Relaxation Analysis for the Dynamic Knapsack Problem with Stochastic Item Sizes Daniel Blado Alejandro Toriello H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia 30332 deblado at gatech dot edu atoriello at isye dot gatech dot edu January 19, 2018 #### Abstract We consider a version of the knapsack problem in which an item size is random and revealed only when the decision maker attempts to insert it. After every successful insertion the decision maker can dynamically choose the next item based on the remaining capacity and available items, while an unsuccessful insertion terminates the process. We build on a semi-infinite relaxation introduced in previous work, known as the Multiple Choice Knapsack (MCK) bound. Our first contribution is an asymptotic analysis of MCK showing that it is asymptotically tight under appropriate assumptions. In our second contribution, we examine a new, improved relaxation based on a quadratic value function approximation, which introduces the notion of diminishing returns by encoding interactions between remaining items. We compare this bound to others from the literature, including the best known pseudo-polynomial bound. The quadratic bound is theoretically more efficient than the pseudo-polynomial bound, yet empirically comparable to it in both value and running time. #### 1 Introduction The deterministic knapsack problem is a fundamental discrete optimization model that has been studied extensively in areas such as computer science, operations research and industrial engineering. Recently, knapsack models under uncertainty have been the subject of much research, both to model resource allocation problems with uncertain parameters, and as a subproblem in more general discrete optimization problems under uncertainty, such as stochastic integer programming. In particular, dynamic knapsack problems, where decisions occur sequentially and problem parameters may be revealed dynamically, have been a topic of ongoing interest; such models have seen many applications, including in scheduling [9], equipment replacement [10], and machine learning [14, 15, 24]. The dynamic knapsack model variant we analyze here has stochastic item sizes that are only revealed to the decision maker after they attempt to insert an item. Throughout the process, the remaining items and their respective size distributions are available, and the process only continues if an attempted item's realized size fits within the remaining capacity. This differs from more static models, in which the decision maker decides on a particular subset of items ahead of time, essentially attempting to insert the set all at once, and the question is whether that set fits in the knapsack with a desired probability, e.g. [12]. Having the flexibility to choose subsequent items in light of the revealed sizes of previous items intuitively can lead to a higher overall expected value than a more static approach. However, this added freedom raises the complexity of the problem both in practice and theory. A feasible solution to this problem now takes the form of a policy that dictates what the decision maker should attempt to insert under any possible state, as opposed to deciding on a subset of items to insert a priori. Such added difficulty motivates work to develop reasonably tight and tractable relaxations, as well as high-quality, efficient policies. In particular, [4] introduced a Multiple-Choice Knapsack (MCK) semi-infinite relaxation that stems from an affine value function approximation; our goal in this paper is to provide theoretical analysis to understand this relaxation's quality and to improve it when a gap remains. Our contributions can be summarized as: - i) We prove the MCK bound is asymptotically tight by comparing it to a natural greedy policy under two distinct but related regimes. Therefore, the computationally efficient MCK model provides increasingly tighter bounds for instances with larger numbers of items. In addition, this result provides an alternative proof of the asymptotic optimality of the greedy policy, recently shown in [2]. - ii) We introduce a quadratic relaxation that builds on MCK by encoding interactions between pairs of remaining items, and show that it maintains polynomial solvability. For instances with a medium number of items, where MCK has a gap but dynamic programming is intractable, the quadratic bound is comparable to the best known pseudo-polynomial bound [24] in both value and running time, even making considerable improvement in some cases. The remainder of the paper is organized as follows. We conclude this section with a brief literature review. Section 2 states the problem formulation and preliminaries, including the relevant previous results. Section 3 provides the asymptotic analysis of the MCK bound. Section 4 then studies the improved quadratic bound, examining structural results and outlining a computational study. Section 5 concludes, and an appendix contains proofs and computational experiment data not included in the main article. #### 1.1 Literature Review The knapsack problem and its generalizations have been studied for over half a century, having applications in areas as varied as budgeting, finance, and scheduling; see [19, 25]. The knapsack problem under various forms of uncertainty has specifically received attention as well; [19, Chapter 14] surveys some of these results. In general, optimization under uncertainty can be modeled via either a *static* approach that chooses a solution a priori, or a dynamic (sometimes called *adaptive* [7, 8, 9]) approach that chooses a solution sequentially based on realized parameters. Examples of a priori knapsack models with uncertain item values include [5, 16, 27, 31, 32], a priori models with uncertain item sizes include [11, 12, 20, 21], and an a priori model with both uncertain values and sizes can be found in [26]. Dynamic models for knapsacks with uncertain item sizes include [3, 7, 9, 10, 14, 15], while [18] study a dynamic model with uncertain item values. Another variant, the *stochastic and dynamic* knapsack, examines the case where items are not initially given but rather arrive dynamically according to a stochastic process; see [22, 23, 28]. Regarding our dynamic variant of the stochastic knapsack problem in particular, [10] first studied the version with exponentially distributed item sizes, and showed that the greedy policy that inserts items based on their value-to-mean-size ratio is optimal in this case. More recently, [7, 9] studied the problem in its full generality, providing two linear programming bounds with polynomially many variables, showing that both were within a constant multiplicative gap, and investigating greedy approximate policies. Afterwards, [14, 15, 24] researched bounds under the assumption of integer size support, evaluating the performance of LP relaxations of pseudo-polynomial size and developing randomized policies based on their optimal solutions. Their framework applied to variants beyond the problem studied here, including correlated random item values, preemption, and the multi-armed bandits problem with budgeted learning. Using value function approximations to obtain relaxations of dynamic programs dates back to [1, 6, 30, 33]. The results in [4] provide the technique's first application for a stochastic knapsack model, evaluating various bounds. The investigation of asymptotic properties of relaxations via a comparison to a natural greedy policy was initially empirically suggested by computational results in [4]; the asymptotic optimality of the greedy policy was then shown by [2] using *information relaxation* duality techniques. #### 2 Problem Formulation and Preliminaries As with the deterministic knapsack problem, suppose we have a knapsack with capacity b > 0 and item set $N := \{1, 2, ..., n\}$. Each item i has a deterministic value $c_i > 0$. Item sizes are now independent random variables $A_i \ge 0$, each drawn from an arbitrary but known distribution. An item size is realized after the decision maker attempts to insert it. When attempting to insert an item i, the decision maker is faced with two outcomes: If i fits, value c_i is collected and the remaining capacity is updated; or, i is too large, and the process ends, i.e. we only allow one failed insertion. A policy stipulates what item to insert, and may depend on the remaining items and remaining capacity. The objective is to maximize the expected value of successfully inserted items. This problem can be modeled as a dynamic program (DP). Each possible state the decision maker faces can be defined by the non-empty set of remaining items $M \subseteq N$ and remaining capacity $s \in [0, b]$. For a given state (M, s), the possible actions allowed consist of attempting to insert an item $i \in M$. If we define $v_M^*(s)$ as the optimal expected value at state (M, s), the Bellman recursion is $$v_M^*(s) = \max_{i \in M} \mathsf{P}(A_i \le s)(c_i + \mathsf{E}[v_{M \setminus i}^*(s - A_i) | A_i \le s]),\tag{1}$$ with the base case $v_{\varnothing}^*(s) = 0$. Intuitively speaking, should the attempted item i have size greater than s, we collect nothing, but should it fit we collect both the item's value c_i and the optimal expected value of the subsequent state, that is, $(M \setminus i, s - A_i)$. The linear programming (LP) formulation of this problem is $$\min_{v} v_N(b) \tag{2a}$$ s.t. $$v_{M \cup i}(s) \ge P(A_i \le s)(c_i + E[v_M(s - A_i)|A_i \le s]),$$ (2b) $$i \in N, \ M \subseteq N \setminus i, \ s \in [0, b]$$ (2c) $$v_M: [0, b] \to \mathbb{R}_+, \quad M \subseteq N.$$ (2d) This is a doubly infinite LP, as there are a continuum of constraints over all $s \in [0, b]$, and variables v_M are real-valued functions. **Notation** To simplify notation, we denote an item size's cumulative distribution function by $F_i(s) := P(A_i \leq s)$ for $i \in N$
, and its complement by $\bar{F}_i(s) := P(A_i > s)$. Additionally, the mean truncated size of item $i \in N$ at capacity $s \in [0, b]$ is the quantity $\tilde{E}_i(s) := E[\min\{s, A_i\}]$ [7, 9, 34]; this quantity frequently comes up in the rest of the paper. Intuitively, if the remaining capacity is s, we should not care about the distribution of item i's size above s, as any such realization will result in a failed insertion. #### 2.1 Multiple-Choice Knapsack Bound The doubly infinite LP (2) cannot in general be efficiently solved. However, any feasible solution to the LP provides a valid upper bound on the optimal solution. Earlier work in [4] examines the bound resulting from approximating the optimal value function as $$v_M(s) \approx qs + r_0 + \sum_{i \in M} r_i, \tag{3}$$ where r_0 represents the inherent value of keeping the knapsack available, r_i is the value of having item i available, and q is the marginal value of the remaining capacity. **Proposition 2.1** ([4]). The best possible bound given by approximation (3) is the solution of the semi-infinite LP $$\min_{q,r} qb + r_0 + \sum_{i \in N} r_i \tag{4a}$$ s.t. $$q\tilde{\mathsf{E}}_i(s) + r_0\bar{\mathsf{F}}_i(s) + r_i \ge c_i\mathsf{F}_i(s), \qquad \forall i \in N, s \in [0, b]$$ (4b) $$r, q \ge 0.$$ (4c) The finite-support strong dual of (4) provides an approximation with a more intuitive problem structure: $$\max_{x} \sum_{i \in N} \sum_{s \in [0,b]} c_i x_{i,s} \mathsf{F}_i(s) \tag{5a}$$ s.t. $$\sum_{i \in N} \sum_{s \in [0,b]} x_{i,s} \tilde{\mathsf{E}}_i(s) \le b \tag{5b}$$ $$\sum_{i \in N} \sum_{s \in [0,b]} x_{i,s} \bar{\mathsf{F}}_i(s) \le 1 \tag{5c}$$ $$\sum_{s \in [0,b]} x_{i,s} \le 1, \qquad \forall i \in N$$ (5d) $$x \ge 0$$, x has finite support. (5e) This is a two-dimensional, fractional multiple-choice knapsack problem [19], henceforth referred to as the MCK bound. MCK is efficiently solvable for many common distributions, such as those whose cumulative distribution function is piecewise convex [4]. This work also includes an extensive computational study indicating that MCK becomes tighter as the number of items increases, motivating the asymptotic analysis in Section 3. However, many instances still exhibit a noticeable bound/policy gap; Section 4 thus examines a new bound that tightens this gap while maintaining computational efficiency. #### 2.2 Pseudo-Polynomial Bound When item sizes have integer support, [24] proposes a pseudo-polynomial (PP) bound, $$\max_{x} \sum_{i \in N} \sum_{s=0}^{b} c_i x_{i,s} \mathsf{F}_i(s) \tag{6a}$$ s.t. $$\sum_{i \in N} \sum_{s=\sigma}^{b} x_{i,s} \bar{\mathsf{F}}_i(s-\sigma) \le 1, \qquad \qquad \sigma = 0, \dots, b$$ (6b) $$\sum_{s=0}^{b} x_{i,s} \le 1, \qquad i \in N \tag{6c}$$ $$x \ge 0,\tag{6d}$$ which arises from the value function approximation $$v_M(s) \approx \sum_{i \in M} r_i + \sum_{\sigma=0}^s w_{\sigma}. \tag{7}$$ When available, this bound is provably tighter than MCK [4] and serves as a benchmark to determine the strength of polynomially solvable bounds. We use both PP and MCK to gauge the strength of the new quadratic bound in Section 4. ### 3 Asymptotic Analysis We first define necessary terms and assumptions used in the analysis. The greedy ordering [10] sorts items with respect to their value-to-mean-size ratio, $c_i/\mathsf{E}[A_i]$, in non-increasing order. The greedy policy attempts to insert items in this order until either all of the items have successfully been inserted or an attempted insertion violates capacity. Our analysis in this section slightly generalizes the original problem setup by assuming the decision maker has access to an infinite sequence of items sorted according to the greedy ordering; in other words, $N = \{1, 2, ...