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We consider how to allocate inventory of seasonal goods in a two-echelon distribution network for Dillard’s

Inc., a large department store chain in the U.S. Our objective is to allocate products with limited inventory

from a distribution center to multiple retail stores over the selling season to maximize total sales revenue.

Under the assumption that the true demand distributions are available to the retailer, we develop an effec-

tive dynamic inventory allocation heuristic. We further consider a more realistic and challenging setting for

seasonal goods, where demand distributions are unknown to the retailer, and propose two “learning-while-

doing” extensions of our inventory allocation heuristic; these policies update demand distribution estimates

in a rolling horizon using censored point-of-sales data. We evaluate the performance of the policies using sim-

ulation on Dillard’s historical sales data. Dillard’s Inc. has incorporated the proposed policy into their current

replenishment methodology and has been using the policy to set order levels for its seasonal merchandise.

Key words : inventory allocation, demand learning, seasonal goods, dynamic control.

Introduction and Background

Dillard’s Inc. is a large department store chain in the U.S. with approximately 300 stores

and $6.5 billion annual revenue in 2018. In this paper, we present an approach to allo-

cate inventory of seasonal merchandise (e.g., fashion goods, holiday decorations) from

Dillard’s distribution centers to its retail stores. The specific merchandise groups that are

considered in this study account for 20% to 30% of total revenue at Dillard’s.

Inventory management for seasonal goods is particularly challenging, since these

goods usually have short selling seasons, high demand uncertainty, and little salvage

value at the end of their life cycles. In addition, seasonal goods often have long supply

lead times and must be ordered from suppliers well before the selling season begins. In

many cases, a product cannot be replenished during the selling season after its initial

order quantity is determined. Therefore, the allocation of this limited inventory among

retail locations can have a significant impact on the product’s sales, and these inventory

allocation decisions are quite important for companies like Dillard’s.
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For seasonal merchandise, most sales occur within a two to three week timeframe, and

the uncertainty of the demand is often higher than the average demand (i.e., the coeffi-

cient of variation of demand is larger than 1). For instance, cold weather boots generally

do not begin selling until cold weather sets in for an area, but the peak is nearly always

the weeks between Thanksgiving and Christmas. Some cold weather boots may sell one

pair of a size at most in any store during this time period; other styles could sell up to

30 or more pairs of a single size at a store in the same time horizon. Christmas decora-

tions are another example where the selling season is extremely short and the sales are

highly uncertain at a product-store level. In this case, we are unlikely to see the exact same

product in the assortment year-over-year. These facts lead to great challenges in demand

forecast and inventory allocation.

Figure 1 shows Dillard’s store locations. Dillard’s nationwide distribution network is

divided into six regions. Stores in the same region are served by a regional distribution

center (DC). Transshipment between the regions rarely happens in Dillard’s distribution

network, so we consider each region separately. We focus on one of the six regions in this

study.

Figure 1 Dillard’s retail store locations. The nationwide distribution network is divided into six regions. Locations

of distribution centers within each region are marked by the dark circles.

The merchants at Dillard’s work with vendors and manufacturers to determine prod-

ucts’ order quantities into the DCs. In many cases, orders must be placed six to twelve

months prior to delivery. The order quantity decisions are based on vendor supply, store

financial plans and assortments, long term forecasts, shipping costs, vendor lead time,
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product life, strategic initiatives, and marketing campaigns. Therefore, when a product’s

selling season starts, inventory available at a DC is often fixed and cannot be replenished.

Inventory shipments are made throughout the selling season from the DC to the stores

on a weekly basis, while unsatisfied customer demand is lost. After the product is marked

down to its clearance price at the end of the selling season, no more shipments are made

for it. Our objective is to determine the shipment quantities from the regional DC to the

stores during the selling season, in order to maximize total expected revenue obtained

from the product during its life cycle. Because the DC supplies many products to retail

stores, shipments are on a fixed weekly schedule and can be considered a sunk cost; actual

shipment decisions and quantities do not incur a cost. Furthermore, the quantities are

quite small compared to the shipping capacity, and we can thus reasonably assume they

are uncapacitated.

When compared to one-time allocations at the start of the selling season, making mul-

tiple inventory shipments throughout the season provides several benefits. First, demand

forecasts for seasonal goods based on previous years’ sales are usually inaccurate, so early

sales in the season can help improve the forecasts. If there are multiple shipment oppor-

tunities, the retailer can adjust shipment quantities to the stores using these updated fore-

casts. Second, the inventory at the DCs provides a “risk pooling” effect: after the initial

inventory shipment and any random demand fluctuations early in the season, subsequent

shipments can help re-balance the inventory level at different stores in order to reduce

lost sales. Based on this observation, we consider a dynamic, data-driven approach to

allocating seasonal good inventory to retail stores.

Related Literature

Below, we discuss two streams of related literature. The first stream focuses on inven-

tory management in a two-echelon distribution system with one warehouse/DC and

multiple retailers, assuming the demand distribution is known. Examples include Eppen

and Schrage (1981), Federgruen and Zipkin (1984), Jackson (1988), Jackson and Muck-

stadt (1989), McGavin et al. (1993), Graves (1996) and Axsater et al. (2002). Caro and

Gallien (2010) considered multi-stage SKU-level inventory allocation with an additional

constraint specifying that a product must be taken off the shelf if any of its major sizes

is stocked out. The main difference between our problem and this stream of literature is

that we assume the true SKU-level demand distributions are unknown.
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The second stream of literature studies demand learning in multi-period inventory sys-

tems. Eppen and Iyer (1997) and Agrawal and Smith (2013) proposed Bayesian learning

methods. The issue of demand censoring (unobserved lost sales) has been discussed in

detail in Huh and Rusmevichientong (2009), Huh et al. (2011), Besbes and Muharremoglu

(2013), and Jain et al. (2014). Fisher and Raman (1996), Fisher and Rajaram (2000), and

Fisher et al. (2001) have also studied inventory management and demand learning for

fashion goods.

The demand learning method proposed in our paper is motivated by ideas in Eppen

and Iyer (1997), Jain et al. (2014), and Gallien et al. (2015). In particular, the two-stage

model in Gallien et al. (2015) applied to Zara is related to the model in our paper, but

with two major differences: first, Gallien et al. (2015) update demand estimation using a

known A/F (actual demand vs. forecast demand) ratio distribution assuming no lost sales

in the first period, while our demand learning methods use Poisson regression based on

weekly censored sales data; second, Gallien et al. (2015) solve the two-period inventory

allocation problem approximately using a greedy knapsack algorithm, while we solve the

two-period inventory problem using a cut generation method.

