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Parcel transportation services have grown in importance in modern logistics and have experienced

significant recent changes, most notably a shift to operations with more time-guaranteed volume moving

faster between origins and destinations, driven by growing demand for e-commerce. Piece-level sortation

systems are used within sorting facilities in parcel transportation networks to enable the execution of

effective consolidation plans with low per-unit handling and shipping costs. The design and control of

effective sortation systems have become more complex as both the volume of parcels and also the number

of time-definite service options offered by parcel carriers has grown. In this paper, we describe approaches

for planning two-stage parcel sort operations that explicitly consider time deadlines and sorting capacities.

In two-stage sorting, parcels are sorted into groups by a primary sorter and then parcels from these groups

are dispatched to secondary stations for final sort. We define a sort planning optimization problem in this

setting using mixed-integer programming, where the primary objective is to minimize operational cost

subject to machine capacity and parcel deadline constraints. Since a detailed optimization problem for sort

planning based on flows in a time-space network is difficult to solve for realistically-sized instances, we

develop an alternative formulation that is easier to solve and shares the same feasible region of first-stage

sorting decisions with the detailed model; for many practical objective functions, this simpler model can be

used to find cost-optimal solutions to the detailed model. We illustrate the proposed modeling approach

and its effectiveness using real-world instances obtained from a large parcel express service provider.

1 Introduction

Parcel delivery services are experiencing significant volume growth driven by e-commerce, and much of the

growth focuses on express parcels that need to be moved quickly to final destinations. FedEx, for example,

recorded more than $29 billion in revenue from express parcel delivery in 2019, a 38% increase from 2016

[11]. Leading players in the industry are investing in capacity expansion projects to serve this growth. SF

Express, for example, has expanded its ground network to 531 transit hubs in China alone [23]. To enable a

fast and effective consolidation network, more than 60% of these hubs are equipped with parcel sortation

systems that allow for rapid unloading, sorting, and reloading of trucks and trailers; 14% of these sortation

systems are fully automated. Once installed, parcel sortation systems need to be operated with carefully
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designed sort plans that ensure that the capacity of these systems is well utilized while meeting objectives

for on-time parcel delivery.

Parcel sortation systems vary in layout, equipment capacity, and automation level. In a typical sorting

hub, parcels arrive throughout the day via inbound trucks, and they are required to be sorted to outbound

trucks and dispatched by specific deadlines that allow the carrier to meet the time-definite service guarantees

provided to customers. In this paper, we consider the problem of determining a cost-effective and feasible

operational plan for sortation systems installed within a single sorting hub. Such a plan is developed in

advance of operations and is typically modified every few weeks using updated demand forecasts and new

consolidation (parcel flow) plans. In this work, we assume that decisions have been made at the tactical

level to ensure that sorting equipment with appropriate capacities has been installed such that feasible

sorting operations exist at the hub for typical operating days.

Existing research on parcel sorting focuses mainly on design and operational planning for single-stage

sortation systems. Important decisions in these problems include the layout design, the assignment of truck

unloading/loading docks to destinations, and the operational sequencing of unloading/loading operations.

In contrast, we focus on detailed operational planning for two-stage systems, including those with a manual

secondary sort. While increasing volumes and complexity often point toward automated solutions, these

systems are often very costly and inflexible once installed. In the following subsection, we describe a

two-stage semi-automated sortation system that motivates our work.

1.1 Parcel sortation system description

We consider a sortation hub that operates a two-stage sortation system for flats and small parcels, as

illustrated in Figure 1. The operations start at the receiving docks where parcels arrive to the hub in vans

or trucks and are unloaded onto a conveyor. The conveyor system is used to transfer small parcels to a

cross-belt sorter, referred to hereafter as a primary sort belt. Each parcel is scanned (e.g. with a bar code

or RFID system), and based on its label is directed to one of the discharge points located on either side

of the primary sort belt, where it is pushed via chute and grouped into piles. An urban logistics hub

receives a large mix of parcels with different destinations and service requirements, often exceeding the

number of pile positions available at the primary sort area, thereby prompting the need for secondary

sorters to complete the sort process. Piles that are assigned a single geographic destination and dispatch

deadline complete their sort process at the primary sort area, while piles that contain parcels with different

geographic destinations and/or dispatch deadlines are moved to secondary sort stations for detailed and

final sorting. Each secondary sort station is operated manually with the aid of a put wall of cubicles open

on one side for detailed sorting and on the other side for packing. Each cubicle is assigned a container

direction, defined in our case as a pair of final terminal destination and a deadline for arrival. A sorter,
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guided by a put-to-light system, scans each parcel and places it in its corresponding cubicle and these

cubicles are subsequently unloaded into containers. Packed containers (often parcel bags) are finally placed

on a conveyor system for transfer to their corresponding shipping docks for loading onto outbound trucks.
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Figure 1: An illustration of a two-stage sort process

For such a system, we consider the problem of specifying an operational sort plan for the two-stage

sorting process, focusing on sorting inbound parcels by dispatch deadlines. For this two-stage system, a

sort plan determines how parcels are grouped by the primary sort into piles and then how parcels in piles

are moved over time to secondary sort stations for final sorting and packing.

1.2 Related literature

The existing literature on sortation hubs for consolidation transportation systems addresses a broad array

of decision problems. Network design problems, such as the strategic hub location problem [2, 7, 10] or

tactical service network design problems [9] consider how to design and operate systems of transfer hubs.

Our work focuses on operations within a parcel sortation hub once network design decisions have been

fixed. Research has focused on tactical and operational problems, ranging from layout design to resource

planning and scheduling. In recent work, [3] present an extensive review of these problems with a focus on

fully automated hubs. Similarly, [14] provide a survey on the planning and control of automated material

handling systems operated by parcel and postal services. As both of these review papers make clear, most

of the work in this area focuses on the inbound and outbound operations that interface with sorting systems
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(see for example [4, 17, 18]), while few studies address the planning of the sort process itself.

A few papers address planning of manual and semi-automated sorting processes. [16] develop a

mixed integer program to aid in planning the sort operations of a large package express delivery service.

The decision problem is to generate a sort plan that determines the assignment of inbound loads to

bins and outbound loads to racks, as well as the number of forklifts required to perform the sort. The

objective is to minimize the daily costs associated with employing and operating forklifts. To solve this

computationally challenging model, they proposed a decomposition procedure that could be used to solve

small and moderately sized instances efficiently. Another research effort [24] focuses on the optimization

of transportation within a sortation hub and proposes a mixed integer program to minimize the manual

transportation required to move parcels from sort areas to loading gates. A three-dimensional assignment

model is developed which is then solved using a hierarchical decomposition approach.

Turning to research on fully automated sortation systems, several studies investigate different item

release policies to improve the throughput of automated sorters and service performance in warehouses

and order fulfillment centers (see [5, 8, 13]). [6] proposes a dynamic programming model to schedule the

loading process for parcels onto sortation conveyors to minimize makespan. The proposed optimization

procedure was found to be most useful when the decisions considered were limited to determining which

inbound shipments to assign to which loading stations, with the sequence of shipment loading treated as

fixed and given; we make a similar assumption in our work. Computational experiments demonstrated

that using simple rules of thumb, such as an earliest delivery rule, could result in considerably sub-optimal

solutions and that the solutions found by optimization provided significant benefit. [12] evaluated different

design alternatives for closed-loop tilt tray sortation conveyors and compared throughput performance.

They proposed an optimization model for assigning inbound and outbound destinations to unloading

and loading docks, proved its NP-hardness, and developed heuristic solution procedures using greedy

randomized adaptive search and simulated annealing.

