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Abstract

We consider two linear relaxations of the asymmetric traveling salesman problem (TSP),
the Held-Karp relaxation of the TSP’s arc-based formulation, and a particular approximate
linear programming (ALP) relaxation obtained by restricting the dual of the TSP’s shortest
path formulation. We show that the two formulations produce equal lower bounds for the
TSP’s optimal cost regardless of cost structure; i.e. costs need not be non-negative, symmetric
or metric. We then show how the ALP formulation can be modified to yield a relaxation for
several TSP variants, and discuss how the formulations differ from arc-based relaxations.

1 Introduction

One of the most natural ways to tractably bound difficult combinatorial optimization problems is to
study the linear programming (LP) relaxation of their integer programming (IP) formulation. But
how close is the LP relaxation optimum to the true IP optimum? The quality of this bound is an
important question, both for exact and approximation algorithms. The traveling salesman problem
(TSP) is one of the most widely researched models in integer programming and combinatorial
optimization [10, 36], and its relaxations have received sustained attention from the community.
The IP formulation of the TSP dates at least as far back as the 1950’s and the work of Dantzig,
Fulkerson and Johnson [25], but the bound given by its LP relaxation is commonly known as the
Held-Karp bound because of the two authors’ seminal work on the subject [38, 39].

One way to study a relaxation’s quality is to study the ratio between its optimum and the
original problem’s optimum. The supremum of the ratio between the integer optimum and the
relaxation optimum over all or some problem instances is known as the relaxation’s integrality gap
with respect to these instances. For the TSP, the first result of this kind was obtained by Wolsey
[53], who used Christofides’ heuristic [22] to show that the Held-Karp bound has an integrality
gap of at most 3/2 when costs are non-negative, symmetric and satisfy the triangle inequality.
The study of the Held-Karp bound and other TSP relaxations continued in the subsequent years
[33, 46, 52] and beyond the turn of the century [20, 21], including recent results, e.g. [9, 11, 43, 45].
The survey [51] thoroughly covers much of this work, focusing on advances of the last few years.

1



Despite the sustained attention, Wolsey’s 3/2 integrality gap bound for the symmetric TSP with
non-negative costs satisfying the triangle inequality has not been improved in this general case, even
though the worst known example is an instance family achieving a gap of 4/3. Similarly, in the
asymmetric case with non-negative costs satisfying the triangle inequality, the worst known example
achieves a gap of 2 [21], but only recently has an integrality gap proof broken the logarithmic barrier
[11].

Our main goal in this paper is to compare the Held-Karp bound to an approximate linear
programming (ALP) relaxation recently proposed in [47] and shown to produce a bound at least
as good as Held-Karp. Introduced in the mid 1980’s and early 1990’s [44, 49, 50], ALP is an
approximate dynamic programming technique that obtains relaxations and bounds for dynamic
programs (DP) by restricting the feasible region of their LP formulation. In the TSP’s case, the
DP is a shortest path formulation originally studied in [18, 35, 37], where states track the salesman’s
current location and the cities remaining to visit. ALP has gained popularity within optimization
and operations research in the last decade [26, 27, 28], and has been applied in commodity valuation
[42], economic lot scheduling [6], inventory routing [3, 4], joint replenishment [7, 8, 40], revenue
management [5], stochastic games [32] and stochastic vehicle routing [48].

Specifically, our paper has two main contributions:

i) We prove the ALP bound’s equivalence to the Held-Karp bound under arbitrary arc costs.
This entirely new reformulation of the Held-Karp bound may reveal additional structure
and help researchers design improved algorithms. The equivalence is striking because the
Held-Karp bound uses quadratically many variables and exponentially many constraints in
its primal relaxation, whereas the ALP uses quadratically many variables and exponentially
many constraints in the dual space.

ii) We show how the ALP bound can be extended for modified versions of the TSP, and discuss
differences between the ALP extensions and the arc-based LP relaxations used for these
problems.

The remainder of the paper is organized as follows. Section 2 formulates the TSP and its
bounds, introduces notation and has other preliminaries. Section 3 has the main proof of the two
bounds’ equivalence. Section 4 discusses extensions to some TSP variants, and Section 5 concludes
outlining future avenues of research.