Problem Description

We focus on one of Dillard’s distribution regions, which contains 41 retail stores served by

one distribution center (DC). The stores receive shipments from the DC, but cannot return

inventory to the DC or transship it to other stores. Therefore, we treat the DC and its

associated retail stores as a two-echelon distribution network; see Figure 2. The decision

maker chooses when and how much of a product’s inventory at the DC to ship to each

store, based on the current inventory level, customer demand forecast, and observed past

sales.

Our study focuses on Dillard’s exclusive products; these are owned by Dillard’s and

produced many months before the selling season. An exclusive product typically has a

predetermined price schedule and a primary selling window of 12-16 weeks. As we dis-

cussed previously, peak demand may occur in a narrower window of 2-3 weeks during

the selling season.

Products are stored at the DC before the selling season starts. Then, after the season

begins, products are shipped from the DC to each retail store. Due to long production

lead times, the DC itself cannot be replenished during the season.
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Figure 2 Illustration of a two-echelon supply chain.

At Dillard’s, the life cycle of a seasonal item is determined by its markdown pricing

schedule (usually fixed). The item is first offered at its full retail price, and then is marked

down to 35%–40% off. We treat the duration of the full price and the first markdown

price as the primary selling season of the product, which typically lasts 12–16 weeks. At

the end of the primary selling season, if there is any inventory left, the item is marked

down again at 60%–70% off for clearance; we assume this clearance price is the product’s

salvage value.

Shipments occur on a weekly basis, so we define each time period as one week. Orders

are placed at the same time every week, i.e., when each period begins. The company has

trucks that are scheduled to run from the DC to the store locations every week, so we

assume transportation costs and ordering costs are sunk and do not consider them in the

model. The lead time from the DC to the stores is usually 1-2 days. Similarly, exclusive

product inventory is owned by Dillard’s, so we treat holding costs as sunk and do not

consider them in the model. We also do not consider shipment capacity restrictions, as

the order quantities for a product are quite small relative to the total shipment capacity,

which potentially includes many products going to several stores. Figure 3 shows the

timeline of order placement and shipment. If there is insufficient inventory at a store,

any unmet demand is lost. Unsold items at the end of selling season are salvaged at the

clearance price. Our objective is to design an inventory control policy at the SKU level

that manages shipments from the DC to the retail stores throughout the selling season, in

order to maximize total expected revenue.

This inventory management problem requires information about weekly demand. We

consider both a setting in which distributional information about weekly demand is

known, and a more realistic setting for seasonal goods in which this distribution is not
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Figure 3 Timeline of inventory order placement.

known. When the demand distribution is unavailable, we assume that the decision maker

is equipped with information technology that enables them to observe point-of-sales

(POS) data, and thus potentially leverage it to learn or update a demand distribution

during the season.

Inventory Management with Known Demand Distribution
We start by considering an idealized situation where demand distributions for all store

locations and SKUs are known to the decision maker. We develop heuristics for this case

that we later build on for the more complex and more realistic situation that involves

unknown distributions.

Assuming the demand distribution is known, the problem can be formulated as a finite

horizon dynamic program, where every period corresponds to one week of the selling

season. The system state of the model tracks the current week as well as the previous

week’s ending inventory levels at the DC and retail stores. The actions are inventory

replenishment quantities for each store; since inventory cannot be replenished at the

DC, feasible replenishment quantities cannot exceed the DC’s remaining inventory. The

week’s reward is the revenue from all store sales during that week; the terminal reward

is the salvage value of the inventory left at the stores when the season ends. We include a

mathematical formulation of the dynamic program in the Appendix.

However, even in the idealized situation with known demand distributions, the

dynamic programming formulation poses significant computational challenges. Assum-

ing every retail store can receive inventory, a distribution system with 41 stores yields at

least 241 (more than a trillion) possible states. Therefore, as solving the exact solution to

the dynamic programming formulation is intractable, we examine two heuristic policies,

a Ship-Once (SO) policy and a Mean Demand Heuristic (MDH) policy.
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The Ship-Once (SO) Policy

The SO policy is a heuristic that allocates all of the DC’s inventory to the stores at

the beginning of the selling season. Under this policy, the inventory allocation problem

reduces to a single-period newsvendor model, where the entire season’s demand for each

store is aggregated. In a single-period setting, it is optimal to ship all the DC’s inventory

to the stores. The resulting inventory level at each store is the sum of its initial inventory

plus the DC’s shipment. If the store’s realized demand is higher than its inventory, the

excess demand becomes lost sales; if the realized demand is lower than the inventory,

unsold inventory is salvaged at the clearance price. This single-period problem can be

formulated as a multi-location revenue maximizing newsvendor model, with a constraint

specifying that the total amount of inventory shipped to the store should not exceed the

DC’s inventory. The formal mathematical definition of the SO policy can be found in the

Appendix.

When implementing the SO policy, for each store location we first compute its aggre-

gate demand by adding the weekly demand rates for the entire season. Since Dillard’s

uses markdown pricing, in the single-period model we treat the product’s price at a store

as the average of each week’s price weighted by that week’s demand rates. We then

decide the shipment quantity to each store by solving the single-period inventory alloca-

tion model specified by the SO policy.

The Mean Demand Heuristic (MDH) Policy

The SO policy does not allow multiple shipments during the season. Multiple shipment

opportunities provide a risk-pooling effect, as subsequent shipments can help re-balance

the inventory level at different stores caused by random demand fluctuations. To exploit

the opportunity afforded by multiple shipments, we propose a dynamic inventory allo-

cation heuristic, which we call the Mean Demand Heuristic (MDH) policy. This policy

allows shipment from the DC to the stores throughout the season. The MDH policy explic-

itly considers the fact that shipment decisions not only affect inventory levels of the cur-

rent week, but also have an impact on the inventory levels of subsequent weeks.

The main idea of the MDH heuristic is to reduce the multi-period inventory allocation

problem into a two-stage problem; the first stage contains the current period, and the sec-

ond stage contains all subsequent periods. We make two further simplifications in order

to solve the two-stage model efficiently: First, we solve the second-stage sub-problem



Li et al.: Dynamic Inventory Allocation at Dillard’s 8

approximately using the SO policy; second, we use mean demand values rather than full

demand distributions to calculate the inventory levels at the end of the first stage, which

gives the policy its name. These simplifications yield a two-stage stochastic optimization

model that we solve with a cutting-plane algorithm; we include technical details in the

Appendix.

