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E-Commerce

• Pre-COVID, e-commerce was already a large and growing
sector of retail and overall economy.

• About or above 10% of all US retail since 2013
(Forrester Research).

• Average annual online spending to reach $2,000 per buyer in
2018 (Forrester Research).

• Amazon alone accounts for almost half of US e-retail
(eMarketer).

• Amazon now second to Walmart in terms of global
employment numbers (566K vs. 2.3M); both very active in
e-retail (Fortune).

• COVID has only accelerated these trends.
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Same-Day Delivery

• Intense competition, constant need for innovation – the
customer wants it NOW.

• Same-day delivery (SDD) further erodes brick-and-mortar
advantage. But...

• Extremely costly “last mile”.

• Lower order numbers, fewer economies of scale.

• Fewer than 1/4 of customers willing to pay, and then only
small amount (McKinsey).

• Flat fees (e.g. Amazon Prime) may help amortize costs.
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Same-Day Delivery
What’s new?

• Traditional delivery: order acceptance, picking and packing
before last-mile distribution.

• Same-day delivery: simultaneous order acceptance, picking,
packing and last-mile distribution.

• This talk: Delivery by end of day/common order deadline.

• Food/grocery delivery: order-specific delivery times, 30
minutes to two hours (Amazon Restaurants, GrubHub,
Uber Eats, pizza delivery).
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Same-Day Delivery
What’s new?

Source: A. Erera
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Same-Day Delivery

• Operational Models

• Azi/Gendreau/Potvin (12,14), Campbell/Savelsbergh (05),

Klapp/Erera/T. (18a,b,20), Ulmer (17a,b), Ulmer/Thomas (18),

Ulmer/Thomas/Mattfeld (19), Voccia/Campbell/Thomas (17), ...

• Can be used for tactical analysis, but complex and not
transparent.

• Our Goal: Simple, “higher-level” model capturing typical
system behavior.

• What does the “average” SDD operating day look like?
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Tactical Dispatching Model

0 N T

• Single depot with vehicle fleet serving fixed region.

• Orders appear at constant unit rate from 0 to N.

• All orders must be served, dispatches complete by T > N.

• Objective: Minimize total dispatching time.
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Tactical Dispatching Model
Dispatch time

n f (n)

• A dispatch to serve n orders takes f (n) time, where

f (0) = 0, f is increasing, concave, can “keep up”.

• Motivation: f (n) = a + bn + c
√
n for n > 0, where

• c
√
n is a BHH (59) routing time approximation,

• assuming order locations are randomly distributed.

• Continuous approximations widely used in logistics
(Franceschetti/Jabali/Laporte 17), including urban logistics
(Carlsson/Song 18, Figliozzi 07, van Heeswijk/Mes/Schutten 17).
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Tactical Dispatching Model
Dispatch time

• For example, for

1. unit square service region, center depot,

2. Manhattan distances,

3. roughly 30 locations sampled uniformly,

we estimate TSP length as 1.04
√
n.

E[TSPn] ≈ 1.04
√
n

� • •

•
•

•

•
•

• •
•

•

• Asymptotic constant in this case estimated at ≈ 0.89
(Johnson/McGeoch/Rothberg 96).
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Tactical Dispatching Model
Dispatch time

• Realistic situation:

1. 8 mile by 8 mile service region (center depot)

2. 25 mph average vehicle speed, Manhattan distances

3. an order every 6 minutes

4. 5-minute dispatch setup, 2-minute delivery per order

• We convert this to

f (n) = 5/6 + 1/3n + 3.3
√
n (× 6 minutes).
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Optimal Structure
Concavity abhors balance

Dispatches should be as unbalanced as possible:

• This looks nice,

• but this is better,

• and so is this!
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Consequences and Intuition

1. Decreasing dispatch lengths as day progresses.

• Matches empirical observations in operational models
(KET 18a,b).

2. Dispatching (and each vehicle) start inactive, then become
active and remain so for rest of day.

• Useful for shift scheduling.

3. A dispatch takes all currently unserved orders.

• Vehicles can be “pre-loaded”.

• Not necessarily true with geographic order discrimination.
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Many Vehicles
Optimal policy

t1 t2 t3

T

• Each vehicle

1. takes all available orders,

2. leaves such that its dispatch ends at T .

