints at certain fixed s values are necessary. For example, by analogous arguments to
[4], we can show that the Quad bound can be solved for the exponential, geometric, and conditional
normal distributions by only including constraints for s € {0,b}.

Despite this result, the separation problem still has exponentially many constraints for a fixed
(i, s) pair since it depends on all subsets M C N. That is, for a fixed (i, s) we wish to find

min 4{— Z ik + E(S)(Z rj— Z ’I"kg> },
MENNL fenr jeM {k,(yCM

which is a submodular function with respect to M, implying the separation problem can be solved
in polynomial time. To solve the problem, we rewrite it as the integer program

min > uk(reFi(s) = i) = D0 reezneFi(s) (15a)

KEN\i (k,(}CN\i
st zue <y, 2o <y, V{k L} SN\ (15b)
ye {0,113V, z>o0. (15¢)

Proposition 4.2. The feasible region of the linear relaxation of (15) is integral.

Proof. The separation problem can be viewed as an integer program over monotone inequalities
[17]. As such, the constraint matrix is totally unimodular. This follows from the fact that the rows
only have at most two non-zero entries, all of which are in {—1, 1}, and each sum to 0. (We use the
TU matrix characterization where any subset of columns can be partitioned into two sets whose
difference of sums is in {—1,0,1}.) O

With respect to computational experiments, recall that we only consider distributions with
integer support, since we wish to compare this bound to PP. So we must only consider constraints
where s has positive support, and solve the separation problem with respect to each (i, s) pair by
solving a simple LP.

4.2 Computational Experiments

We next present the setup and results of a series of experiments intended to compare Quadratic
bound (14) with the MCK relaxation from [4] and PP bound from [24]. As an additional comparison,
we also include the recently proposed Penalized Perfect Information Relaxation (PPIR) bound from
[2]. PPIR simulates item size realizations, and for each realization solves a modified version of the
deterministic knapsack problem with a penalty to punish the decision maker’s early access to
realized sizes (a violation of non-anticipativity). The expected value of this deterministic knapsack
is then the bound, and it is estimated with the sample mean of the simulated realizations.

In order to benchmark the bounds, we consider the following policies. First, we use the modified
greedy policy as defined in Section 3.2. Another natural policy is the adaptive greedy policy. This
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policy does not fix an ordering of the items, but rather at every encountered state (M, s) computes
the profitability ratios at current capacity ¢;F;(s)/E;(s) for remaining items i € M and chooses a
maximizing item; this is equivalent to resetting the greedy order by assuming (M, s) is the initial
state. Lastly, the value function approximation (7) can be used to construct a policy by substituting
it into the DP recursion (1). We refer to this policy as the PP dual policy to match the bound
name. This policy uses an optimal solution (7*,w*) to the dual of (6) to choose an item; at state
(M, s), the policy chooses

arg maX{Fi(s)(ci+ > r;;> —i-;w;ﬁ-(s—a)}.

teM keM\i

To calculate the quantities that rely on simulation, including all the policies and the PPIR bound,
we simulate item size realizations 400 times and report the corresponding sample mean.

To our knowledge, there is no available test bed of stochastic knapsack instances; however,
there are a number of deterministic knapsack instances and generators available. Therefore, to
obtain stochastic knapsack instances, we used deterministic knapsack instances as a “base” from
which we generated the stochastic instances for our experiments. From each deterministic instance
we generated seven stochastic ones by varying the item size distribution and keeping all other
parameters the same. Given that a particular item 4 had size deterministic size a; (always assumed
to be an integer), we generated seven discrete probability distributions:

D1 0 with probability 1/3 or 3a;/2 with probability 2/3.

D2 0 or 2a; each with probability 1/2.

D3 0 with probability 2/3 or 3a; with probability 1/3.

D4 0 with probability 3/4 or 4a; with probability 1/4.

D5 0 with probability 4/5 or 5a; with probability 1/5.

D6 0 or 2a; each with probability 1/4, a; with probability 1/2.

D7 0, a; or 3a; each with probability 1/5, a;/2 with probability 2/5.

Note that all distributions are designed so an item’s expected size equals a;; recall that we examine
discrete distributions because the PP bound assumes integer size support. Our motivation for
testing the Bernoulli distributions D1-D5 is at least twofold. First, these distributions maximize
the importance of the order in which items are inserted because size realizations are only at the
most extreme (the endpoints of support), as compared to distributions more concentrated around
the mean, where finding a collection of fitting items is intuitively more important. For example,
D2 and D3 are in the former class of distributions, while D6 and D7 have the same size support
respectively but fall into the latter class. Second, in preliminary experiments, we observed that
these types of instances exhibit a significant gap between the best performing bound and MCK. We
thus wish to examine how much Quad performs under such circumstances. We lastly note that, to
ensure integer support for instances of type D1 and D7, after generating the deterministic instance
we doubled all item sizes a; and the knapsack capacity.

The deterministic base instances came from two sources. We took seven small instances from
the repository http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.
html; they have 5 to 15 items and varying capacities. We generated twenty medium instances, of
20 items each and 200 capacity, from the advanced knapsack instance generator from www.diku.
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dk/~pisinger/codes.html. These instances were designed following the same rules used in [4],
with ten correlated and uncorrelated instances each. We do not extend the experiments to larger
instances due to the asymptotic results in Section 3 — we expect the MCK bound to already have
negligible gaps in larger instances, and the empirical results in [4] confirm this.

The smaller instances were solved via brute force, that is, by using the normal problem for-
mulation and only examining constraints corresponding to s values with positive support. As the
complexity of (14) increases exponentially with the number of items, the larger instances were
solved via constraint generation, where the interim LP had a capped number of constraints per
(i,s) pair. For each (i,s) pair, we solve the corresponding separation problem (15) to determine
which constraint to add (corresponding to an (i, s, M) tuple). Should we reach the constraint cap in
an iteration, the constraint that had not been tight for the most number of iterations was dropped
first. The constraint cap varied from 30 to 45 depending on the instance to minimize computation
time. As in Section 3.2, we used CPLEX 12.6.1 for all LP solves in this section, running on a
MacBook Pro with OS X 10.11.4 and a 2.5 GHz Intel Core i7 processor.