The outputs of the MDH policy are shipment quantities for all stores in the first week.

We then apply this policy in a rolling horizon to decide shipment quantities in every

subsequent week. As an example, consider a selling season of 12 weeks. At the start of

week 1, the MDH policy partitions the time horizon into two stages, the first containing

week 1, the second containing all remaining weeks. We determine shipment quantities

for week 1 using the model’s solution. After the actual demand in week 1 is realized, we

observe the inventory levels at the stores and the DC at the beginning of week 2. We then

apply the MDH policy again, this time including week 2 in the first stage, and weeks 3

to 12 in the second. We apply the two-stage model in a rolling horizon framework until

reaching the last week, where we simply apply the SO policy to determine shipment

quantities.

Inventory Management with Unknown Demand Distribution

In practice, a demand forecast available at the start of the season may be inaccurate. This

is especially true for goods with short life cycles (e.g. fashion products), where consumer

tastes vary from year to year and forecasts are usually obtained using sales data from

similar products sold in previous years. Therefore, sales in the early part of the season

can provide valuable information to improve the forecasts.

This motivates us to incorporate learning into the inventory decision model by updat-

ing demand distributions as we observe actual sales data. The model framework is illus-

trated in Figure 4. Given an initial estimation of demand distributions, the inventory con-

trol model is solved for each SKU to determine shipments to each store. Then, a new batch

of sales data is observed and added to the sales history database. We update demand dis-

tribution estimates by applying a weighted regularized Poisson regression, described in

the next section. We then repeat the loop in Figure 4 until the season ends. Based on this

framework, we propose demand learning policies that extend the MDH policy.
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Figure 4 Policy dynamics of decision dynamics incorporating learning

Mean Demand Heuristic with Learning (MDHL) Policy

In a similar fashion to the MDH policy, the MDHL policy solves a two-stage inventory

allocation model in a rolling horizon during the selling season. At the beginning of each

week, MDHL includes newly observed sales data from the previous week into the his-

torical demand data set, and updates the demand forecast using a weighted regularized

Poisson regression. The policy then solves a two-period inventory model identical to the

one in the MDH policy, with the updated demand forecast. The formal definition of the

MDHL policy is given in the Appendix.

Demand Learning from Sales Data

Demand learning from week to week is a critical part of the MDHL policy. We next detail

two forecasting methods for demand learning. We assume that weekly demand follows a

Poisson distribution, which we find has a good fit to Dillard’s data. We also assume that

demands in different weeks and locations are independent. Based on these assumptions,

we propose two approaches to estimating Poisson distributions from sales data, a classi-

cal maximum likelihood estimation (MLE) method and a regularized Poisson regression

method. A key challenge for learning demand from sales data is demand censoring; when

inventory at stores cannot meet customer demand, lost sales occur and are usually not

observable. Both methods proposed are able to tackle the challenge of demand censoring,

with different treatment on stock-out events. We conclude this section with a numerical

validation of these methods.

Maximum Likelihood Estimation

Assuming the decision maker has access to daily sales volume and stock-out information,

we can formulate the log-likelihood function for a Poisson demand distribution. Stock-

out indicators are used to derive the conditional probability of demand realization given
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an aggregated demand rate, and the log-likelihood function is the logarithm of this condi-

tional probability. One can show that the log-likelihood function is concave with respect

to the unknown aggregated demand, and therefore can be solved efficiently. The complete

procedure is included in the Appendix.

When estimating demand using maximum likelihood estimation, we are faced with a

data sparsity issue, as most SKU’s only have a few units sold per week. In other words,

sales volume is too low at the weekly-SKU level for demand prediction. Therefore, instead

of predicting demand separately for each SKU and week, we make a prediction of aggre-

gated demand for the entire season and all SKU’s. Then, given the aggregated forecast,

we use seasonality factors suggested by Dillard’s to get a disaggregated demand forecast

for each week and SKU.

Regularized Poisson Regression

Poisson regression assumes that the daily demand rate of a SKU in a given store is rep-

resented by an exponential function in the form of eβ>x, where x is a vector containing

information such as week, day of week, SKU, and store, and β is an unknown vector of

parameters. Similar to the MLE method, we can formulate the log-likelihood function for

the Poisson regression model and solve it efficiently. Stock-out indicators serve as signals

of missing data in the regression. Since there are multiple unknown parameters in the

Poison regression model, we add a LASSO regularization term to the log-likelihood max-

imization problem to avoid over-fitting. We include technical details in the Appendix.

Compared to MLE, regularized Poisson regression has two advantages. First, it does

not require the assumption that the fraction of demand for each SKU-store-weekday com-

bination is known. Second, in regularized Poisson regression, we can assign different

weights to data in different weeks; this turns out to be convenient if we believe that

recently observed data should have higher weights in demand estimation.

Comparing Demand Learning Methods

We test the two demand learning methods using actual sales data from Dillard’s. The

test includes nine products, six clusters of stores, and two price levels (full price and first

markdown price).

We first compare some statistical properties for the two methods. We consider the fol-

lowing metrics:
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• Mean absolute residual: This quantity measures the absolute difference between pre-

dicted daily demand and actual daily demand (when there is no stock-out). A smaller

mean absolute residual means better prediction accuracy.

• Mean/variance ratio: This quantity measures the ratio between the mean and variance

of estimated demand. Since a Poisson distribution has the same mean and variance,

if actual demand follows the Poisson distribution, the ratio should be close to 1.

• Mann-Whitney test: We use the Mann-Whitney test to check if demand forecast from

our prediction methods follows the same distribution as the actual demand data. (For

each method, we generated 1,080 testing samples.) If the predicted demand and the

actual demand are statistically different, the Mann-Whitney test will reject the null

hypothesis. Therefore, fewer rejections means better prediction accuracy.

The testing results are listed in Table 1. Although both methods have small mean abso-

lute residual, the regularized Poisson regression’s residual is smaller. Both methods yield

mean/variance ratios close to 1, indicating that it is reasonable to assume demand fol-

lows a Poisson distribution. Finally, in terms of the Mann-Whitney test, both methods

have relatively few rejections, with regularized Poisson regression requiring fewer than

classical MLE. Based on these results, we conclude that both methods produce reasonably

accurate demand forecasts, with the regularized Poisson regression performing slightly

better than MLE.