\} = \mathbb{N}$ and $c_i/\mathbb{E}[A_i] \geq c_{i+1}/\mathbb{E}[A_{i+1}]$. We can thus study the asymptotic behavior of policy and bound as functions of capacity only. This problem setup differs from results in [2], where the item set N also grows as part of the analysis; our results are arguably stronger in the sense that they do not depend on the order in which items become available to the decision maker (as the entire sequence is always available). To further compare our techniques to [2], we include a second analysis under their regime below in Section 3.1. We must further clarify how we define v^* for the infinite item case, as the original formulation is defined recursively for finitely many items. Let $v_{[n]}^*(b)$ and $\mathrm{MCK}_{[n]}(b)$ denote the value function and MCK bound, respectively, with respect to the first n items according to the greedy ordering. Note that both of these quantities are monotonically nondecreasing sequences with respect to n, and for fixed b, $v_{[n]}^*(b) \leq \mathrm{MCK}_{[n]}(b)$ holds for every n [4]. We thus define $v_N^*(b) := \lim_{n \to \infty} v_{[n]}^*(b)$, and similarly define $\mathrm{MCK}(b) := \lim_{n \to \infty} \mathrm{MCK}_{[n]}(b)$. To show that both of these limits exist and are finite, it suffices to find a finite upper bound for $\mathrm{MCK}_{[n]}(b)$ for all n; such a bound is provided below. Let Greedy(b) refer to the expected policy value as a function of the knapsack capacity b; note this is already well defined for the infinite item case since the greedy ordering is assumed to be fixed. We use the greedy policy to show that MCK (5) is asymptotically tight; in the process, this also proves that the greedy policy is asymptotically optimal, yielding an alternate proof to [2]. To proceed with the analysis, we make the following assumptions. #### **Assumption 3.1.** Among all items i, - i) expectation is uniformly bounded from above and below, $0 < \mu \le \mathsf{E}(A_i) \le \hat{\mu}$, and - ii) variance is uniformly bounded from above, $Var(A_i) \leq V$, for some constants $\mu, \hat{\mu}, V$. **Assumption 3.2.** The sum of item values grows fast enough: $\sum_{i \leq k} c_i = \Omega(k^{\frac{1}{2} + \epsilon})$. For example, having a uniform non-zero lower bound for all c_i suffices. #### Assumption 3.3. $$c_0' := \sup_{\substack{s \in [0,\infty)\\ i=1,2,\dots}} \left[\mathsf{E}[A_i | A_i > s] - s \right] < \infty. \tag{8}$$ Intuitively, this last assumption governs the behavior of the size distributions' tails; we discuss some examples below. We separate the analysis into four auxiliary results. The first result is a probability statement used in later proofs. **Remark 3.4.** Denote $E[A_i]$ by the shorthand E_i . Then, $$\frac{\mathsf{E}_i - \tilde{\mathsf{E}}_i(s)}{\bar{\mathsf{F}}_i(s)} = \mathsf{E}[A_i | A_i > s] - s.$$ *Proof.* By definition, $$\frac{\mathsf{E}_i - \tilde{\mathsf{E}}_i(s)}{\bar{\mathsf{F}}_i(s)} = \frac{\mathsf{E}_i - (\bar{\mathsf{F}}_i(s)s + \mathsf{F}_i(s)\mathsf{E}[A_i|A_i \leq s])}{\bar{\mathsf{F}}_i(s)} = \frac{\mathsf{E}_i - \mathsf{E}[A_i|A_i \leq s]}{\bar{\mathsf{F}}_i(s)} + (\mathsf{E}[A_i|A_i \leq s] - s).$$ The fraction in the right hand side above simplifies to $$\begin{split} \frac{\mathsf{E}_i - \mathsf{E}[A_i|A_i \leq s]}{\bar{\mathsf{F}}_i(s)} &= \frac{(\mathsf{E}_i - \mathsf{E}[A_i|A_i \leq s])\mathsf{F}_i(s)}{\bar{\mathsf{F}}_i(s)\mathsf{F}_i(s)} \\ &= \frac{\mathsf{E}[A_i|A_i \leq s]\mathsf{F}_i(s)(\mathsf{F}_i(s) - 1) + \mathsf{E}[A_i|A_i > s]\bar{\mathsf{F}}_i(s)\mathsf{F}_i(s)}{\bar{\mathsf{F}}_i(s)\mathsf{F}_i(s)} \\ &= \mathsf{E}[A_i|A_i > s] - \mathsf{E}[A_i|A_i \leq s]. \end{split}$$ The second step establishes an upper bound for MCK. **Lemma 3.5.** Let $b_k := \sum_{i < k} \mathsf{E}[A_i]$. Under Assumptions 3.1 and 3.3, for any n, $$MCK_{[n]}(b_k) \le \sum_{i \le k} c_i P(A_i \le b_k) + c_0,$$ where c_0 is a constant independent of k and n. *Proof.* Fix k and n. Without loss of generality, we may assume $n \geq k$, since we can establish the upper bound $MCK_{[n]}(b_k) \leq MCK_{[k]}(b_k)$ for all $n \leq k$. For the sake of brevity we will abuse some notation in the proof, denoting b_k as b (and $E[A_i]$ as E_i). Recalling (4) is the dual to the MCK bound (5), we proceed to find a dual feasible solution. We start at the case $i \geq k$. Let us set $r_i = 0$, which corresponds to allotting no value to items after item k in the greedy ordering. We must satisfy $$q\tilde{\mathsf{E}}_i(s) + r_0\bar{\mathsf{F}}_i(s) \ge c_i\mathsf{F}_i(s), \quad \forall s \in [0,\infty).$$ Motivated by the possible case where $F_i(s) = 1$, if we set $q = c_k/E_k \ge c_i/E_i$, variable r_0 must now satisfy $$r_0\bar{\mathsf{F}}_i(s) \ge c_i\mathsf{F}_i(s) - q\tilde{\mathsf{E}}_i(s) = c_i - c_i\bar{\mathsf{F}}_i(s) - q\tilde{\mathsf{E}}_i(s) + \left(\frac{c_k}{\mathsf{F}_k}\right)\mathsf{E}_i - \left(\frac{c_k}{\mathsf{F}_k}\right)\mathsf{E}_i$$ $$= \left[c_i - \left(\frac{c_k}{\mathsf{E}_k}\right)\mathsf{E}_i\right] + \frac{c_k}{\mathsf{E}_k}\left[\mathsf{E}_i - \tilde{\mathsf{E}}_i(s)\right] - c_i\bar{\mathsf{F}}_i(s).$$ Should $\bar{\mathsf{F}}_i(s) = 0$, the constraint reduces to $0 \ge 0$. Thus, assuming $\bar{\mathsf{F}}_i(s) \ne 0$, there are three terms in the right hand side of the above inequality. Since r_0 must upper bound such constraints for all i and s, we drop the first and last terms, both of which are non-positive. This yields constraints $$r_0 \ge \frac{c_k}{\mathsf{E}_k} \left(\frac{\mathsf{E}_i - \tilde{\mathsf{E}}_i(s)}{\bar{\mathsf{F}}_i(s)} \right) = \frac{c_k}{\mathsf{E}_k} \left(\mathsf{E}[A_i | A_i > s] - s \right), \quad \forall i \ge k, \ s \in [0, b], \tag{9}$$ where the equality holds by Remark 3.4. Next, we examine the case i < k. To find a valid choice of r_i , we again are motivated by the (possible) case where $F_i(s) = 1$, which implies $$q\tilde{\mathsf{E}}_i(s) + r_0\bar{\mathsf{F}}_i(s) + r_i \ge c_i\mathsf{F}_i(s) \implies q\mathsf{E}_i + r_i \ge c_i \implies r_i \ge c_i - \frac{c_k}{\mathsf{F}_i}\mathsf{E}_i.$$ This is a non-negative value for r_i since the greedy ordering yields $$r_i = c_i - \frac{c_k}{\mathsf{E}_k} \mathsf{E}_i = \mathsf{E}_i
\Big[\frac{c_i}{\mathsf{E}_i} - \frac{c_k}{\mathsf{E}_k} \Big] \ge 0.$$ These choices of q and r_i present a dual objective of the desired form: $$\begin{split} qb + \sum_{i \in N} r_i &= b \Big(\frac{c_k}{\mathsf{E}_k}\Big) + \sum_{i < k} \mathsf{E}_i \Big(\frac{c_i}{\mathsf{E}_i} - \frac{c_k}{\mathsf{E}_k}\Big) = \sum_{i < k} c_i - \sum_{i < k} \mathsf{E}_i \Big(\frac{c_k}{\mathsf{E}_k}\Big) + b \Big(\frac{c_k}{\mathsf{E}_k}\Big) \\ &= \sum_{i < k} c_i - \sum_{i < k} \mathsf{E}_i \Big(\frac{c_k}{\mathsf{E}_k}\Big) + \sum_{i \le k} \mathsf{E}_i \Big(\frac{c_k}{\mathsf{E}_k}\Big) = \sum_{i < k} c_i + \mathsf{E}_k \Big(\frac{c_k}{\mathsf{E}_k}\Big) \\ &= \sum_{i \le k} c_i = \sum_{i \le k} c_i \mathsf{F}_i(b) + \sum_{i \le k} c_i \bar{\mathsf{F}}_i(b). \end{split}$$ Furthermore, noting that $\bar{\mathsf{F}}_i(b) = \mathsf{P}(A_i > b_k) = \mathsf{P}(A_i > \sum_{i \leq k} \mathsf{E}_i) \leq \mathsf{P}(A_i > k\underline{\mu}) \leq \mathsf{E}_i/k\underline{\mu} \leq \hat{\mu}/k\underline{\mu}$, the sum $\sum_{i \leq k} c_i \bar{\mathsf{F}}_i(b)$ can be upper bounded with $$\sum_{i \le k} c_i \bar{\mathsf{F}}_i(b) \le \sum_{i \le k} \frac{c_1 \mathsf{E}_i}{\mathsf{E}_1} \bar{\mathsf{F}}_i(b) \le \frac{c_1 \hat{\mu}}{\underline{\mu}} \sum_{i \le k} \bar{\mathsf{F}}_i(b) \le \frac{c_1 \hat{\mu}^2 k}{\underline{\mu}^2 k} = \frac{c_1 \hat{\mu}^2}{\underline{\mu}^2},$$ which is constant with respect to k and i. Therefore, the second sum in the objective can be upper bounded and absorbed into the c_0 term. It thus suffices to show that a valid choice for dual variable r_0 exists such that it is constant with respect to k (and b_k), for then we can also absorb r_0 into c_0 , completing the proof. Continuing the case where i < k, the constraints in (4) require that r_0 satisfy $$r_0\bar{\mathsf{F}}_i(s) \ge c_i\mathsf{F}_i(s) - r_i - q\tilde{\mathsf{E}}_i(s).$$ Should $\bar{\mathsf{F}}_i(s) = 0$, the choices of r_i and q reduce the constraint to $0 \ge 0$. If $\bar{\mathsf{F}}_i(s) \ne 0$, the condition is $$\begin{split} r_0 &\geq \frac{c_i \mathsf{F}_i(s) - r_i - q \tilde{\mathsf{E}}_i(s)}{\bar{\mathsf{F}}_i(s)} = \frac{c_i \mathsf{F}_i(s) - c_i + \frac{c_k \mathsf{E}_i}{\bar{\mathsf{E}}_k} - \frac{c_k \mathsf{E}_i(s)}{\bar{\mathsf{E}}_k}}{\bar{\mathsf{F}}_i(s)} \\ &= \frac{-c_i \bar{\mathsf{F}}_i(s) + \frac{c_k}{\bar{\mathsf{E}}_k} [\mathsf{E}_i - \tilde{\mathsf{E}}_i(s)]}{\bar{\mathsf{F}}_i(s)} = -c_i + \frac{c_k}{\bar{\mathsf{E}}_k} [\mathsf{E}[A_i | A_i > s] - s], \end{split}$$ where the last equality follows from Remark 3.4. This holds if r_0 satisfies $$r_0 \ge \frac{c_k}{\mathsf{E}_k} [\mathsf{E}[A_i | A_i > s] - s], \ \forall i \in [n], s \in [0, b],$$ which is exactly constraint (9) in the case that $i \geq k$. Recalling Assumption 3.3, setting $r_0 = c_1 c'_0 / \mathsf{E}_1$ satisfies (9) for all values of i and s. Since r_0 is constant with respect to k and n (and b_k), we can set $c_0 = c_1(\hat{\mu}^2/\mu^2 + c'_0/\mathsf{E}_1)$. This result holds for all n, completing the proof. The above result proves that the limit $MCK(b_k)$ exists and is finite. Let S_k denote the sum of the first k sizes according to the greedy ordering, $S_k := \sum_{i \leq k} A_i$. The expected value of the greedy policy when restricted to the first k items under capacity b_k is trivially $\sum_{i \leq k} c_i P(S_i \leq b_k)$. This is a lower bound for the actual greedy policy, which considers all of the items instead of the first k. By Lemma 3.5, for each b_k we have a lower bound of $$\frac{\operatorname{Greedy}(b_k)}{\operatorname{MCK}(b_k)} \ge \frac{\sum_{i \le k} c_i \mathsf{P}(S_i \le b_k)}{\sum_{i < k} c_i \mathsf{P}(A_i \le b_k) + c_0}.$$ The ratio in the left-hand side above is always at most 1 since the numerator is a feasible policy and the denominator is an upper bound on the optimal policy. We next examine the asymptotic nature of the lower bound. **Lemma 3.6.** Under Assumptions 3.1 and 3.2, $$\lim_{k \to \infty} \frac{\sum_{i \le k} c_i \mathsf{P}(S_i \le b_k)}{\sum_{i \le k} c_i \mathsf{P}(A_i \le b_k) + c_0} = 1.$$ *Proof.* It suffices to show that the numerator can be lower bounded by $\sum_{i \leq k} c_i - O(\sqrt{k})$, as the result will then follow from Assumption 3.2 and the trivial upper bound $P(A_i \leq b_k) \leq 1$. Recalling $b_k = \sum_{i \leq k} E_i = E[S_k]$, we first upper bound the probability $$P(S_{i} > b_{k}) = P(S_{i} - E[S_{i}] > E[S_{k} - S_{i}]) \le P(|S_{i} - E[S_{i}]| > E[S_{k} - S_{i}])$$ $$= P((S_{i} - E[S_{i}])^{2} > (E[S_{k} - S_{i}])^{2}) \le \frac{Var(S_{i})}{\left(\sum_{i < j < k} E[A_{i}]\right)^{2}} \le \frac{iV}{(k - i)^{2}\mu^{2}},$$ (10) where the second inequality comes from Markov's (or Chebyshev's) inequality. Next, we define upper bound $\hat{c} := c_1 \hat{\mu} / \mathsf{E}_1 \ge c_i$. Let j be some number such that j < k, to be determined. Using (10) yields $$\begin{split} \sum_{i \leq k} \ c_i \mathsf{P}(S_i \leq b_k) &= \sum_{i \leq j} \ c_i \mathsf{P}(S_i \leq b_k) + \sum_{j < i \leq k} \ c_i \mathsf{P}(S_i \leq b_k) \\ &\geq \sum_{i \leq j} \ c_i \Big[1 - \frac{iV}{(k-i)^2 \mu^2} \Big] + \sum_{j < i \leq k} \ c_i (1 - \mathsf{P}(S_i > b_k)) \geq \sum_{i \leq k} \ c_i - \frac{\hat{c}V}{\mu^2} \sum_{i \leq j} \frac{i}{(k-i)^2} - \hat{c}(k-j) \\ &\geq \sum_{i \leq k} \ c_i - \frac{\hat{c}V}{\mu^2} \int_0^{j+1} \frac{x}{(k-x)^2} dx - \hat{c}(k-j) = \sum_{i \leq k} \ c_i - \frac{\hat{c}V}{\mu^2} \Big[\frac{j+1}{k-j-1} + \ln(k-j-1) - \ln k \Big] - \hat{c}(k-j) \\ &= \sum_{i \leq k} \ c_i - \frac{\hat{c}V}{\mu^2} \Big[\frac{k-\sqrt{k}}{\sqrt{k}} + \ln(\sqrt{k}) - \ln k \Big] - \hat{c}(\sqrt{k}+1) = \sum_{i \leq k} \ c_i - O(\sqrt{k}). \end{split}$$ The second to last equality occurs when we make the suitable choice $k-j-1=\sqrt{k}$, that is, $j=k-\sqrt{k}-1$. Letting (k-j-1) be of order \sqrt{k} consequently minimizes the order of the second and third terms (those that are not $\sum_{i\leq k} c_i$) to be of order \sqrt{k} ; one can easily check that choosing a different power of k will lead to an overall higher order for either the second term or third term. Lemma 3.6 examines the limit in terms of the number of items in the knapsack, a discrete sequence dependent on k, but we wish to show the asymptotic property over all positive values b. Therefore, we formalize this result in terms of the increasing knapsack capacity b. **Theorem 3.7.** Suppose we are given a greedily ordered infinite sequence of items satisfying Assumptions 3.1, 3.2, and 3.3. Then, $$\frac{\operatorname{Greedy}(b)}{\operatorname{MCK}(b)} \to 1 \text{ as } b \to \infty. \tag{11}$$ *Proof.* Given b, let $b_{k_{-}}$ and $b_{k_{+}}$ refer to the nearest b_{k} values below and above b, respectively. Then, trivially $Greedy(b) \geq Greedy(b_{k_{-}})$. Further, $MCK(b) \leq MCK(b_{k_{+}})$ since the objective of MCK is nondecreasing with b. Therefore we obtain $$\frac{\operatorname{Greedy}(b)}{\operatorname{MCK}(b)} \geq \frac{\operatorname{Greedy}(b_{k_-})}{\operatorname{MCK}(b_{k_+})} \geq \frac{\operatorname{Greedy}(b_{k_-})}{\operatorname{MCK}(b_{k_-}) + c_{k_+} \mathsf{F}_{k_+}(b_{k_+})} \geq \frac{\operatorname{Greedy}(b_{k_-})}{\operatorname{MCK}(b_{k_-}) + c_0} \to 1.$$ The second inequality follows from decomposing the upper bound of $MCK(b_{k_+})$ into the upper bound of $MCK(b_{k_-})$ and the additional objective term involving item k_+ , while the last inequality follows because every $c_i F_i(b)$ term can be upper bounded by a constant, as in the proof of Lemma 3.6. The final expression goes to 1 by Lemma 3.6. This result is consistent with the computational experiments in [4] that spurred our analysis, which tested the MCK bound under the following distributions: bounded discrete distributions with two to five breakpoints, uniform, and exponential. Under all such distributions, the data suggested that MCK and Greedy were asymptotically equivalent; comparing with Assumption 3.3: - Under the discrete and uniform distributions, the sizes exhibit uniformly bounded support. Thus, the value c'_0 defined in Assumption 3.3 exists and is finite (it is simply the upper bound on item size support), and the theorem applies. - Under the exponential distribution, suppose $\mathsf{E}[A_i] = 1/\lambda_i$. By the memoryless property, for any i and any s, $$\mathsf{E}[A_i|A_i>s]-s=(1/\lambda_i+s)-s=1/\lambda_i<\infty.$$ Thus, if the item sizes have a uniformly bounded mean, c'_0 exists and is finite, and the theorem applies. According to the analysis in the proof of Lemma 3.6, if the sum of the item values grows as $\Omega(g(k))$, the numerator of the fraction is lower bounded by $\Omega(g(k) - \sqrt{k})$; hence, the rate of convergence is $O(\sqrt{k}/g(k))$. For example, if g(k) = k, the rate of convergence is $O(k^{-1/2})$. Corollary 3.8. The rate of convergence of (11) is $O(\sqrt{k}/g(k))$, where $\sum_{i \le k} c_i = \Omega(g(k))$. Assumption 3.3 is not always straightforward to check for a particular distribution, so we provide an alternate set of sufficient conditions. #### **Proposition 3.9.** Suppose the following hold: - i) Among those items with bounded support, there exists a uniform finite upper bound. - ii) Among all items i without bounded support, there exists an $\alpha > 0$ such that - (a) $P(A_i > t) \ge e^{-\alpha t}$ for all t > 0, and - (b) $M_i(\alpha) := E[e^{\alpha A_i}] \leq M(\alpha) < \infty$; that is, the moment generating function at α exists and is uniformly bounded among such i. - iii) For all i, $P(A_i > 0) \ge z > 0$. Note that for continuous distributions we can trivially take z = 1 since A_i is nonnegative. Then, $$c_0' = \sup_{\substack{s \in [0,\infty)\\ i=1,2,\dots}} \left[\mathsf{E}[A_i|A_i > s] - s \right] < \infty.$$ *Proof.* There are three cases for each item: an item has bounded support, unbounded support and zero probability of being 0, or unbounded support and nonzero probability of being