More closely related to our research, [20] proposed a stochastic programming approach for assigning

loading destinations to secondary sort work centers in an automated package sort facility. The objective was

to generate a balanced workload assignment to work centers, while accounting for uncertainty in arrivals

during every sort shift. This research focuses on fully automated sort systems where primary and secondary

sorts are operated continuously over time, a key difference from the research problem we address, where

decisions about when to dispatch parcels to secondary sort stations are critical. Considering a planning

horizon of a day, the authors propose and test different mixed-integer nonlinear optimization formulations

that account for operational constraints such as door loading capacities and workstation-to-destination

compatibility for material handling. Constraints related to service or time requirements were not explicitly

considered, another key difference between this work and our own.
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1.3 Contribution

Our contributions are in planning two-stage sorts for parcel delivery hubs. Unlike previous work in this

area, we are the first to address the planning of systems with multiple stages that serve modern high-velocity

parcel operations with many sort deadlines during the operating day. Specifically:

• We develop optimization methods to generate time-feasible sort plans for two-stage sort systems by

assigning parcels to first-stage sort positions (piles) and determining a dispatch schedule from the

first to the second sort stage. The primary optimization objective is to minimize the costs of sorting,

but we also consider additional objectives, including balancing workload and maximizing schedule

slack time to create plans that are robust to fluctuations in sort demand.

• We explicitly model time deadlines for sorting that enable the parcel carrier to meet on-time delivery

service guarantees that are commonly offered in practice.

• For tractability, we propose an integer programming formulation for solving sort plan optimization

problems that separates first-stage sort decisions from second-stage decisions but, importantly, ensures

that our first-stage decision model preserves feasibility (namely, parcel time feasibility) for the second-

stage. This formulation allows a detailed time-space model to be replaced by a much simpler model

that can be readily solved exactly for large-scale instances found in practice.

• We demonstrate that we can solve instances of realistic scale and composition in moderate CPU time

using input data from a parcel carrier partner, and demonstrate that the solutions found outperform

those identified by other optimal and heuristics solution approaches.

The remainder of the paper is organized as follows. In Section 2, we introduce the sort plan design problem,

describe our assumptions and modeling choices, and present a mixed integer programming model. In

Section 3 we propose an alternative model formulation and algorithms and discuss their relation to the

sort plan design problem formulation introduced in Section 2. In Section 4, we present the results of our

computational study using real-life instances obtained from an international parcel delivery service provider.

In Section 5, we summarize our conclusions and discuss future work.

2 Problem Statement and Model Formulation

In this section, we introduce a sort plan design optimization problem to find a cost-effective assignment of

parcels to primary sort equipment and a corresponding dispatch schedule for secondary sort operations.

We first describe the problem parameters, modeling choices and assumptions. We then give a problem

formulation using mixed-integer programming.
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2.1 Problem description

The parcel volume arriving to a sortation hub varies considerably by time of day. Arriving parcels have

different final destinations and service classes (which have associated deadlines for departing the hub),

and the arriving mix also varies over time. Sort hub operations are often organized into shifts taking into

account such variations for better planning and utilization of resources. Suppose that a sort plan is to be

designed for a shift, and furthermore suppose that an appropriate time discretization has been chosen for

the shift. As with any discretized planning problem, choosing a finer discretization may improve model

accuracy but increases the computational burden. Let T be the set of equally-spaced discrete time points

that constitutes the shift. For simplicity, time points in this set are simply the integers 1, 2, . . . , |T |.

The sortation hub includes a primary sorting system and secondary sorting stations. Arriving parcels

are loaded onto the primary sorter which is operated at a constant maximum parcel processing rate of µp.

The primary sorting system has a fixed number of discharge points, and a pile of parcels accumulates at

each discharge point. Let P be the set of primary sort piles corresponding to these discharge points. In a

two-stage sorting system, a primary sort pile may or may not require a secondary sort before its constituent

parcels are considered sorted. Let the sort mode s of a pile define whether or not secondary sorting is

required, where s = 1 indicates that no secondary sorting is required and s = 2 indicates that secondary

sorting is required; let S = {1, 2} be the set of sort modes. Furthermore, let C be a set of time deadlines to

be associated with piles, where C ⊂ T . A pile with deadline c ∈ C is one where all of its constituent parcels

must complete sorting (primary and secondary, if necessary) no later than time c.

The secondary sort system consists of multiple sorting stations. A typical secondary sort station is a

manually operated cabinet with n sort positions (cubicles), and each parcel in a pile with sort mode s = 2

must be assigned to exactly one of these positions. Suppose that the hub has enough secondary sort stations

to devote one to each of the primary sort piles, but that no pile is assigned to multiple secondary stations.

Additionally, suppose that each secondary sort station can process up to µs parcels per unit time (measured

in the discretization of T ). Parcels that have completed sorting are loaded into intermediate containers

(usually bags) and then transferred to loading docks and loaded onto outbound trucks.

Turning now to the demand side, suppose that each parcel arriving to the hub during the shift is

categorized as one of the parcel commodities; let K be the set of commodities. Each commodity k ∈ K can be

referred to by a unique pair of final destination terminal and sort deadline time dk ∈ T that is common

across all commodity parcels. To meet on-time service expectations, all arriving parcels for commodity k

must complete primary and secondary sorting no later than time dk. The parcels that comprise commodity k

arrive to the sortation hub over time via inbound trucks, mixed with parcels from many other commodities.

Parcels from arriving trucks are loaded onto the primary sorting system, often in first-in and first-out

(FIFO) order but sometimes staged. In this problem, we assume that the inbound truck arrival times and
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primary sort loading decisions are fixed and that the primary sorting system is continuously operated with

maximum rate µp. Thus, it is possible to determine for each commodity k an arrival profile representing the

times when each parcel of this commodity has completed primary sorting. Let this profile be given thus

by a set of arrival quantities qk
t , measured in parcels, for each time t ∈ T . The total arriving quantity of

commodity k during the shift is qk = ∑t∈T qk
t .

Given these inputs, the sort plan design problem is to determine an assignment of parcels to primary sort

piles and a schedule of dispatches from primary sort to secondary sort stations. The primary consideration

in this problem will be the time-feasibility of the sort plan design, where a plan is time-feasible if each

parcel for each commodity completes the sort by its service deadline. The objective of the problem is to

minimize the total cost of sorting parcels. Costs accrue in the sorting system when resources are used to

sort parcels or to transfer them from one zone of the hub to another. A key to reducing costs is to have as

many parcels as possible skip the secondary sorting process, thus avoiding an extra transfer and sorting

step within the facility. Although we also consider other objectives in subsequent modeling sections, the

primary objective is minimizing the number of parcels sent to secondary sorting. We assume that secondary

sorting for a primary sort pile is not necessary only if it contains a single commodity. We also assume that

feasible sort plans require all-or-nothing assignments, where all parcels for a commodity must be assigned to

a single primary sort pile. All-or-nothing assignments do not allow commodity splitting across piles (and

subsequent secondary sorting stations) and are simpler to implement in practice.

2.2 The Sort Plan Design (SPD) problem formulation

In this section, we develop an optimization formulation for the sort plan design problem. Here we model

parcel assignments and dispatch decisions using a time-space network, as shown in Figure 2. Each node

represents a pair of sort location and a time point. Each arc represents either a sorting activity, a dispatch

that models the transfer of parcels from one zone of the hub to another, or a holding activity that models

the staging of parcels at a particular location over time. For notational simplicity in this paper, we assume

transfer activities take zero time, while sorting and staging activities take unit time; it is not difficult to

modify the model to accommodate different activity times.

We now introduce some notation for a mixed-integer programming model of this problem. Let the

parcel sort network G = (N ,A) model two-stage sorting using a time-space representation. Each node

in the timed-node set N represents a parcel position at a particular point of time, and each arc in the

timed-arc set A represents parcel sorting, movement, or staging over time. The node set N is partitioned

into subsets of nodes that represent parcel position, N = {N PS−belt ∪ N pile ∪ N ss ∪ N f s ∪ N load−belt}.