Table 1 Statistical Metrics of the Two Demand Prediction Methods

Demand estimation
method

Mean absolute
residual

Mean/Variance
Ratios

Mann-Whitney
Test

Classical
Poisson MLE

0.012 1.1
38 rejects out of

1080
Regularized

Poisson Regression
0.011 0.9

21 rejects out of
1080

In the two figures below, we focus on a particular product and two stores, labeled A

and B. We use data for the first nine weeks of the season, when the product is sold at

full retail price. In Figure 5, we plot the probability mass function (PMF) of the demand

distribution estimated using the MLE method, as well as the PMF of the actual sales data

(normalized by seasonality factors). Figure 6 shows the same plot for the regularized
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Poisson regression method. The two methods produce almost identical results, and the

predicted PMF is close the actual PMF.
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(a) Store A, MLE.
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(b) Store B, MLE.
Figure 5 Classical MLE demand estimation visualization
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(a) Store A, Poisson Regression
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(b) Store B, Poisson Regression
Figure 6 Regularized Poisson regression demand estimation visualization

Implementation

Before we implemented the proposed models in Dillard’s inventory management

pipeline, various tests were conducted to demonstrate the potential values of different

algorithms. These tests helped the implementation team in Dillard’s to best utilize these

models based on their current business system. The testing scripts and results gener-

ated in the preliminary tests helped different engineering teams, e.g. system engineers,

database engineers, data scientists and software engineers, to improve current inventory

control and sales systems to make these advanced models applicable to Dillard’s current

business platform. In this section, we briefly introduce preliminary tests, and then explain

how Dillard’s implemented the proposed methodologies in their business.
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Preliminary Tests

Various preliminary tests were conducted to evaluate the proposed polices based on Dil-

lard’s sales data. We provide here a high-level overview of the tests to help the readers

understand the implementation at Dillard’s, while detailed test procedures and results

are included in the Appendix.

Using a data set collected from Dillard’s point-of-sale system, we generate a proba-

bilistic demand model with a given price markdown process during the selling season.

As average daily sales per SKU and store are often very low, we aggregated sales data

by week and by product, and then generate a demand model using regularized Poisson

regression. A demand forecast for each day, SKU and store can be obtained by disaggre-

gation.

The first set of tests assumed the true demand distribution is known. We evaluated the

SO and MDH policies using sampled testing scenarios and calculated expected revenues

obtained by the two policies. Based on the test results, MDH outperformed SO with a

significant increase in expected revenues, proving the benefit of using multiple shipments

throughout the season.

The second set of tests explored more realistic scenarios in which the demand forecast

available at the beginning of the season is inaccurate. The true demand rates for all stores

were randomly perturbed to be distinct from the original demand forecast model. We

evaluated three inventory control policies, SO, MDH, and MDHL, based on sampled test-

ing scenarios, and calculated expected revenues obtained by these policies. We observed

that the MDHL policy had the best performance among the three heuristic policies.

Field Implementation

Dillard’s has already developed, tested, and implemented its own internal demand learn-

ing forecast based on a large range of variables. At the start of this work, Dillard’s was

in the process of developing a short-term forecast for seasonal merchandise. Since the

completion of the paper, Dillard’s has incorporated the MDHL policy into their current

replenishment methodology and has been using the policy, with slight modifications,

to set order levels for seasonal DC-replenished merchandise. Dillard’s benefits from the

MDHL policy for its continuous improvement of its short-term forecasts, while the initial

demand inputs for the MDHL model are derived using an internal forecast.
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Dillard’s uses their own existing process to assimilate new merchandise into the replen-

ishment system as well as their own end-of-life allocation process to flush residual mer-

chandise at the end of the season, so the MDHL policy serves as a middleman, making

allocation decisions throughout the body of the season. For newly received products, Dil-

lard’s has an established method for determining inventory positions early in the product

life. For end-of-life merchandise, Dillard’s requires additional flexibility in their process

in order to allow management to change replenishment strategies mid-season (adding

new stores, removing stores, adjusting product lifespans, and so forth). Such changes in

strategy are not easily anticipated and thus cannot and should not be accounted for in the

MDHL model. This process handles short-term, seasonal, and long-term merchandise,

allowing for a consistent end-of-life process across the business.

To incorporate the MDHL policy into Dillard’s replenishment system, Dillard’s first

worked with its buyers to standardize aspects of their replenishment strategy. A challenge

faced by the implementation team was that not all fields in the dataset could be explic-

itly defined or documented; for example, the duration of “markdown periods” varies

not only across products but also across years. For cases like these, the implementation

team made initial assumptions and then fine-tuned these as information was revealed.

The team then collected data (using SQL), scripted the model (using Python), and tested

and validated its output. This process consisted of several iterations of parameter tuning,

troubleshooting code, and boosting run time efficiency. Compared to the SQL data col-

lection and Python processing components, the inventory allocation stage of the process,

which solves the optimization model using Gurobi, uses the majority of the run time.

The team finally had to translate the output of the model, which is expressed in terms

of unit transfers, to that of targeted inventory positions, so as to fit with Dillard’s existing

replenishment systems.

Since April 2019, the MDHL policy has been operating on approximately 1,500 SKUs of

merchandise across all stores, which translates to 4,300 SKU-DC combinations or 126,000

SKU-store pairs. For the initial rollout of the policy, the implementation team worked

with Dillard’s merchandising managers to select test products, and then ensured that

the model was behaving as expected. Dillard’s measured and communicated the success

of replenishment methods to management and buyers through store in-stock rates, rev-

enue, and sell-through rate. With the success of the initial rollout and positive feedback
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from Dillard’s executives, the policy will be expanded to all seasonal DC-replenished

merchandise. These products account for approximately 15,000 SKUs, which translates to

40,000 SKU-DC combinations or 1.2 million SKU-stores. In terms of revenue, the model

is currently used on merchandise accounting for 6% of total revenue, and will expand to

additional merchandise groups with a total scope of 20% to 30% of revenue.
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Appendix 1: Dynamic Inventory Allocation Model