Tables 2 and 3 below contain a summary of our experiments for the different bounds. The
tables are interpreted as follows. For each instance, we choose the largest policy as a baseline,
and divide all bound values by this baseline. The first table presents the geometric mean of this
ratio, calculated over all instances represented in that row. We show the ratios as percentages for
ease of reading; thus, bound ratios should be greater than or equal to 100%. For the second table,
we count the number of successes among the bounds and divide by the total number of instances
represented in that row. A success for a particular instance indicates the bound with the smallest
ratio. If two ratios are within 0.1% of each other, we consider them equivalent; thus, the presented
success rates for each row do not necessarily sum to 100%. For a full listing of the raw bound and
policy data, refer to Appendix C.

Table 2: Summary Results - Ratios

Distribution Case MCK PP Quad PPIR
D1 small 115.70% 110.38% 115.30% 135.99%
20cor 108.15% 107.94% 108.05% 127.23%
20uncor 106.34% 106.22% 106.19% 111.30%

D2 small 127.67% 116.51% 126.48% 124.35%
20cor 111.33% 111.31% 110.83% 126.37%
20uncor 110.64% 110.24% 110.04% 112.90%

D3 small 124.21% 121.65% 112.00% 105.34%
20cor 118.52% 117.27% 116.91% 119.05%
20uncor 116.85% 115.50% 114.81% 109.89%

D4 small  120.67% 120.49% 105.49% 102.17%
20cor 124.13% 123.41% 120.98% 111.75%
20uncor 122.22% 120.83% 118.44% 107.76%

D5 small 128.77% 126.53% 105.65% 101.79%
20cor 128.98% 127.21% 122.94% 107.97%
20uncor 125.38% 124.52% 118.67% 108.68%

D6 small 113.78% 108.35% 113.256% 139.41%
20cor 105.99% 105.43% 105.96% 135.72%
20uncor 105.62% 105.22% 105.54% 117.18%

D7 small 120.43% 108.72% 116.72% 130.61%
20cor 107.30% 102.49% 106.73% 141.31%
20uncor 107.21% 104.95% 105.78% 120.01%

Generally speaking, Quad seems to do significantly better in the medium instances than the
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Table 3: Summary Results - Success Rates

Distribution Case MCK PP Quad PPIR
D1 small 0% 86% 14% 0%
20cor 0% 100% 70% 0%
20uncor 0%  70% 80% 10%

D2 small 0% 1% 29% 0%
20cor 0% 10% 100% 0%
20uncor 0%  10% 80% 20%

D3 small 0% 0% 0% 100%
20cor 0% 0% 70% 30%

20uncor 0%  10% 0%  100%

D4 small 0% 0% 14% 86%
20cor 0% 0% 0% 100%
20uncor 0% 0% 0%  100%

D5 small 0% 0% 57% 43%
20cor 0% 0% 0%  100%

20uncor 0% 0% 0%  100%

D6 small 0% 100% 0% 0%
20cor 20% 100% 40% 0%
20uncor 20%  90% 40% 0%

D7 small 0%  86% 0% 14%
20cor 0% 100% 0% 0%
20uncor 10%  100% 10% 0%

small instances, performing (slightly) worse than PP for the small instances and often either com-
parable to or even better than PP for the medium instances. At the least, among instances with
the largest MCK/PP gap, Quad seems to be roughly halfway between the MCK and PP bounds.
Among the medium instances in which PP performs better, Quad is close in value to PP — besides
D7, the two bounds were within a .5% difference in ratios.

Most notably, the Bernoulli distributions of D1-D5 provide a class of distributions in which Quad
exhibits a trend of increasingly greater improvement from PP. In particular, Quad outperformed
PP across all medium instances for D5, closing the gap as much as 6%. (For D4 and D5, two of the
small instances were omitted in the bound/policy gap calculation because of a negative gap, likely
due to how close to optimal Quad performs for these distributions on the small instances.) In all
such cases for these distributions, not only is the bound/policy gap for PP considerably large (and
so there is considerable room for improvement), but the percent drop from PP to Quad is also large
compared to that from MCK to PP. This suggests that, for distributions with extreme possible
outcomes, Quad outperforms PP in both an absolute sense (the bound/policy gap) and relative
sense (improvement from the next best bound). Intuitively, interactions between remaining items
(captured by the quadratic variables) have a larger impact on the optimal solution when there are
less items to choose from, and/or when an item is more likely to have a large realized size; these
computational results reflect this.

Comparing Quad to the simulation-based PPIR bound, we first note that under discrete distri-
butions, Quad is a polynomially solvable linear program, whereas PPIR solves an integer program
for every simulated realization; so in complexity terms PPIR, like PP, is more powerful than Quad.
In our experiments, however, we were able to compute the bound efficiently. In terms of bound
strength, Quad is often either the best performing bound altogether, or it is competitive with the
best performing bound. In cases where PP does well (D1, D2, D6, D7), Quad is comparable in
gap, while PPIR performs quite poorly, exhibiting as much as a 15-30% larger gap than PP. On
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the other hand, PPIR tends to perform best under the Bernoulli distributions with the highest
variance (D3, D4, D5); in these cases, Quad is more competitive than PP. Thus, even though it
is polynomially solvable, Quad seems to be the most stable bound, compared to the more varied
performances of PP and PPIR.

