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Abstract

Online bipartite matching (OBM) is a fundamental model underpinning many
important applications, including search engine advertisement, website banner and
pop-up ads, and ride-hailing. We study the i.i.d. OBM problem, where one side of
the bipartition is fixed and known in advance, while nodes from the other side appear
sequentially as i.i.d. realizations of an underlying distribution, and must immediately
be matched or discarded. We introduce dynamic relaxations of the set of achiev-
able matching probabilities, show how they theoretically dominate lower-dimensional,
static relaxations from previous work, and perform a polyhedral study to theoretically
examine the new relaxations’ strength. We also discuss how to derive heuristic poli-
cies from the relaxations’ dual prices, in a similar fashion to dynamic resource prices
used in network revenue management. We finally present a computational study to
demonstrate the empirical quality of the new relaxations and policies.

1 Introduction

Many important and emerging applications in e-commerce and in the internet more gen-
erally can be modeled as online two-sided markets, with buyers and sellers dynamically
appearing and conducting transactions. When a platform or other entity controls or man-
ages one side of this market (usually the supply) and can choose what product to offer
to dynamically appearing buyers, the system in question can be modeled as an online
bipartite matching (OBM) problem. As more services move to online platforms in the
coming years, the ubiquity and importance of OBM models will only increase.

An important application of OBM and its generalizations is in the rapidly growing
sector of digital advertisement; in their US Ad Spending Estimates and Forecast for 2017,
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eMarketer reports that digital ad spending reached $83 billion that year, an almost 16%
year-over-year increase. Within digital marketing, search engine advertisement yields one
application of OBM and similar models (Mehta, 2013; Mehta et al., 2007): Users input
search terms, and the engine displays ad links in addition to the actual search results. The
engine chooses the ad(s) to display (i.e. matches an ad to a user) based on the search term,
user information, and advertisers’ preferences and budget, with one typical objective being
to maximize the expected revenue collected from advertisers. Similarly, OBM models can
be applied to website banner and pop-up ads; here, each time a user loads a website, the
site manager can choose ad(s) to display based on the user’s information and browsing
history as well as the advertisers’ budget and target market.

OBM also finds applications in ride-hailing (Raghvendra, 2016), another rapidly grow-
ing sector – one study by Goldman Sachs in 2017 projected that global revenues in the
industry could reach $285 billion by 20301. Within these systems, when a user requests
a ride, the ride-hailing platform must match them to an available driver, with the over-
all goal of maximizing some measure of customer satisfaction or utility (for example, by
minimizing users’ average waiting time before a pickup).

Recently, OBM has been used to study refugee settlement (Ahani et al., 2021). A
government typically fixes the refugee capacities for communities every year. Refugees
arrive dynamically over time and must be placed in a community within a specified time
limit. A key aspect for successful refugee integration in a community is employment; thus,
one of the goals of the decision maker is to maximize the number of migrants that get
matched with potential employment in their assigned community.

As in classical deterministic bipartite matching, OBM involves matching nodes on
opposite sides of a bipartite graph, with the objective of maximizing the cardinality of the
matching or a more general weight function. In online versions of the problem, nodes on
one or both sides of the bipartition may appear and/or disappear dynamically, matches are
often irrevocable, and decisions must usually be made with only partial information about
the underlying graph. In the version of OBM we study here, one side of the bipartition
is fixed and known, representing the goods or resources the platform can offer; the nodes
from the other side, representing customers, arrive sequentially, one at a time. Upon
each arrival, the platform must immediately and irrevocably match the arriving node
to a remaining compatible node from the other side, or discard it. We assume arriving
nodes are i.i.d. draws from an underlying uniform distribution over possible node “types”,
representing customer classes that may or may not be compatible with different resources
or goods. For example, in search engine advertisement, advertisers indicate which search
terms they wish their ads displayed with, and the search engine can only match ads
with terms in these classes. The i.i.d. assumption implies this model is applicable in
situations where the platform can forecast customer behavior, e.g. based on past arrival
data, and where this behavior is relatively stable over time. The model may not be as
applicable in data-poor situations where the platform cannot confidently forecast customer
behavior; the literature includes more conservative models for such cases (Mehta, 2013),
culminating with the adversarial model studied in (Karp et al., 1990). Conversely, if

1C. Huston. “Ride-hailing industry expected to grow eightfold to $285 billion by 2030.” MarketWatch,
published May 27, 2017.
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customer behavior can be forecast but is not necessarily stable over time, the assumption
of identical distributions may be problematic. While we are not aware of OBM models for
this case, the revenue management literature includes many works in this vein, particularly
in network revenue management, e.g. (Talluri and van Ryzin, 1998). We briefly survey
related work below.

Perhaps because of its applicability in search engine advertisement, the algorithms
community has extensively studied i.i.d. OBM and related models for the past decade,
starting with (Feldman et al., 2009). For the i.i.d. variant with cardinality objective, this
work typically focuses on developing heuristic matching policies with multiplicative worst-
case performance guarantees. It is straightforward to see that a simple policy based on
solving a max-flow relaxation achieves a fraction of at least 1− 1/e ≈ 0.63 of the optimal
policy, and this ratio in fact matches the best possible competitive ratio in the adversarial
case (Karp et al., 1990); Feldman et al. (2009) established that in the less conservative
i.i.d. model a better ratio is indeed possible. Currently, the best guarantee of this type is
roughly 0.71 (Jaillet and Lu, 2014) (and it is slightly better under additional assumptions).

The analysis of these heuristic policies and their worst-case guarantees relies on simple
linear programming (LP) relaxations, often with network flow structure. However, there is
comparably far less work focusing directly on the derivation of strong relaxations for i.i.d.
OBM, even though these relaxations provide dual upper bounds useful for benchmarking
any new heuristic policies and often can be employed in policy design as well. The only
work along these lines we are aware are of is (Torrico et al., 2018), which builds on
the network flow relaxations used in (Feldman et al., 2009), and subsequent papers, by
adding more sophisticated valid inequalities derived from probabilistic arguments. Though
somewhat unusual in the algorithms or optimization literature, this approach can be
interpreted as a version of achievable region techniques from queueing theory and applied
probability; see e.g. (Bertsimas and Niño-Mora, 1996; Coffman and Mitrani, 1980).

1.1 Contribution

Starting with (Feldman et al., 2009), to the best of our knowledge all known relaxations
for i.i.d. OBM are “static”: Although the process occurs dynamically over a horizon with
sequential decision epochs, the relaxations use as their primary variables the probability
that an arriving customer node of some type is ever matched to a fixed resource node.
Though this reduces the number of variables to consider, it also means the corresponding
relaxations are coarser and looser, as they cannot easily capture the model’s dynamics.
Furthermore, with few exceptions, the policies derived from such relaxations are also
mostly static in nature; that is, though a decision may depend on the arriving node type
and the remaining available resource nodes, it usually does not depend on the decision
epoch itself and how far or close it might be from the end of the horizon.