• Compute by solving equations of the form

t1 + f (t1) = T , t2 + f (t2 − t1) = T ,

t3 + f (N − t2) = T , . . .
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One Vehicle
Optimal policy

t1 t2

T

1. Each dispatch takes all available orders.

2. No waiting between dispatches.

3. Last dispatch returns at T .

* Minimum dispatch quantity for all dispatches except possibly last one.

• Try solving progressively higher-order equations:

t1 + f (N) = T , (one dispatch)

t1 + f (t1) + f (N − t1) = T , (two)

t1 + f (t1) + f (f (t1)) + f (N − t1 − f (t1)) = T , . . . (three)
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Finite Fleet

T

• Optimality depends on parameters; no general structure.

• Hybrid heuristic: For m vehicles,

1. first m − 1 follow many-vehicle policy,

2. last one serves remainder with one-vehicle policy.

• For f (n) = bn + c
√
n, heuristic has approximation guarantee

m − 1 + Dm

√
Dm

m − 1 + Dm
,

Dm is number of dispatches for m-th vehicle.
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Tactical Design
Fleet sizing

1. 8× 8 mile region, uniformly random locations.

2. An order every 8 minutes for 10 hours, 12-hour day.

3. Manhattan norm, 25 mph, 1 minute service per order.

• Many Vehicles: Two dispatches, 64 and 11 orders.

• Single Vehicle: Two dispatches, 55 and 20 orders.

• Dispatch time increase of only 4%!
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Tactical Design
Choosing order cutoff N

• If revenue is linear in orders served,
how long do we accept orders?

• Assume fleet can be as large as necessary.

• Optimal to maximally utilize dispatched vehicles:

t1 t2 t3 T

One vehicle: Can prove similar result for one, two dispatches.
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Tactical Design

Other potential applications:

1. Service region partitioning.

• Small areas served by single vehicle,
or large area served by many?

2. Combining SDD and overnight deliveries.

• Starting the day with orders accumulated.

3. Length of work day, size of service region, ...
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Computational Validation
Case study in Northeastern Atlanta

• 22 census tracts, about 92,000 people.

• Five addresses per tract, 110 total.

• Depot in northeast border.

• Service day: 9AM - 6PM.

• Orders every six minutes.

• Location chosen proportional to tract’s
population times median income.

• Driving times given by Google API.

• Driving time calibrated to 24
√
n minutes.

• 10-min setup per dispatch,
1.5-min service per order.
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Computational Validation
Benchmarks

• Two-vehicle fleet:

• Order cutoff at 3:40 (N = 66.7) for full utilization.

• Model predicts 389 minutes of dispatch time.

• Operational benchmark:

• Poisson arrivals (6-min. rate).

• Compute TSP for all accumulated orders, dispatch when

setup + service time + TSP = remaining time.

• Hindsight-optimal benchmark:

• Dispatch with full knowledge of each order’s time and location.

• Lower bound for any operational policy.
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Computational Validation
Results

Tactical Operational

HSO

Dispatch 1 48.40 units 48.20 units

43.90 units

249.58 min. 249.69 min.

228.07 min.

Dispatch 2 18.26 units 18.45 units

22.75 units

139.95 min. 139.16 min.

144.88 min.

Total 66.66 units 66.65 units

66.65 units

389.53 min. 388.85 min.

372.95 min.

• Benchmark metrics computed over 300 simulations.

• Tactical predictions vs. operational observations within 1%.

• Similar results for one-vehicle case, different cutoff.
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Conclusions

• Expect unbalanced dispatches in SDD.

• Decreasing dispatch lengths.

• Divide day into inactive/active parts.

• Use policy structure for tactical design.

• Fleet sizing, cutoff time, partitioning, ...

• Accurate operational predictions (within 1% or less).
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Ongoing Work

• Choosing service region(s) and cutoff time(s).

• Should we serve different customers differently?

• In-town versus suburban, near versus far...

T
t1

A1

t2

A2

• Region partitioning and fleet sizing in tandem.

• How many vehicles do we need assuming they serve different
regions differently?

atoriello@isye.gatech.edu

http://www.isye.gatech.edu/~atoriello3/

http://www.isye.gatech.edu/~atoriello3/
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