In general, the gap seems to decrease as the number of items or the number of breakpoints
increases. The trend in the success of Quad versus PP as the number of items increases suggests
that Quad is better suited for instances with a larger number of items, while PP is better suited for
smaller instances. This is consistent with the notion that Quad is focused more on the combinatorial
properties of the knapsack problem, while PP focuses on the item size to capacity resolution (and
is thus better for the small instances, in which each individual item has more influence on the
optimal solution). Coupled with the fact that Quad is polynomially solvable, we conclude that the
quadratic bound is a theoretically effective — but characteristically dissimilar — alternative to the
pseudo-polynomial bound for (larger) instances in which PP is computationally infeasible. However,
since the gap between Quad and the best policy is still not unequivocally tight, the next step would
be to find an even better method, ideally an empirically tractable exact algorithm that can help
close this bound/policy gap.

5 Conclusions

We have studied a dynamic knapsack problem with stochastic item sizes and provided relaxation
analysis on the multiple choice knapsack bound (4). We have shown that the MCK bound is
asymptotically optimal as the number of items increases by comparing it to a natural greedy policy
and, depending on various growth rates of capacity, delineated reasonable conditions for which the
result holds.

For medium-sized instances with more item-to-capacity granularity, the gap remains a cause
for concern, and we proposed a quadratic relaxation whose value function approximation encodes
interactions between item pairs. In addition to showing that it is polynomially solvable and more
efficient than the best known pseudo-polynomial relaxation, our computational experiments indi-
cate that the quadratic bound is at least stronger than MCK and faster than PP, while at best
comparable to or even stronger than PP in both quality and solution time.

The results here contribute to an overall picture of the stochastic knapsack problem that has
yet to be completed. While the asymptotic analysis and quadratic bound impact situations where
the number of items in the problem are large and medium, respectively, our results demonstrate
that even the best performing bounds can empirically have a large gap in certain cases. The
dynamic programming formulation can be directly solved when the number of items is minuscule;
otherwise, however, it still remains to develop an empirically efficient algorithm with an optimality
or e-optimality guarantee. For example, in the spirit of the cutting plane algorithms used in solving
the deterministic knapsack problem, one could attempt to dynamically improve the value function
approximation to systematically reach stronger relaxations. However, exactly how a dynamic value
function approximation would work for this problem remains an interesting open question.
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Appendix A - Proof of Theorem 3.11

Proof. 1t suffices to show that the limit of the ratio is lower bounded by a quantity that goes to 1.
Prior to examining each case individually, we observe that under k items, the capacity is

Z E; = E[S;)] = O(f(k)),

i<f(k

where the linear case sets f(k) = k. With this in mind, the linear case reduces to the case where
b(k) =3 .1 Ei = E[Sk], the same as in Lemma 3.6. Since we now limit the number of items to k
(as opposed to an infinite sequence of items), the bounds

Greedy(k, b(k)) > > ¢;P(S; < b(k)), and MCK(k,b(k)) <> eP(A; < b(k)),
>k i<k

now trivially hold. The Greedy upper bound actually holds at equality by definition of the policy,
while the MCK upper bound follows from the (possibly infeasible) solution ;44 = 1 for all .
(This takes advantage of the monotonicity of CDFs, and the fact that there are only at most k
items in the objective.) Thus we have
 Greedy(k, b(k)) e eiP(S; < EISH])
lim > lim =1,
k—oo MCK(k,b(k)) k—oo Y, ¢iP(Ai < E[Sk])

where the last inequality follows from Lemma 3.6, setting constant ¢y to 0. (This shows that the
main difficulty for the first regime is finding an additional constant ¢y to deal with items i > k.)
For the superlinear case, we have f(k) > k for large enough k, and so

P(S; > b(k)) = P(S; > E[Sy]) < P(S; > E[Sk]).
Therefore,

Greedy(k, b(k)) _ Greedy(k, E[Syw)]) _ Yick iP(Si < ElSyw))
MCK(k, b(k)) MCK(k, E[Spm)]) — i< ciP(Ai < E[Spm))
S > i<k CiP(Si < E[Sk]) S i<k ¢ — O(Vk)
- Di<k Ci B i<k Ci ’

where the last inequality follows from the same calculations as in Lemma 3.6. Because this bound
holds for all k, this yields

oy Greedy (kb)) 5y —oWk _ |

k—o00 MCK(k‘ b(k‘)) k—o00 Zigk C;

Lastly, for the sublinear case, we have f(k) < k. Recalling that the k items are assumed to be
greedily ordered, we have the trivial lower bound

Greedy(k,b(k)) > Greedy(f(k),b(k)) = Y cP(Si < E[Spu)).
i<f(k)
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In the same vein as in Lemma 3.5, then, consider the following solution to the MCK dual problem

(4):

R (O}

g= 28— {Cz fo F T = ¢ sup[ELAA > o - 5]
0 i> f(k) 5€[0,00)

i=1,2,....k
Following similar reasoning as in the proof of Lemma 3.5, it is clear the above is a feasible solution
to (4) — simply replace every instance of k in the proof calculations with f(k). The only slight
difference is that the supremum in 7y need only hold for ¢ up to k (as opposed to infinitely many
items). Assumption (12) in the hypothesis ensures that this quantity is asymptotically dominated
by the other terms. Thus, by setting co(k) := ro(k)+7#M3/m?, this feasible solution yields objective
>i<sk) GiP(Ai < E[Syw)]) + co(k), providing us with the valid upper bound

MCK (k,b(k)) < ) ciP(A;i < E[Syw)) + colk),
i<f(k)

where term cy(k) = o(f(k)).
It hence remains to show that
- di<ir) CGP(Si < E[Sym]) . Yi<rny CGP(Si S E[Sym))
k—o0 Zzgf(k) ClP(Al < E[Sf(k)]) + Co(k) T k—oo Zzgf(k) c; + Co(k‘)

=1.