Nodes N PS−belt represent times of entry into the primary sorting process, N pile represent times when

primary sorting is finished and parcels enter piles, N ss and N f s represent times when secondary sort
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Figure 2: An illustration of a time-space network that models a two-stage sort system with two pile positions. The depicted
arcs show an example sort plan solution with solid arcs representing parcels being sorted/dispatched and dashed arcs
representing parcels being held at the same location over time.

start and complete (respectively), and N load−belt represent times when the entire sort process has been

completed and parcels are packed and ready for loading. The arc set A is partitioned similarly, where the

categorization is defined by the tail node. Arcs a = ((PS− belt, t), (p, t)) ∈ APS−belt represent the unloading

of parcels from primary sort belt into pile p ∈ P at time t. Arcs a = ((p, t), ((p, ss), t) ∈ Apile represent

the dispatch of pile p parcels to their pre-assigned manual station for secondary sort at time t while arcs

a = ((p, t), (p, t + 1) ∈ Apile represent the staging of parcels in their pile location from time t to time t + 1.

Similarly, arcs a = (((p, ss), t), ((p, f s), t + 1) ∈ Ass represent the secondary sort of pile p parcels starting

at time t and finishing at time t + 1 while arcs a = (((p, f s), t), (load, t) ∈ A f s represent the completion of

parcel sorting into outbound containers and their dispatch to loading docks. Let δ+(i) and δ−(i) represent

the sets of arcs leaving and entering node i ∈ N , respectively.

We use decision variables yp,c,s ∈ {1, 0} to indicate whether or not pile p with deadline c and sort mode

s is used and xk
p,c,s ∈ {1, 0} to indicate whether or not commodity k is assigned to pile p with deadline c

and sort mode s. Moreover, variables f c
a ∈ Z+ denote the flow on arc a with deadline c, in parcels, and

wc
a ∈ {1, 0} denote whether or not there is a positive flow in arc a ∈ Apile with deadline c.

The sort plan design integer programming formulation (SPD) is then given by:

Min
x,y, f ,w

C(x, y, f , w) (1a)

s. t. ∑
s∈S

∑
p∈P

∑
c∈C

xk
p,c,s = 1 ∀k ∈ K, (1b)
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∑
p∈P

∑
c∈C

∑
s∈S

yp,c,s ≤ |P| (1c)

∑
s∈S

∑
c∈C

yp,c,s ≤ 1 ∀p ∈ P , (1d)

∑
k∈K

xk
p,c,s ≤ nyp,c,s ∀p ∈ P , c ∈ C, s = 2, (1e)

∑
k∈K

xk
p,c,s ≤ yp,c,s ∀p ∈ P , c ∈ C, s = 1, (1f)

xk
p,c,s ≤ yp,c,s ∀k ∈ K, p ∈ P , c ∈ C, s = 2, (1g)

yp,c,s ≥ yp+1,c,s ∀p ∈ P , c ∈ C, s ∈ S, (1h)

f c
a = ∑

k∈K
qk

t xk
p,c,s ∀p ∈ P , c ∈ C, s = 2, a = ((PS− belt, t), (p, t)) ∈ APS−belt, (1i)

∑
a∈δ+((i,t))

f c
a = ∑

a∈δ−((i,t))
f c
a ∀(i, t) ∈ N \ {N PS−belt ∪N load−belt}, c ∈ C, t ≤ c, (1j)

f c
a = ∑

k∈K
qkxk

p,c,s ∀p ∈ P , c ∈ C, s = 2, a = (((p, f s) , c) , (load, c)) ∈ A f s, (1k)

f c
a ≤ µs ∀a ∈ Ass (1l)

∑
a∈δ−((i,t))

f c
a = 0 ∀(i, t) ∈ N load−belt, t > c (1m)

∑
a∈δ+((p,c),t)

wc
a ≤ 1 ∀(p, t) ∈ N pile (1n)

f c
a ≤ ∑

k∈K
qkwc

a ∀a ∈ Apile (1o)

yp,c,s ∈ {0, 1} ∀p ∈ P , c ∈ C, s ∈ S (1p)

xk
p,c,s ∈ {0, 1} ∀k ∈ K, p ∈ P , c ∈ C, s ∈ S (1q)

f c
a ∈ Z+ ∀c ∈ C, a ∈ A (1r)

wc
a ∈ {1, 0} ∀c ∈ C, a ∈ Apile (1s)

The objective function (1a) here is written in a generic form C(x, y, f , w), and is assumed to be some

linear function of these decision variables; later sections describe specific possible objective functions.

Constraints (1b) ensure that each commodity is assigned to a single primary sort pile, i.e., commodity

splitting is not allowed. Constraints (1c) ensure that the number of primary sort pile positions that can be

used is no more than the number of primary sort pile positions available in the primary sort area and (1d)

ensure that a pile position is assigned at most one sort mode and deadline. Constraints (1e) and (1f) place

an upper bound on the number of commodities that can be assigned to a pile. Piles with sort mode 1 do

not require secondary sorting and are allowed to be assigned at most one commodity, while piles with

sort mode 2 require secondary sorting and are allowed to be assigned up to n commodities, where n is
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the number of cubicles in the put wall of each secondary sorting station. Constraints (1g) are coupling

constraints to ensure that a commodity is assigned to a pile only if the pile is used. Constraints (1h) are

added to break symmetry between primary sort piles for computational efficiency. Constraints (1i) - (1k) are

flow conservation constraints. Constraints (1l) place an upper bound on the number of parcels that can be

sorted by a secondary sort station during a time period, where µs is the processing rate of the secondary

sort stations measured in parcels per time period. Constraints (1m) ensure that every parcel completes

its sort requirement by its deadline. Constraints (1n) are added to ensure that if a pile is dispatched from

primary to secondary sort area, all parcels accumulated should be dispatched. Otherwise, they should all

be staged to the next period. This set of constraints is relevant and applicable when there is no capacity

on how many parcels can be dispatched in one transfer. Finally, constraints (1o) are coupling constraints

between the flow and flow indicator variables for dispatch arcs.

3 Alternative Model Formulation

Finding optimal solutions to SPD can be computationally challenging for large-sized instances commonly

found in practice. Parcel sort facilities often must handle a large number of commodities (especially during

overnight peak operating hours), and must plan operations over a finely discretized time horizon, all of

which make the SPD problem difficult to solve. To build a model that is more computationally useful, in

this section, we propose an alternative formulation that focuses only on the commodity-to-pile assignment

decisions and seeks those that are guaranteed to induce time-feasible flows given secondary sort capacities

and parcel deadlines. Note that in practice, pile assignment decisions are critical and have perhaps the

greatest impact on sorting costs; for example, building piles that contain only a single commodity can allow

those parcels to skip secondary sorting entirely and the associated costs. As we will see, it is possible to

construct an alternative model for pile assignment decisions, denoted the primary-sort assignment (PA)

model below, that is guaranteed to yield time feasible flows for the SPD model and, for some objective

functions, cost-optimal SPD flows. Since another important cost component is the transfer of parcels from

primary sort to the secondary sorting stations given pile assignment decisions, we also propose models for

minimizing these transfer costs and algorithms for finding cost-optimal solutions.

3.1 Primary-sort assignment (PA) problem formulation

In this problem, we seek to determine the assignment of commodities to primary sort piles using an integer

program. The primary sort assignment (PA) problem is formulated as follows.

Minimize
x,y

D(x, y) (2a)
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subject to ∑
s∈S

∑
p∈P

∑
c∈C

xk
p,c,s = 1 ∀k ∈ K, (2b)

∑
k∈K

∑
t+1≤τ≤c

qk
τxk

p,c,s ≤ µs(c− t) ∀t ∈ T , p ∈ P , c ∈ C, s = 2 (2c)

∑
p∈P

∑
c∈C

∑
s∈S

yp,c,s ≤ |P|, (2d)

∑
k∈K

xk
p,c,s ≤ nyp,c,s ∀k ∈ K, p ∈ P , c ∈ C, s = 2 (2e)

∑
k∈K

xk
p,c,s ≤ yp,c,s ∀k ∈ K, p ∈ P , c ∈ C, s = 1 (2f)

xk
p,c,s ≤ yp,c,s ∀k ∈ K, p ∈ P , c ∈ C, s = 2 (2g)

yp,c,s ≥ yp+1,c,s ∀p ∈ P , c ∈ C, s ∈ S (2h)

yp,c,s ∈ {0, 1} ∀p ∈ P , c ∈ C, s ∈ S (2i)

xk
p,c,s ∈ {0, 1} ∀k ∈ K, p ∈ P , c ∈ C, s ∈ S (2j)

The objective function (2a) here is again written in a generic form D(x, y), and is assumed to be some linear

function of these decision variables; later sections describe specific possible objective functions. Constraints

(2b) and (2d) - (2h) are identical to constraints (1b) - (1h) described earlier in Section 2.2.