0. For each case we exhibit a uniform bound across all items of that case, then set c'_0 to the maximum of these three absolute upper bounds. The bounded support case is taken care of by the first condition. For the second case, consider any item i. Since A_i is a nonnegative random variable, by Markov's inequality $$P(A_i > t) = P(e^{\alpha A_i} > e^{\alpha t}) \le \frac{E[e^{\alpha A_i}]}{e^{\alpha t}}.$$ Further, recall for nonnegative random variables the identity $\mathsf{E}[A_i] = \int_{t=0}^\infty \bar{\mathsf{F}}(t) dt$. Thus, for the random variable $(A_i - s)$, $$\begin{split} \mathsf{E}[A_i - s | A_i > s] &= \frac{\int_{t=0}^\infty \mathsf{P}(A_i - s > t) dt}{\mathsf{P}(A_i > s)} \leq \frac{1}{\mathsf{P}(A_i > s)} \int_{t=0}^\infty \frac{\mathsf{E}[e^{\alpha A_i}]}{e^{\alpha(t+s)}} dt \\ &= \frac{\mathsf{E}[e^{\alpha A_i}]}{\mathsf{P}(A_i > s) e^{\alpha s}} \Big(\frac{1}{\alpha}\Big) \leq \frac{\mathsf{M}(\alpha)}{e^{-\alpha s} e^{\alpha s}} \Big(\frac{1}{\alpha}\Big) = \frac{\mathsf{M}(\alpha)}{\alpha} < \infty. \end{split}$$ The first inequality follows from the Markov bound presented earlier on $P(A_i > t + s)$, while the second inequality follows from both parts of the second assumption. This provides an absolute upper bound for $E[A_i - s | A_i > s]$ for all values of $s \in (0, \infty)$, taking care of the second case of items. For the third case of items, it suffices to uniformly bound the case that s=0. By the third assumption (and earlier assumption of uniformly bounded mean) we have $$\mathsf{E}[A_i - 0 | A_i > 0] = \frac{\mathsf{E}[A_i]}{\mathsf{P}(A_i > 0)} \le \frac{\hat{\mu}}{z} < \infty.$$ Since the above analysis does not depend on the choice of i, this completes the proof. #### 3.1 A Second Regime The results in [2] provide an alternate asymptotic analysis of the greedy policy in which items become available to the decision maker incrementally as capacity grows; when the number of items k grows, each new item is added to the same subset of already available items. The authors examine an upper bound based on information relaxation techniques, and provide a case analysis dependent on the growth of capacity as a function of the number of available items, to show under what conditions the greedy policy is asymptotically optimal. Motivated by this result, we show that the MCK bound allows for similar conclusions. Consider denoting $\operatorname{Greedy}(k,b(k))$ as the expected value gained from the greedy policy given k items and b(k) capacity; we now make explicit the fact that b is a function of k. Similarly, let $\operatorname{MCK}(k,b(k))$ be the optimal value of MCK given k items and b(k) capacity. Unlike the previous framework, we no longer make any assumption about the ordering of items, implying in particular that items are possibly re-sorted for each k to calculate $\operatorname{Greedy}(k,b(k))$. We must therefore also make an additional assumption. **Assumption 3.10.** The value-to-mean-size ratios are uniformly bounded from above, $c_i/E_i \leq \hat{r}$, for some constant \hat{r} . This assumption is satisfied if the items are sorted in the greedy order, as discussed in the proofs of Lemma 3.6 and Theorem 3.7. **Theorem 3.11.** Let f(k) be a non-negative, monotonically increasing function satisfying $f(k) \to \infty$ as $k \to \infty$. If Assumptions 3.1 and 3.10 hold, $$\lim_{k \to \infty} \frac{\operatorname{Greedy}(k, b(k))}{\operatorname{MCK}(k, b(k))} = 1$$ under any of the following conditions: - (a) Capacity scales as $b(k) = \sum_{i \le k} \mathsf{E}_i = \Theta(k)$ (linearly), and $\sum_{i \le k} c_i = \Omega(k^{\frac{1}{2} + \epsilon})$. - (b) Capacity scales as $b(k) = \sum_{i \leq f(k)} \mathsf{E}_i = \Omega(k)$ (f(k) is superlinear), and $\sum_{i \leq k} c_i = \Omega(k^{\frac{1}{2} + \epsilon})$. - (c) Capacity scales as $b(k) = \sum_{i \le f(k)} \mathsf{E}_i = o(k)$ (f(k) is sublinear), $$\sum_{i \le f(k)} c_i = \Omega([\max\{f(k)/f(\sqrt{k}), f(\sqrt{k})\}]^{1+\epsilon}),$$ $\ln f(k) = o(\max\{f(k)/f(\sqrt{k}), f(\sqrt{k})\}),$ and the following weaker version of Assumption 3.3 holds: $$\sup_{\substack{s \in [0,\infty)\\ i=1,2,\dots,k}} \left[\mathsf{E}[A_i | A_i > s] - s \right] = o(f(k)). \tag{12}$$ In the above summations, indices i are ordered according to the greedy ordering for any given k. Due to length and similarity to the proof of Theorem 3.7, the proof of this theorem can be found in Appendix A. For comparison, in [2] the authors state that their assumptions are difficult to verify, and provide sufficient conditions that are very similar to our assumptions here. For example, they assume uniformly bounded means and variances, as in Assumption 3.1. Both results assume similar uniform upper bounds on the value-to-mean-size ratios. Our only additional assumptions lower bound the item mean sizes and the growth rate of the sum of item values. This alternative perspective to the asymptotic result also allows us to give conditions for which MCK is asymptotically optimal regardless of the growth rate of capacity b(k) relative to the number of items k. As under the first regime with Assumption 3.2, the value conditions in the above theorem are satisfied if there exists a uniform non-zero lower bound for all c_i . Furthermore, the supremum condition (8) is weakened for (12) in the sublinear case, and is notably not necessary for the linear and superlinear cases. Finally, although the sublinear case in part (c) of the theorem includes an additional condition, it is easily verified for standard functions, such as $\log k$ or k^{α} for $0 < \alpha < 1$. #### 3.2 Case Study: Power Law Distributions The conditions in Assumption 3.1 and Proposition 3.9 require uniformly bounded moments; first and second moments in the former, all moments in the latter. Motivated by this technical assumption, we investigate the asymptotic performance of MCK for distributions that do not satisfy these conditions. Suppose item sizes A_i are defined by the power law distributions $$\mathsf{F}_i^1(s) = 1 - \frac{a_i}{s + a_i}, \qquad \mathsf{F}_i^2(s) = 1 - \frac{a_i^2}{(s + a_i)^2}, \qquad \mathsf{F}_i^3(s) = 1 - \frac{8a_i^3}{(s + 2a_i)^3}, \qquad s \geq 0,$$ where the a_i are constants. One can easily check that these are valid distribution functions, and that each family of distributions have increasingly more bounded moments: F^1_i has no bounded moments, F^2_i has only bounded mean, and F^3_i has only bounded mean and variance. Furthermore, the F^2_i and F^3_i distributions are designed to have have mean a_i . We perform computational experiments under these distributions for the MCK bound on instances with increasing numbers of items. These distribution functions are concave, and solving the MCK bound is therefore somewhat more involved; we provide details in Appendix B. We use the advanced knapsack instance generator from www.diku.dk/~pisinger/codes.html to generate deterministic knapsack instances and use the resulting deterministic sizes a_i as the basis for the distributions. The 100-item and 200-item deterministic instances are the same as those generated and used for the experiments in [4], while the 1000-item and larger instances were created specifically for this test. Of the newly generated instances, there were ten correlated and uncorrelated instances each for the 1000- and 2000-item instances, while only five each for the 5000- and 10000-item instances. (The generator's authors observe that deterministic instances tend to be more difficult when sizes and values are correlated.) Capacity is scaled to maintain a fill rate between 2 and 4; the 200-item instances have capacity 1000, 1000-item instances have five times the capacity, 5000, and so on for the larger instances. To gauge the strength of MCK under these circumstances, we examine a slightly modified greedy policy, which attempts to insert items in non-increasing order of their profitability ratio at full capacity, $c_i \mathsf{F}_i(b)/\tilde{\mathsf{E}}_i(b)$, the ratio of expected value to mean truncated size. This modification of the greedy policy is motivated by various theoretical and computational results, e.g. [2, 4, 9], and sorting items by this ratio — as opposed to the slightly different ratio c_i/E_i used in Theorem 3.7 — is more suitable for computational purposes. Furthermore, the two ratios are effectively equivalent as b tends to infinity, which these ever-increasing item instances simulate. In all of the computational experiments throughout this section, we used CPLEX 12.6.1 for all LP solves, running on a MacBook Pro with OS X 10.11.4 and a 2.5 GHz Intel Core i7 processor. Table 1 summarizes the results based on the number of items and whether the generated deterministic item values and sizes are correlated. The percentages refer to the geometric mean across all bound/policy gap percentages of that data type (the closer to 100%, the smaller the gap). For full raw data on all instances, refer to Tables 4 and 5 in Appendix C. From the summary table, Table 1: Summary Results - Power Law MCK | Case | 100 items | 200 | 1000 | 2000 | 5000 | 10000 | |------------------------------|-----------|---------|---------|---------|---------|---------| | Correlated: F^1 | 110.78% | 112.62% | 112.51% | 112.71% | 110.72% | 111.10% | | Correlated: F^2 | 104.97% | 104.30% | 103.11% | 101.99% | 101.74% | 101.66% | | Correlated: F^3 | 103.07% | 102.19% | 101.17% | 100.64% | 100.48% | 100.54% | | Uncorrelated: F ¹ | 109.72% | 110.81% | 111.20% | 110.74% | 110.01% | 110.41% | | Uncorrelated: F^2 | 104.13% | 103.29% | 102.22% | 101.36% | 101.41% | 101.42% | | Uncorrelated: F^3 | 102.21% | 101.66% | 100.87% | 100.47% | 100.35% | 100.49% | the F^1 instances clearly do not converge to tightness, with the gap even increasing from 100 to 200 items. The F^2 and F^3 instances seem to