To this end, we examine
P(Si > E[Stw)]) = P(Si — E[Si] > E[S¢u) — Si]) < P(|Si — E[Si]| > E[Sfx) — Si])
Var(S;) < iV
= (ElSpay = Si)* T (f(R) —i)*p*’

noting that E[Sy) — Si] > 0 for i < f(k), and the second inequality uses Chebyshev’s bound.
Let j be some number such that j < f(k), to be determined, and define upper bound

¢ e
C¢S§Eiéru=:c
1

We now observe

> aP(Si <ESpp) =) aP(Si <ESyml) + > aP(Si <E[Spw)

i<f(k) i<j J<i<f(k)
vV
>3 ¢ [1 _ (f(k)Z_ i)2u2] + 3 Gl —P(Si > E[Syp))
1<j - J<i<f(k)
v ] oy j+1
> LA N P S— 7 - o | e da — &(f (k) — )
ing:(k) w i<j (f(k) )2 z‘szf(:k) o o/ (k) — )

= Y o Sy U~ = D =l )] = k)~ ),
i<f(k) -

with the technical condition that f(k) & [0,7 + 1] so that the integrand above does not contain a
singularity. Noting that choosing j = f(k)— f(v/k)—1 satisfies this (as identically having f(vk) = 0
reduces to a trivial case), we have
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eV ifk)— fF(VE
> Pl Bl 2 Y ey [FE
f(k)

i<f(k) i<f(k) -
= g ci +O(In f(k)) — O(max{--2-, fF(Vk)}).

+In f(VE) = I f (k)] = &(F(VR) + 1)

Therefore, recalling our initial assumptions on Zig f(ky Ciand Inf (k), we have

Si<siy €+ O f(k) — Omax{ . f(VR)})

lim =1.
k—oo Zigf(k) ¢i + co(k)
The above limit is a valid lower bound for limy_,s, Greedy (k.f (k)), completing the proof. O

MCK(k,f(k))

Appendix B - MCK for Power Law Distributions

We first recall the following result from [4]:

Proposition. For eachi € N, within a segment (s, s) C [0, b] where F; is concave and differentiable,
the separation problem of MCK (4) can be solved by evaluating s, § and all solutions to

d .
(ro+ ci)£Fi(s) = qF;(s) s € (s,8). (16)
It is easy to verify that the power law distributions Fz-l, F%, and F? in Section 3.2 are concave
and differentiable on [0, 00). Further, (16) has a unique solution for each distribution,

1. TrotG 9 2(ro + ¢) 3 3(ro + i)

§; 1= ——— —ay, §; 1= —" — ay, 85 1= ———= — 2a,,

q q q

where s}, s?, and s? correspond to F}

PSP, kS F? and Fg’ , respectively.
For simplicity, fix a particular distribution j € {1,2,3}. We implement the following cutting
plane algorithm. Since the constraints in (4) corresponding to s = 0 reduce to non-negativity
constraints, we first solve a relaxation of the MCK bound with only the inequality corresponding

to s = b for each i € N. Given a candidate solution (g, ), we check for each i € N if the constraint

for s = s! is satisfied. If any constraints are violated, we add them and re-solve the updated MCK

relaxation to obtain a new candidate solution; otherwise, (g, ) is optimal.

Appendix C - Tables

The following tables present the raw data used to calculate the summary tables presented earlier.
The first two tables are used to calculate Table 1, sorting instances by the number of items and
value/size correlation. Afterward, the next three tables present the raw data used to calculate the
summaries in Tables 2 and 3. These three tables separate instances by their size: small instances,
followed by 20-item instances with correlated values-to-sizes under discrete distributions, then 20-
item instances with uncorrelated values-to-sizes under discrete distributions.
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Table 4: Power Law Distribution Experiments, 200 Items or Fewer

Instance MCK Greedy A. Greedy
p01 369.34 349.82 348.83
p02 72.87 60.82 60.82
p03 212.21 180.30 180.30
p04 146.10 131.97 132.04
p05 1242.17 1070.67 1070.67
p06 2497.52 2191.94 2189.40
p07 1897.53 1744.87 1738.67
p08 17065398.26 | 15332135.32  15469247.43

20cor] 7504.33 6358.15 6783.39
20cor2 8495.93 8030.01 8031.39
20cor3 10371.71 969.0 10027.82
20cor4 11187.62 10131.50 10019.49
20corb 6979.69 6604.17 6669.59
20cor6 1126.99 1052.35 1058.96
20cor7 8103.30 7311.75 7324.96
20cor8 8026.99 7312.61 7241.71
20cor9 4103.90 3848.59 3924.19
20cor10 18587.37 17658.55 17929.55

20uncorl 827787 7849.25 7849.25

20uncor2 4207.25 3943.93 3944.21

20uncor3 15014.30 14523.65 14526.58

20uncor4 18845.34 17275.89 17275.89

20uncorb 10288.87 9954.37 9960.36

20uncor6 1593.90 1488.41 1487.94

20uncor? 9153.27 8801.53 8801.53

20uncor8 12234.28 11316.91 11324.54

20uncor9 6233.18 5797.05 5787.13

20uncor10 19891.23 18375.25 18365.43

T00corT 33533.65 3177252 3231873
100cor2 38866.70 36780.04 36769.95
100cor3 46368.04 43344.55 44229.84
100cor4 50301.94 47388.26 47682.37
100cor) 30781.90 29208.76 29034.12
100cor6 5033.14 4636.62 4602.74
100cor7 35922.11 33927.69 33739.77
100cor8 35698.90 34233.56 34325.90
100cor9 18557.13 17566.13 17708.15
100cor10 82662.62 80071.12 80165.16
T00uncorl 40618.80 39075.49 39060.59
00uncor2 16380.83 15591.34 15572.58

