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Abstract

We introduce the Lp Traveling Salesman Problem (Lp-
TSP), given by an origin, a set of destinations, and
underlying distances. The objective is to schedule a
destination visit sequence for a traveler of unit speed to
minimize the Minkowski p-norm of the resulting vector
of visit/service times. For p =∞ the problem becomes
a path variant of the TSP, and for p = 1 it defines
the Traveling Repairman Problem (TRP), both at the
center of classical combinatorial optimization.

Lp-TSP can be formulated as a convex mixed-
integer program and enables a smooth interpolation
between path-TSP and TRP, corresponding to optimal
routes from the perspective of a server versus the
customers, respectively. The parameter p can affect
fairness or efficiency of the solution: The case p = 2,
which we term the Traveling Firefighter Problem (TFP),
models the scenario when the cost/damage due to a
delay in service is quadratic in time.

We provide a polynomial-time reduction of Lp-
TSP (losing a factor of 1 + ε in performance) to
the segmented-TSP, a routing problem that defines a
constant O(1+ε−2) number of deadlines by which given
numbers of vertices should be visited. Subsequently we
derive polynomial-time approximation schemes for Lp-
TSP in the Euclidean metric and the tree metric (for
which the problem is strongly NP-hard).

We also study the all-norm-TSP, in which the
objective is to find a route that is (approximately)
optimal with respect to the minimization of any norm
of the visit times. We improve the approximation
bound for this problem to 8, down from 16, and
further prove an impossibility for an approximation
factor better than 1.78, even in line metrics. Finally,
we show the performance of our algorithm can be
optimized for a specific norm, particularly yielding a
5.65-approximation for the TFP on general metrics.

∗Supported by aco.gatech.edu, triad.gatech.edu. Part of

this work was conducted when authors visited Simons Institute
for the Theory of Computing.

We leave open several interesting directions to fur-
ther develop this line of research.

1 Introduction

The Lp-TSP is a routing problem seeking to minimize
the Lp norm of the vector of visit/service times to a set
of customer locations. It generalizes and interpolates
between two well-studied problems, the path variant of
the TSP and the TRP, also known as the Minimum
Latency Problem, which are the two extreme cases
in which one minimizes either the largest or the sum
of service times. By assuming the server’s speed is
constant, we use time and distance interchangeably in
the remainder of the paper.

As one motivating example, the Lp-TSP for p = 2,
which we call the Traveling Firefighter Problem (TFP),
abstracts a macro-scale optimal strategy for dispatching
a firefighter to minimize the total damage due to fires
at various locations. Ride-sharing is another use-case of
our problem. For example, devising the return route of
a school bus, should we optimize the fuel consumption
(i.e. the driver’s time en route) or the average student
waiting time? Is it fairer to further penalize larger
waiting times, e.g. minimizing the sum of squares/cubes
of the waiting times? Before formulating the problems
under study we introduce some notation.

Notation. [z] denotes the set {1, · · · , z} for any
positive integer z. Õ(·) is equivalent to O(·), treating
ε > 0 as a constant. A metric over a set of nodes V is
a distance function d : V × V → R≥0 that satisfies
symmetry, d(x, y) = d(y, x) ∀x, y ∈ V , identity,
d(x, x) = 0, and the triangle inequality, d(x, y) ≤
d(x, z) + d(z, y) ∀x, y, z ∈ V .

The inputs to the problem are the set of vertices
V , including both the destinations and the server’s
starting location, s ∈ V , and the underlying metric
d(·, ·) over V , corresponding to distances (or times)
between vertex pairs.

A feasible solution or route is a permutation σ
over V that starts at the origin; σi denotes the ith vertex
to be visited, so we always have σ1 = s. F denotes the
set of all feasible solutions. The ith smallest visit time,
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due to a solution σ ∈ F , is denoted Tσi , i.e.

Tσi =

{
0 i = 1∑i
j=2 d(σj−1, σj) i ∈ {2, · · · , n}

The visit time for vertex v is denoted `σv . Similarly,
`σs = 0 and `σv =

∑σi=v
i=2 d(σi−1, σi) ∀v 6= s.

Definition 1. (Lp-TSP) The input of the optimiza-
tion problem Lp-TSP is a set of destinations V , a start-
ing vertex s ∈ V , and a metric d : V × V → R≥0. The
objective is to find a feasible route, σ ∈ F , starting at
s and visiting all v ∈ V , that minimizes the Minkowski
p-norm of the visit times, i.e. minσ∈F ‖`σ‖p, where

‖`σ‖p :=

(∑
v∈V
|`σv |p

) 1
p

.

When the problem/objective is clear from context,
we denote an optimal route as OPT and the answer of
our algorithm as ALG.

A Better Objective. One can verify that the
objective (norm) affects various aspects of the routing
problem, such as efficiency. Lp-TSP enables a smooth
transition between two extreme objectives. For larger
p’s the objective is strongly affected by dominating
(larger) entries of the delay vector and minimizing ‖`‖p
is more to the benefit of the server. In contrast, smaller
p’s provide a further aggregated measure of the amount
of time that the customers have waited. This trade-off
can also be interpreted from a fairness perspective, as
increasing p discourages the longest waiting time from
becoming too large.