Let st = (s0
t , s1

t , ..., sm
t ) be the vector of SKU inventory at the end of period t, whose components are inven-

tories at the DC and m stores respectively. Let Di
t be random demand for store i in period t, which follows

distribution Fi
t . We formulate multi-location multi-period inventory allocation problem as finite horizon

dynamic programming problem. Let s0 = (s0
0, s1

0, ..., sm
0 ) be initial SKU inventory for the DC and stores,

where s0
0 is total SKU amount available for the entire selling season, and si

0 = 0 for i = 1, ..., m. Let st−1 be

the state of period t, state space can be then expressed as S = {(s0, s1, ..., sm) : ∑m
i=0 si ≤ s0

0}. Replenishment

amount xt = (x1
t , ..., xm

t ) is then the action in period t, with action space At = {xt = (x1
t , ..., xm

t ) : ∑m
i=1 xi

t ≤
s0

t−1}. Denote ri
t be selling price in store i and period t, we define reward function for each period,

Rt =

{
∑m

i=1 ri
1 ·min{Di

1, si
0 + xi

1}, t = 1
∑m

i=1 ri
t · (min{Di

t,L, si
t−1}+ min{Di

t,R, (si
t−1 − Di

t,L)
+ + xi

t}), t = 2, ..., T

where Di
t,L is the demand occurred during lead time, and Di

t,R is the demand after the replenishment in

store i and period t, e.g. Di
t = Di

t,L + Di
t,R. Then optimality equation of T period dynamic programming

problem

V1(s0) = max
x1∈A1

E

[
m

∑
i=1

ri
1 ·min{Di

1, si
0 + xi

1}+ V2(s1)

]
(1a)

Vt(st−1) = max
xt∈At

E

[
m

∑
i=1

ri
t · (min{Di

t,L, si
t−1}+ min{Di

t,R, (si
t−1 − Di

t,L)
+ + xi

t}) + Vt+1(st)

]
(1b)

with state transaction function

si
t =

{
(si

0 + xi
1 − Di

1)
+ t = 1

((si
t−1 − Di

t,L)
+ + xi

t − Di
t,R)

+ t = 2, ..., T.

and boundary condition VT+1(sT) = ∑m
i=1 cisi

T . Hence, solving (1a) will give us a sequence of optimal

actions {x∗t } and optimal overall expected revenue V∗1 .
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Appendix 2: Preliminary Stochastic Models

In this section, we consider two preliminary models, a multi-location single-period model, and a multi-

location two-period model. These models will be used as subproblems for the heuristics defined in

Appendix 4.

Multi-location single-period inventory allocation model

We consider a single period model with one DC and m stores for a SKU. For store i = 1, · · · , m, we denote

the price by ri, salvage value by ci, lead time by Li, and initial inventory by si
0. The total inventory available

at the DC is s0
0. Our decision is to assign xi units to each store in order to maximize the expected revenue.

The revenue maximization problem can be formulated as

max
x∈Nm

E

[
m

∑
i=1

ri · (min{Di
L, si

0}+ min{Di
R, (si

0 − Di
L)

+ + xi}) + ci · ((si
0 − Di

L)
+ + xi − Di

R)
+

]
(2)

s.t.
m

∑
i=1

xi ≤ s0
0,

where Di
L is the demand occurred during replenishment lead time, and Di

R is the demand after the replen-

ishment in store i.

The objective function of (2) may be non-concave. As in Gallien et al. (2015), we approximate (2) by

allowing backlogging during the lead time, resulting in the following approximation model:

max
x∈Nm

E

[
m

∑
i=1

ri ·min{Di, si
0 + xi}+ ci · (si

0 + xi − Di)+
]

(3)

s.t.
m

∑
i=1

xi ≤ s0
0,

where Di = Di
L +Di

R is the random demand for store i. Since ri ≥ ci, one can show that the objective function

of (3) is concave, and the problem can be solved using Lagrangian relaxation method. The solution to the

single-period model (3) is used in the SO policy and in the last period for the MDH policy.

Multi-location two-period inventory allocation model

We consider a two-period model for each SKU with periods t = 1, 2. At the beginning of period 1, we have

s0
0 units of inventory in the DC and si

0 units of inventory in store i. For store i in period t, the selling price

is ri
t, the replenishment quantity is xi

t and inventory at the end of period t is si
t. We denote the inventory

available in the DC after the first replenishment by s0
1. Clearance price at the end of period 2 is ci. Our

decision is to assign quantities xi
t (t = 1, 2) to each store in each period in order to maximize the expected

revenue.

We assume that reorder decisions are made at the beginning of each period, and the items arrive after

some lead time. Let Di
1,L be the demand occurred during the first period lead time, and Di

1,R be the demand

occurred from the first replenishment to end of first period, and Di
2,L, Di

2,R corresponding demand for the

second period. The problem is formulated as

max
x1∈Nm

E

[
m

∑
i=1

ri
1 · (min{Di

1,L, si
0}+ min{Di

1,R, (si
0 − Di

1,L)
+ + xi

1}) + V2(s1)

]
(4)
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s.t.
m

∑
i=1

xi
1 ≤ s0

0,

s0
1 = s0

0 −
m

∑
i=1

xi
1,

si
1 = ((si

0 − Di
1,L)

+ + xi
1 − Di

1,R)
+, i = 1, ..., m.

In the objective function, the first term represents the revenue in the first period. The second term, V2(s1),

is the optimal expected revenue in the second period given DC inventory s0
1 and store inventory si

1 at the

end of period 1, defined as

V2(s1) = max
x2∈Nm

E

[
m

∑
i=1

ri
2 · (min{Di

2,L, si
1}+ min{Di

2,R, (si
1 − Di

2,L)
+ + xi

2})

+ci((si
1 − Di

2,L)
+ + xi

2 − Di
2,R)

+
]

(5)

s.t.
m

∑
i=1

xi
2 ≤ s0

1.

Similar to the single period model, by allowing backlogging during the lead time, we get

max
x1∈Nm

E

[
m

∑
i=1

ri
1 ·min{Di

1, si
0 + xi

1}+ V̂2 (s1)

]
(6)

s.t.
m

∑
i=1

xi
1 ≤ s0

0,

s0
1 = s0

0 −
m

∑
i=1

xi
1,

si
1 = (si

0 + xi
1 − Di

1)
+, i = 1, ..., m

where Di
t = Di

t,L + Di
t,R represents the random demand for store i in period t, and V̂2 (s1) is the approxi-

mated value-to-go function for period 2:

V̂2(s1) = max
x2∈Nm

E

[
m

∑
i=1

ri
2 ·min{Di

2, si
1 + xi

2}+ ci · (si
1 + xi

2 − Di
2)

+

]
(7)

s.t.
m

∑
i=1

xi
2 ≤ s0

1.