100uncor3 70062.02 67357.74 67317.05

100uncor4 91619.13 87846.90 87810.15

100uncorb 47820.98 45771.77 45741.58

10Quncor6 7438.87 7012.78 7011.74

100uncor? 45306.40 43394.28 43355.39

10Quncor8 53619.69 51938.49 51910.31

100uncor9 27945.79 26981.41 26984.02

100uncorl0 | 106115.85 102988.85 102929.06

200corT 65708.55 63217.98 63556.02
200cor2 26431.17 25274.80 25106.71
200cor3 7008. 82050.82 82650.50
200cor4 130352.19 124587.55 124232.07
200corb 55696.15 52958.54 52867.65
200cor6 9824.42 9507.29 9490.57

200cor7 71119.96 66871.64 67436.64
200cor8 68175.46 65067.17 65485.54
200cor9 37102.22 35941.59 35904.41
200cor10 153797.58 147065.19 146486.43

200uncorl 77926.41 75323.53 75304.03

200Quncor2 33716.29 32663.33 32614.25

200uncor3 128655.34 124470.84 124355.96

200uncor4 173148.98 166065.46 166190.70

200uncord 94696.84 91954.00 91988.63

200uncor6 13918.52 13537.02 958.53

200Quncor? 89714.94 85913.47 981.10

200uncorg 105313.08 102433.36 102659.65

200uncor9 54999.63 53508.86 53538.49

200uncor10 | 209604.85 201695.03 201589.80
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Table 5: Power Law Distribution Experiments, 1000 Items or More

Instance MCK Greedy
1000corl 315264.55 | 307486.43
1000cor2 131236.29 128081.91
1000cor3 410934.14 | 400298.47
1000cor4 440705.41 | 421668.99
1000cor5 268217.52 | 260201.53
1000cor6 47179.25 45939.64
1000cor7 355539.42 | 344511.52
1000cor8 335816.69 | 323768.20
1000cor9 177072.28 171585.13
1000cor10 767191.66 | 740630.34
[000uncorl 391929.12 | 3R84251.44
1000uncor2 175596.93 172014.69
1000uncor3 | 621566.89 | 608010.99
1000uncor4 | 808590.19 | 783339.41
1000uncord | 438494.83 | 430533.17
1000uncor6 69614.53 68235.17
1000uncor? | 455682.16 | 444646.37
1000uncor8 | 522609.12 | 509452.67
1000uncor9 | 264472.90 | 259231.62
1000uncorl0 | 1036098.43 | 1015379.72
2000corI 623983.64 | 612009.70
2000cor2 259153.22 | 253320.69
2000cor3 813604.92 797448.72
2000cor4 74478.26 | 855899.42
2000corb 529873.66 | 516339.69
2000cor6 93531.02 92192.95
2000cor7 705421.70 | 693901.82
2000cor8 661333.70 | 647891.31
2000cor9 349850.29 | 342958.98
2000cor10 1519181.85 | 1491618.08
2000uncorl 793470.46 | 786050.41
2000uncor?2 | 356405.87 | 350868.75
2000uncor3 | 1263783.49 | 1244592.10
2000uncor4d | 1588156.89 | 1564959.33
2000uncorb | 887755.32 | 872425.95
2000uncor6 134925.29 133512.39
2000uncor? | 920206.84 909101.43
2000uncor8 | 1044295.46 | 1028806.60
2000uncor9 | 518843.38 | 511672.97
2000uncor10 | 2029051.70 | 2001541.97
5000corI 83408.71 82305.07
5000cor2 133539.89 130877.49
5000cor3 147936.54 145219.08
5000cor4 116621.03 114350.12
5000cor5 171416.52 168773.19
5000uncorl 186921.47 | 185023.04
5000uncor?2 | 466960.21 | 458038.46
5000uncor3 | 543677.26 | 535866.14
5000uncord | 368417.42 | 363813.33
5000uncorb | 688418.44 | 678296.36
T0000cor] 165868.02 163120.52
10000cor2 265578.99 | 262597.52
10000cor3 291580.75 | 286776.18
10000cor4 230855.23 | 225903.00
10000cor5 338955.87 | 332911.51
TO000uncorI | 369884.94 | 365057.44
10000uncor2 | 915640.89 | 906978.25
10000uncor3 | 1074579.51 | 1058598.87
10000uncor4 | 728925.87 | 717570.73
10000uncorb | 1323898.28 | 1298820.65
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Table 6: Quad Bound Experiments, Small Instances.