Firefighter Example. We further elaborate on
why p /∈ {1,∞} can be a useful objective by considering
the routing of a firefighter.1 Consider a set of wildfires
in dispersed locations, and suppose a skilled firefighter
extinguishes any fire the second they arrive at a loca-
tion; the firefighter must choose the order in which to
visit and extinguish the fires. One possible strategy is
to choose a sequence in order to finish extinguishing all
fires as soon as possible, which corresponds to solving
the L∞-TSP (the path-TSP). However, this may not be
the best solution for the firefighter: L∞-TSP minimizes
the latest visit time for all fires, while the cost could be
affected by all visit times; thus an aggregated measure
could be a better objective.

1Over the past decade, and for the first time on record, the

annual number of acres burned in the United States exceeded 10
million; this occurred twice [Hoo18]. In July 2019, a record 2.4
million acres of the Amazon rainforest were torched [Bor19]. The

optimal allocation, scheduling and routing of firefighting resources
may help address this global challenge.

SA B C

(a) L2-TSP route

SA B C

(b) L1-TSP route

Figure 1: Different norms cause different routes.

For example, consider the following simple dynam-
ics for the spread of wildfires over uniform territory, ig-
noring possible differences such as vegetation, weather
and wind. After every second, a flammable point of
territory is ignited if it is within a unit distance from
the burning flames. Under these dynamics, the area of
land scorched by the fire is a quadratic function of the
elapsed time. Therefore, the damage due to the delay
on the ith visit can be better represented by `2σi and
minimizing

∑
v `

2
v = ‖`‖22, or equivalently ‖`‖2, is a bet-

ter objective for this scenario compared to other norms,
particularly ‖`‖1 or ‖`‖∞. Motivated by this example,
we term L2-TSP as the Traveling Firefighter Problem
(TFP).

In an applied setting, this approach may require
some refinement but the basic idea still applies. Land
and weather asymmetries can be modeled by a mul-
tiplicity of vertices: If a fire spreads twice as fast in
area, we can represent it by two vertices overlapping
in the metric. One could also generalize the objec-
tive to a weighted sum of the squared delays and/or
discretize large fires into smaller ones. Moreover, the
time required to extinguish a fire can be accounted for
by adding a new edge, hanging from the original desti-
nation at a distance proportional to the time required
to contain that fire, and moving the destination to the
other endpoint of the new edge.

The Argument versus The Objective. The set
of feasible routes for all Lp-TSP problems is the same,
while the objectives are different. For any p 6= q,
there exist instances where the two optimal routes are
different. As a simple example, consider four vertices S,
A, B, and C over a line metric at locations 0,−1−ε,+1,
and +2 respectively. Starting at S, the route SABC
is optimal for L2-TSP with corresponding objective
of ‖(0, 1 + ε, 3 + 2ε, 4 + 2ε)‖2 '

√
26, in contrast to

the optimal route for L1-TSP that is SBCA with the
objective ‖(0, 1, 2, 5+ε)‖1 = 8+ε. Figure 1 depicts this
example.
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(a) Path-TSP route (b) TFP route

Figure 2: Optimal path-TSP versus TFP routes for 10 U.S. locations; the areas of the discs at visit locations are
proportional to the expected (quadratic) damage at each location, due to the delay along the route. Here, taking
the TFP route (instead of the TSP) reduces total damage by 5%.

Consider the effect of a “wrong” norm on the
optimal route. Figure 2 depicts an example considering
10 locations with simultaneous wildfires in the United
States.2 Dispatching a firefighter from Atlanta, and
traveling 100 times faster than the spread of fire, TFP
would look quite different than L∞-TSP. In particular,
the TFP reduces the total damage by 5% compared to
the path-TSP solution.

As another example, consider destinations on the x
axis, with many fires located at +1 and a single fire at
−1 + ε. Starting at x = 0, the optimal L∞-TSP route
moves left first and then right, resulting in a solution
roughly three times as expensive as the optimal TFP
route, in terms of the L2 objective. In fact, the relative
performance of an L∞-TSP route for the L2 objective
can be unbounded. For instance, consider the Euclidean
metric over the plane with n−2 fires located at complex
coded locations

{e2π· kn i : k ∈ {1, · · · , n− 2}},

and m distinct fires located at e2π
n−1−ε
n i . Starting at

(1, 0) = e0i and moving at unit speed, for n → ∞
and m/n→∞ the damage (squared delay) due to L∞-
TSP route (by walking in the wrong direction around
the circle) converges to 4π2, while for the optimal TFP
solution it goes to zero.

All-norm-TSP. We observed that TSP may not
be a good solution for other Lp objectives. One may
consider whether a different Lp-TSP is hopefully good
for all norms. In this line, a natural question is whether
there exists a single route that is approximately optimal
concerning the minimization of any norm of the visit

2Wildfires observed during the first week of Dec 2019, accord-
ing to satellite data [NAS].

times, and whether we can efficiently find one. This can
be viewed also as an online problem where the adversary
chooses the norm, e.g. Lp, and the objective is to provide
a competitive solution with respect to the optimal route.

Definition 2. (all-norm-TSP) Given s, V 3 s, d :
V ×V → R≥0 as before, the objective is to choose a route
that minimizes the maximum possible ratio between a
symmetric norm of the visit time vector of the output
route σ and the optimal route for that norm,

min
σ∈F

sup
‖·‖

‖`σ‖
minσ′∈F‖`σ′‖

.

Golovin et al. [GGKT08] introduced this problem as
the all-norm-TSP and gave an algorithm that outputs
a route that is a 16-approximation with respect to any
norm of the visit time vector. The concept of all-norm
minimization has been of interest in many applications,
e.g., for routing, load balancing [KRT99], and machine
scheduling [AERW04, BP03].