exhibit the asymptotic property, although at a significantly slower rate than the previously tested distributions in [4], which did satisfy the moment generation function assumption. Under said previous computational study and distributions, the 200-item instances had a gap of no more than a fraction of a percent; here, the gap for F^2 remains above one percent even at 10000-item instances, while the gap for F^3 does not reach below one percent until 1000 items. Although F^3 exhibits clear convergence, F^2 is debatable in that the distribution may converge to a non-zero gap. ## 4 Quadratic Bound Recalling the original problem formulation (2) for the stochastic knapsack problem, any feasible v provides an upper bound $v_N(b)$ on the optimal expected value. One possibility is the MCK relaxation [4], which approximates the value function with the affine function (3). The alternate approximation (7) of the value function uses an arbitrary non-decreasing function of remaining capacity s; this yields the PP bound from [24]. In this section, we examine the efficacy of a value function approximation that extends (3) and compare its performance to MCK and PP. We introduce quadratic variables that model diminishing returns stemming from having pairs of items in the remaining set M: $$v_M(s) \approx qs + r_0 + \sum_{i \in M} r_i - \sum_{\{k,\ell\} \subseteq M} r_{k\ell}. \tag{13}$$ Assuming $r \geq 0$, this approximation is submodular with respect to M for any fixed capacity s, and our motivation for the approximation is at least twofold. First, we intuitively expect the marginal value of an item's availability to decrease as more items are already available at the same capacity, simply because there is a smaller chance all the items can fit. Submodularity exactly captures this notion of diminishing returns. Second, submodular minimization is known to be polynomially solvable (see e.g. [13, 29]), suggesting the resulting approximation should maintain theoretical efficiency, which PP does not; we further explore and verify this below. Furthermore, the nature of the approximation's approach is different from PP, adding an extra layer of interest to comparing the two bounds: Whereas PP differs from MCK by more precisely valuing remaining capacity at each (M, s) state, the quadratic approach focuses more on the combinatorial properties of the current state, i.e. the interactions between pairs of remaining items. Given our asymptotic results from Section 3, and considering that both MCK and PP leave a significant gap in instances of small to medium size [4], our goal with this new approximation is to tighten the gap while maintaining polynomial solvability. #### 4.1 Structural Properties We apply the value function approximation (13) to the left hand side of the constraints in (2) to produce $$\begin{split} v_{M \cup i}(s) - \mathsf{P}(A_i \leq s) \mathsf{E}[v_M(s - A_i) | A_i \leq s] \\ &= qs + r_0 + \sum_{j \in M \cup i} r_j - \sum_{\{k,l\} \subseteq M \cup i} r_{kl} - \mathsf{F}_i(s) \mathsf{E}\left[q(s - A_i) + r_0 + \sum_{j \in M} r_j - \sum_{\{k,l\} \subseteq M} r_{kl} \middle| A_i \leq s\right] \\ &= qs\bar{\mathsf{F}}_i(s) + q\mathsf{F}_i(s)\mathsf{E}[A_i | A_i \leq s] + r_i - \sum_{k \in M} r_{ik} + r_0\bar{\mathsf{F}}_i(s) + \bar{\mathsf{F}}_i(s) \sum_{j \in M} r_j - \bar{\mathsf{F}}_i(s) \sum_{\{k,l\} \subseteq M} r_{kl} \\ &= q\tilde{\mathsf{E}}_i(s) + r_i - \sum_{k \in M} r_{ik} + \bar{\mathsf{F}}_i(s) \left[r_0 + \sum_{j \in M} r_j - \sum_{\{k,l\} \subseteq M} r_{kl}\right]. \end{split}$$ Thus, the resulting semi-infinite LP is $$\min_{q,r} qs + r_0 + \sum_{i \in N} r_i - \sum_{\{k,l\} \subseteq N} r_{kl}$$ (14a) s.t. $$q\tilde{\mathsf{E}}_{i}(s) + r_{i} - \sum_{k \in M} r_{ik} + \bar{\mathsf{F}}_{i}(s) \left[r_{0} + \sum_{j \in M} r_{j} - \sum_{\{k,l\} \subseteq M} r_{kl} \right]$$ (14b) $$\geq c_i \mathsf{F}_i(s), \quad \forall i \in N, M \subseteq N \setminus i, s \in [0, b]$$ $$q, r \geq 0 \tag{14c}$$ To solve (14) above, henceforth referred to as the Quadratic (Quad) bound, we must efficiently manage the uncountably many constraints. We next provide a characterization of the CDF that allows us to solve (14) efficiently in many cases of interest. **Proposition 4.1.** If F_i is piecewise convex in [0,b], to solve (14) it suffices to enforce constraints only at s values corresponding to the CDF's breakpoints between convex intervals. *Proof.* Fix (i, M); the separation problem is equivalent to $$\max_{s \in [0,b]} \bigg\{ \bigg(r_0 + c_i + \sum_{j \in M} r_j - \sum_{\{k,l\} \subseteq M} r_{kl} \bigg) \mathsf{F}_i(s) - q \tilde{\mathsf{E}}_i(s) \bigg\}.$$ Suppose the coefficient of $F_i(s)$ in the separation problem above is nonnegative. Then by the concavity of \tilde{E}_i , if F_i is convex, the objective is maximized in at least one of the endpoints $s \in \{0, b\}$. Therefore, satisfying the constraints at the endpoints implies the constraints over all of [0, b] are satisfied. By extension, if F_i is piecewise convex, only constraints at the endpoints of each convex interval are necessary. It thus suffices to establish that, in any feasible solution, the coefficient of $F_i(s)$ in the separation problem is nonnegative. That is, we wish to show for fixed i and M, $$r_0 + c_i + \sum_{j \in M} r_j - \sum_{\{k,l\} \subseteq M} r_{kl} = v_M(0) + c_i \ge 0.$$ This follows from the feasibility of the solution for (14); this LP is a restriction of the original LP (2), therefore v is feasible for (2), and a standard DP induction argument shows $v_M(0) \geq v_M^*(0) \geq 0$ for any $M \subseteq N$. We reproduce the argument here in brief: In the base case $M = \emptyset$, we have $v_{\varnothing}(0) = r_0 \ge 0 = v_{\varnothing}^*(0)$ by definition. For larger M, applying the constraints in (2) and induction yields $$v_M(0) \ge \max_{i \in M} \mathsf{F}_i(0)(c_i + v_{M \setminus i}(0)) \ge \max_{i \in M} \mathsf{F}_i(0)(c_i + v_{M \setminus i}^*(0)) = v_M^*(0).$$ Several commonly used distributions have piecewise convex CDF's, including discrete and uniform distributions. In particular, this result implies that for discrete distributions with integer support (which the PP bound assumes) we need only examine constraints corresponding to integer s values. In specific cases when the CDF is not piecewise convex, it is also possible to argue that only the constraints at certain fixed s values are necessary. For example, by analogous arguments to [4], we can show that the Quad bound can be solved for the exponential, geometric, and conditional normal distributions by only including constraints for $s \in \{0, b\}$. Despite this result, the separation problem still has exponentially many constraints for a fixed (i, s) pair since it depends on all subsets $M \subseteq N$. That is, for a fixed (i, s) we wish to find $$\min_{M \subseteq N \setminus i} \left\{ -\sum_{k \in M} r_{ik} + \bar{\mathsf{F}}_i(s) \left(\sum_{j \in M} r_j - \sum_{\{k,\ell\} \subseteq M} r_{k\ell} \right) \right\},\,$$ which is a submodular function with respect to M, implying the separation problem can be solved in polynomial time. To solve the problem, we rewrite it as the integer program $$\min_{y,z} \sum_{k \in N \setminus i} y_k (r_k \bar{\mathsf{F}}_i(s) - r_{ik}) - \sum_{\{k,\ell\} \subseteq N \setminus i} r_{k\ell} z_{k\ell} \bar{\mathsf{F}}_i(s)$$ (15a) s.t. $$z_{k\ell} \le y_k, \ z_{k\ell} \le y_\ell, \quad \forall \{k,\ell\} \subseteq N \setminus i$$ (15b) $$y \in \{0, 1\}^{N \setminus i}, \quad z \ge 0. \tag{15c}$$ **Proposition 4.2.** The feasible region of the linear relaxation of (15) is integral. *Proof.* The separation problem can be viewed as an integer program over monotone inequalities [17]. As such, the constraint matrix is totally unimodular. This follows from the fact that the rows only have at most two non-zero entries, all of which are in $\{-1,1\}$, and each sum to 0. (We use the TU matrix characterization where any subset of columns can be partitioned into two sets whose difference of sums is in $\{-1,0,1\}$.) With respect to computational experiments, recall that we only consider distributions with integer support, since we wish to compare this bound to PP. So we must only consider constraints where s has positive support, and solve the separation problem with respect to each (i, s) pair by solving a simple LP. #### 4.2 Computational Experiments We next present the setup and results of a series of experiments intended to compare Quadratic bound (14) with the MCK relaxation from [4] and PP bound from [24]. As an additional comparison, we also include the recently proposed *Penalized Perfect Information Relaxation* (PPIR) bound from [2]. PPIR simulates item size realizations, and for each realization solves a modified version of the deterministic knapsack problem with a penalty to punish the decision maker's early access to realized sizes (a violation of non-anticipativity). The expected value of this deterministic knapsack is then the bound, and it is estimated with the sample mean of the simulated realizations. In order to benchmark the bounds, we consider the following policies. First, we use the modified greedy policy as defined in Section 3.2. Another natural policy is the *adaptive greedy* policy. This policy does not fix an ordering of the items, but rather at every encountered state (M, s) computes the profitability ratios at current capacity $c_i \mathsf{F}_i(s)/\tilde{\mathsf{E}}_i(s)$ for remaining items $i \in M$ and chooses a maximizing item; this is equivalent to resetting the greedy order by assuming (M, s) is the initial state. Lastly, the value function approximation (7) can be used to construct a policy by substituting it into the DP recursion (1). We refer to this policy as the *PP dual policy* to match the bound name. This policy uses an optimal solution (r^*, w^*) to the dual of (6) to choose an item; at state (M, s), the policy chooses
$$\underset{i \in M}{\operatorname{arg max}} \bigg\{ \mathsf{F}_i(s) \bigg(c_i + \sum_{k \in M \setminus i} r_k^* \bigg) + \sum_{\sigma=0}^s w_\sigma^* \mathsf{F}_i(s-\sigma) \bigg\}.$$ To calculate the quantities that rely on simulation, including all the policies and the PPIR bound, we simulate item size realizations 400 times and report the corresponding sample mean. To our knowledge, there is no available test bed of stochastic knapsack instances; however, there are a number of deterministic knapsack instances and generators available. Therefore, to obtain stochastic knapsack instances, we used deterministic knapsack instances as a "base" from which we generated the stochastic instances for our experiments. From each deterministic instance we generated seven stochastic ones by varying the item size distribution and keeping all other parameters the same. Given that a particular item i had size deterministic size a_i (always assumed to be an integer), we generated seven discrete probability distributions: **D1** 0 with probability 1/3 or $3a_i/2$ with probability 2/3. **D2** 0 or $2a_i$ each with probability 1/2. **D3** 0 with probability 2/3 or $3a_i$ with probability 1/3. **D4** 0 with probability 3/4 or $4a_i$ with probability 1/4. **D5** 0 with probability 4/5 or $5a_i$ with probability 1/5. **D6** 0 or $2a_i$ each with probability 1/4, a_i with probability 1/2. **D7** 0, a_i or $3a_i$ each with probability 1/5, $a_i/2$ with probability 2/5. Note that all distributions are designed so an item's expected size equals a_i ; recall that we examine discrete distributions because the PP bound assumes integer size support. Our motivation for testing the Bernoulli distributions D1-D5 is at least twofold. First, these distributions maximize the importance of the order in which items are inserted because size realizations are only at the most extreme (the endpoints of support), as compared to distributions more concentrated around the mean, where finding a collection of fitting items is intuitively more important. For example, D2 and D3 are in the former class of distributions, while D6 and D7 have the same size support respectively but fall into the latter class. Second, in preliminary experiments, we observed that these types of instances exhibit a significant gap between the best performing bound and MCK. We thus wish to examine how much Quad performs under such circumstances. We lastly note that, to ensure integer support for instances of type D1 and D7, after generating the deterministic instance we doubled all item sizes a_i and the knapsack capacity. The deterministic base instances came from two sources. We took seven small instances from the repository http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01. html; they have 5 to 15 items and varying capacities. We generated twenty medium instances, of 20 items each and 200 capacity, from the advanced knapsack instance generator from www.diku. dk/~pisinger/codes.html. These instances were designed following the same rules used in [4], with ten correlated and uncorrelated instances each. We do not extend the experiments to larger instances due to the asymptotic results in Section 3 — we expect the MCK bound to already have negligible gaps in larger instances, and the empirical results in [4] confirm this. The smaller instances were solved via brute force, that is, by using the normal problem formulation and only examining constraints corresponding to s values with positive support. As the complexity of (14) increases exponentially with the number of items, the larger instances were solved via constraint generation, where the interim LP had a capped number of constraints per (i, s) pair. For each (i, s) pair, we solve the corresponding separation problem (15) to determine which constraint to add (corresponding to an (i, s, M) tuple). Should we reach the constraint cap in an iteration, the constraint that had not been tight for the most number of iterations was dropped first. The constraint cap varied from 30 to 45 depending on the instance to minimize computation time. As in Section 3.2, we used CPLEX 12.6.1 for all LP solves in this section, running on a MacBook Pro with OS X 10.11.4 and a 2.5 GHz Intel Core i7 processor. Tables 2 and 3 below contain a summary of our experiments for the different bounds. The tables are interpreted as follows. For each instance, we choose the largest policy as a baseline, and divide all bound values by this baseline. The first table presents the geometric mean of this ratio, calculated over all instances represented in that row. We show the ratios as percentages for ease of reading; thus, bound ratios should be greater than or equal to 100%. For the second table, we count the number of successes among the bounds and divide by the total number of instances represented in that row. A success for a particular instance indicates the bound with the smallest ratio. If two ratios are within 0.1% of each other, we consider them equivalent; thus, the presented success rates for each row do not necessarily sum to 100%. For a full listing of the raw bound and policy data, refer to Appendix C. | Table | 2. | Summary | Results | - Ratios | |--------------|----|----------|----------|-----------| | \mathbf{I} | 4. | Dummar v | ricourio | - 1000108 | | Distribution | Case | MCK | PP | Quad | PPIR | |--------------|------------------------|---------|---------|---------|---------| | D1 | small | 115.70% | 110.38% | 115.30% | 135.99% | | | 20cor | 108.15% | 107.94% | 108.05% | 127.23% | | | 20uncor | 106.34% | 106.22% | 106.19% | 111.30% | | D2 | small | 127.67% | 116.51% | 126.48% | 124.35% | | | 20cor | 111.33% | 111.31% | 110.83% | 126.37% | | | 20uncor | 110.64% | 110.24% | 110.04% | 112.90% | | D3 | small | 124.21% | 121.65% | 112.00% | 105.34% | | | 20cor | 118.52% | 117.27% | 116.91% | 119.05% | | | 20uncor | 116.85% | 115.50% | 114.81% | 