Instance Distribution MCK PP PPIR Quad  Greedy Adapt. Greedy PP Dual

p01 D1 352.02  346.27  405.64  351.16 | 300.94 308.37 307.38
D2 394.52  385.83  386.43  389.84 | 296.54 321.36 315.38
D3 471.02  439.00 387.11  451.67 | 334.03 344.80 366.77
D4 474.25 47425  388.13  432.63 | 354.05 364.11 376.27
D5 500.40  500.40  388.50  432.78 | 363.98 366.67 410.17
D6 33777 32787  402.58  337.47 | 296.20 307.71 304.54
D7 345.97  334.23  431.92  344.08 | 301.53 313.49 314.79
p02 D1 61.67 55.83 73.95 61.39 45.31 45.67 46.22
D2 71.00 62.50 70.15 69.78 53.99 54.81 53.92
D3 70.00 70.00 56.97 58.96 56.04 56.07 56.12
D4 58.50 58.50 46.64 45.52 45.90 45.90 45.74
D5 72.80 72.80 52.72 52.52 51.50 51.50 51.00
D6 58.33 54.86 75.95 08.23 47.95 49.75 49.74
D7 67.91 58.21 68.67 62.55 50.75 50.47 53.45
p03 D1 184.71  175.67  217.71  183.28 | 144.33 158.80 133.81
D2 209.19  169.00 194.32  204.15 | 148.98 148.48 153.17
D3 211.67  211.67 169.32  183.52 | 164.99 165.06 164.94
D4 165.50  165.50 12443  130.18 | 124.62 124.62 126.82
D5 213.00 213.00 12443  150.28 | 142.33 142.33 146.05
D6 176.61  164.14  219.19 17591 | 135.08 147.73 149.32
D7 199.33  168.61  202.02  184.62 | 155.59 156.67 157.56
p04 D1 126.75  124.00 162.72  126.00 | 103.99 108.92 109.42
D2 141.79  140.75  127.13  141.50 87.50 99.88 108.98
D3 139.33  139.33 11431  116.96 96.18 94.37 111.31
D4 151.50  151.50  127.80  132.05 | 109.67 109.83 130.15
D5 158.80  158.80  146.62  141.90 | 125.27 125.27 145.07
D6 119.75  114.35 14945 116.86 94.75 99.35 105.32
D7 137.56  125.83 14497 129.40 | 104.78 107.78 109.59
p05 D1 1219.85 1111.33 1338.65 1218.88 | 991.35 996.10 1033.15
D2 1239.78 1173.00 1247.28 1236.01 | 918.26 921.34 960.58
D3 1024.67 1024.67 889.22  935.78 | 867.13 865.68 910.20
D4 1095.50 1095.50 930.34 1020.50 | 959.19 960.38 1003.56
D5 1054.00 1054.00 875.88  861.87 | 853.88 853.88 889.88
D6 1211.56 1133.81 1278.36 1211.08 | 941.37 946.18 979.05
D7 1129.89 1107.36 1059.41 1209.71 | 962.53 966.43 918.70
p06 D1 2087.00 1988.67 2485.53 2082.37 | 1772.02 1776.13 1852.03
D2 2380.82 1922.25 2218.39 2368.12 | 1475.97 1560.94 1633.93
D3 2958.48 2764.67 2393.13 2686.76 | 2084.78 2104.84 2126.95
D4 2182.00 2182.00 1860.19 1910.25 | 1701.44 1701.44 1921.41
D5 2276.00 2276.00 1732.95 1823.04 | 1808.38 1808.38 1807.50
D6 1987.17 1881.90 2689.52 1985.12 | 1540.79 1618.81 1809.05
D7 2306.09 1935.71 2655.66 2193.54 | 1637.78 1796.06 1820.33
p07 D1 1570.45 1570.45 1780.77 1569.79 | 1461.14 1529.57 1498.95
D2 1681.26 1680.75 1850.65 1679.10 | 1490.73 1546.55 1607.05
D3 1904.19 1890.33 1887.40 1892.80 | 1617.39 1681.45 1662.63
D4 2122.19 2100.00 1978.83 2085.72 | 1477.46 1609.41 1722.90
D5 2332.70 2063.80 1819.78 2266.79 | 1597.48 1631.31 1604.12
D6 1533.54 1516.37 1861.40 1533.39 | 1389.58 1450.84 1461.44
D7 1676.91 1554.73 2024.00 1657.24 | 1439.27 1486.18 1479.13
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Table 7: Quad Bound Experiments, 20 Items, Correlated Values and Sizes.

Instance Distribution MCK PP PPIR Quad Greedy A. Greedy PP Dual
20corl D1 6547.70  6534.08  7482.03  6544.87 | 5938.42 6099.08 6171.09
D2 7062.53  7062.53  7874.59  7043.21 | 5924.07 6222.89 6286.62

D3 8060.70  8006.22  8230.19  7968.06 | 6209.93 6622.21 6717.28

D4 9008.53  9008.53  8347.92  8797.18 | 6568.58 6758.89 7049.40

D5 9872.03  9805.00 8393.61  9480.92 | 6460.73 6682.43 7253.35

D6 6373.28  6366.73  7790.07  6372.43 | 5806.62 6067.55 6113.27

D7 6851.31  6488.59  6804.82  8534.09 | 5908.74 6249.09 6173.48

20cor2 DI 7971.85  7961.11 8518.85 7966.16 | 7141.35 7308.58 6997.31
D2 8351.73  8351.73  8652.96  8325.22 | 7296.38 7408.28 7188.36

D3 9009.65  8974.28  8908.13  8883.68 | 7415.06 7594.17 7516.15

D4 9602.87  9572.50  8472.94  9310.09 | 7522.97 7782.96 7455.27

D5 10139.45 10116.92 8767.71  9636.28 | 7674.77 7879.19 7759.27

D6 7830.75  7826.85  8746.74  7827.80 | 7210.61 7188.83 7114.96

D7 8092.27  7912.47  9282.23  7931.27 | 7305.33 7308.93 7432.47

20cor3 DI 9167.63  9149.73 11004.46 9158.33 | 7898.79 8146.01 8170.18
D2 10191.30 10191.30 11817.91 10141.93 | 8043.78 8711.34 9247.72

D3 12137.80 12055.31 12962.33 11999.00 | 8971.92 9594.06  10268.15

D4 13998.30 13833.00 12794.14 13722.50 | 9503.80 9873.56  11328.91

D5 15792.60 15588.80 12769.80 15229.32 | 9888.71 9768.93  12051.51

D6 8824.38  8798.57 11687.14 8821.12 | 7705.19 8478.39 8663.99

D7 9573.95  9022.65 13369.87 9536.87 | 8198.66 8534.60 8697.73

20cor4 DI 10200.86 10179.83 13043.34 10196.21 | 8098.62 8666.75 9203.79
D2 11760.36  11741.71 14253.92 11726.95 | 8565.03  10066.95  10104.68

D3 14818.20 14437.33 13516.45 14627.58 | 9887.58  11047.59  12575.56

D4 16348.50 16348.50 13881.98 15889.58 | 10618.45  10363.27  13009.51

D5 17548.40 17548.40 15631.80 16634.45 | 11119.24  11104.42  14744.74

D6 9673.61  9520.03 14217.35 9672.23 | 8086.77 8599.69 8585.73

D7 10311.55 9854.05 14797.58 10291.88 | 8891.16 9659.94 9588.59

20corb DI 6315.83  6303.58  7719.30  6307.18 | 5196.81 5633.79 5973.04
D2 7096.00  7096.00  8322.12  7051.67 | 5560.68 6004.09 6281.05