1.1 Main Results & Proof Ideas. Optimizing the
non-linear objective of Lp-TSP can be computationally
challenging. The problem is already NP-hard even in
the linear case, p = 1, on a tree metric [Sit02], i.e. when
the metric is pairwise distances over a graph on V that
forms a tree. In contrast, TSP on trees is solvable, in
linear time.

Archer and Williamson [AW03] showed that a
(1 + ε)-approximate solution for TRP exists that is
a concatenation of O(log n · ε−1) TSP paths. This
can be generalized as the following Lemma, which en-
ables a quasipolynomial time approximation scheme for
weighted trees.
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Lemma 1.1. ([AW03]) Lp-TSP can be (1 + ε)-
approximated by a concatenation of O(log n · ε−1) TSP
paths.

Proof. Without loss of generality we can assume inte-
gral and polynomially bounded input distances, d(i, j) ∈
{0}∪[O(n2/ε)] = {0}∪[Õ(n2)], as an appropriate quan-
tization by rounding only adds a multiplicative error of
1 +O(ε/n2) to any edge and keeps any norm of a valid
tour, within a factor (1± ε).

Now break the optimal route according to time
spots 1, (1 + ε), · · · , (1 + ε)γ where γ = O(log n · ε−1)
because O(n3 · ε−1) is a bound on the length of the
optimal route. Replacing each sub-route between two
consecutive time spots, with the shortest path TSP over
the same points does not increase any visit time beyond
a factor 1+ε, and hence preserves any norm of the visit
times by a factor of 1 + ε.

The above approach can only lead to a pseudo-
polynomial time approximation algorithm, even for
trees. Reducing the problem to many shortest paths
cannot lead to an efficient polynomial-time reduction,
because a concatenation of o(log n) path-TSP routes
cannot approximate L1-TSP within a constant factor
[Sit14]. To further reduce the number of paths, we
use the notion of segmented-TSP, introduced by Sitters
[Sit14], to enable some dependence between consecutive
deadlines. This problem requires a (sequence of mono-
tonically non-decreasing) number of destinations to be
visited by a number of deadlines, formulated as follows.

Definition 3. (segmented-TSP) Given V 3 s, d :
V × V → R≥0 as before, in addition to integer numbers
n1 ≤ n2 ≤ · · · ≤ nk ≤ |V | = n and fractional numbers
t1 ≤ t2 ≤ · · · ≤ tk as inputs, the segmented-TSP
problem is a decision problem to verify whether a route
exists that visits at least ni distinct vertices by time ti
for all i ∈ [k], starting at s.

Approximation of segmented-TSP, i.e. a decision
problem, can be defined as follows.

Definition 4. An α-approximate solution to a
segmented-TSP instance, must visit the first ni vertices
by the modified deadline α · ti, ∀i ∈ [k], if an answer to
the original segmented-TSP exists.

We generalize a main result of Sitters [Sit14] that
showed TRP can be reduced to (a polynomially many
number of approximate) segmented-TSP problems with
a constant number of deadlines.

theorem 1. [Lp-TSP⇒ segmented-TSP] Let ε > 0 be
a constant and A be an α-approximation algorithm for

segmented-TSP for some k = O(1 + ε−2) of our choice.
There is a (1 + ε) · α-approximation algorithm for Lp-
TSP that calls A (on the same network (V, s, d)) for a
strongly polynomial number of times.

Theorem 1, proved in Section 2, along with a
PTAS for segmented-TSP [Sit14] on tree metrics and
Euclidean metrics imply the following results.

Corollary 1.1. There exist polynomial-time approxi-
mation schemes (PTAS) for Lp-TSP on weighted trees
and Euclidean plane metrics.

Note that due to our reduction of Lp-TSP
to segmented-TSP, any approximation results for
segmented-TSP, on specific metrics, would follow for
Lp-TSP, at the cost of an additional factor of (1 + ε)
to the approximation bound. Our results can be gen-
eralized to the case of multiple travelers, starting from
arbitrary locations, as discussed in Section 5.

For general metrics, a PTAS is unlikely, as the prob-
lem becomes Max-SNP-hard. On the other hand, the
constant factor approximability of Lp-TSP for general
metrics is immediate due to the 16-approximation of the
all-norm-TSP by Golovin et. al. [GGKT08]. In this line,
we improve the approximation bound for all-norm-TSP
by a factor of 2.

theorem 2. [all-norm-TSP] There is a polynomial-
time algorithm to find a route that is 8-approximate with
respect to the minimization of any symmetric norm of
the visit times (including Lp-TSP, TFP, and TRP).

Theorem 2 is proved in Section 3. Our algorithm
builds on the partial covering idea, presented as Algo-
rithm 1, that was pioneered by Blum et al. [BCC+94]
for TRP, and was developed through subsequent studies
[GK98, CGRT03, GGKT08, BKL21].

Algorithm 1 Routing via Partial Covering

1: procedure Geometric-Covering(V, s, d)
2: Algorithm Parameters: b ∈ (0,∞), c ∈ (1,∞)
3: i← 0
4: while there remains destinations to visit do
5: . Conducting sub-tours
6: Ci ← a maximal route of length ≤ b · ci.
7: Travel through Ci (and return to the origin)
8: i← i+ 1

9: return an ordering σ of V according to their
(first) visit time through the above loop.