109.89% | | D4 | small | 120.67% | 120.49% | 105.49% | 102.17% | | | 20cor | 124.13% | 123.41% | 120.98% | 111.75% | | | 20uncor | 122.22% | 120.83% | 118.44% | 107.76% | | D5 | small | 128.77% | 126.53% | 105.65% | 101.79% | | | 20cor | 128.98% | 127.21% | 122.94% | 107.97% | | | 20uncor | 125.38% | 124.52% | 118.67% | 108.68% | | D6 | small | 113.78% | 108.35% | 113.25% | 139.41% | | | 20cor | 105.99% | 105.43% | 105.96% | 135.72% | | | 20uncor | 105.62% | 105.22% | 105.54% | 117.18% | | D7 | small | 120.43% | 108.72% | 116.72% | 130.61% | | | 20cor | 107.30% | 102.49% | 106.73% | 141.31% | | | 20uncor | 107.21% | 104.95% | 105.78% | 120.01% | Generally speaking, Quad seems to do significantly better in the medium instances than the Table 3: Summary Results - Success Rates | Distribution | Case | MCK | PP | Quad | PPIR | |--------------|------------------------|-----|------|------|------| | D1 | small | 0% | 86% | 14% | 0% | | | 20cor | 0% | 100% | 70% | 0% | | | 20uncor | 0% | 70% | 80% | 10% | | D2 | small | 0% | 71% | 29% | 0% | | | 20cor | 0% | 10% | 100% | 0% | | | 20uncor | 0% | 10% | 80% | 20% | | D3 | small | 0% | 0% | 0% | 100% | | | 20cor | 0% | 0% | 70% | 30% | | | 20uncor | 0% | 10% | 0% | 100% | | D4 | small | 0% | 0% | 14% | 86% | | | 20cor | 0% | 0% | 0% | 100% | | | 20uncor | 0% | 0% | 0% | 100% | | D5 | small | 0% | 0% | 57% | 43% | | | 20cor | 0% | 0% | 0% | 100% | | | 20uncor | 0% | 0% | 0% | 100% | | D6 | small | 0% | 100% | 0% | 0% | | | 20cor | 20% | 100% | 40% | 0% | | | 20uncor | 20% | 90% | 40% | 0% | | D7 | small | 0% | 86% | 0% | 14% | | | 20cor | 0% | 100% | 0% | 0% | | | 20uncor | 10% | 100% | 10% | 0% | small instances, performing (slightly) worse than PP for the small instances and often either comparable to or even better than PP for the medium instances. At the least, among instances with the largest MCK/PP gap, Quad seems to be roughly halfway between the MCK and PP bounds. Among the medium instances in which PP performs better, Quad is close in value to PP — besides D7, the two bounds were within a .5% difference in ratios. Most notably, the Bernoulli distributions of D1-D5 provide a class of distributions in which Quad exhibits a trend of increasingly greater improvement from PP. In particular, Quad outperformed PP across all medium instances for D5, closing the gap as much as 6%. (For D4 and D5, two of the small instances were omitted in the bound/policy gap calculation because of a negative gap, likely due to how close to optimal Quad performs for these distributions on the small instances.) In all such cases for these distributions, not only is the bound/policy gap for PP considerably large (and so there is considerable room for improvement), but the percent drop from PP to Quad is also large compared to that from MCK to PP. This suggests that, for distributions with extreme possible outcomes, Quad outperforms PP in both an absolute sense (the bound/policy gap) and relative sense (improvement from the next best bound). Intuitively, interactions between remaining items (captured by the quadratic variables) have a larger impact on the optimal solution when there are less items to choose from, and/or when an item is more likely to have a large realized size; these computational results reflect this. Comparing Quad to the simulation-based PPIR bound, we first note that under discrete distributions, Quad is a polynomially solvable linear program, whereas PPIR solves an integer program for every simulated realization; so in complexity terms PPIR, like PP, is more powerful than Quad. In our experiments, however, we were able to compute the bound efficiently. In terms of bound strength, Quad is often either the best performing bound altogether, or it is competitive with the best performing bound. In cases
where PP does well (D1, D2, D6, D7), Quad is comparable in gap, while PPIR performs quite poorly, exhibiting as much as a 15-30% larger gap than PP. On the other hand, PPIR tends to perform best under the Bernoulli distributions with the highest variance (D3, D4, D5); in these cases, Quad is more competitive than PP. Thus, even though it is polynomially solvable, Quad seems to be the most stable bound, compared to the more varied performances of PP and PPIR. In general, the gap seems to decrease as the number of items or the number of breakpoints increases. The trend in the success of Quad versus PP as the number of items increases suggests that Quad is better suited for instances with a larger number of items, while PP is better suited for smaller instances. This is consistent with the notion that Quad is focused more on the combinatorial properties of the knapsack problem, while PP focuses on the item size to capacity resolution (and is thus better for the small instances, in which each individual item has more influence on the optimal solution). Coupled with the fact that Quad is polynomially solvable, we conclude that the quadratic bound is a theoretically effective – but characteristically dissimilar – alternative to the pseudo-polynomial bound for (larger) instances in which PP is computationally infeasible. However, since the gap between Quad and the best policy is still not unequivocally tight, the next step would be to find an even better method, ideally an empirically tractable exact algorithm that can help close this bound/policy gap. #### 5 Conclusions We have studied a dynamic knapsack problem with stochastic item sizes and provided relaxation analysis on the multiple choice knapsack bound (4). We have shown that the MCK bound is asymptotically optimal as the number of items increases by comparing it to a natural greedy policy and, depending on various growth rates of capacity, delineated reasonable conditions for which the result holds. For medium-sized instances with more item-to-capacity granularity, the gap remains a cause for concern, and we proposed a quadratic relaxation whose value function approximation encodes interactions between item pairs. In addition to showing that it is polynomially solvable and more efficient than the best known pseudo-polynomial relaxation, our computational experiments indicate that the quadratic bound is at least stronger than MCK and faster than PP, while at best comparable to or even stronger than PP in both quality and solution time. The results here contribute to an overall picture of the stochastic knapsack problem that has yet to be completed. While the asymptotic analysis and quadratic bound impact situations where the number of items in the problem are large and medium, respectively, our results demonstrate that even the best performing bounds can empirically have a large gap in certain cases. The dynamic programming formulation can be directly solved when the number of items is minuscule; otherwise, however, it still remains to develop an empirically efficient algorithm with an optimality or ϵ -optimality guarantee. For example, in the spirit of the cutting plane algorithms used in solving the deterministic knapsack problem, one could attempt to dynamically improve the value function approximation to systematically reach stronger relaxations. However, exactly how a dynamic value function approximation would work for this problem remains an interesting open question. ## Acknowledgements The authors thank Bob Foley and David Goldberg for helpful discussions, as well as the associate editor and two anonymous referees for the helpful suggestions. D. Blado's work was partially supported by the National Science Foundation through a Graduate Research Fellowship. A. Toriello's work was partially supported by the National Science Foundation via grant CMMI-1552479. #### References - [1] D. Adelman, Price-Directed Replenishment of Subsets: Methodology and its Application to Inventory Routing, Manufacturing and Service Operations Management 5 (2003), 348–371. - [2] S.R. Balseiro and D.B. Brown, Approximations to stochastic dynamic programs via information relaxation duality, Working paper. Available at http://faculty.fuqua.duke.edu/~dbbrown/bio/papers/balseiro_brown_approximations_16.pdf, 2016. - [3] A. Bhalgat, A. Goel, and S. Khanna, *Improved Approximation Results for Stochastic Knapsack Problems*, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2011, pp. 1647–1665. - [4] D. Blado, W. Hu, and A. Toriello, Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes, SIAM Journal on Optimization 26 (2016), 1625–1648. - [5] R.L. Carraway, R.L. Schmidt, and L.R. Weatherford, An algorithm for maximizing target achievement in the stochastic knapsack problem with normal returns, Naval Research Logistics 40 (1993), 161–173. - [6] D.P. de Farias and B. van Roy, *The Linear Programming Approach to Approximate Dynamic Programming*, Operations Research **51** (2003), 850–865. - [7] B.C. Dean, M.X. Goemans, and J. Vondrák, Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity, Proceedings of the 45th Annual IEEE Symposium on the Foundations of Computer Science, IEEE, 2004, pp. 208–217. - [8] _____, Adaptivity and Approximation for Stochastic Packing Problems, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2005, pp. 395–404. - [9] _____, Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity, Mathematics of Operations Research 33 (2008), 945–964. - [10] C. Derman, G.J. Lieberman, and S.M. Ross, A Renewal Decision Problem, Management Science 24 (1978), 554–561. - [11] A. Goel and P. Indyk, Stochastic load balancing and related problems, Proceedings of the 40th Annual IEEE Symposium on the Foundations of Computer Science, IEEE, 1999, pp. 579–586. - [12] V. Goyal and R. Ravi, A PTAS for Chance-Constrained Knapsack Problem with Random Item Sizes, Operations Research Letters 38 (2010), 161–164. - [13] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, 1993. - [14] A. Gupta, R. Krishnaswamy, M. Molinaro, and R. Ravi, Approximation Algorithms for Correlated Knapsacks and Non-Martingale Bandits, Proceedings of the 52nd IEEE Annual Symposium on Foundations of Computer Science, IEEE, 2011, pp. 827–836. - [15] _____, Approximation Algorithms for Correlated Knapsacks and Non-Martingale Bandits, Preprint available on-line at arxiv.org/abs/1102.3749, 2011. - [16] M. Henig, Risk criteria in a stochastic knapsack problem, Operations Research 38 (1990), 820–825. - [17] D.S. Hochbaum, Solving Integer Programs over Monotone Inequalities in Three Variables: A Framework for Half Integrality and Good Approximations, European Journal of Operational Research 140 (2002), 291–321. - [18] T. Ilhan, S.M.R. Iravani, and M.S. Daskin, *The Adaptive Knapsack Problem with Stochastic Rewards*, Operations Research **59** (2011), 242–248. - [19] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer-Verlag, Berlin, 2004. - [20] J. Kleinberg, Y. Rabani, and É. Tardos, *Allocating Bandwidth for Bursty Connections*, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, Association for Computing Machinery, 1997, pp. 664–673. - [21] _____, Allocating Bandwidth for Bursty Connections, SIAM Journal on Computing **30** (2000), 191–217. - [22] A. Kleywegt and J.D. Papastavrou, *The Dynamic and Stochastic Knapsack Problem*, Operations Research **46** (1998), 17–35. - [23] _____, The Dynamic and Stochastic Knapsack Problem with Random Sized Items, Operations Research 49 (2001), 26–41. - [24] W. Ma, Improvements and Generalizations of Stochastic Knapsack and Multi-Armed Bandit Algorithms, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2014, pp. 1154–1163. - [25] S. Martello and P. Toth, *Knapsack Problems: Algorithms and Computer Implementations*, John Wiley & Sons, Ltd., Chichester, England, 1990. - [26] Y. Merzifonluoğlu, J. Geunes, and H.E. Romeijn, *The static stochastic knapsack problem with normally distributed item sizes*, Mathematical Programming **134** (2012), 459–489. - [27] H. Morita, H. Ishii, and T. Nishida, Stochastic linear knapsack programming problem and its applications to a portfolio selection problem, European Journal of Operational Research 40 (1989), 329–336. - [28] J.D. Papastavrou, S. Rajagopalan, and A. Kleywegt, *The Dynamic and Stochastic Knapsack Problem with Deadlines*, Management Science **42** (1996), 1706–1718. - [29] A. Schrijver, *The traveling salesman problem*, Combinatorial Optimization: Polyhedra and Efficiency, vol. B, Springer, Berlin, 2003, pp. 981–1004. - [30] P.J. Schweitzer and A. Seidmann, Generalized Polynomial Approximations in Markovian Decision Processes, Journal of Mathematical Analysis and Applications 110 (1985), 568–582. - [31] M. Sniedovich, Preference order stochastic knapsack problems: methodological issues, Journal of the Operational Research Society 31 (1980), 1025–1032. - [32] E. Steinberg and M.S. Parks, A preference order dynamic program for a knapsack problem with stochastic rewards, Journal of the Operational Research Society 30 (1979), 141–147. - [33] M.A. Trick and S.E. Zin, Spline Approximations to Value Functions: A Linear Programming Approach, Macroeconomic Dynamics 1 (1997), 255–277. - [34] J. Vondrák, Probabilistic Methods in Combinatorial and Stochastic Optimization, Ph.D. thesis, Massachusetts Institute of Technology, 2005. ## Appendix A - Proof of Theorem 3.11 *Proof.* It suffices to show that the limit of the ratio is lower bounded by a quantity that goes to 1. Prior to examining each case individually, we observe that under k items, the capacity is $$b(k) = \sum_{i \le f(k)} \mathsf{E}_i = \mathsf{E}[S_{f(k)}] = \Theta(f(k)),$$ where the