2 Formulation and Preliminaries

The TSP is specified by a set of cities N := {1, . . . , n} and a distinguished city 0, sometimes called
the home city or depot, and by arc costs cij ∈ R for every ordered pair i, j ∈ N ∪ 0. (Here and
elsewhere we identify singleton sets with their unique elements.) We do not assume non-negativity,
symmetry or any other restriction on c. The TSP’s objective is to find a minimum-cost order
to visit the cities in N exactly once starting at and ultimately returning to 0; that is, we seek a
permutation σ : N → N that minimizes c0,σ(1) +

∑n−1
i=1 cσ(i),σ(i+1) + cσ(n),0.

The arc-based IP formulation for the TSP [25] is

min
x

∑
i∈N

(
c0ix0i +

∑
j∈N\i

cijxij + ci0xi0

)
(1a)
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s.t.
∑
i∈N

x0i = 1 (1b)∑
i∈N

xi0 = 1 (1c)

x0i +
∑
j∈N\i

xji = 1, i ∈ N (1d)

∑
j∈N\i

xij + xi0 = 1, i ∈ N (1e)

∑
i∈U

(
x0i +

∑
j∈N\U

xji

)
≥ 1, ∅ 6= U ⊆ N (1f)

∑
i∈U

( ∑
j∈N\U

xij + xi0

)
≥ 1, ∅ 6= U ⊆ N (1g)

xij ∈ Z+, i ∈ N ∪ 0, j ∈ (N ∪ 0) \ i; (1h)

Variables xij indicate when i immediately precedes j in the tour; we differentiate variables for arcs
incident to 0 to highlight similarities to a subsequent formulation. The objective (1a) minimizes
the tour’s cost. Constraints (1b) through (1e) enforce unit flow balance through the depot and
other cities, while the subtour elimination constraints (1f) and (1g) ensure the solution is connected.
These constraints can be separated over in polynomial time using a min-cut algorithm as separation
routine. The LP obtained by relaxing the integrality constraint in (1h) yields the Held-Karp bound;
let zHK denote this optimal value.

The DP formulation of the TSP [18, 35, 37] uses the state space

S := {(0, N), (0,∅)} ∪ {(i, U) : i ∈ N,U ⊆ N \ i},

where the first two elements represent the initial and terminal states, while the intermediate states
(i, U) indicate that the salesman’s current location is i and he must still visit the cities in U before
returning to 0. This state space yields the backwards Bellman recursion

y∗i,∅ = ci0, i ∈ N
y∗i,U = min

j∈U
{cij + y∗j,U\j}, i ∈ N ∪ 0,∅ 6= U ⊆ N \ i,

which can be alternately captured as the optimal solution of the LP

max
y

y0,N (2a)

s.t. y0,N − yi,N\i ≤ c0i, i ∈ N (2b)

yi,U∪j − yj,U ≤ cij , i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j} (2c)

yi,∅ ≤ ci0, i ∈ N (2d)

yi,U ∈ R, i ∈ N ∪ 0, U ⊆ N \ i. (2e)

The objective (2a) maximizes the value of the initial state (0, N), and the optimal value y∗0,N is the
optimal tour cost. Constraints (2b) through (2d) enforce shortest path label feasibility at all states
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in the DP; given an optimal y∗ we can recover an optimal tour by starting at 0 and always choosing
a minimizing city in the Bellman recursion. The dual of (2) is the TSP shortest path formulation.

The LP (2) is a strong dual for the TSP; in particular, any feasible solution provides a lower
bound on the optimal cost. ALP attempts to provide a good bound by restricting the feasible region
to a lower-dimensional subspace, and optimizing within this restriction. Many such approximations
are possible for the TSP [47], but here we focus on the following. When the salesman is at city
i ∈ N , suppose we assign him a nominal cost πi0. For every remaining city k ∈ U he must still
visit, we add additional nominal costs πik that depend on the current location i. This yields an
approximation

yi,U ≈ πi0 +
∑
k∈U

πik, i ∈ N,U ⊆ N \ i.

Substituting into (2), we get the ALP

max
y,π

y (3a)

s.t. y − πi0 −
∑
k∈N\i

πik ≤ c0i, i ∈ N (3b)

πi0 − πj0 + πij +
∑
k∈U

(πik − πjk) ≤ cij , i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j} (3c)

πi0 ≤ ci0, i ∈ N (3d)

y ∈ R, π ∈ Rn
2
. (3e)

Though (3) still has an exponential number of constraints in (3c), we can separate over this class
in O(n3) time: For every ordered pair (i, j), greedily add k ∈ U when (πik − πjk) > 0. Let zALP

denote the optimal value.