We propose a mean demand heuristic to solve (6) by making two simplifications. First, we relax the con-

straints si
1 ≥ 0, which means we allow back-order at the end of period 1. Second, we replace the inventory

level si
1 = si

0 + xi
1 − Di

1 by its expected value, si
1 = si

0 + xi
1 − di

1, where di
1 is the mean demand for period 1

in store i. Note that we only use mean demand to approximate the inventory level si
1, but we still use the

actual demand distribution to compute the profits in the first period. These two simplification steps lead to

the following problem:

max
x1∈Nm

E

[
m

∑
i=1

ri
1 ·min{Di

1, si
0 + xi

1}+ V̂2 (s1)

]
(8)

s.t.
m

∑
i=1

xi
1 ≤ s0

0,
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s0
1 = s0

0 −
m

∑
i=1

xi
1,

si
1 = si

0 + xi
1 − di

1, i = 1, ..., m.

We propose a cutting plane method to solve (8). This method defines a “master” problem that approximates

(8) and repeatedly add “cuts” to refine it. Intuitively, starting from unbounded V̂2 in the initial ”master”

problem, by adding each cut, which is a linear function of s1, the upper bound of V̂2 is gradually refined

until no profit improvement is observed. The reason of applying such cutting plane method is due to the fact

that V̂2 is a compound implicit function of x1. While expliciting the relation between x1 and V̂2 is essentially

impossible, this cutting plane method allows us to approximately characterize this relation using a set of

linear constraints, so that (8) is tractable. To be specific, given an initial value of first stage decisions x1, we

calculate the inventory level si
1 = si

0 + xi
1 − di

1, then solve the dual problem of the second period problem

(7), given by

min
α,β,ρ,η,γ

m

∑
i=1

ri
2 ·E[Di

2] + s0
1α +

m

∑
i=1

∑
di

2∈Di
2

[(di
2 − si

1)η
i
di

2
+ (si

1 − di
2)γ

i
di

2
] (9)

α + ∑
di

2∈Di

ηi
di

2
− ∑

di
2∈Di

2

γi
di

2
≥ 0 i = 1, ..., m,

βi ≤−ri
2, i = 1, ..., m,

ρi ≤ ci, i = 1, ..., m,

− pi
di

2
· βi + ηi

di
2
≥ 0 i = 1, ..., m, di

2 ∈Di
2,

− pi
di

2
· ρi + γi

di
2
≥ 0 i = 1, ..., m, di

2 ∈Di
2,

α≥ 0,

ηi
di

2
≤ 0, i = 1, ..., m, di

2 ∈Di
2.

γi
di

2
≤ 0, i = 1, ..., m, di

2 ∈Di
2.

whereDi
2 is the support of second period demand. As function V̂2 (s1) is concave, the dual solution of (9), i.e

(α, β, ρ, η, γ), provides a gradient of V̂2(·) at s1; moreover, the linear function associated with this gradient,

i.e.
m

∑
i=1

ri
2 ·E[Di

2] + s0
1α +

m

∑
i=1

∑
di

2∈Di
2

[(di
2 − si

1)η
i
di

2
+ (si

1 − di
2)γ

i
di

2
] (10)

at given s1, forms an upper bound V̂2(·). We add linear function (10) (i.e. cut) into the following master

problem,

max
x1∈Nm

E

[
m

∑
i=1

ri
1 ·min{Di

1, si
0 + xi

1}+ Ṽ(s1)

]

s.t.
m

∑
i=1

xi
1 ≤ s0

0,

s0
1 = s0

0 −
m

∑
i=1

xi
1,
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si
1 = si

0 + xi
1 − di

1, i = 1, ..., m,

Ṽ(s1)≤ all cuts generated by (9).

We repeat this process and continue adding cuttings until the solution to the master problem converges.

Appendix 3: Demand Learning Methods

Maximum likelihood estimation (MLE) for Poisson distributions

Suppose at a given price level, the aggregated normalized weekly demand in a given cluster follows a

Poisson distribution with parameter θ. Then for the ith SKU in jth week on the kth day in the sth store,

the daily demand follows a Poisson distribution with rate θijks = θ · pi · SFj · ηk · φs, where pi is the SKU

proportion for a given style, SFj is the weekly seasonality factor, ηk is the in-week seasonality factor, and φs

is the store proportion. We assume that weekly seasonality factors SFj and in-week seasonality factors ηk are

known for a given product category. In our implementation, they is calculated from historical data using

sales fractions on an aggregated product category. An example of in-week seasonality factor is shown in

Table 2. Similarly, we assume that φs can be calculated from historical data. In addition, we assume the SKU

proportions are known or can be properly represented by the proportion of SKU sales among aggregated

product sales over all stores during the entire selling season. Note that these assumptions are made to

simplify the demand learning process, since we may focus on estimating a single number θ, which is treated

as an unknown parameter in the MDHL algorithm. It is also consistent with Dillard’s current practice.

Table 2 Fraction of sales by the day of the week for a sample product.

Day Sun. Mon. Tue. Wed. Thu. Fri. Sat.

Sales Fraction (%) 11.9 10.9 11.1 12.8 13.2 17.6 22.5

Let yijks be the sales and let oijks be the stock-out indicator of ith SKU in jth week on the kth day for the

sth store, e.g. oijks = 0 if in stock and oijk = 1 if out-of-stock at the beginning of the day. Then for a cluster of

S stores with I SKU’s and J weeks, we can formulate the likelihood function as

L(θ) =
I

∏
i=1

J

∏
j=1

7

∏
k=1

S

∏
s=1

[(
θ · pi · SFj · ηk · φs

)yijks e−θ·pi ·SFj ·ηk ·φs

yijks!

]1−oijks

,

and its logarithm is

`(θ) = log θ

[
I

∑
i=1

J

∑
j=1

7

∑
k=1

S

∑
s=1

(1− oijks)yijks

]
− θ

[
I

∑
i=1

J

∑
j=1

7

∑
k=1

S

∑
s=1

(1− oijks)pi · SFj · ηk · φs

]

+
I

∑
i=1

J

∑
j=1

7

∑
k=1

S

∑
s=1

(1− oijks)
[
yijks log(pi · SFj · ηk · φs)− log(yijks!)