linear case sets f(k) = k. With this in mind, the linear case reduces to the case where $b(k) = \sum_{i \le k} \mathsf{E}_i = \mathsf{E}[S_k]$, the same as in Lemma 3.6. Since we now limit the number of items to k (as opposed to an infinite sequence of items), the bounds Greedy $$(k, b(k)) \ge \sum_{i \ge k} c_i \mathsf{P}(S_i \le b(k)), \text{ and } \mathsf{MCK}(k, b(k)) \le \sum_{i \le k} c_i \mathsf{P}(A_i \le b(k)),$$ now trivially hold. The Greedy upper bound actually holds at equality by definition of the policy, while the MCK upper bound follows from the (possibly infeasible) solution $x_{i,b(k)} = 1$ for all i. (This takes advantage of the monotonicity of CDFs, and the fact that there are only at most k items in the objective.) Thus we have $$\lim_{k \to \infty} \frac{\operatorname{Greedy}(k, b(k))}{\operatorname{MCK}(k, b(k))} \ge \lim_{k \to \infty} \frac{\sum_{i \le k} c_i \mathsf{P}(S_i \le \mathsf{E}[S_k])}{\sum_{i \le k} c_i \mathsf{P}(A_i \le \mathsf{E}[S_k])} = 1,$$ where the last inequality follows from Lemma 3.6, setting constant c_0 to 0. (This shows that the main difficulty for the first regime is finding an additional constant c_0 to deal with items i > k.) For the superlinear case, we have $f(k) \geq k$ for large enough k, and so $$P(S_i > b(k)) = P(S_i > E[S_{f(k)}]) \le P(S_i > E[S_k]).$$ Therefore, $$\begin{split} \frac{\operatorname{Greedy}(k,b(k))}{\operatorname{MCK}(k,b(k))} &= \frac{\operatorname{Greedy}(k,\mathsf{E}[S_{f(k)}])}{\operatorname{MCK}(k,\mathsf{E}[S_{f(k)}])} \geq \frac{\sum_{i \leq k} \ c_i \mathsf{P}(S_i \leq \mathsf{E}[S_{f(k)}])}{\sum_{i \leq k} \ c_i \mathsf{P}(A_i \leq \mathsf{E}[S_{f(k)}])} \\ &\geq \frac{\sum_{i \leq k} \ c_i \mathsf{P}(S_i \leq \mathsf{E}[S_k])}{\sum_{i \leq k} \ c_i} \geq \frac{\sum_{i \leq k} \ c_i - O(\sqrt{k})}{\sum_{i \leq k} \ c_i}, \end{split}$$ where the last inequality follows from the same calculations as in Lemma 3.6. Because this bound holds for all k, this yields $$\lim_{k \to \infty} \frac{\operatorname{Greedy}(k, b(k))}{\operatorname{MCK}(k, b(k))} \ge \lim_{k \to \infty} \frac{\sum_{i \le k} c_i - O(\sqrt{k})}{\sum_{i \le k} c_i} = 1.$$ Lastly, for the sublinear case, we have $f(k) \leq k$. Recalling that the k items are assumed to be greedily ordered, we have the trivial lower bound $$\operatorname{Greedy}(k, b(k)) \ge \operatorname{Greedy}(f(k), b(k)) = \sum_{i \le f(k)} c_i \mathsf{P}(S_i \le \mathsf{E}[S_{f(k)}]).$$ In the same vein as in Lemma 3.5, then, consider the following solution to the MCK dual problem (4): $$q = \frac{c_{f(k)}}{\mathsf{E}_{f(k)}}, \ r_i = \begin{cases} c_i - \frac{c_{f(k)}}{\mathsf{E}_{f(k)}} & i < f(k) \\ 0 & i \ge f(k) \end{cases}, \ r_0(k) = \hat{r} \sup_{\substack{s \in [0, \infty) \\ i = 1, 2, \dots, k}} [\mathsf{E}[A_i | A_i > s] - s].$$ Following similar reasoning as in the proof of Lemma 3.5, it is clear the above is a feasible solution to (4) — simply replace every instance of k in the proof calculations with f(k). The only slight difference is that the supremum in r_0 need only hold for i up to k (as opposed to infinitely many items). Assumption (12) in the hypothesis ensures that this quantity is asymptotically dominated by the other terms. Thus, by setting $c_0(k) := r_0(k) + \hat{r}M^3/m^2$, this feasible solution yields objective $\sum_{i < f(k)} c_i \mathsf{P}(A_i \le \mathsf{E}[S_{f(k)}]) + c_0(k)$, providing us with the valid upper bound $$MCK(k, b(k)) \le \sum_{i \le f(k)} c_i P(A_i \le E[S_{f(k)}]) + c_0(k),$$ where term $c_0(k) = o(f(k))$. It hence remains to show that $$\lim_{k \to \infty} \frac{\sum_{i \le f(k)} \ c_i \mathsf{P}(S_i \le \mathsf{E}[S_{f(k)}])}{\sum_{i \le f(k)} \ c_i \mathsf{P}(A_i \le \mathsf{E}[S_{f(k)}]) + c_0(k)} \ge \lim_{k \to \infty} \frac{\sum_{i \le f(k)} \ c_i \mathsf{P}(S_i \le \mathsf{E}[S_{f(k)}])}{\sum_{i \le f(k)} \ c_i + c_0(k)} = 1.$$ To this end, we examine $$\begin{split} \mathsf{P}(S_i > \mathsf{E}[S_{f(k)}]) &= \mathsf{P}(S_i - \mathsf{E}[S_i] > \mathsf{E}[S_{f(k)} - S_i]) \leq \mathsf{P}(|S_i - \mathsf{E}[S_i]| > \mathsf{E}[S_{f(k)} - S_i]) \\ &\leq \frac{\mathsf{Var}(S_i)}{(\mathsf{E}[S_{f(k)} - S_i])^2} \leq \frac{iV}{(f(k) - i)^2 \underline{\mu}^2}, \end{split}$$ noting that $E[S_{f(k)} - S_i] \ge 0$ for $i \le f(k)$, and the second inequality uses Chebyshev's bound. Let j be some number such that j < f(k), to be determined, and define upper bound $$c_i \leq \frac{c_1}{\mathsf{E_1}} \mathsf{E}_i \leq \hat{r} \hat{\mu} =: \hat{c}$$ We now observe $$\begin{split} \sum_{i \leq f(k)} \ c_i \mathsf{P}(S_i \leq \mathsf{E}[S_{f(k)}]) &= \sum_{i \leq j} \ c_i \mathsf{P}(S_i \leq \mathsf{E}[S_{f(k)}]) + \sum_{j < i \leq f(k)} \ c_i \mathsf{P}(S_i \leq \mathsf{E}[S_{f(k)}]) \\ &\geq \sum_{i \leq j} \ c_i \Big[1 - \frac{iV}{(f(k) - i)^2 \mu^2} \Big] + \sum_{j < i \leq f(k)} \ c_i (1 - \mathsf{P}(S_i > \mathsf{E}[S_{f(k)}])) \\ &\geq \sum_{i \leq f(k)} \ c_i - \frac{\hat{c}V}{\mu^2} \sum_{i \leq j} \frac{i}{(f(k) - i)^2} - \hat{c}(f(k) - j) \geq \sum_{i \leq f(k)} \ c_i - \frac{\hat{c}V}{\mu^2} \int_0^{j+1} \frac{x}{(f(k) - x)^2} dx - \hat{c}(f(k) - j) \\ &= \sum_{i \leq f(k)} \ c_i - \frac{\hat{c}V}{\mu^2} \Big[\frac{j+1}{f(k) - j - 1} + \ln(f(k) - j - 1) - \ln f(k) \Big] - \hat{c}(f(k) - j), \end{split}$$ with the technical condition that $f(k) \notin [0, j+1]$ so that the integrand above does not contain a singularity. Noting that choosing $j = f(k) - f(\sqrt{k}) - 1$ satisfies this (as identically having $f(\sqrt{k}) = 0$ reduces to a trivial case), we have $$\begin{split} \sum_{i \leq f(k)} \ c_i \mathsf{P}(S_i \leq \mathsf{E}[S_{f(k)}]) \geq \sum_{i \leq f(k)} \ c_i - \frac{\hat{c}V}{\underline{\mu}^2} \Big[\frac{f(k) - f(\sqrt{k})}{f(\sqrt{k})} + \ln f(\sqrt{k}) - \ln f(k) \Big] - \hat{c}(f(\sqrt{k}) + 1) \\ = \sum_{i \leq f(k)} \ c_i + O(\ln f(k)) - O(\max\{\frac{f(k)}{f(\sqrt{k})}, f(\sqrt{k})\}). \end{split}$$ Therefore, recalling our initial assumptions on $\sum_{i \leq f(k)} c_i$ and $\ln f(k)$, we have $$\lim_{k \to \infty} \frac{\sum_{i \le f(k)} c_i + O(\ln f(k)) - O(\max\{\frac{f(k)}{f(\sqrt{k})}, f(\sqrt{k})\})}{\sum_{i \le f(k)} c_i + c_0(k)} = 1.$$ The above limit is a valid lower bound for $\lim_{k\to\infty} \frac{\operatorname{Greedy}(k,f(k))}{\operatorname{MCK}(k,f(k))}$, completing the proof. ## Appendix B - MCK for Power Law Distributions We first recall the following result from [4]: **Proposition.** For each $i \in N$, within a segment $(\underline{s}, \hat{s}) \subseteq [0, b]$ where F_i is concave and differentiable, the separation problem of MCK (4) can be solved by evaluating \underline{s}, \hat{s} and all solutions to $$(r_0 + c_i)\frac{d}{ds}\mathsf{F}_i(s) = q\bar{\mathsf{F}}_i(s) \qquad \qquad s \in (\underline{s}, \hat{s}). \tag{16}$$ It is easy to verify that the power law distributions F_i^1, F_i^2 , and F_i^3 in Section 3.2 are concave and differentiable on $[0, \infty)$. Further, (16) has a unique solution for each distribution, $$s_i^1 := \frac{r_0 + c_i}{q} - a_i, \qquad s_i^2 := \frac{2(r_0 + c_i)}{q} - a_i, \qquad s_i^3 := \frac{3(r_0 + c_i)}{q} - 2a_i,$$ where $s_i^1, s_i^2,$ and s_i^3 correspond to $\mathsf{F}_i^1,\,\mathsf{F}_i^2$ and F_i^3 , respectively. For simplicity, fix a particular distribution $j \in \{1, 2, 3\}$. We implement the following cutting plane algorithm. Since the constraints in (4) corresponding to s = 0 reduce to non-negativity constraints, we first solve a relaxation of the MCK bound with only the inequality corresponding to s = b for each $i \in N$. Given a candidate solution (q, r), we check for each $i \in N$ if the constraint for $s = s_i^j$ is satisfied. If any constraints are violated, we add them and re-solve the updated MCK relaxation to obtain a new candidate solution; otherwise, (q, r) is optimal. ## Appendix C - Tables The following tables present the raw data used to calculate the summary tables presented earlier. The first two tables are used to calculate Table 1, sorting instances by the number of items and value/size correlation. Afterward, the next three tables present the raw data used to calculate the summaries in Tables 2 and 3. These three tables separate instances by their size: small instances, followed by 20-item instances with correlated values-to-sizes under discrete distributions, then 20-item instances with uncorrelated values-to-sizes under discrete distributions. Table 4: Power Law Distribution Experiments, 200 Items or Fewer | Instance | MCK | Greedy | A. Greedy | |---|--|---|---| | p01 | 369.34 | 349.82 | 348.83 | | $\stackrel{ m p}{ m p}02$ | $72.87 \\ 212.21$ | $60.82 \\ 180.30$ | $60.82 \\ 180.30$ | | p04 | 146.10 | 131.97 | 132.04 | | $\stackrel{ ext{p}05}{ ext{p}06}$ | $\begin{array}{c} 1242.17 \\ 2497.52 \end{array}$ | $1070.67 \\ 2191.94$ | $1070.67 \\ 2189.40$ | | p07 | 1897.53 | 1744.87 | 1738.67 | | $\frac{p08}{20\text{cor}1}$ | $\frac{17065398.26}{7504.33}$ | $\frac{15332135.32}{6858.15}$ | $\frac{15469247.43}{6783.39}$ | | 20 cor 2 | 8495.93 | 8030.01 | 8031.39 | | $\begin{array}{c} 20 \mathrm{cor} 3 \\ 20 \mathrm{cor} 4 \end{array}$ | $\begin{array}{c} 10371.71 \\ 11187.62 \end{array}$ | $9969.06 \\ 10131.50$ | $\begin{array}{c} 10027.82 \\ 10019.49 \end{array}$ | | $20 \mathrm{cor}5$ $20 \mathrm{cor}6$ | $6979.69 \\ 1126.99$ | $\begin{array}{c} 6604.17 \\ 1052.35 \end{array}$ | $6669.59 \\ 1058.96$ | | 20 cor 7 | 8103.30 | 7311.75 | 7324.96 | | $\begin{array}{c} 20 \mathrm{cor} 8 \\ 20 \mathrm{cor} 9 \end{array}$ | $8026.99 \\ 4103.90$ | 7312.61 3848.59 | $72\overline{41.71}$ 3924.19 | | $\phantom{00000000000000000000000000000000000$ | 18587.37 | $\frac{3848.59}{17658.55}$ | $ \begin{array}{r} 39\overline{24.19} \\
17929.55 \end{array} $ | | $\begin{array}{c} 20 \mathrm{uncor1} \\ 20 \mathrm{uncor2} \end{array}$ | 8277.87 4207.25 | 7849.25
3943.93 | 7849.25
3944.21 | | $20 \mathrm{uncor}3$ | 15014.30 | $14523.65 \\ 17275.89$ | 14526.58 | | $\begin{array}{c} 20 \mathrm{uncor4} \\ 20 \mathrm{uncor5} \end{array}$ | $\begin{array}{c} 18845.34 \\ 10288.87 \end{array}$ | 9954.37 | $17275.89 \\ 9960.36$ | | $20 \mathrm{uncor6} \\ 20 \mathrm{uncor7}$ | $1593.90 \\ 9153.27$ | $ \begin{array}{r} 1488.41 \\ 8801.53 \end{array} $ | $1487.94 \\ 8801.53$ | | $20 \mathrm{uncor8}$ | 12234.28 | 11316.91 | $11324.54 \\ 5787.13$ | | $20 \mathrm{uncor 9} \\ 20 \mathrm{uncor 10}$ | $\begin{array}{c} 6233.18 \\ 19891.23 \end{array}$ | $5797.05 \\ 18375.25$ | $5787.13 \\ 18365.43$ | | 100cor1 | 33533.65 | 31772.52 | 32318.73 | | $\begin{array}{c} 100 { m cor2} \\ 100 { m cor3} \end{array}$ | $\frac{38866.70}{46368.04}$ | $36780.04 \\ 43344.55$ | $\frac{36769.95}{44229.84}$ | | 100 cor 4 | 50301.94 | $47388.26 \\ 29208.76$ | $ 47682.37 \\ 29034.12 $ | | 100cor5
100cor6 | $ \begin{array}{r} 30781.90 \\ 5033.14 \end{array} $ | 4636.62 | 4602.74 | | $100 cor 7 \\ 100 cor 8$ | $ 35922.11 \\ 35698.90 $ | $\begin{array}{c} 33927.69 \\ 34233.56 \end{array}$ | $33739.77 \\ 34325.90$ | | 100 cor9 | 18557.13 | 17566.13 | 17708.15 | | $\frac{100 \text{cor} 10}{100 \text{uncor} 1}$ | 82662.62
40618.80 | $\frac{80071.12}{39075.49}$ | $\frac{80165.16}{39060.59}$ | | $100 \mathrm{uncor}2$ | 16380.83 | 15591.34 | 15572.58 | | $100 \mathrm{uncor}3$
$100 \mathrm{uncor}4$ | $70062.02 \\ 91619.13$ | $\begin{array}{c} 67357.74 \\ 87846.90 \end{array}$ | $\begin{array}{c} 67317.05 \\ 87810.15 \end{array}$ | | $100 \mathrm{uncor5} \\ 100 \mathrm{uncor6}$ | $47820.98 \\ 7438.87$ | $\frac{45771.77}{7012.78}$ | $\frac{45741.58}{7011.74}$ | | $100 \mathrm{uncor7}$ | 45306.40 | 43394.28 | 43355.39 | | $100 \mathrm{uncor8} \\ 100 \mathrm{uncor9}$ | $53619.69 \\ 27945.79$ | $ 51938.49 \\ 26981.41 $ | $51910.31 \\ 26984.02$ | | $100 \mathrm{uncor} 10$ | 106115.85 | 102988.85 | $\frac{102929.06}{63556.02}$ | | 200cor1
200cor2 | $\begin{array}{c} 65708.55 \\ 26431.17 \end{array}$ | $\begin{array}{c} 63217.98 \\ 25274.80 \end{array}$ | 25106.71 | | $200 \operatorname{cor3}$ $200 \operatorname{cor4}$ | $26431.17 \\ 87008.78 \\ 130352.19$ | $25\overline{274.80} \\ 82050.82 \\ 124587.55$ | $ \begin{array}{r} 82650.50 \\ 124232.07 \end{array} $ | | $200 \mathrm{cor}5$ | 55696.15 | 52958.54 | 52867.65 | | $\begin{array}{c} 200 \mathrm{cor} 6 \\ 200 \mathrm{cor} 7 \end{array}$ | $9824.42 \\ 71119.96$ | $9507.29 \\ 66871.64$ | $9490.57 \\ 67436.64$ | | $200 \mathrm{cor} 8$ | 68175.46 | 65067.17 | 65485.54 | | $200 cor 9 \\ 200 cor 10$ | $ \begin{array}{c} 37102.22\\ 153797.58 \end{array} $ | $35941.59 \\ 147065.19$ | $35904.41 \\ 146486.43$ | | 200uncor1
200uncor2 | 77926.41
33716.29 | 75323.53
32663.33 | 75304.03
32614.25 | | $200 \mathrm{uncor3}$ | 128655.34 173148.98 | 124470.84 | 124355.96 | | $200 \mathrm{uncor4} \\ 200 \mathrm{uncor5}$ | $\begin{array}{c} 173148.98 \\ 94696.84 \end{array}$ | $166065.46 \\ 91954.00$ | $166190.70 \\ 91988.63$ | | $200 \mathrm{uncor6}$ | 13918.52 | 13537.02 | 13558.53 | | $200 \mathrm{uncor7} \\ 200 \mathrm{uncor8}$ | $89714.94 \\ 105313.08$ | 85913.47 102433.36 | $85981.10 \\ 102659.65$ | | $200 \mathrm{uncor9}$ | 54999.63 | 53508.86 | 53538.49 | | 200uncor10 | 209604.85 | 201695.03 | 201589.80 | Table 5: Power Law Distribution Experiments, 1000 Items or More | Instance | MCK | $\frac{\text{Greedy}}{}$ | |-----------------------------|---|---| | 1000cor1 | 315264.55 | 307486.43 | | 1000 cor2 | 131236.29 | 128081.91 | | $1000\cos^{2} 3$ | 410934.14 | 400298.47 | | 1000 cor 4 | 440705.41 | 421668.99 | | $1000 \operatorname{cor}5$ | 268217.52 | 260201.53 | | 1000cor6 | 47179.25 | 45939.64 | | $1000 \operatorname{cor} 7$ | 355539.42 | 344511.52 | | 1000 cor 8 | 335816.69 | 323768.20 | | 1000 cor9 | 177072.28 | 171585.13 | | 1000 cor 10 | 767191.66 | 740630.34 | | 1000uncor1 | 391929.12 | 384251.44 | | $1000 \mathrm{uncor}2$ | 175596.93 | 172014.69 | | $1000 \mathrm{uncor3}$ | 621566.89 | 608010.99 | | $1000 \mathrm{uncor4}$ | 808590.19 | 783339.41 | | $1000 \mathrm{uncor5}$ | 438494.83 | 430533.17 | | $1000 \mathrm{uncor6}$ | 69614.53 | 68235.17 | | $1000 \mathrm{uncor7}$ | 455682.16 | 444646.37 | | $1000 \mathrm{uncor8}$ | 522609.12 | 509452.67 | | 1000uncor9 | 264472.90 | 259231.62 | | 1000uncor10 | 1036098.43 | 1015379.72 | | 2000cor1 | 623983.64 | 612009.70 | | 2000 cor 2 | 259153.22 | 253320.69 | | 2000 cor3 | 813604.92 | 797448.72 | | 2000 cor 4 | 874478.26 | 855899.42 | | 2000 cor 5 | 529873.66 | 516339.69 | | 2000cor6 | 93531.02 | 92192.95 | | 2000 cor 7 | 705421.70 | 693901.82 | | 2000cor8 | 661333.70 | $\begin{array}{c c} 647891.31 \\ 342958.98 \end{array}$ | | $2000 cor 9 \\ 2000 cor 10$ | $349850.29 \\ 1519181.85$ | 1491618.08 | | 2000cor10