The parameters b and c strongly affect the perfor-
mance of the algorithm. For all-norm-TSP, we choose
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b = mini,j∈V d(i, j) and c = 2, as in [GGKT08]. The
key difference of our algorithm is in line 6. Instead of an
approximation algorithm for k-TSP, i.e. a route of min-
imum length that visits k-vertices, we utilize a milder
relaxation, which is a tree (instead of a route/stroll)
rooted at s, including k vertices, and of total length
not larger than an optimal k-TSP. Such a good k-tree
can be found in polynomial time using the primal-dual
method that solves a Lagrangian relaxation of k-TSP
[CGRT03, ALW08, PS14].

On the other hand, we provide a first impossibil-
ity result for all-norm-TSP, notably beyond known in-
approximability bounds for specific Lp-TSP problems.
The following is proved in Section 3.2.

theorem 3. There is no approximation algorithm for
all-norm-TSP with multiplicative factor better than
1.78, independent of P = NP or other complexity hy-
potheses.

The above result reaffirms the need for approxi-
mation algorithms specifically designed for each norm.
Along this line, we present a randomized 5.65 approxi-
mation algorithm for the Traveling Firefighter Problem.

theorem 4. There is a randomized, polynomial-time
5.65-approximation algorithm for TFP on general met-
rics.

Theorem 4 is proved in Section 4, for which we
adapt the ideas by Chaudhuri et. al. [CGRT03] and
optimize the parameter c in line 2 of Algorithm 1.
Choosing b ∈ [1, c] at random, with a distribution
of uniform density for log(b), simplifies the analysis,
while one can efficiently de-randomize the algorithm by
quantization of b.

1.2 Literature Review Traveling Salesman Prob-
lem is a principal problem in computer science, combi-
natorial optimization, and operations research, and its
first formulations date back as early as 19th century (c.f.
[ABCC06]). Since the celebrated 3/2-approximation al-
gorithm of Christofides-Serdyukov [Chr76, Ser78], for
its tour-variant on general metrics, TSP has been exten-
sively studied for half a century [Wol80, SW90, BP90,
Goe95, CV00, GLS05, BC11, SWVZ12, HNR19]. Very
recently, Karlin, Klein, and Oveis Gharan [KKG20]
showed TSP can be approximated strictly better than
3/2, while the problem remains NP-hard to approximate
within a factor of 123/122 [KLS15].

The common ground in numerous variants of TSP
is that a set of vertices are to be visited in the fastest
possible way, i.e., optimizing the time spent by the
server/traveler. In contrast, the Traveling Repair-

man Problem (TRP), a.k.a. Minimum Latency Prob-
lem, the school bus driver problem [Wil94], hidden
treasure [BCC+94, KPY96, ALMS00], and the deliv-
eryman problem [Min89, FLM93, MDZL08], optimizes
the route purely from the perspective of clients, i.e.,
the total waiting time to be visited, and is another
extensively studied combinatorial optimization prob-
lem [ACP+86, PY93, BCC+94, GK98, CGRT03, AW03]
with a state-of-the-art approximation factor of ' 3.59
for general metrics [CGRT03, PS14].

Containment of fires can be abstracted from various
perspectives. Hartnell [Har95] modeled a constant
speed spread of fires through edges of a graph, along
which the firefighters also displace. Many objectives,
such as minimization of the number of burned vertices,
or the required time to contain the fire(s) are studied
in this model and the problem is an active area of
research. See [FM09, KLL14, ABZ18, ABK20, DFH21]
and references therein.

Generalizing the objective to Minkowski norm of
the solution has allowed interpolating other classi-
cal problems, e.g., Lp set cover problem [GGKT08,
BBFT20] that further united the greedy algorithms
for set-cover and the minimum-sum-set-cover [FLT04]
problems. Set cover is better approximable for p = 1
than p = ∞ , while TSP (p = ∞) is currently better
approximated than TRP (p = 1). Nevertheless, this
order is not expected to be reversed as TRP is intrin-
sically a harder problem. Moreover, in contrast to the
concordance among Lp set cover problems, for which
the same greedy algorithm gives best (possible) bounds
for any p ∈ [1,∞), state-of-the-art algorithms for TSP
and TRP are significantly different, and potentially far
from the best possible. This is yet another motivation
to study Lp-TSP, ultimately towards unified best algo-
rithms for all underlying problems.

1.3 Paper Organization. In Section 2 we pro-
vide a reduction from Lp-TSP to segmented-TSP and
subsequent approximation schemes for Euclidean and
weighted-tree metrics. In Section 3, we present the
8-approximation for all-norm-TSP in general metrics,
along with a first inapproximability bound. This
will also be a preliminary for optimized algorithm
for L2-TSP in Section 4, where we present a 5.65-
approximation for the Traveling Firefighter Problem on
general metrics. We discuss generalizations to multiple
vehicle scenarios in Section 5 and conclude the paper
with a set of interesting open problems to continue this
line of research.
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2 Reducing Lp-TSP to Segmented TSP

In this section, we provide our reduction from Lp-TSP
to polynomially many instances of segmented-TSP. Let
us restate Theorem 1.

theorem 1. [Lp-TSP⇒ segmented-TSP] Let ε > 0 be
a constant and A be an α-approximation algorithm for
segmented-TSP for some k = O(1 + ε−2) of our choice.
There is a (1 + ε) · α-approximation algorithm for Lp-
TSP that calls A (on the same network (V, s, d)) for a
strongly polynomial number of times.