Lemma 1 ([47]). zHK ≤ zALP.

3 Bound Equivalence

Our main result is the equality of the two bounds.

Theorem 2. zHK = zALP.

Proof. We assume n ≥ 3; the result is otherwise trivial. Given Lemma 1, it suffices to prove the
reverse inequality. To do this, we show that any feasible solution of the LP relaxation of (1) has
an objective that can be achieved by some feasible solution of the dual of (3). This dual is

min
x

∑
i∈N

(
c0ix0i +

∑
j∈N\i

∑
U⊆N\{i,j}

cijx
U
ij + ci0xi0

)
(4a)

s.t.
∑
i∈N

x0i = 1 (4b)

− x0i +
∑
j∈N\i

∑
U⊆N\{i,j}

(xUij − xUji) + xi0 = 0, i ∈ N (4c)
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− x0i +
∑

U⊆N\{i,j}

xUij +
∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

(xU∪jik − xU∪jki ) = 0, i ∈ N, j ∈ N \ i (4d)

x ≥ 0. (4e)

As in (1), variables x0i and xi0 represent the choice of visiting i at the start or end of the tour
respectively. Meanwhile, the variables xUij represent the choice of visiting j immediately after i
when the other remaining cities are U . The objective (4a) minimizes the tour’s cost, and constraint
(4b) forces a unit of flow out of the depot. Constraint (4c) requires flow balance at each city i ∈ N .
Constraints (4d) are “i-j” flow balance requirements: The flow into i when j must still be visited,
either from the depot or other cities, must equal the flow out of i when j still remains, either to j
itself or another city in N \ {i, j}. The formulation is indeed a relaxation, because this type of flow
balance must hold not only for single remaining cities, but also for subsets of remaining cities; see
[48] for a similar relaxation in a stochastic setting.

Given a feasible solution x̂ to the LP relaxation of (1), in order to match x̂’s objective value we
need the following equations to be satisfied in terms of the variables in (4):

x0i = x̂0i, xi0 = x̂i0, i ∈ N ;
∑

U⊆N\{i,j}

xUij = x̂ij , i ∈ N, j ∈ N \ i. (5)

Enforcing these equalities automatically satisfies (4b) and (4c) because x̂ satisfies (1b) through
(1e). After making the relevant substitutions, it remains to check the feasibility of the system∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

(xU∪jik − xU∪jki ) = x̂0i − x̂ij , i ∈ N, j ∈ N \ i

∑
U⊆N\{i,j}

xUij = x̂ij , i ∈ N, j ∈ N \ i

x ≥ 0.

Applying Farkas’ Lemma, this system is feasible if∑
i∈N

∑
j∈N\i

((x̂0i − x̂ij)µij + x̂ijρij) > 0 (6a)

∑
k∈U

(µik − µjk) + ρij ≤ 0, i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j} (6b)

µij , ρij ∈ R, i ∈ N, j ∈ N \ i (6c)

is infeasible. By taking U = ∅ in (6b) it follows that ρ ≤ 0; furthermore, given any µ, we can always
satisfy all constraints (6b) by choosing ρ values that are negative enough. To make the left-hand
side of (6a) as large as possible, we can therefore choose −ρij = maxU⊆N\{i,j}

∑
k∈U (µik − µjk);

this is the largest (least negative) value of ρij guaranteed to satisfy (6b) for this ordered i, j pair
and all U ⊆ N \ {i, j}. Projecting out the ρ variables with this identity, we need to check whether
any µ can satisfy ∑

i∈N

∑
j∈N\i

(
µij(x̂ij − x̂0i) + x̂ij max

U⊆N\{i,j}

∑
k∈U

(µik − µjk)
)
< 0.
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We have reversed the expression’s sign for convenience. Using (·)+ := max{0, ·}, we can rearrange
terms and rewrite this left-hand side expression as∑

i∈N

∑
j∈N\i

(
µij(x̂ij − x̂0i) + x̂ij

∑
k∈N\{i,j}

(µik − µjk)+
)

=
∑
j∈N

∑
i∈N\j

(
µij(x̂ij − x̂0i) +

∑
k∈N\{i,j}

x̂ik(µij − µkj)+
)

.