2000uncor1 | 793470.46 | 786050.41 | | 2000uncor2 | 356405.87 | 350868.75 | | 2000uncor3 | 1263783.49 | 1244592.10 | | 2000uncor4 | 1588156.89 | 1564959.33 | | 2000uncor5 | 887755.32 | 872425.95 | | 2000uncor6 | 134925.29 | 133512.39 | | $2000 \mathrm{uncor7}$ | 920206.84 | 909101.43 | | $2000 \mathrm{uncor8}$ | 1044295.46 | 1028806.60 | | 2000 uncor9 | 518843.38 | 511672.97 | | $2000 \mathrm{uncor} 10$ | 2029051.70 | 2001541.97 | | 5000cor1 | 83408.71 | 82305.07 | | $5000 \mathrm{cor}2$ | 133539.89 | 130877.49 | | $5000 \mathrm{cor3}$ | 147936.54 | 145219.08 | | 5000 cor 4 | 116621.03 | 114350.12 | | 5000 cor 5 | 171416.52 | 168773.19 | | 5000uncor 1 | 186921.47 | 185023.04 | | 5000uncor 2 | 466960.21 | 458038.46 | | 5000uncor 3 | 543677.26 | 535866.14 | | 5000uncor 4 | 368417.42 | 363813.33 | | 5000uncor5 | 688418.44 | 678296.36 | | 10000cor1 | 165868.02 | 163120.52 | | 10000 cor 2
10000 cor 3 | $\begin{array}{c} 265578.99 \\ 291580.75 \end{array}$ | $\begin{array}{c} 262597.52 \\ 286776.18 \end{array}$ | | 10000cor3
10000cor4 | 230855.23 | 225903.00 | | 10000cor5 | 338955.87 | 332911.51 | | 10000cor3 | 369884.94 | 365057.44 | | 10000uncor2 | 915640.89 | 906978.25 | | 10000uncor3 | 1074579.51 | 1058598.87 | | 10000uncor4 | 728925.87 | 717570.73 | | 10000uncor5 | 1323898.28 | 1298820.65 | | | | | Table 6: Quad Bound Experiments, Small Instances. | Instance | Distribution | MCK | PP | PPIR | Quad | Greedy | Adapt. Greedy | PP Dual | |----------|--------------|---------|---------|---------|---------|---------|---------------|---------| | p01 | D1 | 352.02 | 346.27 | 405.64 | 351.16 | 300.94 | 308.37 | 307.38 | | | D2 | 394.52 | 385.83 | 386.43 | 389.84 | 296.54 | 321.36 | 315.38 | | | D3 | 471.02 | 439.00 | 387.11 | 451.67 | 334.03 | 344.80 | 366.77 | | | D4 | 474.25 | 474.25 | 388.13 | 432.63 | 354.05 | 364.11 | 376.27 | | | D5 | 500.40 | 500.40 | 388.50 | 432.78 | 363.98 | 366.67 | 410.17 | | | D6 | 337.77 | 327.87 | 402.58 | 337.47 | 296.20 | 307.71 | 304.54 | | | D7 | 345.97 | 334.23 | 431.92 | 344.08 | 301.53 | 313.49 | 314.79 | | p02 | D1 | 61.67 | 55.83 | 73.95 | 61.39 | 45.31 | 45.67 | 46.22 | | | D2 | 71.00 | 62.50 | 70.15 | 69.78 | 53.99 | 54.81 | 53.92 | | | D3 | 70.00 | 70.00 | 56.57 | 58.96 | 56.04 | 56.07 | 56.12 | | | D4 | 58.50 | 58.50 | 46.64 | 45.52 | 45.90 | 45.90 | 45.74 | | | D5 | 72.80 | 72.80 | 52.72 | 52.52 | 51.50 | 51.50 | 51.00 | | | D6 | 58.33 | 54.86 | 75.55 | 58.23 | 47.95 | 49.75 | 49.74 | | | D7 | 67.91 | 58.21 | 68.67 | 62.55 | 50.75 | 50.47 | 53.45 | | p03 | D1 | 184.71 | 175.67 | 217.71 | 183.28 | 144.33 | 158.80 | 133.81 | | | D2 | 209.19 | 169.00 | 194.32 | 204.15 | 148.98 | 148.48 | 153.17 | | | D3 | 211.67 | 211.67 | 169.32 | 183.52 | 164.99 | 165.06 | 164.94 | | | D4 | 165.50 | 165.50 | 124.43 | 130.18 | 124.62 | 124.62 | 126.82 | | | D5 | 213.00 | 213.00 | 124.43 | 150.28 | 142.33 | 142.33 | 146.05 | | | D6 | 176.61 | 164.14 | 219.19 | 175.91 | 135.08 | 147.73 | 149.32 | | | D7 | 199.33 | 168.61 | 202.02 | 184.62 | 155.59 | 156.67 | 157.56 | | p04 | D1 | 126.75 | 124.00 | 162.72 | 126.00 | 103.99 | 108.92 | 109.42 | | | D2 | 141.79 | 140.75 | 127.13 | 141.50 | 87.50 | 99.88 | 108.98 | | | D3 | 139.33 | 139.33 | 114.31 | 116.96 | 96.18 | 94.37 | 111.31 | | | D4 | 151.50 | 151.50 | 127.80 | 132.05 | 109.67 | 109.83 | 130.15 | | | D5 | 158.80 | 158.80 | 146.62 | 141.90 | 125.27 | 125.27 | 145.07 | | | D6 | 119.75 | 114.35 | 149.45 | 116.86 | 94.75 | 99.35 | 105.32 | | | D7 | 137.56 | 125.83 | 144.97 | 129.40 | 104.78 | 107.78 | 109.59 | | p05 | D1 | 1219.85 | 1111.33 | 1338.65 | 1218.88 | 991.35 | 996.10 | 1033.15 | | | D2 | 1239.78 | 1173.00 | 1247.28 | 1236.01 | 918.26 | 921.34 | 960.58 | | | D3 | 1024.67 | 1024.67 | 889.22 | 935.78 | 867.13 | 865.68 | 910.20 | | | D4 | 1095.50 | 1095.50 | 930.34 | 1020.50 | 959.19 | 960.38 | 1003.56 | | | D5 | 1054.00 | 1054.00 | 875.88 | 861.87 | 853.88 | 853.88 | 889.88 | | | D6 | 1211.56 | 1133.81 | 1278.36 | 1211.08 | 941.37 | 946.18 | 979.05 | | | D7 | 1129.89 | 1107.36 | 1059.41 | 1209.71 | 962.53 | 966.43 | 918.70 | | p06 | D1 | 2087.00 | 1988.67 | 2485.53 | 2082.37 | 1772.02 | 1776.13 | 1852.03 | | | D2 | 2380.82 | 1922.25 | 2218.39 | 2368.12 | 1475.97 | 1560.94 | 1633.93 | | | D3 | 2958.48 | 2764.67 | 2393.13 | 2686.76 | 2084.78 | 2104.84 | 2126.95 | | | D4 | 2182.00 | 2182.00 | 1860.19 | 1910.25 | 1701.44 | 1701.44 | 1921.41 | | | D5 | 2276.00 | 2276.00 | 1732.95 | 1823.04 | 1808.38 | 1808.38 | 1807.50 | | | D6 | 1987.17 | 1881.90 | 2689.52 | 1985.12 | 1540.79 | 1618.81 | 1809.05 | | | D7 | 2306.09 | 1935.71 | 2655.66 | 2193.54 | 1637.78 | 1796.06 | 1820.33 | | p07 | D1 | 1570.45 | 1570.45 | 1780.77 | 1569.79 | 1461.14 | 1529.57 | 1498.95 | | | D2 | 1681.26 | 1680.75 | 1850.65 | 1679.10 | 1490.73 | 1546.55 | 1607.05 | | | D3 | 1904.19 | 1890.33 | 1887.40 | 1892.80 | 1617.39 | 1681.45 | 1662.63 | | | | 0100 10 | 2100.00 | 1978.83 | 2085.72 | 1477.46 | 1609.41 |
1722.90 | | | D4 | 2122.19 | | | | | | 1122.00 | | | D5 | 2332.70 | 2063.80 | 1819.78 | 2266.79 | 1597.48 | 1631.31 | 1604.12 | | | | 1 | | | | | | | 27 Table 7: Quad Bound Experiments, 20 Items, Correlated Values and Sizes. | Distribution MCK PP PPIR Quad Greedy A. Greedy PP Dual | | Table 7: Qu | ad Bound | Experimer | ts, 20 Iten | ns, Correla | ted Values | and Sizes. | | |--|----------------------------|---|------------------------|---------------------------|---------------------------|----------------------|----------------------|----------------------|---------------------------| | D3 | Instance | Distribution | | | | Quad | Greedy | | PP Dual | | D3 | $20 \operatorname{cor1}$ | D1 | 6547.70 | 6534.08 | $7482.\overline{03}$ | 6544.87 | 5938.42 | 6099.08 | 6171.09 | | D5 | | D3 | 7062.53
8060.70 | 7062.53
2006.22 | 7874.59
8220.10 | 7043.21 | 6200.03 | 6222.89
6622.21 | 6286.62 6717.28 | | D5 | | D4 | 9008.53 | 9008.53 | 8347.92 | 8797.18 | 6568.58 | 6758.89 | 7049.40 | | 20cor2 | | D5 | 9872.03 | 9805.00 | 8393.61 | 9480.92 | 6460.73 | 6682.43 | 7253.35 | | D2 | | $\underline{D6}$ | 6373.28 | 6366.73 | 7790.07 | 6372.43 | 5806.62 | 6067.55 | 6113.27 | | D2 | 20002 | | 0851.31 | $\frac{6488.59}{7061.11}$ | 0804.82 | 8534.09
7066.16 | 5908.74
7141.25 | 6249.09
7308.58 | $\frac{0173.48}{6007.21}$ | | D5 | 200012 | D_2^1 | 8351.73 | 8351.73 | 8652.96 | 8325.22 | 7296.38 | 7408.28 | 7188.36 | | D5 | | $\bar{\mathrm{D}}\bar{3}$ | 9009.65 | 8974.28 | 8908.13 | $8883.\overline{68}$ | $7\overline{4}15.06$ | 7594.17 | 7516.15 | | D6 | | $_{\rm D5}^{\rm D4}$ | +9602.87 | 9572.50 | 8472.94 | 9310.09 | 7522.97 | 7782.96 | 7455.27 | | D7 | | D6 | 10139.45 | 10116.92
7826.85 | 8767.71
8746.74 | 9636.28
7827.80 | 7074.77 | 7879.19
7188.83 | 7759.27
7114.06 | | D1 | | $\overset{D0}{\mathrm{D7}}$ | 8092.27 | 7912.47 | 9282.23 | 7931.27 | 7305.33 | 7308.93 | 7432.47 | | D4 1398.30 13833.00 12794.14 13722.50 8503.80 8773.65 11328.91 D5 15792.60 15588.80 12769.80 1529.32 9888.71 9768.93 12051.51 D6 8824.38 8798.57 11687.14 8821.12 7705.19 8478.39 8663.99 D7 9573.95 9022.65 13369.87 9536.87 8198.66 26866.75 9203.79 D2 11760.36 11741.71 14253.92 11726.95 8565.03 1836.08 8697.73 D2 11760.36 11741.71 14253.92 11726.95 8565.03 1669.55 10104.68 D3 14818.20 14437.33 13516.45 14627.58 9887.58 11047.59 12575.56 D4 16348.50 16348.50 13881.98 1589.58 10618.45 1047.59 12575.56 D4 16348.50 16348.50 13881.98 1589.58 10618.45 1047.59 12575.56 D4 16348.53 16348.55 13881.98 1589.58 10618.45 1111.92 4 11104.42 14744.74 D6 9673.61 9520.03 14217.35 9672.23 8086.77 899.69 8855.73 D7 10311.55 9854.05 14797.58 10291.88 8891.16 9659.94 9888.59 20cor5 D1 6315.83 6303.58 7719.30 6307.18 5196.81 5969.94 9888.59 D3 8563.33 8445.39 8565.03 8435.97 5946.88 6004.09 6281.05 D3 8543.33 8445.39 8565.03 8435.97 5946.88 6004.09 6281.05 D4 9938.25 9777.25 8600.85 9633.92 6764.61 6761.31 7738.69 D5 11250.80 10944.30 9118.71 10758.67 6764.45 6615.50 6808.53 D4 9938.25 9777.25 8600.85 9633.92 6764.61 6761.31 7738.69 D5 11250.80 10944.30 9118.71 10758.67 6764.45 692.25 6808.55 D5 1290.99 16138.62 9022.90 6347.28 5609.18 692.25 8551.44 D6 6052.17 6003.79 8159.53 6049.07 5299.73 5657.62 5695.33 D7 6352.19 6138.62 9022.90 6347.28 5609.18 602.61 6078.36 D7 1034.44 80.37 1406.67 1031.77 887.65 997.35 899.93 1004.98 1209.00 D4 1480.81 1475.75 1359.42 1416.89 970.79 1086.13 1201.09 D4 1480.81 1475.75 1359.42 1416.89 970.79 1086.13 1201.09 D5 1653.66 1621.60 1358.33 1587.92 1079.88 99.93 9104.99 129.50 1359.22 1277.95 939.93 1004.99 129.60 138.62 902.90 6347.28 870.91 1086.13 1201.09 D5 1653.66 1621.60 1358.33 1587.92 1079.88 979.92 932.26 932.2 | 20cor3 | D1 | 9167.63 | 9149.73 | 11004.46 | 9158.33 | 7898.79 | 8146.01 | 8170.18 | | D4 1398.30 13833.00 12794.14 13722.50 9503.80 9873.56 11328.91 D5 15792.60 15588.80 12769.80 15292.32 9888.71 9868.32 1051.51 D6 8824.38 8798.57 11687.14 8821.12 7705.19 8478.39 8663.99 D7 9573.95 9022.65 13369.87 9536.87 8198.66 26867.5 9203.79 D7 1020.86 10179.83 13043.34 10196.21 8098.62 8666.75 9203.79 D2 11760.36 11741.71 14253.92 11726.95 8565.03 1066.95 10104.68 D3 14818.20 14437.33 13516.45 14627.58 9887.58 11047.59 12575.56 D4 16348.50 16348.50 13881.98 15895.58 10618.45 1047.59 12575.56 D4 16348.50 16348.50 13881.98 15895.58 10618.45 1047.59 12575.56 D4 16348.50 16348.50 13881.98 15895.58 10618.45 11119.24 11104.42 14744.74 D6 9673.61 9520.03 14217.35 9672.23 8086.77 899.69 8858.73 D7 10311.55 9854.05 14797.58 10291.88 8891.16 9659.94 9888.59 20cor5 D1 6315.83 6303.58 7719.30 6307.18 5196.81 5969.94 9888.59 D2 7096.00 7096.00 8322.12 7051.67 5560.68 6004.09 6281.05 D3 8543.33 8445.39 8565.03 8435.97 5946.88 6004.09 6281.05 D4 9938.25 9777.25 8600.85 9633.92 6764.61 6761.31 7738.69 D5 11250.80 10944.30 9118.71 10758.67 6764.45 662.25 6808.53 D4 9938.25 9777.25 8600.85 9633.92 6764.61 6761.31 7738.69 D5 11250.80 10944.30 9118.71 10758.67 6764.45 692.25 8551.44 D6 6052.17 6003.79 8159.53 6049.07 5299.73 5657.62 5695.33 D7 6352.19 6138.62 9022.90 6347.28 5609.18 602.61 6078.36 D7 6352.19 6138.62 9022.90 6347.28 5609.18 602.61 6078.36 D7 1034.44 960.37 10758.67 6764.45 692.25 992.30 1294.99 1294.90 1394.90 1294.00 1204 1480.81 1475.75 1359.42 1441.68 970.79 1086.13 1201.09 D5 1653.66 1621.60 1358.33 1587.92 1079.89 99.39 1004.98 1004.98 1006.62 1006.60 1006.6 | | D_{2} | 10191.30 | 10191.30 | 11817.91 | 10141.93 | 8043.78 | 8711.34 | 9247.72 | | D1 | | D_4 | 12137.80 | 12055.31 | 12962.33 | 11999.00 | 8971.92 | 9594.06 | 10268.15 | | D1 | | D5 | 15792.60 | 15588.80 | 12794.14 12769.80 | 15722.30 15229.32 | 9888.71 | 9768.93 | 12051.51 | | D1 | | $\breve{\mathrm{D}} \breve{\mathrm{6}}$ | 8824.38 | 8798.57 | 11687.14 | 8821.12 | 7705.19 | 8478.39 | 8663.99 | | D3 | - 20 1 | D7 | 9573.95 | 9022.65 | 13369.87 | 9536.87 | 8198.66 | 8534.60 | 8697.73 | | D3 | 20cor4 | D5
D1 | 10200.86
 11760.36 | 10179.83
11741 71 | 13043.34 | 10196.21
11796.05 | 8098.62
8565.03 | 8666.75 | 9203.79
10104 68 | | D5 | | $\frac{D2}{D3}$ | 14818 20 | 1443733 | 13516 45 | 14627.58 | 9887.58 | 11047 59 | 12575 56 | | D5 | | D4 | 16348.50 | 16348.50 | 13881.98 | 15889.58 | 10618.45 | 10363.27 | $1\overline{3009.51}$ | | D7 | | D_{2}^{5} | 17548.40 | 17548.40 | 15631.80 | 16634.45 | 111119.24 | 11104.42 | 14744.74 | | D1 | | D6
D7 | 9673.61 | 9520.03
0854.05 | 14217.35 | 9672.23 | 8086.77 | 8599.69
0650.04 | 8585.73 | | D2 | 20cor5 | D1 | | 6303.58 | 7719 30 | 6307.18 | 5196.81 | 5633 79 | 5973.04 | | D4 | 200010 | $ ilde{ ext{D2}}$ | 17096.00 | 7096.00 | 8322.12 | 7051.67 | 5560.68 | 6004.09 | 6281.05 | | D5 | | D_3 | 8543.33 | 8445.39 | 8565.03 | 8435.97 | 5946.88 | 6651.50 | 6808.53 | | D7 | | D4
D5 | 9938.25 | 9777.25
10044.30 | 8600.85
0118 71 | 9693.92
10758.67 | 6764.61 | 6761.31
6402.35 | 7738.69 | | D7 | | D6 | 6052.17 | 6003.79 | 8159.53 | 6049.07 | 5299.73 | 5657.62 | 5695.33 | | D2 | | $\overline{\mathrm{D}}$ 7 | $635\overline{2.19}$ | 6138.62 | 9022.90 | 6347.28 | 5609.18 | 6062.61 | 6078.36 | | D0 | 20 cor 6 | D1 | 998.89 | 996.92 | 1269.46 | 997.45 | 872.51 | 899.58 | 899.92 | | D0 | |
$\frac{D2}{D3}$ | 1104.00 | 1104.00
1291.50 | 1209.40
1359 22 | 1090.32
1277 95 | 039.04
039.03 | 900.31
1004 98 | 1008.01
1104.02 | | D0 | | D4 | 1480.81 | 1475.75 | 1359.42 | 1441.68 | 970.79 | 1086.13 | 1201.09 | | D0 | | D5 | 1653.66 | 1621.60 | 1358.33 | 1587.92 | 1091.82 | 1070 46 | 1279.56 | | D1 | | D6 | 963.56 | 961.08 | 1241.42 | 963.06 | 884.08 | 929.92 | 932.67 | | D3 | $\frac{-20 \text{cor}7}{}$ | | 7053.44 | 980.37
7039.38 | $\frac{1400.07}{7732.74}$ | 7050.17 | | 927.52
6577.62 | 945.48
6622.64 | | D3 | 200011 | D2 | 1.7480.29 | 7480.29 | 8003.99 | 7463.71 | -6544.66 | 6848.10 | 6902.24 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D3 | 8304.81 | 8247.00 | 8193.68 | 8249.22 | 6769.86 | 6823.11 | 6894.86 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D4