Our main contribution is to provide a polyhedral study that takes into account the
problem’s sequential nature. Specifically, we achieve this via dynamic relaxations that
use as decision variables the probability that a particular match occurs in a particular
stage. Using these time-indexed probabilities affords several modeling advantages, such as
allowing us to include edge weights that vary by time and thus simplify the analysis by
capturing all compatibility information in the objective.

3



Of course, the primary appeal of dynamic relaxations is the possibility of providing
tighter dual bounds for the model. As one of our main results, we establish that our
simplest dynamic relaxation is provably at least as tight as the best-performing relaxation
from (Torrico et al., 2018); furthermore, the latter relaxation includes exponentially many
inequalities and relies on a separation algorithm, whereas our new relaxation has polyno-
mially many variables and constraints. To further understand our new relaxation, we also
perform a polyhedral study, demonstrating that all of its inequalities are facet-defining for
the underlying polytope of achievable probabilities. Although being facet-defining does
not necessarily translate into a guarantee on relaxation quality, it does provide an indi-
cator of the inequalities’ importance, which we confirm empirically. We also extend this
polyhedral study and introduce more complex inequalities, all facet-defining as well. Our
computational study verifies the strength of the new relaxation; it improves the previous
best gaps by 4% to 5% in absolute terms on average.

As a secondary contribution, we also show how our new relaxation can be leveraged
to construct a dynamic heuristic policy. Although this kind of policy is new in OBM
to our knowledge, our policy can be viewed as the OBM analogue to dynamic bid price
policies, introduced in (Adelman, 2007) for network revenue management. To design the
policy, we establish a connection between our relaxation and an approximation of the
model’s dynamic programming (DP) formulation, showing that our main relaxation is
equivalent to an affine value function approximation, and that the corresponding policy
has an intuitive and simple structure. Our empirical results demonstrate that our policy
improves upon the literature, and together with our dual bounds, considerably helps close
the gap on difficult instances.

The remainder of the paper is organized in the following way: After a brief litera-
ture survey at the end of this section, Section 2 formulates the problem, and summarizes
pertinent previous results. Section 3 introduces our relaxations and gives our theoretical
results, while Section 4 outlines our computational study. Section 5 concludes and dis-
cusses possible future work. An Appendix has mathematical proofs not included in the
body of the paper.

1.2 Literature Review

The OBM model was introduced by Karp et al. (1990), who studied the adversarial version
in which node arrivals are not governed by a distribution, but rather by an adversary whose
objective is to maximize the difference between the cardinality of the decision maker’s
matching and the offline optimum. The authors show that a randomized ranking algorithm
that chooses a random permutation of the resource nodes and matches the highest-ranked
available and compatible node according to the permutation yields an optimal competitive
ratio of 1−1/e; see e.g. (Birnbaum and Mathieu, 2008) for a simplified and corrected proof.

Most work on OBM since has focused on less conservative variants. The i.i.d. version
with cardinality objective was first studied in (Feldman et al., 2009), who showed that in
this version the performance guarantee could be strictly better than 1−1/e; they also used
a network flow relaxation to design their two suggested matchings policy. Subsequent work
has focused on improving the performance guarantee and/or generalizing the objective,
and typically relies on LP relaxations with network flow structure, e.g. (Bahmani and
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Kapralov, 2010; Brubach et al., 2017; Haeupler et al., 2011; Manshadi et al., 2012). For
the cardinality case, Jaillet and Lu (2014) give a policy based on a max-flow relaxation
with a guarantee of approximately 0.71. The most recent results in this vein are Huang
and Shu (2021), who connect the Poisson arrival model with the i.i.d. setting.

The i.i.d. version of OBM (sometimes also called the known i.i.d. model) is in some
sense the least conservative OBM variant, compared to the most conservative adversar-
ial version. Some authors have studied models that compromise between the two. For
example, in the random permutation model an adversary chooses the graph, but the ar-
riving nodes are revealed in a random order not controlled by the adversary. With this
slight relaxation of the adversarial framework, Goel and Mehta (2008) show that for the
cardinality objective a simple greedy algorithm, which matches an arriving node to any
remaining compatible node, achieves a competitive ratio of 1 − 1/e; later improvements
came in (Karande et al., 2011; Mahdian and Yan, 2011).

There are important generalizations of OBM, including the Adwords problem (Mehta
et al., 2007) and the Online Submodular Welfare Maximization problem (Lehmann et al.,
2006). In particular, the Adwords problem corresponds to a budgeted version of OBM,
where each ad has a budget and every time a match occurs, a bid (money assigned by
the advertiser to that impression) is discounted from the remaining budget. The goal is
to maximize the revenue obtained from the matching. Most research for this problem
considers the small bid assumption, where bids are much smaller than the budgets. Mehta
et al. (2007) give an optimal 1 − 1/e competitive algorithm for the adversarial model,
Devanur and Hayes (2009) provide a near-optimal 1− ε algorithm for the random-arrival
model, and similarly, Devanur et al. (2011) propose a near-optimal algorithm for the
unknown i.i.d. setting. Without the small bid assumption, Devanur et al. (2011) show that
a greedy algorithm achieves a 1 − 1/e guarantee for the unknown i.i.d. model. Recently,
Huang et al. (2020) proposed an algorithm with approximation guarantee better than 1/2
for the adversarial arrival setting. Typically, the algorithms proposed in this literature
rely on appropriate LP relaxations and an online primal dual framework. We refer to
Huang et al. (2020) and references therein for more details on the Adwords problem, and
for other models, variants and a discussion on related industry applications, we refer the
interested reader to Mehta (2013).

The notion of dynamic relaxations appears to be new in the OBM context. Recently,
Papadimitriou et al. (2021) study the Bayesian model using an LP similar to the best
dynamic relaxation presented in this work. Also, there is a stream of related literature in
network revenue management, beginning with (Adelman, 2007), who introduced dynamic
bid relaxations and their corresponding policies. In this literature, the goal is often to
show that a particular relaxation can be computed efficiently, e.g. (Kunnumkal and Talluri,
2016; Tong and Topaloglu, 2014; Vossen and Zhang, 2015), as a naive formulation involves
a separation problem solved via an integer program. These dynamic relaxations have
also been extended to customer choice models, e.g. (Vossen and Zhang, 2015; Zhang and
Adelman, 2009).
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2 Model Description and Preliminaries

The OBM model is formulated using two finite disjoint sets N and V , with the process
occurring dynamically in the following way. The right-hand node set V , with |V | = m,
is known and given ahead of time. The left-hand set N with |N | = n represents different
node types that may appear, but we do not know which ones will appear and how often.
We know only that T left-hand nodes in total will appear sequentially, each one drawn
independently from the uniform distribution over node types N . That is, at each epoch a
node from one of the types in N appears with probability 1/n and must be immediately
(and irrevocably) matched to a remaining available node in V or discarded; two or more
nodes from the same type may appear throughout the process, each treated as a separate
copy. Matching i ∈ N to j ∈ V in stage t yields a (known) reward or weight wtij , and the
objective is to maximize the expected weight of the matching. Following convention from
previous literature and the motivating application of search engine advertisement, we call
i ∈ N an impression, and each j ∈ V an ad.