The terms are now grouped so that within the first summation all µ variables share the same
second city index, j. We focus on an arbitrary summand given by a fixed j; assume without
loss of generality that j = n, and also assume (possibly by permuting the remaining indices) that
µ1n ≥ · · · ≥ µn−1,n. The summand can then be written as

n−1∑
i=1

(
µin(x̂in − x̂0i) +

n−1∑
k=i+1

x̂ik(µin − µkn)

)

=
n−1∑
i=1

µin

(
−

i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik

)

= µ1n

(
−x̂01 +

n∑
k=2

x̂1k

)
+

n−2∑
i=2

µin

(
−

i−1∑
k=0

x̂ki +

n∑
k=i+1

x̂ik

)
+ µn−1,n

(
−
n−2∑
k=0

x̂k,n−1 + x̂n−1,n

)

= µ1n

( n∑
k=2

(x̂0k + x̂1k)− 1

)
+
n−2∑
i=2

µin

(
−

i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik

)
− µn−1,n

(n−2∑
k=0

(x̂k,n−1 + x̂kn)− 1

)
,

where for the last equality we use (1b) in the leftmost term and (1d) (for i = n) in the rightmost
term. Finally, using the identity

−
i−1∑
k=0

n∑
`=i

x̂k` +
i∑

k=0

n∑
`=i+1

x̂k` = −
i−1∑
k=0

x̂ki +
n∑

k=i+1

x̂ik

for each i = 2, . . . , n− 2, we arrive at

n−2∑
i=1

(µin − µi+1,n)

( i∑
k=0

n∑
`=i+1

x̂k` − 1

)
≥ 0.

This quantity must be non-negative because of the non-increasing assumption on the µin values
and the subtour elimination constraints (1f) for U = {i+ 1, . . . , n} and i = 1, . . . , n− 2. �

Theorem 2 also confirms that the equivalence between the Held-Karp and ALP bounds is
constructive in the following sense: The proof of Lemma 1 from [47] gives a construction whereby
any feasible solution of the Held-Karp dual formulation can be transformed into a feasible solution
of (3) with equal objective. The preceding proof shows that a feasible solution of the Held-Karp
formulation (1) has some transformation to a feasible solution of (4) with equal objective. But when
solving (4) to optimality, Theorem 2 ensures that the transformation (5) in the reverse direction
(which is unique) also yields an optimal solution to the Held-Karp formulation (1). We can therefore
solve the Held-Karp bound to optimality and use its dual to obtain an optimal solution for the
ALP, or solve the ALP bound and use its dual (4) to obtain an optimal solution for Held-Karp.
Table 1 summarizes this discussion.
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Held-Karp ALP

primal (1)
(5)←− (4)

m m
dual dual of (1)

[47]−→ (3)

Table 1: Summary of optimal solution transformations between Held-Karp and ALP formulations.

4 Application to Other TSP Models

The TSP’s applicability in a wide range of research areas [10] has motivated the study of many
modified versions of the problem [36]. In some cases, the modification implies significant changes
to the formulation (1). In this section we highlight how the ALP bound can be readily extended to
several TSP variants, and compare these extensions to the corresponding change in the arc-based
formulation. Table 2 summarizes the variants we focus on and the necessary change in the ALP
formulation.

TSP Modification Separation Problem for Each City Pair

None Greedy

Time-Dependent Sort

Average Cost Greedy

Precedence Constraints Optimal Closure

Time Slots O(n) Weighted Assignments

Prize-Collecting Greedy (for every pair and every city)

Table 2: Summary of ALP separation problem for various TSP models.

4.1 Time-Dependent TSP

In the time-dependent TSP (TDTSP) [1], the cost of traveling from i to j depends also on the place
in the tour when it occurs. Specifically, arc costs become ctij for t = 0, . . . , n, where time indices
t ∈ {0, n} represent the arc out of and into 0 and other indices represent intermediate arcs in the

tour. The transition between states (i, U ∪ j) and (j, U) thus has cost c
n−|U |−1
ij , and the ALP (3)

becomes

max
y,π

y

s.t. y − πi0 −
∑
k∈N\i

πik ≤ c00i, i ∈ N

πi0 − πj0 + πij +
∑
k∈U

(πik − πjk) ≤ c
n−|U |−1
ij , i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}

πi0 ≤ cni0, i ∈ N

y ∈ R, π ∈ Rn
2
.
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In contrast, an arc-based formulation for the TDTSP uses a cubic number of variables over a time-
expanded network [1]. The ALP is polynomially solvable provided the exponential constraint class
can be separated over efficiently. For an ordered pair i, j, this problem is

max
U⊆N\{i,j}

{∑
k∈U

(πik − πjk)− c
n−|U |−1
ij

}
= max

t=1,...,n−1

{
−ctij + max

U⊆N\{i,j}
|U |=n−t−1

∑
k∈U

(πik − πjk)

}
.