D5 | 9115.14 | 9115.14 | 8226.35 | 8909.89 | 7012.93 | 6955.11 | 7229.98 | | D7 7312.33 7017.08 8448.43 7278.05 6757.69 6835.66 6886.63 20cor8 D1 7296.63 7282.72 8939.19 7287.19 6138.55 6690.95 6839.47 D2 8209.63 8209.63 9613.26 8152.57 6501.86 6858.07 7225.20 D3 9977.80 9742.28 9519.25 9748.99 6634.92 7654.29 8558.24 D4 11544.38 11439.69 10196.18 11166.77 8063.33 7958.40 9802.36 D5 13056.73 12622.10 10686.75 12305.75 7957.51 7720.70 10160.77 D6 6991.55 6889.97 9417.43 6988.52 6088.47 6326.56 6404.30 D7 7343.18 7080.65 10206.42 7329.18 6322.24 6924.74 6827.74 20cor9 D1 3643.67 3636.42 4382.46 3640.93 3092.34 3210.85 3225.14 D2 4050.00 | | D6 | | | 8035 97 | | | | | | 20cor8 D1 7296.63 7282.72 8939.19 7287.19 6138.55 6690.95 6839.47 D2 8209.63 8209.63 9613.26 8152.57 6501.86 6858.07 7225.20 D3 9977.80 9742.28 9519.25 9748.99 6634.92 7654.29 8558.24 D4 11544.38 11439.69 10196.18 11166.77 8063.33 7958.40 9802.36 D5 13056.73 12622.10 10686.75 12305.75 7957.51 7720.70 10160.77 D6 6991.55 6889.97 9417.43 6988.52 6088.47 6326.56 6404.30 D7 7343.18 7080.65 10206.42 7329.18 6322.24 6924.74 6827.74 20cor9 D1 3643.67 3636.42 4382.46 3640.93 3092.34 3210.85 3225.14 D2 4050.00 4050.00 4710.08 4031.84 3291.87 3592.65 3537.75 D3 4846.00 | | D7 | 7312.33 | 7017.08 | 8448.43 | 7278.05 | 6757.69 | 6835.66 | 6886.63 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 20cor 8 | D1 | 7296.63 | 7282.72 | 8939.19 | 7287.19 | $61\overline{38.55}$ | 6690.95 | 6839.47 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D3
D2 | 8209.63
9977.80 | 8209.63
9749 98 | 9013.26
9519 95 | 8152.57
9748 99 | 0501.86
6634 92 | 0858.07
7654-20 | 7225.20
8558-24 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 11544.38 | 11439.69 | 10196.18 | 11166.77 | 8063.33 | 7058 40 | 9802.36 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D5 | 13056.73 | 12622.10 | 10686.75 | 12305.75 | 7957.51 | 7720.70 | 10160.77 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D6 | 6991.55 | 6889.97 | 9417.43 | 6988.52 | 6088.47 | 6326.56 | 6404.30 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 20cor0 | <u>D/</u>
D1 | 3643.18
3643.67 | 7080.00
3636.49 | 10200.42
4382 46 | 7529.18
3640.03 | 3002 34 | 3924.74
3910.85 | 3225 14 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 200013 | D2 | 4050.00 | 4050.00 | 4710.08 | 4031.84 | 3291.87 | 3592.65 | 3537.75 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D3 | 4846.00 | 4809.83 | 5204.72 | 4760.54 | 3491.23 | 3687.15 | 4041.59 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D_{ϵ}^{4} | 5574.25 | 5509.25 | 5024.08 | 5423.81 | 3753.73 | 4153.73 | 4577.26 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 0272.00
3507.33 | $\frac{0100.50}{3502.72}$ | 5170.30
4621-36 | 3506 50 | 3079.98
 3121.35 | 3715.32
3298.69 | 4957.54
3296 45 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | $\mathrm{D}7$ | 3776.45 | 3568.20 | 5252.18 | 3759.85 | 3263.37 | 3505.23 | 3573.86 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 20cor10 | D1 | 16391.77 | 16359.07 | 18868.03 | 16379.27 | 14302.77 | 14553.03 | 15176.72 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D2 | 17818.10 | 17818.10 | 19839.74 | 17750.67 | 15328.02 | 15732.37 | 16010.08 | | D5 = +25642.00 - 25230.50 - 21020.76 - 23979.03 + 17100.77 - 17696.29 - 19030.89 | | D3
D4 | 23124 60 | 20424.80
23060 00 | 20013.51
22326.61 | 20352.09
22695.50 | 15220.99
17066.65 | 10847.02
16519.04 | 10770.37
18556-25 | | D6 15914.68 15832.62 19805.42 15910.38 14330.15 14779.72 15087.60 D7 17151.96 16228.57 21888.46 17057.42 15066.57 15724.06 15785.30 | | D5 | 25642.00 | 25230.50 | 21020.76 | 23979.03 | 17100.77 | 17696.29 | 19030.89 | | D7 17151.96 16228.57 21888.46 17057.42 15066.57 15724.06 15785.30 | | D6 | 15914.68 | 15832.62 | 19805.42 | 15910.38 | | 14779.72 | 15087.60 | | | | Dγ | 17151.96 | 16228.57 | 21888.46 | 17057.42 | 15066.57 | 15724.06 | 15785.30 | Table 8: Quad Bound Experiments, 20 Items, Uncorrelated Values and Sizes. | Distribution MCK | | table 8: Quad | Doung Ex | cperments | , zo nems, | , Uncorrei | ated varue | s and sizes. | | |--|----------------------|--------------------|--------------------|------------------------------|-----------------------|---------------------------|--------------------|----------------------|----------------------------| | D2 | Instance | Distribution | MCK | PP | PPIR | Quad | Greedy | A. Greedy | PP Dual | | D2 | 20uncor1 | D1 | 8040 61 | 8034 14 | 8106.02 | 8023 93 | 7676 97 | 7772.54 | 7109 04 | | Display | 204110011 | D2 | 8219.74 | 8219.74 | $8294\ 37$ | 8183.20 | 7688.70 | 7736.41 | 7144 15 | | Display | | D3 | 8521.33 | 8502.00 | 8261.00 | 8407 86 | 7645.62 | 7692.22 | 6610.58 | | Display | | | 8765.09 | 8765.09 | 7834.22 | 8554.09 | 7743.69 | 7770.24 | 6807.32 | | Display | | | 8907.79 | 8904.30
7067.45 | 8250.04 | 8664.80
7061.60 | 7666.50 | 7080.12 | 0588.37 | | December 2 | | | 8068 13 | 801.43
8014 39 | 8560.04
8560.95 | 801.09
8019.48 | 7590.33 | 7647.48 | 7524 03 | | D2 | 20uncor2 | | | 3949 56 | 4163.89 | 3942.51 | 3643.59 | 3724.72 | 3456.59 | | D3 | | D2 | 4115.09 | 4115.09 | 4150.11 | 4084.39 | 3673.05 | 3737.24 | 3595.27 | | D6 | | | 4381.49 | 4366.37 | 4118.71 | 4300.94 | 3721.18 | 3753.71 | 3570.37 | | D6 | | D4 | 4607.66 | 4603.75 | 4167.79 | 4466.36 | 3697.05 | 3751.26 | 3697.37 | | D7 | | D6 | 4813.00
3802.01 | 4813.00
3881 50 | 4201.71
4931.59 | $\frac{4557.52}{3888.39}$ | 3624.40 | 3772.95
3608.27 | 3702.00
3538 63 | | D1 | | D0
D7 | 4019.69 | 3923.79 | 4480.56 | 3941.21 | 3687.25 | 3690.40 | 3732.82 | | D2 | 20uncor3 | | 14551.89 | 14540.81 | 15024.73 | 14544.95 | 13339.76 | 13546.37 | 12976.11 | | D5 | | D2 | 15197.06 | 15197.06 | 15139.42 | 15146.66 | 13441.96 | 13565.83 | 12743.55 | | D5 | | | 16428.22 | 16372.83 | 15459.89 | 16138.39 | 14100.45 | 14404.41 | 13587.74 | | Duncord | | | 17430.12 | 17430.12 | 15394.68 | 15069.34 | 13877.95 | 13933.78 | 13472.95 | | Duncord | | | 14331 97 | 14329.07 | 15755 73 | 14329 94 | 13543 50 | 14313.30
13651 92 | 14030.42 13332.12 | | Duncord | | $ \widetilde{D7} $ | 14504.08 | 14323.71 14423.72 | 16735.96 | 14484.43 | 13526.99 | 13562-22 | 13468.22 | | D5 | 20uncor4 | D1 | 17327.77 | 17297.88 | 18635.24 | 17318 48 | 15709 73 | 15682.95 | 15953 15 | | D5 | | D2 | 18631.95 | 17963.50 | 18718.68 | 18563.19 | 14981.40 | 15756.11 | 15743.38 | | D5 | | D3 | 21157.50 | 19656.67 | 19667.90 | 20836.73 | 16581.39 | 17369.36 | 16286.06 | | D1 | | | 23343.00 | 22230.00
24182.80 | 20423.80 | 22134.38
22531 15 | 17625.40 | 17370.43
17776 27 | 18052 10 | | D1 | | | 16892.19 | 16559.36 | 19657 53 | 16889.20 | 14671.57 | 15080.44 | 15032.19 | | D2 | | | 17711.46 | 16973.04 | 21100.46 | 17338.52 | 15649.36 | 15885.25 | 15717.10 | | D4 | 20uncor5 | | 9808.42 | 9798.21 | 10706.09 | 9802.68 | 8797.96 | 9119.29 | 8513.68 | | D4 | | | 10547.66 | 10547.66 | 11206.51 | 10509.65 |
9117.45 | 9383.99 | 9485.89 | | D5 | | | 11980.16 | 11937.69 | 10785.22 | 11774.89 | 9420.54 | 9942.94 | 9518.15 | | D6 | | | 13009.30 | 13011.4 <i>2</i>
13033.00 | 10349.11 | 12791.00 | 10230.90 | 10008.90 | 9709.33
10497 74 | | 20uncor6 D1 1459.46 1457.53 1564.37 1456.06 1318.09 1364.43 1221.44 D2 1544.00 1548.70 1588.72 1531.09 1367.15 1401.14 1379.97 D3 1690.33 1679.47 1600.99 1647.82 1375.32 1406.73 1402.25 D4 1799.63 1787.75 1639.98 1733.00 1357.76 1379.36 1450.30 D5 1894.74 1868.00 1548.18 1791.13 1429.09 1424.11 1434.95 D6 1432.27 1429.03 1617.40 1430.49 1360.63 1381.50 1322.99 D7 1494.58 1452.06 1713.35 1470.68 1356.51 1377.40 1356.19 20uncor7 D1 9066.49 9061.11 8895.31 9060.04 8748.90 8775.27 8606.08 D4 9420.79 9420.79 8741.74 9322.51 8750.27 8760.71 8543.92 D5 9461.76 | | | 9561.17 | 9538.70 | 11314.69 | 9559.28 | 8743.38 | 9055.11 | 8701.76 | | 20uncor6 D1 1459.46 1457.53 1564.37 1456.06 1318.09 1364.43 1221.44 D2 1544.00 1548.70 1588.72 1531.09 1367.15 1401.14 1379.97 D3 1690.33 1679.47 1600.99 1647.82 1375.32 1406.73 1402.25 D4 1799.63 1787.75 1639.98 1733.00 1357.76 1379.36 1450.30 D5 1894.74 1868.00 1548.18 1791.13 1429.09 1424.11 1434.95 D6 1432.27 1429.03 1617.40 1430.49 1360.63 1381.50 1322.99 D7 1494.58 1452.06 1713.35 1470.68 1356.51 1377.40 1356.19 20uncor7 D1 9066.49 9061.11 8895.31 9060.04 8748.90 8775.27 8606.08 D4 9420.79 9420.79 8741.74 9322.51 8750.27 8760.71 8543.92 D5 9461.76 | | D7 | 9736.11 | 9653.75 | 11616.63 | 9701.18 | 9115.81 | 9419.20 | 9175.37 | | D3 | 20uncor6 | D1 | 1459.46 | 1457.53 | 1564.37 | 1456.06 | 1318.09 | 1364.43 | 1221.44 | | D6 | | D_2 | 1544.00 | 1544.00 | 1588.72 | 1531.09 | 1367.15 | 1401.14 | 1397.97 | | D6 | | | 1090.33 | 1079.47
1787 75 | 1600.99 | 1047.82 1722.00 | 1373.32 | 1400.73
1270.26 | 1402.25
1450.20 | | D6 | | | 1894 74 | 1868.00 | 1548 18 | 1791 13 | 1429 09 | 1428 11 | 1434 95 | | D7 | | D6 | 1432.27 | 1429.03 | 1617.40 | 1430.49 | 1360.63 | 1381.50 | 1322.99 | | D2 9174.84 9174.84 9143.87 9076.70 8750.27 8760.71 8543.92 D3 936.27 9324.13 9147.13 9254.63 8661.97 8686.51 7766.75 D4 9420.79 9420.79 8741.74 9322.51 8723.23 8747.86 7915.72 D5 9461.76 9461.76 9265.67 9367.86 8537.24 8543.82 8108.69 D6 9028.58 9026.09 9042.13 9026.17 8762.98 8773.35 8320.65 D7 9054.83 9047.01 9108.07 9051.68 8767.66 8783.23 8569.85 D7 9054.83 9047.01 9108.07 9051.68 8767.66 8783.23 8569.85 D7 11558.26 11543.61 12322.48 11530.82 10467.79 10855.15 10636.21 D2 12185.26 12185.26 12762.46 12051.89 10390.82 10718.55 10921.89 D3 13240.58 13089.00 12514.14 12844.13 10698.71 10988.40 11078.45 D4 14067.65 13912.20 12289.50 13441.24 10842.28 10976.21 11105.51 D5 14636.98 14303.20 12102.65 13515.42 10892.57 10870.16 11381.78 D6 11339.09 11300.90 12825.27 11329.13 10253.45 10472.15 10254.29 D7 11631.41 11370.14 13461.88 11405.53 10662.32 10827.82 10437.80 D2 5937.88 5937.88 6211.34 5910.50 5122.25 5310.78 5198.71 D3 6577.57 6524.67 6347.67 6454.38 5349.53 5470.90 5400.02 D4 7165.69 7021.69 6501.60 6876.53 5630.29 5670.04 5802.17 D5 5874.54 5597.90 6723.44 5701.37 5159.13 5285.49 5295.74 D7 5874.54 5597.90 6723.44 5701.37 5159.13 5285.49 5295.74 D7 5874.54 5597.90 6723.44 5701.37 5159.13 5285.49 5295.74 D2 19283.67 19283 | | | 1494.58 | 1452.06 | 1713.35 | 1470.68 | 1356.51 | 1377.40 | 1356.19 | | D5 | $20 \mathrm{uncor7}$ | D1 | 9066.49 | 9061.11 | 8895.31 | 9060.04 | 8748.90 | 8775.27 | 8606.08 | | D5 | | | 9174.84 | 9174.84 | 9143.87 | 9076.70 | 8750.27 | 8760.71
9696 51 | 8543.92
7766.75 | | D5 | | D3
D4 | 9330.27 | 9324.13
9420 79 | 9147.13
8741.74 | 9204.00 | 8723 23 | 8747 86 | 7915.73 | | D6 9028.58 9026.09 9042.13 9026.17 8762.98 8773.35 8320.65 20uncor8 D1 11558.26 11543.61 12322.48 11530.82 10467.79 10855.15 10636.21 D2 12185.26 12185.26 12762.46 12051.89 10390.82 10718.55 10921.89 D3 13240.58 13089.00 12514.14 12844.13 10698.71 10988.40 11078.45 D4 14067.65 13912.20 12289.50 13441.24 10842.28 10976.21 11105.51 D5 14636.98 14303.20 12102.65 13515.42 10892.57 10870.16 11381.78 D6 11339.09 11300.90 12825.27 1329.13 10253.45 10472.15 10254.29 D7 11631.41 11370.14 13461.88 11405.53 10662.32 10827.82 10437.80 20uncor9 D1 5608.58 5600.39 6078.60 5605.51 5176.80 5321.62 4995.69 < | | | 9461.76 | 9461.76 | 9265.67 | 9367.86 | 8537.24 | 8543.82 | 8108.69 | | D1 | | | 9028.58 | 9026.09 | 9042.13 | 9026.17 | 8762.98 | 8773.35 | 8320.65 | | D2 | -00 | | 9054.83 | 9047.01 | 9108.07 | 9051.68 | | 8783.23 | | | D3 | 20uncor8 | | 11558.26 | 11543.61 | 12322.48 12762.46 | 11530.82 | 10467.79 | 10855.15 | 10636.21 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 13240 58 | 12100.20
13089.00 | 12702.40
12514 14 | 12844 13 | 10698.84 | 10718.33
10988 40 | 10941.69
11078.45 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 14067.65 | 13912.20 | 12289.50 | 13441.24 | 10842.28 | 10976.21 | 11105.51 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D5 | 14636.98 | 14303.20 | 12102.65 | 13515.42 | 10892.57 | 10870.16 | 11381.78 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 11339.09 | 11300.90 | 12825.27 | 11329.13 | 10253.45 | 10472.15 | 10254.29 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 201120020 | | 11631.41 | 11370.14 | 13461.88 | 11405.53 | 10662.32 | 10827.82 | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 20uncor9 | | 5937.88 | 5000.39
5037 88 | 6211 37 | 5005.51
5910 50 | 5170.80
5199.95 | 9921.02
5310.78 | 4995.09
5198 71 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 6577.57 | 6524.67 | 6347.67 | 6454.38 | 5349.53 | 5470.90 | 5400.02 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | D4 | 7165.69 | 7021.69 | 6501.60 | 6876.53 | 5630.29 | 5670.04 | 5802.17 | | D7 5874.54 5597.90 6723.44 5701.37 5159.13 5285.49 5295.74 20uncor10 D1 18587.96 18564.24 19320.92 18549.28 17022.34 17445.23 16393.10 D2 19283.67 19283.67 19640.00 19195.46 17000.09 17401.36 16646.87 D3 20535.76 20465.18 18936.26 20324.87 17142.99 17374.79 16556.04 D4 21634.32 21359.25 19802.52 21153.03 18031.97 17939.30 16701.87 D5 22616.56 22426.05 19559.67 21727.01 17383.87 17714.82 17177.66 D6 18333.48 18271.03 20273.80 18306.80 16917.86 17228.88 16865.20 | | | 7581.17 | 7526.90 | 6201.98 | 7034.04 | 5341.80 | 5390.83 | 5372.26 | | 20uncor10 D1 18587.96 18564.24 19320.92 18549.28 17022.34 17445.23 16393.10 D2 19283.67 19283.67 19640.00 19195.46 17000.09 17401.36 16646.87 D3 20535.76 20465.18 18936.26 20324.87 17142.99 17374.79 16556.04 D4 21634.32 21359.25 19802.52 21153.03 18031.97 17939.30 16701.87 D5 22616.56 22426.05 19559.67 21727.01 17383.87 17714.82 17177.66 D6 18333.48 18271.03 20273.80 18306.80 16917.86 17228.88 16865.20 | | | 5499.61 | 5484.38 | 6369.35 | 5498.62 | 5150.11 | 5274.72 | 4978.59 | | D2 | 20unacr10 | | 18597 0 <i>c</i> | 0097.90
18564.94 | 0 / 23.44
10220 02 | 185/0.09 | 17022 24 | 5285.49
17445 99 | $\frac{5295.74}{16202.10}$ | | 100 + 18333.48 + 18271.03 + 20273.80 + 18306.80 + 16917.86 + 17228.88 + 16865.20 | 20 uncoi 10 | | 19283 67 | 19283 67 | 19640.94 | 19195 46 | 17000.09 | 17440.23 | 16646 87 | | 100 + 18333.48 + 18271.03 + 20273.80 + 18306.80 + 16917.86 + 17228.88 + 16865.20 | | D3 | 20535.76 | 20465.18 | 18936.26 | 20324.87 | 17142.99 | 17374.79 | 16556.04 | | 100 + 18333.48 + 18271.03 + 20273.80 + 18306.80 + 16917.86 + 17228.88 + 16865.20 | | D4 | 21634.32 | 21359 25 | 19802.52 | 21153.03 | 18031.97 | 17939.30 | 16701.87 | | 100 + 18333.48 + 18271.03 + 20273.80 + 18306.80 + 16917.86 + 17228.88 + 16865.20 | | | +22616.56 | 22426.05 | 19559.67 | 21727.01 | 17383.87 | 17714.82 | 17177.66 | | D1 19010.00 10999.49 20949.09 10101.41 11420.49 11092.92 11344.01 | | | 18333.48 | 18271.03 | 20273.80 | 18306.80 | 10917.86 | 17228.88 | 16865.20
17244.01 | | | | טו | 19010.80 | 10003.43 | 20049.00 | 10101.41 | 17420.43 | 17092.52 | 17344.01 |