By considering time-indexed weights wtij , we generalize much of the existing literature
and can avoid dealing with specific graph structure. In particular, we may assume that
the process occurs in a complete bipartite graph, i.e. every node type in N is connected
or compatible with every node in V ; non-existent edges simply get weight zero.

We can also transform a model with non-uniform, rational arrival probabilities into a
uniform arrival model. Suppose each impression is drawn from type i ∈ N independently
with probability pi/qi, where pi, qi ∈ N are relatively prime and

∑
i∈N pi/qi = 1. Then,

by considering n as the least common multiple of the qi’s, the probabilities can be written
as ni/n. Finally, we obtain a uniform model by creating ni copies of each node i ∈ N .
Similarly, if an ad j ∈ V may be matched more than once, say cj ∈ N times, we can
duplicate it to get the model in the unit-capacity form described above.

Finally, we can assume m = n = T without loss of generality. Indeed, if m < T we
add dummy nodes to V and assign zero weight to all corresponding edges. Similarly, in
the case of m > T , we can increase the number of stages and give zero weight to all
edges in the new stages; this is possible since our model considers time-indexed weights.
If n > m = T , we again add dummy nodes and stages. Finally, if n < m = T we make
κ copies of every node type in N (and the corresponding edges) for the smallest κ with
κn ≥ m, then proceed as before. To ease notation, in the remainder of the paper we write
n for m and T , but we use the indices i for impressions, j for ads, and t for stages. We
use the shorthand [n] := {1, . . . , n}, and identify singleton sets with their unique element.

2.1 DP and LP Formulations

Let η be the random variable with uniform distribution over N . We count stages down
from n, meaning stage t occurs when t decision epochs (including the current one) remain
in the process. We can now give a DP formulation for this OBM model. Let v∗t (i, S)
denote the optimal expected value given that i ∈ N appears in stage t when the set of ads
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S ⊆ V is available. Then, for all t = 1, . . . , n, i ∈ N and S ⊆ V ,

v∗t (i, S) = max

{
maxj∈S{wtij + Eη[v∗t−1(η, S\j)]}
Eη[v∗t−1(η, S)],

(1)

where v∗0(·, ·) is identically zero, and the optimal expected value of the model is given
by Eη[v∗n(η, V )] = 1/n

∑
i∈N v

∗
n(i, V ). The first term in this recursion corresponds to

matching i with one of the remaining ads j ∈ S; the second corresponds to discarding i.
As with any DP, the optimal value function v∗ induces an optimal policy: At any state
(t, i, S), we choose an action that attains the maximum in (1).

Using a standard reformulation (see e.g. Manne (1960) or Section 6.9 in Puterman
(2005)), we can capture the recursion (1) with the linear program

min
v≥0

Eη[vn(η, V )] (2a)

s.t. vt(i, S ∪ j)− Eη[vt−1(η, S)] ≥ wtij , t ∈ [n], i ∈ N, j ∈ V, S ⊆ V \j (2b)

vt(i, S)− Eη[vt−1(η, S)] ≥ 0, t ∈ [n], i ∈ N, S ⊆ V. (2c)

The value function v∗ defined in (1) is optimal for (2). Moreover, this LP is a strong dual
for OBM; any feasible v has an objective greater than or equal to Eη[v∗n(η, V )]. The dual
of (2) is a primal formulation where any feasible solution encodes a feasible policy and its
probability of choosing any action from any state in the DP. That formulation is the LP

max
x,y≥0

∑
i∈N

∑
j∈V

∑
t∈[n]

∑
S⊆V \j

wtijx
t,S
i,j (3a)

s.t.
∑
j∈V

x
n,V \j
i,j + yn,Vi ≤ 1

n
, i ∈ N, (3b)

∑
j∈S

x
t,S\j
i,j + yt,Si · 1{t6=1} −

1

n
· 1{|S|>t} ·

∑
k∈N

yt+1,S
k

− 1

n

∑
k∈N

∑
j∈V \S

xt+1,S
k,j ≤ 0, t ∈ [n− 1], i ∈ N, ∅ 6= S ⊂ V, |S| ≥ t,

(3c)

∑
j∈V

x
t,V \j
i,j + yt,Vi · 1{t6=1} −

1

n

∑
k∈N

yt+1,V
k ≤ 0, i ∈ N, t ∈ [n− 1]. (3d)

We denote by 1A the indicator function for a condition A, which takes value one if condi-
tion A is satisfied, zero otherwise. Decision variable xt,Si,j represents the probability that

the policy chooses to match impression i to ad j in state (t, i, S ∪ j), and yt,Si similarly
represents a discarding action. Constraints (3b) can be interpreted as follows: given any
impression i ∈ N , the probability of matching i to any j ∈ V in the first stage t = n
plus the probability of discarding i is at most the probability that i appears, which is
1/n. Constraints (3c) and (3d) can be interpreted in a similar fashion. Fix a stage t, an
impression i ∈ N and a set of available ads S. Then, in stage t the probability of matching
i to any j ∈ S plus the probability of discarding i is upper bounded by the probability of
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matching or discarding i in the previous stage (t+ 1) times the probability that i appears
in stage t, which is 1/n; recall that we count stages in decreasing order, i.e. t + 1 comes
before t.

As with its dual, (3) has exponentially many variables and constraints, and is therefore
difficult to analyze directly. However, we can equivalently consider the probability that a
feasible policy makes a particular match between i and j in stage t without tracking the
other remaining ads S ⊆ V \ j; this corresponds to optimizing over a projection of the
feasible region of (3),

max

{∑
i∈N

∑
j∈V

∑
t∈[n]

wtijz
t
ij : ∃ (x, y) ≥ 0 satisfying (3b)–(3d) with ztij =

∑
S⊆V \j

xt,Si,j

}
,

where ztij is the probability that impression i is matched to ad j in stage t. Any such
z is a vector of matching probabilities that is achievable by at least one feasible policy.
Let Q denote this projected polyhedron in the space of ztij variables, and note that Q

is full-dimensional in Rn3
. Optimizing over Q is as difficult as solving the original DP

formulation (1), but optimizing over any relaxation of Q yields a valid upper bound; this
is our main goal.