D3 8543.33  8445.39  8565.03  8435.97 | 5946.88 6651.50 6808.53

D4 9938.25  9777.25  8600.85  9693.92 | 6764.61 6761.31 7738.69

D5 11250.80 10944.30 9118.71  10758.67 | 6764.45 6492.35 8851.44

D6 6052.17  6003.79  8159.53  6049.07 | 5299.73 5657.62 5695.33

D7 6352.19  6138.62  9022.90  6347.28 | 5609.18 6062.61 6078.36

20cor6 DI 998.89 996.92 1269.46 997.45 872.51 899.58 899.92
D2 1104.06  1104.06  1269.46  1096.32 892.04 956.31 1008.61

D3 1299.39  1291.50 1359.22  1277.95 939.93 1004.98 1104.02

D4 1480.81  1475.75  1359.42  1441.68 970.79 1086.13 1201.09

D5 1653.66  1621.60  1358.33  1587.92 | 1091.82 1070.46 1279.56

D6 963.56 961.08 1241.42 963.06 884.08 929.92 932.67

D7 1034.44 980.37 1400.67  1031.17 887.65 927.52 945.48

20cor7 DI 7053.95  7039.38  7732.74  7050.94 | 6357.79 6577.62 6622.64
D2 7480.29  7480.29  8003.99  7463.71 | 6544.66 6848.10 6902.24

D3 8304.81  8247.00 8193.68  8249.22 | 6769.86 6823.11 6894.86

D4 9115.14  9115.14  8226.35  8909.89 | 7012.93 6955.11 7229.98

D5 9876.44  9876.44  8544.11  9464.60 | 6888.49 7026.79 7455.42

D6 6910.95 6904.42  8035.97  6909.94 | 6489.57 6614.30 6521.30

D7 7312.33  7017.08  8448.43  7278.05 | 6757.69 6835.66 6886.63

20cor8 DI 7296.63 7282772 8939.19  7287.19 | 6138.55 6690.95 6839.47
D2 8209.63  8209.63  9613.26  8152.57 | 6501.86 6858.07 7225.20

D3 9977.80  9742.28  9519.25  9748.99 | 6634.92 7654.29 8558.24

D4 11544.38 11439.69 10196.18 11166.77 | 8063.33 7958.40 9802.36
D5 13056.73 12622.10 10686.75 12305.75 | 7957.51 7720.70  10160.77

D6 6991.55  6889.97  9417.43  6988.52 | 6088.47 6326.56 6404.30

D7 7343.18  7080.65 10206.42 7329.18 | 6322.24 6924.74 6827.74

20cor9 DI 3643.67 3636.42  4382.46  3640.93 | 3092.34 3210.85 3225.14
D2 4050.00  4050.00  4710.08  4031.84 | 3291.87 3592.65 3537.75

D3 4846.00  4809.83  5204.72  4760.54 | 3491.23 3687.15 4041.59

D4 5574.25  5509.25  5024.08  5423.81 | 3753.73 4153.73 4577.26

D5 6272.00  6155.50 5176.30  5999.72 | 3679.98 3715.32 4937.54

D6 3507.33  3502.72  4621.36  3506.50 | 3121.35 3298.69 3296.45

D7 3776.45  3568.20  5252.18  3759.85 | 3263.37 3505.23 3573.86
20cor10 DI 16391.77 16359.07 18868.03 16379.27 | 14302.77 14553.03 15176.72
D2 17818.10 17818.10 19839.74 17750.67 | 15328.02  15732.37  16010.08
D3 20555.60 20424.80 20613.51 20352.69 | 15226.99  15847.02  16770.37
D4 23124.60 23060.00 22326.61 22695.50 | 17066.65 16519.04  18556.25
D5 25642.00 25230.50 21020.76 23979.03 | 17100.77  17696.29  19030.89
D6 15914.68 15832.62 19805.42 15910.38 | 14330.15  14779.72  15087.60
D7 17151.96 16228.57 21888.46 17057.42 | 15066.57 15724.06  15785.30
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Table 8: Quad Bound Experiments, 20 Items, Uncorrelated Values and Sizes.