]
.

We can derive the MLE of θ by setting the first order derivative of `(θ) to zero,

θ̂ =
∑I

i=1 ∑J
j=1 ∑7

k=1 ∑S
s=1(1− oijks)yijks

∑I
i=1 ∑J

j=1 ∑7
k=1 ∑S

s=1(1− oijks)pi · SFj · ηk · φs
,

so θ̂ijks = θ̂ · pi · SFj · ηk, and the max likelihood is L(θ̂).
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Regularized Poisson regression

Unlike the MLE method given above, here we assume that the mean demand of a SKU on a given date in

a given store can be represented using an exponential function. If this product has K SKU’s and the cluster

has S stores,

λ(x) = eβ0+β1x1+β2x2+∑
2+(K−1)
i=3 βixi+∑

K+2+(S−1)
j=K+2 β jxj ,

where x is a feature vector that describes the day, week, SKU and store; x1 is the in-week seasonality factor,

x2 the weekly seasonality factor. The K− 1 following indicator variables x3, x4, ..., x2+(K−1) are used to indi-

cate the SKU, and the subsequent S − 1 indicator variables xK+2, xK+3, ..., xK+2+(S−1) are used to indicate

the store. To train parameters β for a cluster at a price level, we use the data set that belongs to this cluster

and price; for a data set with N historical records (where we only use data points with positive inventory

at the beginning of the day), we can formulate the likelihood function as

L(β) =
N

∏
n=1

(
eβ>xn

)yn

e−eβ>xn

yn!
,

and its logarithm as

`(β) =
N

∑
n=1

[
ynβ>xn − eβ>xn − log(yn!)

]
.

We solve a Lasso version of `(β) with a regularization term to avoid over fitting, and we maximize the

log-likelihood with a regularization penalty α,

max
β

`(β) + α‖β‖.

Python has an open source package for Poisson regression in statsmodels.discrete.discrete model.Poisson, and

details about this package can be found at http://www.statsmodels.org/dev/generated/statsmodels.

discrete.discrete_model.Poisson.html. After we obtain β, we can derive a prediction for a particular

SKU/store/day by plugging in the corresponding feature vector into λ.

Weighted regularized Poisson regression

We use a weighted version of the regularized regression model above as a part of the MDHL heuristic

policy. In a similar fashion, suppose we have a historical data set with N1 records and current season sales

data with N2 records, and we would like to give higher weight to the current season; specifically, we apply

weight w > 1 to the N2 records from the current season. Then we solve the problem

max
β

N1

∑
n=1

[
ynβ>xn − eβ>xn − log(yn!)

]
+ w

N2

∑
n=1

[
ynβ>xn − eβ>xn − log(yn!)

]
+ α‖β‖.

When w is integral, we can use w copies of the current sales data and combine this with the historical set

to get N1 + wN2 records. We can use the same Python package, statsmodels.discrete.discrete model.Poisson, to

obtain an estimate of β.

http://www.statsmodels.org/dev/generated/statsmodels.discrete.discrete_model.Poisson.html
http://www.statsmodels.org/dev/generated/statsmodels.discrete.discrete_model.Poisson.html
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Appendix 4: Inventory Management Policies

In this section, we define Ship-Once (SO), Mean Demand Heuristic (MDH), and Mean Demand Heuristic

with Learning (MDHL).

To describe these policies, we define the following notation. Consider a product with K SKU’s. The selling

season of this product contains T weeks. Let S be the number of stores. For each k ∈ [K], t ∈ [T], and

s ∈ [S], let dk
ts be the rate of Poisson demand distribution for SKU k in week t in store s, and let rk

ts be the

corresponding retail price. Let sk
DC be the inventory of SKU k at the DC when the season begins.

Ship-Once (SO) Policy

The SO policy is detailed in Algorithm 1. It uses the multi-location single-period model (3) described in

Appendix 2.

Algorithm 1 SO policy
Repeat the following steps for k = 1, ..., K:

1: Compute aggregated store demand rates for the T weeks: dk
s = ∑T

t=1 dk
ts;

2: Compute average store prices for the T weeks, weighted by the weekly demand rates: rk
s =

∑T
t=1 rk

tsdk
ts

dk
s

;

3: Calculate allocation decision xk = {xk
s : s ∈ [S]} for SKU k by solving the multi-location single-period

model, using the prices and demands computed in Steps 1 and 2, DC inventory sk
DC, and clearance price

c.

Mean Demand Heuristic (MDH) Policy

Let sk
ts be the inventory level of SKU k in store s at the start of week k. The MDH policy is detailed in

Algorithm 2. MDH uses the single-period model and the two-period model described in Appendix 2.

Mean Demand Heuristic with Learning (MDHL) policy

The MDHL policy is detailed in Algorithm 3. MDHL use the multi-location single-period model and

the two-period model in Appendix 2, and the regularized weighted Poisson regression described in

Appendix 3.

Appendix 5: Preliminary Tests Details

Data Description

We use a data set from a region with one distribution center (DC) serving 41 retail stores, and covering nine

fashion products. Each product has seven to nine SKU’s, representing different sizes of the product. Our

data include the following information:

• retail prices posted on each day;

• daily sales volume and inventory information at the SKU level;

• weekly seasonality factors, which account for sales trends during the season.
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Algorithm 2 MDH policy
Repeat the following steps for k = 1, ..., K:

1: Set sk1 as the zero vector; set sk1
DC as the initial inventory level at the DC.

2: for i = 1, ..., T, do

3: if i < T then

4: Compute period-1 and period-2 store demand rates, dk1
s = dk

is, dk2
s = ∑T

t=i+1 dk
ts;

5: Compute period-1 and period-2 average retail price, rk1
s = rk

is, rk2
s = ∑T

t=i rk
tsdk

ts
∑T

t=i dk
ts

;

6: Calculate allocation decision xk = {xk
s : s ∈ [S]} for SKU k by solving the multi-location two-period

model, with price vectors rk1 and rk2 from Step 5, demand rate vectors dk1 and dk2 from Step 4,

initial store inventory vector ski, DC inventory ski
DC, and clearance price c.

7: Observe realized sales volume zk
is in each store; update store starting inventory sk,i+1

s = ski
s − zk

is;

update DC inventory sk,i+1
DC = ski

DC −∑S
s=1 xk

s .