2.2 Relevant Previous Work

Most previous results concerning relaxations for OBM use a lower-dimensional projection
of the feasible region of (3). Specifically, assuming edge weights are static across stages,
wtij = wij for t ∈ [n], consider

max

{∑
i∈N

∑
j∈V

wijzij : ∃ (x, y) ≥ 0 satisfying (3b)–(3d) with zij =
∑
t∈[n]

∑
S⊆V \j

xt,Si,j

}
,

where zij is the probability that impression i is ever matched to ad j. Let Q′ denote this
projected polyhedron in the space of zij variables, and observe that Q′ is also a projection
of Q via zij =

∑
t∈[n] z

t
ij . The following max flow (or deterministic bipartite matching) LP

is known to be a relaxation of Q′ and has been used to study Q′ in several works starting
with Feldman et al. (2009):

max
z≥0

∑
i∈N

∑
j∈V

wijzij (4a)

s.t.
∑
j∈V

zij ≤ T/n = 1, i ∈ N (4b)

∑
i∈N

zij ≤ 1, j ∈ V. (4c)

In this relaxation, constraints (4b) limit the expected number of times an impression type
can be matched to T/n = 1, the expected number of times it will appear, while (4c) state
that each ad is matched at most once.
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To our knowledge, the only past work that specifically focuses on polyhedral relaxations
of Q′ is Torrico et al. (2018), which presents several classes of valid inequalities, including
the right-star inequalities,∑

i∈I
zij ≤ 1− (1− |I|/n)n, j ∈ V, I ⊆ N, (5)

which yield the best empirical bounds when added to (4). Although exponential in number,
these inequalities can be separated over in polynomial time by a simple greedy algorithm.
We use the bound given by (4) with (5) as a theoretical and empirical benchmark to test
our new relaxations.

3 Dynamic Relaxations

We introduce various classes of valid inequalities for Q and study their facial dimension.
These inequalities always include variables corresponding to complete bipartite subgraphs;
therefore, to ease notation we define

ZtI,J :=
∑
i∈I

∑
j∈J

ztij , I ⊆ N, J ⊆ V.

We begin by presenting a simple inequality class to motivate our approach. For an im-
pression i ∈ N , the probability of matching i in each stage t ∈ [n] is at most 1/n; this
corresponds to

Zti,V ≤ 1/n, i ∈ N, t ∈ [n]. (6)

Note that by summing these constraints over all t for a fixed i, we obtain (4b).

Proposition 1. Constraints (6) are facet-defining for the polyhedron of achievable prob-
abilities Q.

Proof. Fix i ∈ N and t ∈ [n]. We use eτk,j ∈ Rn3
to denote the canonical vector, i.e., a

vector with a one in the coordinate (k, j, τ) and zero elsewhere, indicating that we match
impression k with ad j in stage τ . We construct the following n3 affinely independent
points corresponding to policies that satisfy (6) with equality:

• Policy for (i, j, t) with j ∈ V : If i appears in stage t, which happens with probability
1/n, we match it with j. This corresponds to the point 1

ne
t
i,j .

• Policy for (k, j, τ) with j ∈ V , τ 6= t, and k ∈ N : If k appears in stage τ (with
probability 1/n), we match it to j. Then, if i appears in stage t with probability
1/n, we match it to some ` ∈ V , ` 6= j, so we have the point 1

ne
τ
k,j + 1

ne
t
i,`.

• Policy for (k, j, t) with j ∈ V , and k 6= i: If k appears in stage t (with probability
1/n), we match it to j. On the other hand, if i appears in stage t with probability
1/n, we match it to some ` ∈ V , ` 6= j, so we have the point 1

ne
t
k,j + 1

ne
t
i,`.

These points form an upper-triangular matrix with a nonzero diagonal entries, therefore
they are linearly independent, which implies they are affinely independent.
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We now introduce our general inequality family. Fix a set of ads J ⊆ V and a family
of impression sets It ⊆ N , t ∈ [n]. For any vector of coefficients α ∈ Rn+, we have a valid
inequality for Q of the form

n∑
t=1

αtZ
t
It,J ≤ R(α, (It)t∈[n], J), (7)

where R(α, (It)t∈[n], J) defines the maximum of the left-hand side over Q. As one example,
inequalities (6) are a special case of (7) where J = V , It = {i}, αt = 1, and Iτ = ∅, ατ = 0
for τ 6= t.

Proposition 2. For α ∈ Rn+, set family It ⊆ N , t ∈ [n], and J ⊆ V , constraints (7)
are valid for the polyhedron of achievable probabilities Q. Moreover, their right-hand side
R(α, (It)t∈[n], J) can be computed in polynomial time via a DP.

Proof. Constraints (7) are valid by the definition of R. Define variables pt ∈ {0, 1} to
indicate whether a node from It appears in stage t or not, and denote by d ∈ {0, . . . , |J |}
the number of nodes in J that have not been matched so far. Given this, we can state a DP
recursion using the value function val(t, d, pt), the expected value up to stage t (left-hand
side of (7)) when d nodes from J are available and pt has occurred. For example, if only one
stage remains, d nodes from J are available, and no element of I1 appears, val(1, d, 0) = 0
since we cannot match any node in I1. Conversely, val(1, d, 1) = α1 ·min{1, d}, since we
can match a node and obtain value α1 as long as at least one element of J remains.

In general, if d nodes are available in stage t and no node from It appears (pt = 0),
then the expected value val(t, d, 0) can be computed recursively by conditioning on terms
from stage t− 1:

val(t, d, 0) = Ept−1 [val(t− 1, d, pt−1)]

=
n− |It−1|

n
· val(t− 1, d, 0) +

|It−1|
n
· val(t− 1, d, 1).

On the other hand, to compute val(t, d, 1) we choose the maximum between discarding
or matching, with value

val(t, d, 1) = max{Ept−1 [val(t− 1, d, pt−1)], αt + Ept−1 [val(t− 1, d− 1, pt−1)]}
= max{val(t, d, 0), αt + val(t, d− 1, 0)}

Finally, the value of the right-hand side is

R(α, (It)t∈[n], J) =
n− |In|

n
· val(n, |J |, 0) +

|In|
n
· val(n, |J |, 1).

The number of states is n× |J | × 2 = O(n2) and the number of operations to calculate a
state’s value is constant, so the entire recursion takes O(n2) time.

In the remainder of this section, we study particular cases of inequalities (7). We
construct them intuitively using probabilistic arguments, but their right-hand sides can
also be calculated directly using the DP from Proposition 2.
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As a first example, let i ∈ N , j ∈ V and t ∈ [n− 1]. Matching i to j in stage t implies
the intersection of two independent events. First, j is not matched in any previous stage
[t+ 1, n], and second, i appears in stage t. In terms of probability this means

P(match i with j in t) ≤ 1

n
(1− P(match j in [t+ 1, n])),

which is equivalent to

P(match j in stages [t+ 1, n]) + nP(match i with j in t) ≤ 1.