In particular, a corollary of the above Theorem
(and the following Lemma) is a (1 + ε) approximation
algorithm for any Lp-TSP on weighted-tree metrics -
where the problem becomes strongly NP-hard even for
p = 1 - as well as the Euclidean plane.

Lemma 2.1. ([Sit14]) Segmented TSP, for any con-
stant number of segments M , can be solved in polyno-
mial time for weighted trees, and 1+ε approximated for
unweighted Euclidean metric.

Corollary 1.1. There exist polynomial-time approxi-
mation schemes (PTAS) for Lp-TSP on weighted trees
and Euclidean plane metrics.

In the rest of this section, we prove Theorem 1,
by providing a dynamic programming algorithm that
approximates Lp-TSP using polynomially many calls to
(approximate) segmented-TSP. More precisely, we show
if there is an α-approximate solution for segmented-
TSP, the dynamic program guarantees an approxima-
tion factor of at most α · (1 + ε) for arbitrary constant
ε > 0 .

The algorithm is presented in a few steps, each
imposing no more than 1+O(ε) multiplicative error. To
achieve exact 1+ε precision, one may run the algorithm
for a constant fraction of the target ε .

For some k as large as O(1 + ε−2) we can ensure

c
def
= (1 + ε)k ≥ 3 . Let OPTλi denote the maximal

prefix of OPT route for Lp-TSP of length at most

λi
def
= (1 + ε)−j · ci , ∀i ≥ 0 ,

where j is a fixed random number, uniformly distributed
over {0, · · · , k − 1}.

Let OPT′ be a tour made of sub-tours consisting
of traversing OPTλi and returning to the origin and
waiting until time 3λi before starting the next sub-tour.
To confirm the above is feasible, we need to show sub-
tour i+1 , being allowed to begin at 3λi , does not leave
before the return of previous sub-tour, i.e.,

3λi−1 + 2‖TOPTλi‖∞ ≤ λi + 2λi = 3λi

which is immediate having λi = cλi−1 ≥ 3λi−1.

Lemma 2.2. The modified tour OPT′ is approximately
optimal in expectation, i.e., for some k ∈ O(1 + ε−2)

Ej
[
‖TOPT′‖pp

]
≤ (1 + ε)‖TOPT‖pp .

Proof. All vertices are visited (for the first time) in the
same order, by OPT and OPT′ . Let the dth service time
by the optimal solution be

TOPT
d ∈ ((1 + ε)δ, (1 + ε)δ+1]

for some integer δ ≥ 0 .

If this vertex is visited in the ith sub-tour of OPT′ ,
we can write

TOPT′

d = TOPT
d + 3λi−1 .

We can bound this additional delay by

TOPT′

d − TOPT
d ≤ 3(1 + ε)δ−j

′

where j′ has the same distribution as j .
We can prove the desired by bounding the per-

vertex ratio by

Ej′
[
(TOPT′

d )p
]

(TOPT
d )p

≤ (1 + ε)

because
∑
i ai∑
i bi
≤ maxi

ai
bi

where a1, · · · and b1, · · · are

positive real numbers.
Considering p ≥ 1 and TOPT′

d = TOPT
d + 3λi−1,

the left hand side of the target ratio is maximized for
TOPT
d = (1 + ε)δ, so it suffices to prove

Ej′
[
((1 + ε)δ + 3λi−1)p

]
((1 + ε)δ)p

≤ (1 + ε) .

We will have

Ej′
[
((1 + ε)δ + 3λi−1)p

]
((1 + ε)δ)p

≤
Ej′
[
((1 + ε)δ + 3(1 + ε)δ−j

′
)p
]

((1 + ε)δ)p

= Ej′
[
(1 + 3(1 + ε)−j

′
)p
]

= 1 + Ej′
[
(1 + 3(1 + ε)−j

′
)p − 1p

]
≤ 1 +

1

k

k−1∑
j′=0

(3p)p(1 + ε)−j
′

≤ 1 +
(3p)p

k
· 1

1− (1 + ε)−1

= 1 +
(3p)p

k
· 1 + ε

ε
.
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To get the desired (from the last inequality) it
suffices to assume

k ≥ (3p)p(1 + ε)

ε2
.

We can now complete the proof of Theorem 1,
similar to the main idea of Sitters [Sit14], presented as
follows.

Lemma 2.2 implies for some j ∈ [k], where k =
O(1 + ε−2), there exists a near optimal routing, OPT′ ,
that for each i ∈ [Õ(n2)], visits new vertices only during
[3λi−1, λi] , and returns to the origin and remains there
until

3λi =
3

(1 + ε)j
· (1 + ε)ki .

We can search for such a path by reconstructing
OPTλi for all i and upper bounding the consequent
‖TOPT′‖pp using dynamic programming.

Define D[i][d] as (an upper bound on) the contribu-
tion of visit times of vertices that are visited by OPTλi ,
to ‖TOPT′‖pp, further assuming the number of these ver-
tices is d.

We can compute D[i][d] considering O(nk) cases
of (m1,m2, · · · ,mk) where mr denotes the number of
vertices that are visited by OPTλi during

(3λi−1 + λi · (1 + ε)r−k−1, 3λi−1 + λi · (1 + ε)r−k] .