To solve, it suffices to sort the values (πik − πjk) in non-increasing order, then add them one by
one in this order while checking each successive sum against the corresponding ctij . The complexity
of this procedure is dominated by the sort, and thus the separation problem can be solved in
O(n3 log n) time.

One important version of the TDTSP with a simpler separation problem is the average-cost
TSP, in which the objective is to minimize the average cost of the tour’s induced path from 0 to
each city in N ; for instance, this objective is useful when arc costs represent time, cities represent
customers and the objective is to minimize the customers’ average waiting time. In this case, the
costs are given by ctij = (n− t)cij , where cij are the underlying arc costs, because an arc traversed
at step t affects the average cost of all cities after it. The separation problem is then equivalent to

max
U⊆N\{i,j}

∑
k∈U

(πik − πjk − cij),

and this problem can be solved greedily as in the time-independent TSP, by putting k ∈ U if
(πik − πjk − cij) > 0.

4.2 Precedence-Constrained TSP

In certain applications, the salesman may be required to visit some cities before others. One
example is pickup and delivery problems (e.g. [31]), where a vehicle must transport products from
some locations to others. In the precedence-constrained TSP [12, 16, 41], in addition to the other
TSP parameters we are given a directed, acyclic and transitive precedence graph G = (N,A):
If (i, j) ∈ A then the tour must visit i before j. In order to formulate a valid arc-based IP for
this problem, a new exponential class of inequalities must be added to (1), and the resulting LP
relaxation can be optimized in polynomial time; see [16].

For the ALP, the addition of precedence constraints renders some states (i, U) infeasible. Specif-
ically, the set U must contain i’s out-neighbors (successors), and must be closed in G; no precedence
arcs may go from cities in U to cities outside U , since this would indicate a precedence violation.
Let δ+(U) := {(i, j) ∈ A : i ∈ U, j 6∈ U}, Γ+(U) := {j ∈ N \ U : (i, j) ∈ δ+(U)}, and define
δ−(U),Γ−(U) analogously. The ALP (3) becomes

max
y,π

y

s.t. y − πi0 −
∑
k∈N\i

πik ≤ c0i, i ∈ N, δ−(i) = ∅

πi0 − πj0 + πij +
∑
k∈U

(πik − πjk) ≤ cij ,

i, j ∈ N, (j, i) 6∈ A,U ⊆ N \ ({i, j} ∪ Γ−({i, j})),
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U ⊇ Γ+({i, j}) \ j, δ+(U) = ∅
πi0 ≤ ci0, i ∈ N, δ+(i) = ∅

y ∈ R, π ∈ Rn
2
.

Similarly, to separate over the exponential constraint class, for every ordered pair i, j with (j, i) 6∈ A
we solve

max

{∑
k∈U

(πik − πjk) : Γ+({i, j}) \ j ⊆ U ⊆ N \ ({i, j} ∪ Γ−({i, j})), δ+(U) = ∅
}

.

This is an optimal closure problem, in which we seek the maximum-weight set U ⊆ N \ {i, j}
that contains i’s and j’s successors (except j if it is a successor of i), does not contain i’s and j’s
predecessors, and is closed in A. The problem can be recast as a minimum cut problem and solved
in polynomial time [23].

4.3 TSP with Time Slots

Another important constraint in some TSP applications restricts the timing of visits to cities. For
the TSP with time windows [17, 30, 41], in addition to costs of travel between cities there is a travel
time. We assume the tour begins at time 0, and the arrival time at each city i must be between a
window specified by earliest and latest possible arrival times; the salesman may wait if he arrives
before the time window.

Typical DP formulations of routing problems with time windows require an additional state
space dimension tracking time [41], and are beyond the scope of this paper. Similarly, arc-based
formulations usually require auxiliary variables indicating arrival and/or departure times at each
city, e.g. [29]. However, there is a special case that can be modeled directly using our current
formulation. If travel times are universally equal to one, the time windows become restrictions that
cities be visited on particular positions, or slots, in the tour. For example, the salesman may be
traveling by plane once a day between cities, but he can travel to some cities only on weekdays, or
only at the start or end of the tour, etc. The example also illustrates that we can allow multiple
windows (i.e. given by the union of disjoint intervals).