The previous expression is equivalent to

n∑
τ=t+1

ZτN,j + nzti,j ≤ 1 ∀ i ∈ N, j ∈ V, t ∈ [n]. (8)

Inequality family (8) corresponds to a particular case of (7), with |J | = 1, Iτ = N for
τ ∈ [t+ 1, n], |It| = 1, Iτ = ∅ for τ ≤ t− 1, ατ = 1 for τ ∈ [t+ 1, n], αt = n, and ατ = 0
for τ ≤ t− 1. Furthermore, for a fixed j ∈ V and t = 1, by summing the inequalities over
all i ∈ N we obtain (4c).

Proposition 3. Constraints (8) are facet-defining for the polyhedron of achievable prob-
abilities Q when t ≤ n− 1.

Proof. Fix i ∈ N, j ∈ V, t ∈ [n− 1]. We construct the following n3 affinely independent
points corresponding to policies that satisfy (8) with equality:

1. Policy for (i, j, t): if i appears in stage t, then match it to j with probability 1/n.
This corresponds to the point 1

ne
t
i,j .

2. Policy for (k, j, τ) with any k ∈ N , and any τ ∈ [t + 1, n]: If k appears in stage
τ , match it to j with probability 1/n, but if k does not appear and i appears in
stage t, we match i to j with probability 1

n

(
1− 1

n

)
. This corresponds to the point

1
ne

τ
k,j + 1

n

(
1− 1

n

)
eti,j . As we chose any k and any τ , we have n(n− t) points.

So far, we only have n(n−t)+1 points. For the remaining points, we can use modifications
of policy 1 above.

• Policy for (k, j, τ) with any k ∈ N and τ ≤ t − 1: If i appears in stage t with
probability 1/n, then match it with j; if i does not appear (with probability 1−1/n),
and if k appears in stage τ (with probability 1/n), then match it with j. This
corresponds to 1

ne
t
i,j + 1

n

(
1− 1

n

)
eτk,j . As we chose any k, and any τ ≤ t− 1, we have

n(t− 1) points.

• Policy for (k, `, τ) with any k ∈ N , ` ∈ V such that ` 6= j, and τ ∈ [n]: if i appears
in stage t with probability 1/n, then match it with j; if k appears in stage τ (with
probability 1/n), then match it with `. This corresponds to 1

ne
t
i,j + 1

ne
τ
k,`. In total,

this yields n(n− 1)n points.
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• Policy for (k, j, t) with k ∈ N such that k 6= i: if i appears in stage t with probability
1/n, then match it with j; if k appears in stage t (with probability 1/n), then match
it with j. This corresponds to 1

ne
t
i,j + 1

ne
t
k,j . In this family, we have n− 1 points.

If we order these points in a suitable way, they form the columns of a block matrix

A =

(
A1 A2

0 A3

)
,

where A1 is upper triangular and A3 is a diagonal matrix. A1 is formed by the first
n(n − t) + 1 points from policy 1 and the policies of item 2, while A2 and A3 are given
by the remaining points. All diagonal entries of A1 and A3 are positive, implying that
A has positive determinant. This shows that the points previously described are linearly
independent, completing the proof.

We next compare the inequalities we have introduced so far to the known results for
the lower-dimensional polyhedron Q′ of achievable probabilities that are not time-indexed,
which we detail in Section 2. Recall that Q′ is a projection of Q obtained by aggregating
variables ztij over all stages, zij =

∑
t∈[n] z

t
ij . We already indicated how inequality families

(4b) and (4c) are respectively implied by (6) and (8). We next discuss the right-star
inequalities (5).

Theorem 4. Inequalities (8) imply the right-star inequalities (5).

Proof. Fix j ∈ V and I ⊆ N . First, for t = n (8) is simply nznij ≤ 1 (it is also a weakened
version of (6)), and summing over I we get n

∑
i∈I z

n
ij ≤ |I|. For t ≤ n− 1, if we sum over

i ∈ I in (8) we get

|I|
∑

τ∈[t+1,n]

∑
k∈N

zτk,j + n
∑
i∈I

zti,j ≤ |I|, ∀ t ∈ [n− 1],

and since
∑

i∈I z
τ
i,j ≤

∑
k∈N z

τ
k,j , we have

|I|
∑

τ∈[t+1,n]

∑
i∈I

zτi,j + n
∑
i∈I

zti,j ≤ |I|, ∀ t ∈ [n− 1].

Then, multiply each inequality for t ∈ [n − 1] by 1
n (1− |I|/n)t−1, and add all of them

(including the one for t = n, which we multiply by 1
n (1− |I|/n)n−1). The resulting

coefficient for each ztij is(
1− |I|

n

)t−1
+
∑
τ≤t−1

|I|
n

(
1− |I|

n

)τ−1
= 1.

We thus obtain
∑

t∈[n]
∑

i∈I z
t
ij =

∑
i∈I zij in the left-hand side. In the right-hand side,

we get

|I|
n

n∑
t=1

(
1− |I|

n

)t−1
= 1−

(
1− |I|

n

)n
.

12



To briefly recap, recall that (4b) can be obtained by summing over (6) and (4c) is a
particular case of (5) with I = N . Similarly, Proposition 4 shows that (5) can be obtained
from (8). Therefore, the inequalities (6) and (8) yield an upper bound that theoretically
dominates the bound given by LP (4) with additional inequalities (5), the best empirical
bound previously known for OBM Torrico et al. (2018). In terms of dimension, the LP
given by (6) and (8) with non-negativity constraints has O(n3) inequalities in Rn3

, while
(4) with (5) has exponentially many inequalities in Rn2

.

3.1 Policy Design

Theorem 4 establishes that an LP in the space of ztij variables with inequalities (6) and
(8),

max
z≥0

{∑
i∈N

∑
j∈V

∑
t∈[n]

wtijz
t
ij : (6), (8)

}
, (9)

is guaranteed to provide a bound at least as good as the state of the art. We can also
devise a policy from the LP (9), in a similar fashion to dynamic bid policies from network
revenue management (Adelman, 2007). Denote by λti ≥ 0 and µtij ≥ 0 the dual multipliers
corresponding to constraints (6) and (8) respectively. Along the lines of Adelman (2007);
Torrico et al. (2018) and other approximate DP approaches, we construct an approxima-
tion of the true value function (1): Interpret each λti as the value of having an impression
of type i appear in period t, and similarly interpret each µtij as the value of having im-
pression i appear in period t when ad j is available to match. For state (t, i, S) this yields
the value function approximation

vt(i, S) ≈ λti +
∑

τ∈[t−1]

Eη[λτη ] +
∑
j∈S

(
µtij +

∑
τ∈[t−1]

Eη[µτηj ]
)
. (10)

By imposing the constraints from (2) on this approximation of the value function, we
obtain the dual of (9):

min
v≥0

Eη[vn(η, V )] min
λ,µ≥0

∑
t∈[n]

(
Eη[λtη] +

∑
j∈V

Eη[µtηj ]
)

s.t. vt(i, S ∪ j)− Eη[vt−1(η, S)] ≥ wtij ,
(10)−−→ s.t. λti + µtij +

∑
τ∈[t−1]