Constraints (2c) ensure that the plan meets sort deadlines for commodities that are dispatched to the

secondary sort. To understand these constraints, consider the set of conditions

∑
k∈K

∑
1≤τ≤t

qk
τxk

p,c,s ≥ µst + bp,c,s ∀t ≤ c, t ∈ T , p ∈ P , c ∈ C, s = 2, (3)

where bp,c,s = ∑k∈K ∑1≤τ≤c qk
τxk

p,c,s − µsc for every pile p with deadline c requiring two-stage sort. These

conditions, as depicted in Figure 3, guarantee that every point on the cumulative arrival curve for every

pile lies above its secondary sort deadline line. This line, the right-hand side of (3), has as slope of the

secondary sort rate µs and an intercept bp,c,s that equals the difference in the available sort capacity (µsc)

and the total number of parcels that will accumulate in the pile before its deadline c. Simplifying these

inequalities yields constraint set (2c). Scenario 2 in the figure shows a case where the total capacity of the

sort would be sufficient (since the intercept of the deadline line is negative), but many parcels arrive too late

and overwhelm the secondary sorter closer to the deadline.

For simplicity, constraints (2c) are presented for the special case where the travel time between the

primary sort and secondary sort locations is assumed to be zero time units. The model, however, can be

easily modified when these travel times are positive. For instance, if it takes x time periods (measured

in the discretization T ) to transfer a pile from the primary to secondary sort area, the right-hand side

of constraints (2c) can be changed to µs(c− t− x) to account for capacity loss due to travel time. This
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Figure 3: An illustration of how constraints (2c) ensure feasible secondary sort solutions. Scenario 1 is feasible because every point
on the arrival curve (grey curve) for a pile lies above its secondary-sort deadline line (black dashed), while scenario 2 is
infeasible.

corresponds to shifting the secondary-sort deadline line in Figure 3 by x time units to the left, reducing the

remaining available secondary sort time and capacity.

3.2 Relationship between SPD and PA models for sort plan design

Next, we discuss the relationship between the original SPD problem and the alternative PA formulation.

We show that each feasible solution to the PA formulation corresponds to a feasible solution to the SPD

and vice versa; thus, these two models share the same feasible region of pile assignment decisions. Given

this result, we therefore also discuss for which objective functions the PA formulation can be used to find

cost-optimal solutions to the SPD model. Of course, in this section we assume that the problem instance’s

inputs, assumptions and modeling choices, such as how time is discretized, are identical for both the

original SPD model and the PA model.

Recall that in the SPD formulation, we use flow-based variables to ensure that the generated sort plans

are time feasible. We now show that the assignment-based time feasibility constraints used in PA are valid

for SPD.

Proposition 1. Every inequality (2c) in PA is valid for SPD.

Proof. Suppose (x, y, f ) is a feasible solution for SPD, where x, y are assignment-related decision vectors

and f is flow-related decision vector. Since f represents feasible flows, the time feasibility constraints (1m)

along with all the flow conservation constraints (1i)-(1k) hold, and therefore, the flow of parcels assigned to

each primary sort pile is guaranteed to be completed no later than the pile deadline c. This implies that

for every pile there must exist a total flow in the secondary sort arcs Ass that includes all parcels arriving

between any time t and c. More formally, constraints

∑
a∈Ass :t≤τ<c

f c
a ≥ ∑

k∈K
∑

t+1≤τ≤c
qk

τxk
p,c,s ∀t ∈ T , p ∈ P , c ∈ C, s = 2 (4)
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where a = ((ss, p), τ), ( f s, p), τ + 1)) must hold and therefore, are valid for SPD. In addition, constraints

(1l) must also hold by the flow f feasibility, to ensure that there is sufficient capacity at the secondary sort

stations to process its assigned parcels. By summing over all arcs from time t up to the pile deadline c in

constraints (1l), we establish an aggregate form of constraints (1l),

∑
a∈Ass :t≤τ<c

f c
a ≤ µs(c− t) ∀t ∈ T , p ∈ P , c ∈ C, s = 2. (5)

where a = ((ss, p), τ), ( f s, p), τ + 1)). Substituting by the right-hand side of (4) in (5), we obtain (2c) and,

thus, the inequality is valid for SPD.

We next show that the PA model is in fact the projection of SPD model, meaning it exactly captures the

feasibility of the x and y variables.

Theorem 2. The PA formulation is the projection of the SPD formulation onto the space of (x, y)-variables. In other

words, if (x, y) is feasible for PA, then there must exist a flow f such that (x, y, f ) is feasible for SPD. Similarly, if

(x, y, f ) is feasible for SPD, then (x, y) is also a feasible solution of PA.

Proof. Suppose (x, y, f ) is a feasible solution for the SPD. For convenience, define Q to be the projection of

the SPD constraints to the (x, y) space, and P to be the set of constraints given by the PA model. It follows

from Proposition 3 that constraints (2c) are valid for SPD, which implies that P ⊇ Q. Therefore, any feasible

solution for SPD is also feasible for PA.

To establish the converse, let (x, y) ∈ P, i.e. , (x, y) is a feasible solution for PA. We want to show now

that we can construct a feasible flow f such that (x, y, f ) ∈ Q. Notice that such a flow is guaranteed to exist.

One way of constructing it is to use the backward recursion algorithm we propose later in Section 3.3, which

generates a dispatch schedule for any feasible (x, y) such that the total number of required dispatches for

each pile is minimized. Another way of constructing a feasible flow starting from a feasible (x, y) is to move

parcels from one node to another at every time period. Therefore, there must exist at least one feasible

dispatch schedule that corresponds to a feasible flow f in SPD such that (x, y, f ) ∈ Q.

Theorem 4 shows that the PA formulation preserves the feasibility of the original SPD problem. When

the objective we use in SPD depends only on the (x, y) variables, it follows that PA preserves optimality as

well.

Corollary 3. Given an objective function (1a) that only depends on the (x, y) variables, i.e. C(x, y, f , w) = D(x, y),

an optimal solution for PA can be extended into an optimal solution for SPD and vice versa.

One important objective of interest is to minimize the total cost of primary and secondary sorting,

focusing on the resources required to conduct sort operations feasibly. A reasonable proxy for minimizing
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total sorting costs is minimizing the number of parcels that require secondary sorting (or, equivalently,

maximizing the number that are directly sorted using primary sort equipment). Other cost-related objectives

that can be considered include minimizing the number of required secondary sort stations (piles) or

minimizing the number of operating hours required for secondary sort stations. Note that such objectives

depend only on the commodity-to-pile assignment decisions, and thus the alternative PA formulation can

be used to replace the computationally challenging SPD formulation without loss of optimality. Other

objective functions may also be important, and we will consider some of them as secondary objectives in a

hierarchical optimization framework. For example, it may also be useful to balance the workload assigned

to secondary sort stations or to maximize the available slack time in the sorting schedule to buffer against

uncertainty in the number or timing of arriving parcels and improve the robustness of the plan; we discuss

these secondary objectives in more detail in Section 4.

3.3 Secondary sort dispatch algorithms

Now that we have an approach for generating pile assignments that are cost-effective and are guaranteed

to induce time-feasible sorting plans, we present complementary algorithms that use a solution of the PA

model to generate dispatch schedules from primary to secondary sort areas for piles that require secondary

sorting, i.e., piles with sort mode 2. Recall that each pile has its own dedicated resources, including a

secondary sort station, a sorter and a transporter. We consider a dispatch process that is operated manually

by a worker with the aid of a push cart. We consider two cases:

• Case 1: dispatch capacity is not binding. There is no constraint on how many parcels can be moved in one

dispatch from the primary sorting area to the secondary sorting area. Therefore, a dispatch that includes

1 or 500 parcels costs the same. This assumption is reasonable since we deal with small parcels like flat

envelopes, with sizes that are small compared to cart sizes.