Note that it is necessary to have
∑
rmr ≤ d and let

d′ = d −
∑
rmr be the number of vertices visited by

OPTλi−1 . We can write

D[i][d] = min
m1,··· ,mk

D[i− 1][d′]+

Seg-TSPi(d
′,m[r]) ·

∑
r

mr · (3λi−1 + λi · (1 + ε)r−k)p ,

where Seg-TSPi(d
′,m[r]) has value 1 if segmented-TSP

is feasible for visiting at least

d′, d′ +m1, · · · , d′ +m1 + · · ·+mr

vertices by deadlines

λi−1, 3λi−1 + λi · (1 + ε)−k, · · · , 3λi−1 + λi

is feasible, and otherwise has value ∞. Note that
we have an α approximate solver for Segmented-TSP,
though for convenience we can alternatively assume the
traveller goes at the speed of α instead of 1, to get a 1+ε
approximate solution to ‖TOPT‖p by (D[Õ(n2)][n])1/p.
In the end, moving at unit speed (instead of α) at every

stage can increase (any) norm of the delay vector ‖T‖
by a factor α so we have an α · (1 + ε) approximation,
that was promised by Theorem 1.

Finally it is worth to mention that the route (in-
stead of the value) can be reconstructed using update
(parent) information of D[·][·] and a constructive ap-
proximate solver for Seg-TSP[·] and we can short-cut
potential re-visits of vertices to have a valid Hamilto-
nian route.

3 All-norm TSP

Since the introduction of a first constant approximation
for TRP by Blum et al. [BCC+94], partial covering
through applying a geometric series of limits on the
length of the sub-tours has been a core in the design
of routing algorithms. In this section, we improve the
16-approximate/competitive solution for all-norm TSP
by a factor of 2. We further provide a first lower bound
for this problem.

3.1 Approximation for General Metrics. The
idea is to iteratively cover more and more vertices
by sub-tours of exponentially (geometrically) increasing
length while trying to maximize the total number of
vertices that are visited (not necessarily for the first
time) in each iteration. Our algorithm uses the following
milder relaxation of k-TSP, called a good k-tree, in place
of line 6 in Algorithm 1.

Definition 5. A good k-tree is a tree of size k, includ-
ing s, and with a total edge-weight of no more than that
of the optimal k-TSP (starting from s).

Lemma 3.1. ([CGRT03]) A good k-tree can be found
in polynomial time.

Chaudhuri et. al. [CGRT03] proved the above us-
ing a primal-dual approach [Gar96, AK00] that allows
finding a feasible solution to the primal (integer) linear
program of the k-tree problem paired with a feasible
dual solution to k-TSP, that by weak duality has no
less of a cost.

We are now ready to prove Theorem 2.

theorem 2. [all-norm-TSP] There is a polynomial-
time algorithm to find a route that is 8-approximate with
respect to the minimization of any symmetric norm of
the visit times (including Lp-TSP, TFP, and TRP).

Proof. WLOG assume the nearest neighbor to s is at
distance 1. For k = 1, 2, . . . , n find a good-k-tree.
Among these, name the largest tree (with respect to
number of vertices) of total length at most 2i as Gi for
i = 0, 1, 2, . . . .
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Let Ci be a (randomized) depth-first traversal of Gi
and let C be the concatenation of Ci’s for i = 0, . . . . The
final tour ALG will visit vertices in the order that they
appear in C, which does not increase the first-visit time
for any vertex, due to triangle inequality of the metric,
while short-cutting vertices that are being re-visited.

Let
TOPT
k ∈ [2i, 2i+1) .

This shows the shortest (length) k-path in G is no longer
than 2i+1 . So our good-k-tree is no longer than 2i+1 ,
hence Ci+1 has at least k distinct vertices, allowing us
to upper bound our kth visit time by

TALG
k ≤

i+1∑
j=0

|Cj | ≤
i+1∑
j=0

2× 2j < 2i+3 .

Together with TOPT
k ≥ 2i and the above inequality

we have
TALG
k ≤ 8× TOPT

k .

We showed TALG
k ≤ 8 · TOPT

k ∀i ∈ [n], i.e.,
TOPT is 8-submajorized by TALG in terminology of
[GGKT08, HLP88]. The result is that

‖TALG‖ ≤ 8 · ‖TOPT‖

w.r.t. any norm ‖ · ‖.

One can verify the above algorithm performs
asymptotically 3 times worse than the optimal TRP for
the example with service points at {2i : i ∈ N} and
starting at x = 0 .

3.2 Inapproximability. We conclude this section by
providing a lower bound for all-norm TSP. We show
even for line metrics, an α-approximate all-norm TSP
cannot be guaranteed in general, for α < 1.78.

theorem 3. There is no approximation algorithm for
all-norm-TSP with multiplicative factor better than
1.78, independent of P = NP or other complexity hy-
potheses.

Proof. Let the metric correspond to absolute differences
over the real line, and start the walk from the origin
x = 0. Our example has a similar structure as follows.
There is a single destination at x = −1, in addition to n
destinations at x ∈

{
bi − 1 : i ∈ [n]

}
. Choosing b = 1+ε

such that bn >> 1, the optimal all-norm TSP visits the
longer branch first, and is optimal with respect to TRP,
while for TSP (which takes the shorter branch first) it
achieves an an approximation ratio of

2bn + 1

bn + 2
.

For b = 1.001 and n = 2256 the above setup
provides a bound of 1.71 .

We further developed a similar, yet numerically
verified example depicted as Figure 3, for which no
1.78-approximate all-norm-TSP route exits. For repro-
ducibility we include this instance in the Appendix.