Let M := {1, . . . , n} be the set of slots or positions on the tour, and let B = (N ∪M,E) be a
bipartite graph with bipartition (N,M) indicating each city’s allowed slots on the tour: (i, t) ∈ E
if i may be in position t. A state (i, U) is feasible for the DP if and only if (i, n− |U |) ∈ E, U can
be perfectly matched to {n − |U | + 1, . . . , n} in B, and N \ (U ∪ i) can be perfectly matched to
{1, . . . , n− |U | − 1} in B. The ALP then becomes

max
y,π

y

s.t. y − πi0 −
∑
k∈N\i

πik ≤ c0i, i ∈ N, (i, 1) ∈ E

πi0 − πj0 + πij +
∑
k∈U

(πik − πjk) ≤ cij ,

i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}, (i, n− |U | − 1) ∈ E, (j, n− |U |) ∈ E,
U can be perfectly matched to {n− |U |+ 1, . . . , n},
N \ (U ∪ {i, j}) can be perfectly matched to {1, . . . , n− |U | − 2}
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πi0 ≤ ci0, i ∈ N, (i, n) ∈ E

y ∈ R, π ∈ Rn
2
.

To separate over the exponential constraint class, we consider an ordered pair i, j and every possible
slot t ∈ M with (i, t), (j, t + 1) ∈ E. For each such triple i, j, t, we must perfectly match the
remaining cities N \ {i, j} to remaining slots M \ {t, t+ 1} in G. Cities k ∈ N \ {i, j} matched to
slots t + 2, . . . , n add weight (πik − πjk), while cities matched to slots 1, . . . , t − 1 add no weight.
The separation problem for the triple i, j, t is therefore a weighted assignment problem, and there
are O(n) slots t for every pair i, j, requiring the solution of O(n3) assignment problems to separate.

4.4 Prize-Collecting TSP

In the prize-collecting TSP [13, 14, 15], the salesman can select which cities in N to visit. In the
version we consider [19, 34], the salesman pays a penalty pi for every city i left out of the tour.
The IP formulation then includes additional city variables indicating which cities form part of the
tour, and these variables appear in the right-hand side of the flow balance and subtour elimination
constraints.

In the DP, every state (i, U) includes the additional feasible action of returning to the depot 0
without visiting the cities in U , incurring cost ci0 +

∑
k∈U pk. The ALP is

max y (7a)

s.t. y ≤
∑
i∈N

pi (7b)

y − πi0 −
∑
k∈N\i

πik ≤ c0i, i ∈ N (7c)

πi0 − πj0 + πij +
∑
k∈U

(πik − πjk) ≤ cij , i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j} (7d)

πi0 +
∑
k∈U

πik ≤ ci0 +
∑
k∈U

pk, i ∈ N,U ⊆ N \ i (7e)

y ∈ R, π ∈ Rn
2
, (7f)

where constraint (7b) indicates the salesman may choose not to visit any cities at all, and we replace
constraint (3d) with the more general (7e) because the salesman is allowed to return to 0 at any
point in the tour. The first exponential constraint class (7d) can be separated over exactly as in
the basic TSP case, with a greedy algorithm for every pair of cities i, j. Similarly, the constraints
(7e) can be separated over greedily: For each i, add k ∈ U only if (πik − pik) > 0.

5 Conclusions

We have proved that the ALP bound (3) for the TSP is a reformulation of the Held-Karp bound,
and shown how to extend the bound to several important TSP variants. We believe this opens
several research questions for computational and theoretical work on the TSP.

Computationally, ALP directly implies heuristics known sometimes as price-directed policies [3,
4]. These heuristics can be embedded within an exact optimization branch-and-bound framework,
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where they become strong branching rules or a version of hybrid pseudo-cost branching strategies
[2], to either enhance the heuristic’s performance or exactly solve the instances. This topic is one
of our current research avenues.

From a theoretical perspective, the design of many approximation algorithms based on an LP
relaxation depends on the structure of the relaxation’s polyhedron and its extreme points. It may be
useful to characterize the extreme points of (3) and (4) with results similar to those in [20, 24, 43],
possibly assuming here that arc costs have additional structure, such as non-negativity, the triangle
inequality or symmetry.
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