• Case 2: dispatch capacity is binding. There is a maximum number of parcels that can be moved in one dispatch.

Therefore, the corresponding dispatch policies are further constrained by a capacity threshold.

Since the transfer process involves workers, we are interested in generating schedules that are also

cost-effective given the assignment generated by the PA model. A reasonable proxy for minimizing dispatch-

related cost is to minimize the number of required dispatches from primary to secondary sort areas. The

challenge is then to generate a dispatch schedule that minimizes the number of dispatches while maintaining

the time feasibility of sort plans, i.e., sorting all parcels by the pile deadline, and respecting the threshold

capacity constraint, if applicable.

We define a Secondary Sort Dispatch (SSD) problem that determines a partitioning of parcels into

batches for transfer from primary to secondary sort areas, taking into account parcel deadlines and the
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secondary sorter’s capacity. The goal is to determine a dispatch schedule for each secondary sort pile while

minimizing the number of required dispatches. The SSD problem can be viewed as a variation of the

Batch Delivery Scheduling problem that appears in the production and scheduling literature. Example areas

where batching decisions arise include production and manufacturing operations to reduce setup costs,

multi-stage production systems to improve machine utilization, and other applications where multiple

customer orders can be grouped together to reduce shipping costs. Previous research in this area addresses

batch delivery decisions as well as scheduling, production, or distribution decisions simultaneously to

improve coordination between production and transportation activities. Different variations of the problem

appear in the literature, with various heuristic and metaheuristic solution methods [1, 15, 19, 22, 25]. See

[21] for a comprehensive review of scheduling and batching problems, their complexity and related solution

algorithms. The SSD problem focuses on partitioning parcels into batches for a given sequence of parcel

arrivals that is determined after solving the PA model. Unlike much of the past work in this space, SSD

focuses on minimizing dispatching costs that are independent of the number of parcels in the batch and

does not involve any holding cost component. It also treats sort deadlines as hard constraints, i.e. tardiness

is not allowed. Deadlines in our setting are also not batch-dependent; a deadline is common for all parcels

(and thus all batches) in the same pile.

In what follows, we describe the proposed backward recursion algorithms for solving the (SSD) problem.

Note that in these algorithms we seek to minimize the dispatch costs into secondary sort, and that dispatch

decisions are represented by variables wc
a in the SPD model; thus, the SSD algorithms consider a case where

the SPD objective does not depend only on the x and y variables. It follows that if the objective function

includes the flow variables f and/or w in the SPD problem, the solution generated by our alternative

formulation is a heuristic solution for the original SPD problem, i.e., it is a lower bound for a maximization

problem and an upper bound for a minimization problem.

The backward recursion algorithm without dispatch capacity threshold

Define (p, c) as a primary sort pile p with deadline c. Each pile (p, c) has a feasible commodity assignment

generated by the PA model. Let Ap,c(t) denote the total number of parcels accumulating in pile (p, c) from

the shift start time up to time t, and µs denote the secondary sort capacity measured in parcels per unit time.

For the algorithms to follow, suppose that a pile arrives at secondary sort instantaneously after dispatch

from primary sort. If a travel time is modeled and a PA solution has been found that is feasible given the

travel time as described above, then the same algorithm below can be used by simply reducing c by the

travel time to secondary sort.

The SSD problem can be solved using a backward recursion algorithm, which first determines the last

dispatch time and size, and then moves backward in time to determine earlier dispatches until all parcels
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are included in a dispatch. The idea of the algorithm is illustrated in Figure 4, and described formally in

Algorithm 1. Recall that this algorithm is only required for piles with secondary sort requirements, i.e., with

sort mode 2.

A(t)

time

µs

c

A(t)

time

µs

c

Figure 4: An illustration of how the backward recursion algorithm works for a given pile assignment. It first determines the last
dispatch time and size, and then moves backward in time to determine the second to last dispatch size and time and so in.
In this example, two dispatches are required while maintaining time feasibility.

Algorithm 1: Backward recursion algorithm without dispatch capacity threshold

Result: primary sort pile dispatch schedule to secondary sort that minimizes number of dispatches

for p ∈ P do

for c ∈ C do

set: A0
p,c(t) = ∑k∈K ∑t∈T qk

t xk
p,c ;

initialize: i← 1 ;

initialize: t̄← c ;

initialize: t← argmint∈T {A0
p,c(t)} ;

while Ai
p,c(t) > 0 do

Si
p,c(t) = µs(t̄− t) ;

Ai+1
p,c (t) = Ai

p,c(t)− Si
p,c(t) ;

τ = argmint∈T {Ai+1
p,c (t)} ;

i← i + 1 ;

t̄← t ;

t← τ;

end

dispatch Si
p,c(t) parcels at time t;

end

end

The proposed algorithm determines both the time and size of each pile dispatch throughout the sort shift

duration for piles with sort mode s = 2. Note that our proposed algorithm generates a dispatch plan that

has the following two properties:
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Property 1. The last dispatch time of a primary sort pile to the secondary sort area coincides with the time

of its last arrival, which is the earliest feasible last dispatch time.

Property 2. A pile dispatch at time t includes all accumulated parcels up to time t that are still at the

primary sort area and were not moved in a previous dispatch, which represents the maximum feasible

dispatch size.

Proposition 4. For a given primary sort assignment, the backward recursion algorithm without capacity threshold

determines a dispatch schedule that minimizes the number of pile dispatches required to complete the secondary sort

requirements by the pile’s deadline.

Proof. Suppose we are given an optimal solution with a minimum number of pile dispatches, say m.

Consider also the feasible solution generated by the backward recursion algorithm. Let t∗m and s∗m be the

time and size of the last dispatch in the optimal solution, and t′ and s′ be the time and size of the last

dispatch in the solution generated by the backward recursion algorithm. Notice that t′ ≤ t∗m and s′ ≥ s∗m,

which follows from the two properties that characterize the backward recursion algorithm.

Consider modifying the given optimal solution by shifting t∗m backward in time by an amount equal

to δm = t∗m − t′, while keeping everything else unchanged, and denote this time by t̂∗m. Notice that the

resulting new solution has the same number of pile dispatches m as in the original optimal solution. Now,

consider modifying further the new solution by shifting an amount equal to εm = s′ − s∗m parcels from the

previous dispatch at time t∗m−1 to the dispatch at time t̂∗m while keeping everything else unchanged. The

resulting new solution maintains the same number of dispatches m; and thus, is still optimal. Similarly,

repeat the procedure for dispatches m− 1 down to the first pile dispatch where all arrivals are covered. As

a result of this procedure, as illustrated in Figure 5, we have converted the optimal solution to one that

is identical to the solution generated by the backward recursion algorithm while maintaining the same

number of pile dispatches m. Therefore, the solution generated by the backward recursion algorithm is

optimal, and gives the minimum possible number of pile dispatches.
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Figure 5: An illustration of how to modify an optimal solution to one that is equivelent to the solution generated by the backward
recursion algorithm while maintaining feasibility and optimality
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The backward recursion algorithm with dispatch capacity

We consider a minor variation in the backward recursion algorithm described in Algorithm 1 to account

for limited dispatch capacity. Unlike case 1, where the dispatch size is only dependent on secondary sort

capacity, dispatch sizes in case 2 are dependent on both secondary sort capacity and a dispatch capacity.

Therefore, the only required change in Algorithm 1 is setting the dispatch size equal to the minimum

between the secondary sort capacity and the available dispatch capacity. The modified algorithm is described

in more detail in Algorithm 2 in the Appendix. It is not difficult to see that the solution of Algorithm 2 is

optimal, and is lower-bounded by the solution generated by Algorithm 1.

Proposition 5. For a given primary sort assignment, the backward recursion algorithm with capacity threshold

determines a pile dispatch schedule that minimizes the number of pile dispatches required to complete the secondary

sort requirements by the pile deadline. Furthermore, the solution’s number of dispatches is lower-bounded by the

solution generated using the backward recursion algorithm without capacity threshold.