8: else

9: Calculate allocation decision xk = {xk
s : s ∈ [S]} for SKU k by solving multi-location single-period

model, with price vector rk
T , demand rate vector dk

T , initial inventory vector skT , DC inventory skT
DC,

and clearance price c.

10: end if

11: end for

During the 2016-2017 season, the products were offered in these stores at their full prices in the first 10

weeks; then, the first markdown prices (at 35% to 40% off) were applied in the next 4 weeks. After that, the

second markdown prices (at roughly 65% off) were applied to the remaining weeks for clearance. In the

data, we observe that a majority of the stores had been actively replenished until the 14th week. Therefore,

we assume that all the products have a selling season consisting of 14 weeks.

Demand Model Estimation

As with many fashion goods, for the products in this study we observe extremely low average daily sales

per SKU and store. Therefore, estimating demand models for each separate SKU is difficult. To tackle this

challenge, we aggregate sales data by week and by product. We generate a probabilistic demand model using

regularized Poisson regression, as described in the previous section. We then disaggregate the model to

obtain a demand forecast model for each day, SKU, and store.

Testing Inventory Policies with Known Demand Distributions

We first conduct numerical tests for a situation where the true demand distribution is known to the decision

maker. We generate a demand model using regularized Poisson regression, and sample testing scenarios

from this model for calculating expected revenues attained by different inventory policies. The test was

performed on a personal laptop with a 1.80 GHz quad-core CPU. On average, the SO policy requires about

six seconds to compute inventory allocations for each product (including all SKU’s); recall that the SO policy

only makes inventory allocation decisions at the beginning of the season, so it requires less computation.
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Algorithm 3 MDHL policy

1: For k ∈ [K], Initialize sk1 as zero vector, sk1
DC be the initial DC inventory, set dk

ts as initial demand rate

estimation, history reference set isH′, new season information setH= ∅.

2: for i = 1, ..., T, do

3: for k = 1, ..., K, do

4: if i < T then

5: Compute period-1 and period-2 store demand rates, dk1
s = dk

is, dk2
s = ∑T

t=i dk
ts;

6: Compute period-1 and period-2 store retail price, rk1
s = rk

is, rk2
s = ∑T

t=i rk
tsdk

ts
∑T

t=i dk
ts

;

7: Calculate allocation decision xk = {xk
s : s ∈ [S]} for SKU k by solving multi-location two-period

model, with price vector rk1 and rk2, demand rate vector dk1 and dk2, initial store inventory

vector ski, and ski
DC DC inventory and clearance price c.

8: Observe sales zk
is in each store, update store starting inventory sk,i+1

s = ski
s − zk

is, update DC

inventory sk,i+1
DC = ski

DC −∑S
s=1 xk

s .

9: else

10: Calculate allocation decision xk = {xk
s : s ∈ [S]} for SKU k by solving multi-location single-

period model, with price vector rk
T , demand rate vector dk

T , initial inventory vector skT , and skT
DC

DC inventory and clearance price c.

11: end if

12: collect new sales data Ik
i ;

13: end for

14: Update new season information setH=H∩ {∩k∈[K]Ik
i };

15: Update demand rates using history reference setH′ and new season information setH.

16: end for

The MDH policy requires one to two minutes to compute inventory allocations for each product (including

all SKU’s) per week, and the decisions are made in a rolling horizon for the 14-week season.

A comparison of expected revenues achieved by the SO and MDH policies is presented in Figure 7. The

left and right boxplots correspond to average revenue achieved by the SO and MDH policies, respectively.

The sample mean within each box is represented by a triangle. The blue lines are upper bounds on the

maximum expected revenue that can be achieved by any policy; this upper bound is calculated as the

expected revenue that could be attained if all stores’ demand realized at the DC, so there wouldn’t be any

lost sales caused by allocating inventory to the wrong locations.

Testing Inventory Policies with Unknown Demand Distributions

We next report the results of more realistic tests in which the demand forecast available at the beginning

of the season is inaccurate. We treat the demand model estimated from Dillard’s sales data as the retailer’s

forecast, and consider three scenarios:

1. The actual demand rates can be either higher or lower than the forecast.
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Figure 7 Performance of SO and MDH policies with known demand distributions.

2. The actual demand rates are higher than the forecast for all stores. This represents a scenario where a

product is more popular than expected.

3. The actual demand rates are lower than the forecast for all stores. This represents a scenario where a

product is less popular than expected.

In our experiments, when the true demand is lower than expected, it lies between 50% and 100% of the

forecast value. When the true demand is higher than expected, it lies between 100% and 200% of the forecast

value.

We test four inventory control policies, SO, MDH, and MDHL, running experiments on a laptop with

a 1.80 GHz quad-core CPU. On average, the SO policy requires about 6 seconds to compute inventory

allocations for each product (including all SKU’s). The MDH and MDHL policies require 1-2 minutes to

compute inventory allocations for each product per week. For the MDHL policy, the demand learning step

takes less than 10 seconds per period, so their computation time is roughly the same as the MDH policy,

which does not involve demand learning.

In Figure 8, we present the test results for two representative products, one with relatively high demand,

and a second with relatively low demand, based on sampled demand scenarios. Each row of the figure

displays results for one of the three cases. In addition to showing boxplots for the four heuristic policies, we

consider a benchmark given by the MDH policy using the true demand model, denoted by MDHt. Since the
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MDHt policy uses the true demand distribution, it serves as a benchmark for all three MDH based policies

(MDH and MDHL), which do not have access to the true demand distribution. As before, the blue lines in

the figures are upper bounds on the maximum expected revenue, assuming all demand realizes at the DC.
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Figure 8 Test results for experiments with inaccurate forecasts.

We make the following observations from these results. First, the MDHL policy has the best performance

among the three heuristic policies in most cases.

Second, MDHL provides the most benefit over other policies in case 1, where the initial forecasts over-

estimate demand at some locations and underestimate it in others. This is intuitive, because having a mix-

ture of underestimation and overestimation is where learning demand and adjusting inventory allocations

dynamically can provide the largest benefit. In contrast, when the true demand rates are lower than the
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forecast in all locations (Case 3), MDHL affords relatively small benefit compared to the other policies.

In this case, overestimating demand leads to overstocking; since there is sufficient inventory to satisfy all

customer demand, the revenue is insensitive to how inventory is allocated among stores.
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