The above example, is yet another motivation to
study and optimize routing algorithms specific to the
appropriate objective/norm, as one solution cannot be
good for all.

4 Traveling firefighter in general metrics

In this section we build upon our geometric partial-
covering algorithm with good k-trees to improve approx-
imation bound for a specific norm, i.e., the Traveling
Firefighter Problem.

We achieve the improved approximation bound
by randomization (of parameter b) and optimization
of our analysis w.r.t. approximation guarantee for a
specific norm. Our approach can provide approximation
guarantees (better than 8) for other Lp-TSP problems.
We present main ideas in the rest of the section by
proving the following result.

Theorem 4.1. Traveling Firefighter Problem for gen-
eral metrics can be 5.641-approximated in polynomial
time.

Proof. We present a randomized approximation algo-
rithm for general metrics, that can be efficiently de-
randomized.

Among the set of good k-trees, pre-computed for all
k , let Gi be the largest one of total length at most b ·ci ,
and let Ci be a depth first traversal of that. Parameter
c > 1 is a constant, to be optimized for performance
guarantees, and

[1, c] 3 b = cU

where U is a random variable distributed uniformly
over the interval [0, 1] . Finally, we reverse each Ci with
probability half, and concatenate Ci’s (and shortcut
repeated visits) to achieve the output ordering ALG .

Let the latency of the kth vertex visited by the
optimal route be

TOPT
k = aci ,

for some a ∈ [1, c] and integer i ≥ 0 .

It is easy to see that our (i + 1[a ≥ b])th sub-tour
contains at least k vertices, hence, we can bound

TALG
k ≤ Xk +

i−1[a<b]∑
j=0

2bcj ,
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Figure 3: An example with no better than 1.78 all-norm TSP

Where Xk is zero if our tour visits its kth vertex before
the (i− 1[a < b])th sub-tour, and

Xk ∈ [0, 2bci+1[a≥b]] ,

depending on its location in the sub-tour.

Due to convexity of the quadratic function we can
bound the expected damage, with

E
[
(TALG
k )2

]
≤ 1

2

i−1[a<b]∑
j=0

2bcj

2

+
1

2

2bci+1−1[a<b] +

i−1[a<b]∑
j=0

2bcj

2

=
1

2

(
2b
ci+1[a≥b] − 1

c− 1

)2

+
1

2

(
2b
ci+1+1[a≥b] − 1

c− 1

)2

≤ 1

2

( 2bc

c− 1

)2
c2(i+1[a≥b])

= c2i · 2c2

(c− 1)2

(
b2c2·1[a≥b]

)
.

Bounding the expected damage at the ith service,
considering random variable b we have

E
[
(TALG
k )2

]
≤ E

[
c2i · 2c2

(c− 1)2

(
b2c2[a≥b]

)]
= c2i · 2c2

(c− 1)2

(
c2
∫ logc d

0

c2UdU +

∫ 1

logc d

c2UdU

)

= c2i
2c2

(c− 1)2

(
c2(a2 − 1)

ln c
+
c2 − a2

ln c

)
= (aci)2

(
2c2 · (c2 − 1)

(c− 1)2 ln c

)
= (TOk )2

(
2c2(c+ 1)

(c− 1) ln c

)
.

We can now choose c in order to minimize the
multiplicative bound

c+ 1

c− 1
· 2c2/ ln c ≤ 31.82

that can be achieved for c ' 2.54 . With this we have

E
[
‖TALG‖22

]
≤ 31.82‖TOPT‖22 .

We provided a randomized algorithm, that along
law of large numbers, can be applied in practice, by
repeating the algorithm and reporting the best per-
forming route. On the other hand it can be sim-
ply de-randomized by exploring all values for a dense
enough quantization of b . In the first case we will have
a
√

31.82 ' 5.641 approximate L2-TSP with high prob-
ability, and in latter scenario we will have deterministic
result with negligible additional approximation error.

5 Generalizations to Multiple Vehicles

In many applications we have multiple vehicles, poten-
tially dispatching from different hubs [KP20].

Our reduction of Lp-TSP to Segmented-TSP can
be generalized to multiple vehicles, with arbitrary start
locations. Similar to the approach in Section 2 we can
convert any optimal multi-vehicle solution to repetition
of O(ε−2) of prefix routes for each vehicle, all synchro-
nized with a single j ∈ {0, · · · , k− 1}, picked uniformly
at random. Lemma 2.2 can be subsequently adapted to
allow limiting the search space to solutions that have all
vehicles at starting locations simultaneously at all 3λi,
with negligible degrade of the optima.

Finally, adapting the dynamic programming, we
can guarantee a multiplicative O(ε) loss given an (ap-
proximate) solver for multi-vehicle segmented TSP with
constant O(ε−2) deadlines, and the corresponding total
number of destinations to be visited (by at least one
vehicle) until up to each. This is indeed fruitful as re-
sults on segmented-TSP also generalize to multi-vehicle
variant, e.g., in tree-distance or Euclidean metric.

Our algorithms can be similarly adapted in the case
where release dates are added for the destinations.

Generalizing results in Sections 3-4 to multi-vehicle
variants of the problems is also possible. For this
purpose, the k-stroll subproblem, for which we used the
mild relaxation of good k-tree, can be generalized to
bottleneck-stroll of Post and Swamy [PS14]. This will
be at the cost of further degrades to the approximation
constants and proposes interesting open problems for
study. For general metrics, current best approximation
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guarantees for multi vehicle {single,multi} depot L1-
TSP is {7.183, 8.497} [PS14].