4 Computational Study

In this section, we present the results of our computational experiments. The objective is to analyze the

performance of our sort plan design formulations and examine the characteristics of the generated sort

plans. All algorithms and models were coded in Python 2.7.11, and solved using Gurobi Optimizer 7.5.1. A

3.1 GHz Dual-Core Intel Core i7 processor with 16 GB of RAM was used to carry out the computations.

4.1 Description of test instances

Our test instances are based on real data obtained from an international express delivery company. The

company operates a number of semi-automated sortation hubs with different setups and capacities. In

our experiments, we consider a hub with the following configuration. The primary sort area consists of

four cross-sorter belts with a combined capacity of 60,000 parcels per hour and 38 pile positions. These

belts are dedicated to processing parcels that require shipping using the carrier’s linehaul network, and

therefore, referred to henceforth as intercity parcels. The secondary sort area can have up to 38 stations,

each uniquely assigned to a primary sort pile for processing, and is operated by a sorter working at a rate

of 800 parcels per hour. Stations include 37 compartments that are used to segregate parcels based on their

final destination and deadline.

The hub receives more than 90,000 intercity parcels on an average weekday. These parcels are conveyable

and require sortation and consolidation into transport containers before being dispatched to the carrier’s

linehaul network for shipping. The volume of these arrivals varies greatly from one shift to another, with
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peak arrivals taking place during night shifts. Table 1 provides a summary of shift structure as well as

arrival volumes experienced by the company in one of its major sortation hubs.

Table 1: Characteristics of test instances grouped by operational shift

Shift Start time End time
Average
arrivals

(in parcels)

Maximum
arrivals

(in parcels)
Parcel deadlines

S1 Sunrise 4:10 12:00 1093 1875 12:00
S2 Daysort 12:10 16:00 12338 19669 14:00, 15:30, 15:40, 16:00
S3 Twilight 16:10 21:00 14931 20937 19:10, 19:40, 21:00
S4 Midnight 21:10 4:00 45433 70179 1:00, 1:30, 2:00, 2:30, 3:00, 4:00

We focus on the daysort, twilight and midnight shifts, as they encompass the majority of parcels. We

use 21 instances, each representing one of these shifts in a day covering one week from Monday to Sunday.

To accurately model sort operations with tight service guarantees, we use a 10-minute time discretization

for each shift.

4.2 Computational performance analysis

The main goal of the following experiments is to illustrate the practical usefulness of the proposed alternative

modeling approach with respect to run times and quality of generated solutions. We focus our analysis

on the performance of the PA + SSD approach when compared to the SPD formulation, as well as other

simple heuristics that are typically implemented in practice, described below.

• SPD: This approach involves solving the SPD formulation, which models both assignment and dispatch

decisions using time-space representation.

• First Fit Bin Packing: This approach involves running a First Fit Bin Packing (FF BP) algorithm, which assigns

commodities to primary sort piles in order of priority (from earliest to latest deadline) while respecting the

primary sort pile capacity, which, in our case, is measured in the number of distinct commodities that can

be mixed together. The resulting solution determines a primary sort pile assignment that minimizes the

number of piles used, i.e. the number of manual secondary sort stations required.

• First Fit Bin Packing Variant: This approach involves running a FF BP algorithm as described above. The

resulting solution determines an assignment with a number of required primary sort piles n∗i . We then

modify the commodity list by excluding the |P| − n∗i largest commodities and assign them to one-pass sort

piles. After that, we re-run the algorithm on the modified commodity list. Again, the solution generates a

plan with a number of required primary sort piles n∗i+1. If n∗i+1 < n∗i , we repeat the process until all primary

sort piles are assigned to at least one commodity.

In the first set of experiments, we consider an objective that depends only on assignment-related
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decisions when solving the SPD and PA problems. Specifically, we consider the objective of maximizing the

number of parcels that are directly sorted using primary sort equipment, as modeled in (6). This objective

can be viewed a proxy for minimizing sortation costs as all parcels have to go through at least one sort stage

for consolidation:

Maximize
x,y ∑

p∈P
∑
c∈C

∑
s∈S:s=1

∑
k∈K

qkxk
p,c,s. (6)

We test instances using the Daysort shift (S2) data, and cross compare their performance using the four

different approaches. Table 2 shows the results of these experiments.

Table 2: Performance comparison between heuristic and exact solution approaches

Daysort Instances (size, in parcels)

Metrics Approach S2_1
(3034)

S2_2
(14635)

S2_3
(19256)

S2_4
(19669)

S2_5
(19470)

S2_6
(29504)

S2_7
(38940)

Run time
(in seconds)

FF BP 8 8 8 7 8 6 7
FF BP Variant 13 19 19 23 15 17 15
SPD 1437 588 627 605 2757 36000 36000
PA 1250 950 731 305 849 610 471

# of parcels
skipping
secondary sorting

FF BP 0 0 0 0 0 0 0
FF BP Variant 1106 3815 5602 5748 5408 8622 10816
SPD 1106 3815 5602 5748 5408 - 10816
PA 1106 3815 5602 5748 5408 8622 10816

# of required
manual secondary
sort stations

FF BP 12 16 16 16 16 16 16
FF BP Variant 11 15 15 15 16 16 16
SPD 11 15 15 15 16 - 16
PA 11 15 15 15 16 15 16

Feasibility level1
FF BP 100.0% 92.0% 75.3% 75.3% 78.2% 61.3% 54.1%
FF BP Variant 100.0% 100.0% 97.4% 92.4% 93.9% 86.2% 75.3%
SPD 100.0% 100.0% 100.0% 100.0% 100.0% - 100.0%
PA 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

As can be seen in Table 2, both the FF BP and its variant were can be very efficiently, in seconds. FF BP

variant, in particular, generates solutions that are optimal in the number of parcels assigned to one-pass

sort. However, its performance with respect to time feasibility deteriorates considerably as the instance

size grows, i.e., as the number of arrivals increases. The PA approach, on the other hand, guarantees both

optimality and time feasibility, just like SPD. It also runs efficiently, taking at most 20 minutes to find

optimal solutions; in contrast, for instance S2_6, SPD reached our time limit of 10 hours without even

finding a solution.

In the second set of experiments, we consider an objective that involves both first- and second-stage

decisions when solving SPD. In particular, we consider the objective of maximizing the number of parcels

1Feasibility is measured as the percentage of parcels that can finish their sort requirement by the associated deadlines under the
generated pile assignment.
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that skip secondary sorting while minimizing the number of required pile dispatches from primary to

secondary sort areas, formulated as

Maximize
x,y ∑

p∈P
∑
c∈C

∑
s∈S:s=1

∑
k∈K

qkxk
p,c,s − α ∑

a∈Apile
∑

c∈εC
wc

a. (7)

Here, α is a user-defined weight that reflects the importance given to minimizing the number of dispatches

relative to maximizing the number of parcels that skip secondary sort. In our experiments, we set α = 0.005

to give a very high priority to having as many parcels as possible skip secondary sorting. We use the

Daysort instances considered earlier to test the performance of the SPD formulation using objective (7)

and the proposed PA + SSD approach; we use objective (6) when solving the PA problem and Algorithm

1 when solving the SSD problem. Table 3 summarizes our results. Note that the run times for the PA

formulation are as reported earlier in Table 3 and that the SSD algorithm runs very efficiently (in a few

seconds).