Eη[µτηj ] ≥ wtij .

vt(i, S)− Eη[vt−1(η, S)] ≥ 0,

13



Furthermore, by replacing (10) in the DP recursion (1) for a state (t, i, S), we get the
heuristic policy

arg max
{

max
j∈S
{wtij + Eη[vt−1(η, S \ j)]},Eη[vt−1(η, S)]

}
(10)
≈ arg max

{
max
j∈S

{
wtij +

∑
τ∈[t−1]

(
Eη[λτη ] +

∑
`∈S\j

Eη[µτη`]
)}

,

∑
τ∈[t−1]

Eη[λτη ] +
∑
`∈S

∑
τ∈[t−1]

Eη[µτη`]

}

= arg max

{
max
j∈S

{
wtij −

∑
τ∈[t−1]

Eη[µτηj ]
}
, 0

}
, (11)

where the maximization is over the options of matching i with j ∈ S if any of the corre-
sponding terms is greater than zero, or discarding i if no such j exists. Intuitively, this
policy evaluates the net benefit of a potential match of impression i to ad j in period t as
the match’s weight minus the value we give up by losing ad j in the subsequent remaining
periods. The policy chooses the match with the largest such benefit (if positive), and
otherwise discards the impression.

3.2 Further Polyhedral Analysis

In this section, we study generalizations of (8). Each inequality can be obtained as a
particular case of (7), but we provide a more intuitive, probabilistic interpretation. We
also show that many of these families of inequalities are facet-defining for the polyhedron
of achievable probabilites Q.

3.2.1 Enlarging the Subset of Ads

Inequalities (8) correspond to a particular case of (7), when the fixed set of ads J has one
element. We can apply a similar idea to a subset of any size; take the next simplest case
of (7), a set of size two, say J = {j1, j2}. Consider also two impression types it+1, it ∈ N ,
where we may have it = it+1. In terms of probability, the event of matching it with j1
or j2 in stage t implies it must appear in stage t with probability 1/n and either of two
events happens: First, neither j1 nor j2 are matched in previous stages [t+ 2, n], and then
it+1 appears in stage t + 1 with probability 1/n (and can be matched to one of the ads
or not); and second, j1 or j2 (but not both) are matched in stages [t + 2, n], and it+1 is
not matched to j1 nor j2 in stage t+ 1 (this includes the case of another impression being
matched to one of them). Since matching j1 or j2 in t are mutually exclusive events, we
have the inequality

P(match it with j1 or j2 in t) ≤
1

n

[
1

n
(1− P(match j1 or j2 in [t+ 2, n])) + (1− P(match it+1 with j1 or j2 in t+ 1))

]
.
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In terms of variables z, this is equivalent to∑
τ∈[t+2,n]

ZτN,J + nZt+1
it+1,J

+ n2Ztit,J ≤ 1 + n

∀ it, it+1 ∈ N, J ⊆ V, |J | = 2, t ∈ [n− 2].

(12)

This probabilistic argument can be generalized for any set J ⊆ V with |J | = h ∈ [n − 1]
and any t ≤ n − h. Let (it, . . . , it+h−1) be a sequence of impression types in N allowing
repeats, and J = {j1, . . . , jh}; the general constraint corresponds to

P(match it to some j ∈ J in t)

≤ 1

n

[
1

nh−1
(1− P(match j1 or j2 or . . . or jh in [t+ h, n]))

+
1

nh−2
(1− P(match it+h−1 to some j ∈ J in t+ h− 1))

+
1

nh−3
(1− P(match it+h−2 to some j ∈ J in t+ h− 2))

+ · · ·+ (1− P(match it+1 to some j ∈ J in t+ 1))

]
.

Therefore, we can give a general expression for this particular subclass of inequalities (7):

n∑
τ=t+h

ZτN,J +

t+h−1∑
τ=t

nt+h−τZτiτ ,J ≤ 1 +

h−1∑
τ=1

nτ ,

∀ J ⊆ V, |J | = h ∈ [n− 1], t ∈ [n− h], it, . . . , it+h−1 ∈ N.

(13)

Theorem 5. Constraints (13) are facet-defining for Q.

The proof of this theorem can be found in the Appendix. Observe that (13) corresponds
to the particular case of (7) with Iτ = N and ατ = 1 for τ ∈ [t + h, n], Iτ = {iτ} and
ατ = nt+h−τ for τ ∈ [t, t+ h− 1], and ατ = 0 for τ ∈ [1, t− 1].

3.2.2 Enlarging the Subset of Impressions

So far we have only considered either Iτ = N or |Iτ | = 1 within inequalities (7). We next
propose a generalization for other sets Iτ . Consider the case J = {j}, and any subset
I ⊆ N ; suppose we naively apply the same argument behind inequality (8). Matching an
element of I with j in stage t implies the intersection of two independent events: First, j
is not matched in stages [t + 1, n], and second, some element in I appears in stage t. In
probabilistic terms,

P(match any element in I with j in t) ≤ |I|
n

(1− P(match j in [t+ 1, n])),

which is equivalent to

|I|
n∑

τ=t+1

ZτN,j + nZtI,j ≤ |I|.
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However, this inequality is made redundant by (8), because we can sum over i ∈ I for the
same fixed t to get it.

Consider instead J = {j1, j2}, any It+1 ⊆ N with |It+1| ≥ 2, and another impression
it ∈ N . Now, we apply the same argument used for (12), but considering It+1 instead of
a single impression it+1. Matching it with j1 or j2 in stage t implies it appears in stage t
with probability 1/n, and either of two previous events happens: First, neither j1 nor j2
are matched in stages [t + 2, n], and then an element in It+1 appears in stage t + 1 with
probability |It+1|/n (and is matched to one of the ads or not); and second, one of j1 or
j2 is matched in stages [t + 2, n], and no element from It+1 is matched to j1 nor j2 in
t+ 1 (this includes the case of another impression being matched to one of them). Since
matching j1 or j2 in t are mutually exclusive, we have

P(match it with j1 or j2 in t) ≤ 1

n

[
|It+1|
n

(1− P(match j1 or j2 in [t+ 2, n]))

+ (1− P(match some i ∈ It+1 with j1 or j2 in t+ 1))

]
,

which is equivalent to

|It+1|
n∑

τ=t+2

ZτN,J + nZt+1
It+1,J

+ n2Ztit,J ≤ |It+1|+ n. (14)

Note that above we consider J of size 2, but using the same argument than for (13), we can
generalize (14): For any I ⊆ N with |I| = r ≤ n− 1 and any J ⊆ V with |J | = h ≤ n− 1,
we obtain the inequalities

r
n∑

τ=t+h

ZτN,J + nZt+h−1I,J +
t+h−2∑
τ=t

nt+h−τZτiτ ,J ≤ r +
h−1∑
τ=1

nτ ,

∀ J ⊆ V, |J | = h ∈ [n− 1], I ⊆ N, |I| = r ∈ [n− 1], t ∈ [n− h], it, . . . , it+h−2 ∈ N.