Discussion and Open Problems

We studied combinatorial optimization problems whose
objectives can be more appropriate, efficient, fair, and
adjustable, depending on enormous applications of op-
timal routing/scheduling.

For TSP and TRP, the analyses of approximation
algorithms as well as complexity results heavily rely on
the linearity of the objective function. Hence, TFP
and more generally Lp-TSP pose further challenging
problems and require new techniques to be developed.

We developed two approaches, towards high preci-
sion and scalable approximation of the answer.

First, we provided a high precision polynomial time
reduction of Lp-TSP to segmented-TSP with only a
constant number of deadlines for visiting the required
number of destinations. Our reduction enables approx-
imation schemes for Lp-TSP on Euclidean as well as
weighted tree metrics; this is yet another motivation to
further study the segmented-TSP problem.

The other approach relied mainly on the fact that
the objective is a norm of the delay vector. In this line,
we developed an algorithm for all-norm-TSP, on general
metrics, of approximation factor 8. We also provided a
first inapproximability result for all-norm-TSP.

Last but not least, we showed how the performance
of the latter algorithm can be optimized for a specific
norm, particularly approximating Traveling Firefighter
Problem within a factor 5.65.

In the end, in addition to further improving the
approximation bounds for the problems under study, we
mention but a few of many interesting open problems
and potential research directions regarding Lp-TSP and
all-norm-TSP.

• L1-TSP, i.e., TRP is harder than L∞-TSP, at least
on trees. For what p is the Lp-TSP problem the
hardest?

• While TRP is strongly NP-hard on weighted trees,
its complexity is unknown for caterpillars [Sit02].
Similarly TFP and Lp-TSP seem challenging even
on such fundamental examples, that is yet to be
resolved.

• While we theoretically claimed p = 2 to be ideal for
the Traveling Firefighter Problem, this assumption
should be given further justification / investigation
in practice.

• Further applications of Lp-TSP can be inspected,
e.g. in optimal containment of spread of pandemics
[Har04, TCM20].

• We observe c = 2 to be optimal for the analysis
of all-norm-TSP algorithm. For TRP, the current
best result is due to a base c ≈ 3.59 for the
geometric series, while c ≈ 2.54 is better for
TFP, as we discussed. In this vein, one can
inspect the best base for the geometric series used
by the partial covering algorithm, depending on
the objective, which naturally seems to be non-
increasing on p.

• Stronger impossibility results for all-norm-TSP and
even larger hardness of approximation bounds for
this problem seem plausible.
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Fairness in routing and load balancing, 40th Annual
Symposium on Foundations of Computer Science (Cat.
No. 99CB37039), IEEE, 1999, pp. 568–578.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



[MDZL08] Isabel Méndez-Dı́az, Paula Zabala, and Abilio
Lucena, A new formulation for the traveling deliv-
eryman problem, Discrete applied mathematics 156
(2008), no. 17, 3223–3237.

[Min89] Edward Minieka, The delivery man problem on a
tree network, Annals of Operations Research 18 (1989),
no. 1, 261–266.

[NAS] Fire information for resource management system,
NASA, https://firms.modaps.eosdis.nasa.gov.

[PS14] Ian Post and Chaitanya Swamy, Linear
programming-based approximation algorithms for
multi-vehicle minimum latency problems, Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SIAM, 2014, pp. 512–531.

[PY93] Christos H Papadimitriou and Mihalis Yannakakis,
The traveling salesman problem with distances one and
two, Mathematics of Operations Research 18 (1993),
no. 1, 1–11.

[Ser78] AI Serdyukov, O nekotorykh ekstremal’nykh obkho-
dakh v grafakh, Upravlyayemyye sistemy 17 (1978), 76–
79.
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A From Section 3

Our example for 1.78 inapproximability of all-norm-
TSP has similar structure as the exponential sequence
presented in Section 3 achieving the lower bound of 1.71,
yet is computationally tuned and verified. This suggests
the best (worst) example can have a different structure.
Follows the locations of the destinations over the line to
be visited by a traveler, starting at x = 200. All points
are over the x-axis.

V = {0, 200, 202, 204, 206, 208, 210,

212, 214, 216, 217, 218, 219, 220, 221,

222, 223, 224, 225, 226, 228, 230, 232,

234, 236, 238, 240, 242, 244, 246, 250,

254, 258, 262, 266, 270, 274, 278, 282,

286, 289, 292, 295, 298, 301, 304, 307,

310, 313, 316, 316, 316, 316, 316, 316,

316, 316, 316, 316, 316, 322, 328, 334,

340, 346, 352, 358, 364, 370, 376, 382,

388, 394, 400, 406, 412, 418, 424, 430,

436, 446, 456, 466, 476, 486, 496, 506,

516, 526, 536, 540, 544, 548, 552, 556,

560, 564, 568, 572, 576, 595, 614, 633,

652, 671, 690, 709, 728, 747, 766, 775,

784, 793, 802, 811, 820, 829, 838, 847,

856, 888, 920, 952, 984, 1016, 1048,

1080, 1112, 1144, 1176, 1199, 1222,

1245, 1268, 1291, 1314, 1337, 1360,

1383, 1406, 1519, 1632, 1745, 1858,

1971, 2084, 2197, 2310, 2423, 2536}
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