Table 3: Performance comparison between SPD and PA + SSD

Approach Daysort instances (size, in parcels)
S2_1

(3034)
S2_2

(14635)
S2_3

(19256)
S2_4

(19669)
S2_5

(19470)
S2_6

(29504)
S2_7

(38940)

% Optimality Gap2
PA + SSD 0.859 1.175 1.175 0.718 2.615 0.718 2.613
SPD (0.5 hr) 0.859 4.090 1.174 0.716 - - -
SPD (3 hrs) 0.859 1.169 1.174 0.716 2.611 - 5.760

# of parcels
skipping secondary sort

PA + SSD 1106 3815 5602 5748 5408 8622 10816
SPD (0.5 hr) 1106 3708 5602 5748 - - -
SPD (3 hrs) 1106 3815 5602 5748 5408 - 10494

Avg. # of dispatches
per secondary

sort pile

PA + SSD 1 4.06 2.53 2.68 3.75 4 3.74
SPD (0.5 hr) 1 1.67 1.64 1.71 - - -
SPD (3 hrs) 1 1 1.33 1.43 1.60 - 2.94

We ran the SPD formulation for 30 minutes to compare its solutions with solutions generated using the

PA + SSD approach, which took at most 20 minutes to solve. We also ran it for three hours as an additional

benchmark. As can be seen in Table 3, we were unable to obtain feasible solutions for all of the tested

instances when using the SPD formulation. Our results show that the SPD formulation provides good

solutions for small- to medium-sized instances and can therefore be used for planning sort operations in

hubs where dispatch activities are costly, if computationally possible. The PA + SSD approach consistently

has good computational performance, and is able to generate high quality solutions within reasonable

computing time for all instances of realistic scale and composition (including the large-sized instances that

we were unable to solve using the SPD formulation). Since these models are solved every few weeks in

advance of operations, the PA + SSD approach is shown to be an efficient and effective alternative for

2We use the SPD 3-hour solve as a benchmark and therefore, the reported optimality gaps for all solutions are computed using the
best bounds found when solving the SPD model for three hours.
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generating sort plans.

4.3 Operational analysis

In this subsection, we take a closer look at the characteristics of sort plans generated using our PA

formulation and SSD algorithms. We focus our analysis on the Twilight and Midnight shifts, since the

majority of arrivals occurs in their operational time windows. When carrying out these experiments, we

consider optimizing for multiple objectives. We use a hierarchical optimization framework that addresses

three objectives of interest in order of priority as described in what follows:

• Objective 1: maximize the number of parcels that are directly sorted using primary sort equipment without

the need for secondary sort; as formally described earlier in Section 4.2

• Objective 2: minimize the maximum secondary sort pile size to balance workload across manual secondary

sort stations.

• Objective 3: maximize the minimum slack time for primary sort piles that require secondary sort. The

slack time can be defined as the amount of time that a pile’s secondary sort start time can be delayed

without delaying the pile’s sort completion time beyond its deadline. Having a large slack time reduces the

assignment’s sensitivity to changes in arrival profiles from a feasibility stand point, and thus, generates

more robust assignments.

The detailed solution procedure is described in the Appendix. The idea is to generate a primary sort

pile assignment that maximizes the number of parcels that can be sorted in one pass, while also balancing

the workload allocated to secondary sort stations and reducing the piles’ sensitivity to changes in arrival

profiles. These generated assignments are then used to derive minimum-cost dispatch schedules for every

pile that requires secondary sort using Algorithm 1.

In Table 4, we summarize the number of piles that can skip the secondary sort, as well as the correspond-

ing number of parcels that can be handled in one-pass sort without the need for manual secondary sort. On

average, 47% of arrivals during evening shifts can be directly sorted using primary sort equipment. This

allocation corresponds to an average of 75% of piles that do not require either dispatch plans nor manual

processing for secondary sort, thereby reducing the operational costs associated with dispatch and sortation.

Taking a closer look at the generated solutions, commodities that are picked for direct sort are commodi-

ties with the highest number of arrivals in a shift. Our approach determines how many of them can be

accommodated directly using primary sort resources, while ensuring that the assignment of the remaining

commodities is still time feasible.

We now provide further details about the structure of the assignment of piles that require secondary sort.

In our analysis, we consider the objective functions we optimized for as well as other performance metrics
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Table 4: Summary of direct sort assignment during night shift

Instances Assigned piles Assigned parcels
Count % total Count % total

Twilight Shift

S3_1 30 79% 4417 56%
S3_2 31 82% 2212 53%
S3_3 30 79% 3561 41%
S3_4 29 76% 6504 45%
S3_5 29 76% 8225 48%
S3_6 29 76% 7934 45%
S3_7 29 76% 7409 46%

Midnight Shift

S4_1 27 71% 7956 47%
S4_2 28 74% 5110 44%
S4_3 28 74% 13000 42%
S4_4 28 74% 27603 48%
S4_5 25 66% 31245 46%
S4_6 28 74% 31192 51%
S4_7 27 71% 29230 49%

Average 28 75% 13257 47%

that are of interest as summarized in Table 5. Dispatch-related results are generated using Algorithm 1,

where we assume that the dispatching process is uncapacitated.

Table 5: Summary of two-sort assignment during night shift

Instances
Number

of required
piles

Avg.
pile size

(in parcels)

Max.
pile size

(in parcels)

Avg.
pile slack

time
(in hrs)

Min.
pile slack

time
(in hrs)

Max.
number of
required

dispatches
per pile

Avg.
dispatch size

per pile
(in parcels)

Twilight
Shift

S3_1 8 430 697 3.61 3.02 1 430
S3_2 7 282 387 3.93 2.99 1 282
S3_3 8 643 720 3.28 2.46 2 501
S3_4 9 890 1295 2.92 2.53 2 557
S3_5 9 987 1517 2.8 2.56 3 566
S3_6 9 1091 1483 2.67 2.29 4 552
S3_7 9 979 1347 2.81 2.41 3 479

Midnight
Shift

S4_1 11 813 863 3.62 2.93 2 461
S4_2 10 640 748 3.8 3.33 2 448
S4_3 10 1826 1945 2.17 1.87 4 755
S4_4 10 3012 3567 0.68 0.36 7 635
S4_5 13 2780 3175 1.23 0.57 6 652
S4_6 10 3048 3878 0.54 0.3 8 564
S4_7 11 2712 3856 1.11 0.54 6 629

Average 10 1438 1820 2.51 2.01 4 537

From a resource requirement perspective, a weekly average of ten manual stations is required for secondary

sorting during night shifts. Assuming that each manual station requires a sorter and a transporter/packer,

the solutions suggest that a hub require having 20 workers on duty on average per week during night shifts
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to complete secondary sort activities.

From a workload allocation perspective, each sorter is responsible for sorting an average of 1,438 parcels

during a night shift. This allocation is clearly higher for midnight shift sorters, where each sorter is

responsible for sorting up to 554 parcels per hour compared to around 300 parcels per hour allocated to

twilight shift sorters. Similarly, each midnight shift transporter is responsible for up to 8 dispatches, each

having an average of 592 parcels, while each twilight shift transporter is responsible for up to 4 dispatches,

each having an average of 481 parcels. Such results indicate that operating a shared-resource setting, instead

of the dedicated-resource setting under study, may be more cost effective since utilization can be improved

for both sorters and transporters, especially during twilight shifts.

From a plan robustness perspective, the availability of slack times implies that manual stations are able

to accommodate, to some extent, increases in their assigned workload without compromising the time

feasibility of their operations. The generated solutions suggest that each manual station operating during

a twilight shift has a slack time of at least 138 minutes while each manual station operating during a

midnight shift has a slack time of at least 20 minutes. Assuming that expected arrival times do not change,

this corresponds to the ability of each station to accommodate an additional 2100 and 430 parcels during

twilight and midnight shifts, respectively, on top of their expected workload without delaying their sort

completion time beyond the piles’ deadlines.

A more practical way of addressing robustness is by explicitly accounting for uncertainty in arrival

quantities when generating sort plans. For that, we test robust variations from the nominal cases we

considered thus far. We use worst-case scaled deviations from expected arrival profiles as inputs to generate

what we refer to henceforth as robust sort plans. A robust plan is guaranteed to remain feasible under

different possible increases in expected arrival volumes using a user-defined deviation. Figure 6 shows an

example of a commodity’s nominal and robust arrival profiles.
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Scaled arrival profile (robust case)

Figure 6: An example of scaled arrival profile used as input for generating robust sort plans

Recall that the solutions we presented so far correspond to nominal cases that rely on using expected

arrival profiles, which we compare now with robust cases that rely on increasing all arrival quantities by

20% from their expected values, while keeping arrival times unchanged. Figures 7 and 8 illustrate the

resource and workload allocation under both the nominal and robust cases.
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Figure 7: Direct sort assignment

Figure 8: Two-stage sort assignment

As can be seen in Figures 7 and 8, introducing robustness comes at the expense of utilizing fewer

primary sort pile positions for direct sort, and more manual stations for secondary sort. In some cases, it

also comes at the expense of increased urgency in operations. Note that even though the arrival quantities

are much smaller during the twilight shift (S3 instances) when compared to arrivals during the midnight

shift (S4 instances), we still require operating a relatively similar number of two-stage piles during both

shifts. This is expected as the number of commodities arriving during each of the shifts is quite similar.