(15)

Theorem 6. Constraints (15) are facet-defining for Q.

We defer the proof of this theorem to the Appendix. Observe that (15) corresponds
to the particular case of (7) with Iτ = N and ατ = r for τ ∈ [t + h, n], It+h−1 = I and
αt+h−1 = n, Iτ = {iτ} and ατ = nt+h−τ for τ ∈ [t, t+ h− 2], and ατ = 0 for τ ∈ [1, t− 1].

In (14), one could attempt to naively extend the argument by considering a larger set
It instead of the single impression it; however, we simply get redundant inequalities, as
shown similarly at the beginning of this section. Finally, note that Inequalities (15) do
not consider the case of |I| = n; this is part of the final analysis in the following section.

3.2.3 General Family of Facet-defining Inequalities

In inequalities (15), we do not consider I = N . Suppose we do:

n
n∑

τ=t+h

ZτN,J + nZt+h−1N,J +
t+h−2∑
τ=t

nt+h−τZτiτ ,J ≤ n+
h−1∑
τ=1

nτ .
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Dividing by n, we get

n∑
τ=t+h

ZτN,J + Zt+h−1N,J +
t+h−2∑
τ=t

nt+h−τ−1Zτiτ ,J ≤ 1 +
h−1∑
τ=1

nτ−1,

which is equivalent to

n∑
τ=t+h−1

ZτN,J + nZt+h−2it+h−2,J
+
t+h−3∑
τ=t

nt+h−τ−1Zτiτ ,J ≤ 2 +
h−2∑
τ=1

nτ . (16)

Note that in this last equivalence (i) the first sum now starts at τ = t + h− 1 instead of
t+h; (ii) we moved the term τ = t+h−2 out of the second sum; and (iii) we took a 1 out
of the third sum corresponding to the term τ = 1 and we shifted the indices. Inequalities
(16) are valid and can be used to generate more valid inequalities for Q. Indeed, the
analysis for (15) is centered on stage t + h − 1, i.e., we allow any subset I in the term
Zt+h−1I,J . Now, the analysis can be focused on stage t + h − 2, i.e., the variables that

belong to term Zt+h−2it+h−2,J
; instead of a single node it+h−2 we can consider a larger set of

impressions. Formally,

r

n∑
τ=t+h−1

ZτN,J + nZt+h−2I,J +

t+h−3∑
τ=t

nt+h−τ−1Zτiτ ,J ≤ 2r +

h−2∑
τ=1

nτ , (17)

∀ J ⊆ V, |J | = h ∈ [n− 1], I ⊆ N, |I| = r ∈ [n− 1], t ∈ [n− h], it, . . . , it+h−3 ∈ N.

Observe that (17) corresponds to the particular case of (7) with Iτ = N and ατ = r
for τ ∈ [t + h − 1, n], It+h−2 = I and αt+h−2 = n, Iτ = {iτ} and ατ = nt+h−τ−1 for
τ ∈ [t, t + h − 3], and ατ = 0 for τ ∈ [1, t − 1]. Note the similarities of this family of
inequalities with (15). Specifically, (17) has n− t−h+ 2 terms of the form ZτN,J and then

Zt+h−2I,J , whereas (15) has n− t− h+ 1 terms of the form ZτN,J before Zt+h−1I,J .
Let q be the number of extra terms that are part of the sum

∑n
τ=t+h−q Z

τ
N,J and

followed by Zt+h−q−1I,J . Note that for (15) we have q = 0 and for (17) we have q = 1. To
further clarify the idea, let us obtain the family of inequalities for q = 2. In (17), we only
consider r ∈ [n − 1], but as before, we can take I = N in stage t + h − 2. After dividing
by n, we get

n∑
τ=t+h−1

ZτN,J + Zt+h−2N,J +
t+h−2∑
τ=t

nt+h−τ−2Zτiτ ,J ≤ 2 +
h−2∑
τ=1

nτ−1,

which is equivalent to

n∑
τ=t+h−2

ZτN,J + nZt+h−3it+h−3,J
+

t+h−4∑
τ=t

nt+h−τ−2Zτiτ ,J ≤ 3 +

h−3∑
τ=1

nτ ,

where the first sum now starts at τ = t + h − 2 instead of t + h − 1, we moved the
term τ = t + h − 3 out of the second sum; finally, we took a 1 out of the third sum
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corresponding to the term τ = 1 and we shifted the indices. As in (17), we can consider
It+h−3 = I ⊆ N instead of single impression it+h−3. This leads us to the family defined by
q = 3. Specifically, Iτ = N and ατ = r for τ ∈ [t+ h− 2, n], It+h−3 = I and αt+h−3 = n,
Iτ = {iτ} and ατ = nt+h−τ−2 for τ ∈ [t, t + h − 4], and ατ = 0 for τ ∈ [1, t − 1]. We can
obtain analogous valid inequalities for q = 4, . . . , h− 2. For q = h− 2 we obtain

r
n∑

τ=t+2

ZτN,J + nZt+1
I,J + n2Ztit,J ≤ r(h− 1) + n,

which can be interpreted as a generalization of (12). For the sake of completeness, the
family of inequalities for q = h− 1 corresponds to

n∑
τ=t+1

ZτN,J + nZtit,J ≤ h,

which is clearly implied by summing over j ∈ J in (8).
Recall, we denote by q ∈ [0, h− 2] the number of extra terms that are part of the sum∑n
τ=t+h−q Z

τ
N,J and followed by Zt+h−q−1I,J . We now state the most general family of valid

inequalities we have obtained as a specific subclass of (7). We subdivide this class using
a 4-tuple (h, r, t, q), which respectively identifies the size of J , the size of I, the stage, and
the number of extra terms in the first sum (or equivalently, the stage in which we consider
the set I). So, for any J ⊆ V with |J | = h ∈ [2, n− 1], any I ⊆ N with |I| = r ∈ [n− 1],
any t ∈ [n− h], and any q ∈ [0, h− 2], we have the following valid inequality

r
n∑

τ=t+h−q
ZτN,J + nZt+h−q−1I,J +

t+h−q−2∑
τ=t

nt+h−q−τZτiτ ,J ≤ r(q + 1) +

h−q−1∑
τ=1

nh−q−τ . (18)

We have already proved that the inequalities given by (h, r, t, 0) are facet-defining; here
we give the general result.

Theorem 7. Inequalities (18) identified by (h, r, t, q) are facet-defining for Q when h ∈
[2, n− 1], r ∈ [n− 1], t ∈ [n− h] and q ∈ [0, h− 2].

The proof of this theorem can be found in the Appendix. Finally, we show the following
complexity result for this general family of facet-defining inequalities.

Proposition 8. It is NP-hard to separate inequalities (15), and thus also (18).