Instance  Distribution = MCK PP PPIR Quad Greedy A. Greedy PP Dual
20uncorl D1 8040.61  8034.14  8106.02  8023.93 | 7676.97 7772.54 7109.04
D2 8219.74  8219.74  8294.37  8183.20 | 7688.70 7736.41 7144.15
D3 8521.33  8502.00  8261.00  8407.86 | 7645.62 7692.22 6610.58
D4 8765.09  8765.09  7834.22  8554.09 | 7743.69 7770.24 6807.32
D5 8907.79  8904.30  8250.04  8664.80 | 7665.39 7686.12 6588.37
D6 7969.78  7967.45  8250.04 7961.69 | 7666.59 7731.04 7485.29
D7 8068.13  8014.39  8560.95  8019.48 | 7590.91 7647.48 7524.03
20uncor?2 DI 3954.67  3949.56  4163.89 394251 | 3643.59 372472 3456.59
D2 4115.09  4115.09  4150.11  4084.39 | 3673.05 3737.24 3595.27
D3 4381.49  4366.37  4118.71  4300.94 | 3721.18 3753.71 3570.37
D4 4607.66  4603.75  4167.79  4466.36 | 3697.05 3751.26 3697.37
D5 4813.60  4813.60  4251.71  4557.32 | 3793.87 3772.95 3702.66
D6 3892.91  3881.59  4231.52  3888.32 | 3624.40 3698.27 3538.63
D7 4019.69  3923.79  4480.56  3941.21 | 3687.25 3690.40 3732.82
20uncor3 DI 14551.89 14540.81 15024.73 14544.95 | 13339.76  13546.37  12976.11
D2 15197.06 15197.06 15139.42 15146.66 | 13441.96  13565.83  12743.55
D3 16428.22 16372.83 15459.89 16138.39 | 14100.45 14404.41  13587.74
D4 17436.12  17436.12 15394.68 16699.34 | 13877.95 13933.78  13472.95
D5 16035.00 16035.00 14509.05 15062.62 | 14252.95 14313.30  14056.42
D6 14331.97  14329.07 15755.73 14329.94 | 13543.50  13651.92  13332.12
D7 14504.08 14423.72 16735.96 14484.43 | 13526.99  13562.22  13468.22
20uncor4 DI 1732777 17297.88 18635.24 17318.48 | 15709.73 15682.95  15253.15
D2 18631.95 17963.50 18718.68 18563.19 | 14981.40 15756.11  15743.38
D3 21157.50 19656.67 19667.90 20836.73 | 165681.39  17369.36  16286.06
D4 23543.88 22256.88 19880.49 22734.38 | 17453.40  17570.43  17224.29
D5 24182.80 24182.80 20423.80 22531.15 | 17625.73  17746.24  18052.19
D6 16892.19 16559.36 19657.53 16889.20 | 14671.57  15080.44  15033.18
D7 17711.46  16973.04 21100.46 17338.52 | 15649.36  15885.25  15717.10
20uncorb DI 09808.42  9798.21 10706.09 9802.68 | 8797.96 9119.29 8513.68
D2 10547.66 10547.66 11206.51 10509.65 | 9117.45 9383.99 9485.89
D3 11980.16 11937.69 10785.22 11774.89 | 9420.54 9942.94 9518.15
D4 13089.36  13011.42 10549.11 12791.65 | 10256.96  10068.90  9769.55
D5 14146.23 13933.00 11497.40 13150.89 | 10749.46  10892.82  10497.74
D6 9561.17  9538.70 11314.69 9559.28 | 8743.38 9055.11 8701.76
D7 9736.11  9653.75 11616.63 9701.18 | 9115.81 9419.20 9175.37
20uncor6 DI 1459.46  1457.53  1564.37  1456.06 | 1318.09 1364.43 1221.44
D2 1544.00  1544.00  1588.72  1531.09 | 1367.15 1401.14 1397.97
D3 1690.33  1679.47  1600.99  1647.82 | 1375.32 1406.73 1402.25
D4 1799.63  1787.75  1639.98  1733.00 | 1357.76 1379.36 1450.30
D5 1894.74  1868.00  1548.18  1791.13 | 1429.09 1428.11 1434.95
D6 1432.27  1429.03  1617.40  1430.49 | 1360.63 1381.50 1322.99
D7 149458  1452.06  1713.35  1470.68 | 1356.51 1377.40 1356.19
20uncor? D1 9066.49  906I.11  8895.31 9060.04 | 8748.90 8775.27 8606.08
D2 9174.84  9174.84  9143.87  9076.70 | 8750.27 8760.71 8543.92
D3 9336.27  9324.13  9147.13  9254.63 | 8661.97 8686.51 7766.75
D4 9420.79  9420.79  8741.74  9322.51 | 8723.23 8747.86 7915.72
D5 9461.76  9461.76  9265.67  9367.86 | 8537.24 8543.82 8108.69
D6 9028.58  9026.09  9042.13  9026.17 | 8762.98 8773.35 8320.65
D7 9054.83  9047.01  9108.07  9051.68 | 8767.66 8783.23 8569.85
20uncor§ DI 11558.26 11543.61 1232248 11530.82 | 10467.79 10855.15  10636.21
D2 12185.26 12185.26 12762.46 12051.89 | 10390.82 10718.55  10921.89
D3 13240.58 13089.00 12514.14 12844.13 | 10698.71  10988.40  11078.45
D4 14067.65 13912.20 12289.50 13441.24 | 10842.28  10976.21  11105.51
D5 14636.98 14303.20 12102.65 13515.42 | 10892.57  10870.16  11381.78
D6 11339.09 11300.90 12825.27 11329.13 | 10253.45  10472.15  10254.29
D7 11631.41 11370.14 13461.88 11405.53 | 10662.32  10827.82  10437.80
20uncor9 D1 5608.58  5600.39  6078.60  5605.51 | 5176.80 5321.62 4995.69
D2 5937.88  5937.88  6211.34  5910.50 | 5122.25 5310.78 5198.71
D3 6577.57  6524.67  6347.67  6454.38 | 5349.53 5470.90 5400.02
D4 7165.69  7021.69  6501.60  6876.53 | 5630.29 5670.04 5802.17
D5 7581.17  7526.90  6201.98  7034.04 | 5341.80 5390.83 5372.26
D6 5499.61  5484.38  6369.35  5498.62 | 5150.11 5274.72 4978.59
D7 5874.54  5597.90 672344  5701.37 | 5159.13 5285.49 5295.74
20uncor10 D1 18587.96 18564.24 19320.92 18549.28 | 17022.34  17445.23  16393.10
D2 19283.67 19283.67 19640.00 19195.46 | 17000.09 17401.36  16646.87
D3 20535.76  20465.18 18936.26 20324.87 | 17142.99  17374.79  16556.04
D4 21634.32 21359.25 19802.52 21153.03 | 18031.97  17939.30  16701.87
D5 22616.56 22426.05 19559.67 21727.01 | 17383.87  17714.82  17177.66
D6 18333.48 18271.03 20273.80 18306.80 | 16917.86  17228.88  16865.20
D7 19016.80 18553.43 20549.65 18707.47 | 17420.43 17692.52 17344.01
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