Figure 9 shows the distribution of two-stage piles by deadline, where more urgent piles are created

under the robust plans when compared to their nominal counterparts. In some cases, operating robust

plans also corresponds to adding up to two more secondary sort stations to protect against uncertainty

in arrival quantities, thereby resulting in higher operational costs. It is worth noting that the robustness

approach presented here is very conservative, as it protects against all commodities taking their worst value,

whereas in practice we would expect only some to do so.
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Figure 9: two-sort pile assignment by deadline

5 Conclusion

We have introduced a sort plan design problem in the context of two-stage sort systems operating within

express parcel delivery networks. We first develop a detailed operational model based on flows in a

time-space network capturing both first-stage and second-stage sort decisions. Since this model is difficult

to solve for realistic-sized instances typically encountered in practice, we propose an alternative modeling

approach that separates first-stage from second-stage sort decisions while importantly preserving the

feasibility of secondary sort operations. We show that this alternative formulation is efficient to solve and is

guaranteed to generate optimal sort plans for many practical objective functions. The proposed approach

can be used by operations managers to design cost-optimal plans for primary sort systems while meeting

objectives for on-time delivery. It can also be used for gaining insights into the feasibility of tactical decisions

related to equipment sizing and resource requirements at the hub level.

Potential extensions of our problem could address demand uncertainty to generate plans that are

cost-effective and time-feasible under different possible demand realizations. This could be done using

stochastic programming or robust optimization approaches similar to the ones proposed in [20]. We showed

that our approach can be easily adopted to generate robust plans that remain feasible when arrival quantities

increase within pre-specified deviations from nominal values. While such robust solutions are safer to

operate from a plan’s time-feasibility point of view, they can be overly conservative and expensive to operate

as they plan for all arrivals taking their worst value simultaneously, which is not likely. We are currently

working on extensions related to the primary-sort assignment problem to generate plans that are protected
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against various sources of uncertainty while allowing the user to control the desired level of conservatism

using uncertainty budgets. In particular, we consider different ways of modeling demand uncertainty that

take into account potential changes in arrival quantities and/or arrival times. The main goal is to generate

robust models that allow hub managers to investigate trade-offs between plan robustness and the associated

operational costs, to ultimately operate cost-effective sort plans that are protected against common sources

of uncertainty for improved system and service performance.

Other possible extensions of our problem include: (a) investigating the value of moving from a static to a

dynamic planning setting by allowing a primary sort plan to be modified once information about the actual

demand is revealed, (b) integrating sort decisions with other downstream decisions related to dispatch

windows, which in our case is tantamount to simultaneously optimizing for the last-mile and/or line-haul

truck scheduling decisions, and (c) analyzing the impact of using wave-based release policies on balancing

resource requirements in express parcel sort hubs, especially during peak operating hours.
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6 Appendix

6.1 Description of Algorithm 2

We formally describe Algorithm 2 that solves the SSD problem by generating dispatch schedule for every

pile the requires secondary sorting under both secondary sort and dispatch capacities.

Algorithm 2: Backward recursion algorithm with dispatch capacity threshold

Result: cost-effective pre-sort pile dispatch schedule to secondary sort area

for p ∈ P do

for c ∈ C do

set: A0
p,c(t) = ∑k∈K ∑t∈T qk

t xk
p,c ;

initialize: i← 1 ;

initialize: t̄← c ;

initialize: t← argmint∈T {A0
p,c(t)} ;

while Ai
p,c(t) > 0 do

Si
p,c(t) = min{µss(t̄− t), CAP} ;

Ai+1
p,c (t) = Ai

p,c(t)− Si
p,c(t) ;

τ = argmint∈T {Ai+1
p,c (t)} ;

i← i + 1 ;

t̄← t ;

t← τ;

end

dispatch Si
p,c(t) parcels at time t;

end

end

6.2 Description of the hierarchical objectives procedure

We describe in more detail the multi-objective hierarchical optimization procedure we followed when

carrying out the computational experiments in Section 4.3.

Step 1. Solve the PA problem under the objective of maximizing the number of parcels that are directly sorted

using primary sort equipment without the need for secondary sort. This objective can be viewed as a proxy

for minimizing operational costs associated with sortation activities since all parcels have to go through at
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least one sort stage for consolidation. The corresponding PA integer program is defined as follows.

v∗1 = Maximize
x,y ∑

p∈P
∑
c∈C

∑
s∈S:s=1

∑
k∈K

qkxk
p,c,s

subject to: constraints(2b)− (2h).

Step 2. Update the PA problem by appending the following constraint to its original constraints set (2b) - (2h):

∑
p∈P

∑
c∈C

∑
s∈S:s=1

∑
k∈K

qkxk
p,c,s ≥ ∆1v∗1 (8)

where ∆1 ∈ [0, 1] is a relative tolerance that can be used to allow degradation from the optimal objective

value v∗1 as desired. In our experiments, we used ∆1 = 1. Subject to this additional constraint that places

a lower bound on the amount of workload that can be sorted in one pass, a restricted version of PA is

reoptimized under the new objective of minimizing the maximum secondary sort pile size to balance

workload across manual stations modeled as follows.

v∗2 = Minimize
x,y

z = max
p,c,s=2

∑
k∈K

qkxk
p,c,s (9)

Notice that equation (9) is non-linear, and therefore, we introduce |P| × |C| additional constraints to

transform the problem into the following linear counterpart which we use for reoptimization.

v∗2 = Minimize
x,y,z

z

subject to: ∑
k∈K

qkxk
p,c,s ≤ z ∀p ∈ P , c ∈ C, s = 2,

constraints(2b)− (2h), (8).

Step 3. Update the PA problem once more by adding the following bounding constraint on the the size of each

primary sort pile that requires secondary sort:

z ≤ ∆2v∗2 (10)

where ∆2 ∈ [0, 1] is a relative tolerance that can be used to allow degradation from the optimal objective

value v∗2 as desired. In our experiments, we used ∆2 = 1. Subject to this additional constraint, a more

restricted version of PA is reoptimized under the objective of maximizing the minimum slack time for

primary sort piles that require secondary sort. The slack time can be defined as the amount of time that

a pile’s secondary sort start time can be delayed without delaying the pile’s sort completion beyond its
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deadline. Constraint (11) provides its mathematical equivalence.

v∗3 = Maximize
x,y,z,u

u = min
p,c,s=2

cyp,c,s −
qkxk

p,c,s

µss
(11)

Having a large slack time reduces the assignment’s sensitivity to changes in arrival profiles from a feasibility

stand point, and thus, generates more robust assignments. Notice that constraint (11) is also non-linear.

The corresponding restricted PA after linearization is modeled in what follows and then reoptimized to

generate the final primary sort pile assignment plan.

v∗3 = Maximize
x,y,z,u

u

subject to: cyp,c,s −
qkxk

p,c,s

µss
≥ u ∀p ∈ P , c ∈ C, s = 2,

constraints(2b)− (2h), (8), (10).

The resulting solution determines a primary sort pile assignment that maximizes the number of parcels that

can be sorted in one pass while balancing the workload allocated to secondary sort stations and reducing

the piles’ sensitivity to changes in arrival profiles.

Step 4. Given the primary sort assignment generated in step 3, run Algorithm 1 or 2 to generate a minimum-cost

dispatch schedule for every pile separately. In our experiments, we ran Algorithm 1. The resulting plan

determines the time of each pile dispatch, as well as an estimate for each dispatch size.
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