Proof. Fix h = r and t. Suppose we have a solution z that is zero (or constant) in all
values except for stage t+ h− 1. In this case, the separation problem for this h, r and t
is equivalent to

max{Zt+h−1I,J : I ⊆ N, J ⊆ V, |I| = |J | = h = r}.

This is a weighted version of the maximum balanced biclique problem, which is NP-hard
(Dawande et al., 1996). For h 6= r, the problem can be transformed to make the two
cardinalities equal.

18



4 Computational Study

4.1 Description of Experiments

Our main experimental goal is testing the effectiveness of our new dynamic relaxations
and comparing the new bounds given by these relaxations to several benchmarks. As
a secondary goal, we also study the heuristic policy (11) implied by our relaxation and
compare it with the best empirically performing policy from the literature.

The best empirical bound previously known for OBM is the LP (4) with additional
inequalities (5) (Torrico et al., 2018). Our results in the previous section establish that (9)
is guaranteed to be no worse. So we compare these two bounds to determine how much
of an improvement the latter LP (9) offers over the former. In addition, we would like
to examine if some of the other inequalities we introduce can further improve the bound.
However, testing these additional inequality classes involves computational challenges. In
particular, the LP’s dimension grows as n3, implying a relatively large number of variables
even for moderately sized instances. This practically limits both the number of inequalities
we consider, and the actual number we can dynamically add to the LP. To this end, we
test adding inequalities (12) to (9); these inequalities are still polynomially many, Θ(n5),
and relatively efficient to separate over. We also considered including inequalities that
correspond to the special case of (13) with h = n− 1 and t = 1, as they are also simple to
separate over despite numbering Θ(nn). However, our preliminary experiments revealed
numerical difficulties with these inequalities; the smallest non-zero coefficient is 1, while
the largest is nn−1, and although these numbers (and all of the coefficients and right-hand
sides of our inequalities) require O(n log n) space in binary representation and are thus
of polynomial size, in practical terms these differences in scale make it difficult to even
determine whether a particular inequality is violated, and thus to separate over the entire
family. We therefore did not include these inequalities in our experiments.

As for lower bounds given by heuristic policies, Torrico et al. (2018) introduce a time-
dependent ranking policy derived from (4) with additional inequalities (5), and results in
this paper establish it as the best performing policy among several from the literature.
We use it as a benchmark to test policy (11).

Finally, we include as additional benchmarks the optimal value given by the DP recur-
sion (1) (for small instances where it can be computed), as well as the max-weight expected
off-line matching, the expected value of the matching we would choose if we could observe
the entire sequence of realized impressions before making a decision. This latter bench-
mark is also an upper bound on the optimal value, as it relaxes non-anticipativity.

4.2 Instance Design and Implementation

All of the instances we tested have n = m = T , with binary edge weights constant over
time, wtij = wij ∈ {0, 1}. In other words, all the instances are max-cardinality OBM
problems with static edges; the static weights are required because the benchmarks we
use to compare against do not accommodate weights that vary over time. We generate
instances with the following rubrics:

1. 20 small instances with n = 10, each one randomly generated by having a possible
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edge in N × V be present independently with a probability of 25%, so the expected
average degree is 2.5.

2. 20 large, dense instances with n = 100, each one randomly generated by having a
possible edge in N × V be present independently with a probability of 10%, so the
expected average degree is 10.

3. 20 large, sparse instances with n = 100, each one randomly generated by having a
possible edge in N × V be present independently with probability of 2.5%, so the
expected average degree is 2.5.

4. A set of large, k-regular graphs with n = 100 and k ∈ {3, 4, 5, 6}, constructed in the
following way: Indexing both impressions and ads from 0 to n−1, each impression i
is adjacent to ads {i, i+ 1, . . . , i+ k− 1} mod k. The motivation for this last set of
experiments is that the relaxations and policies may behave differently on instances
with a high degree of symmetry, as opposed to randomly generated instances.

For any experiment requiring simulation, including computing the expected value of the
heuristic policies and the max-weight off-line matching, we used 20, 000 simulations and
report the sample mean and sample standard deviation.

For small instances, all the bound experiments took a few seconds on average. For the
larger instances, we solved the benchmark LP’s following the approach from Torrico et al.
(2018). For the new bounds, we formulated (9) but eliminated all variables corresponding
to missing edges; this results in models with an average of 25,000, 100,000 and 10, 000× k
variables for sparse, dense and regular instances respectively. The solution times for these
LP’s were roughly one hour for dense instances, and under a minute for sparse instances,
with regular instances varying as k grows. After solving this LP, we switched to constraint
generation for inequalities (12); however, after preliminary experiments we did this only
for small and large sparse instances, because of protracted solve times with minimal bound
improvement in the other cases.

4.3 Summary of Results

Table 1 summarizes the experiment results for all instances except regular ones, which are
detailed individually below. For each instance class, in each row we present the geometric
mean of each bound or policy’s ratio to a fixed benchmark – the DP value for small
instances and the max-weight expected off-line matching for large ones. We also report
the sample standard deviation of these ratios in parenthesis.

We know from our results in the previous section that the bound given by (9) is
guaranteed to outperform the bound given by (4) with (5). However, our results show
that the improvement is significant, with the new bound cutting the gap by about 4% on
average for small instances and approximately 3% to 5% for large ones. Furthermore, the
improvement is consistent across all the tested instances; in particular, the two bounds
never match.

The results for large, dense instances are particularly noteworthy; the new bound from
(9) also beats the max-weight expected off-line matching, not only on average but in
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Table 1: Summary of experiment results.
Bound/Policy Small Large Dense Large Sparse

Best bound (Torrico et al., 2018), (4) + (5) 1.0845 (0.0263) 1.0004 (0.0004) 1.0813 (0.0085)
Dynamic relaxation (9) 1.0407 (0.0099) 0.9739 (0.0011) 1.0283 (0.0050)

Dynamic relaxation (9) + (12) 1.0381 (0.0091) - 1.0278 (0.0050)

Off-Line Expected Matching 1.0253 (0.0134) 1 1
Optimum (1) 1 - -

New Heuristic Policy (11) 0.9974 (0.0017) 0.9561 (0.0025) 0.9627 (0.0066)
TD Ranking Policy (Torrico et al., 2018) 0.9901 (0.0080) 0.9539 (0.0025) 0.9529 (0.0073)

every instance. Our intuition for this result is the following. In dense instances, there
is likely a perfect or near-perfect matching in every realization, and thus the off-line
matching will be very close to n in expectation. Of course, even in a dense instance
it may be that no online policy can guarantee a perfect or near-perfect matching, and
explicitly accounting for temporal aspects of the problem, particularly as inequalities (8)
do, captures this phenomenon and tightens the bound, unlike the off-line matching or
the more static approach of the benchmark LP. Since (9) beats the max-weight expected
off-line matching, we also compute the empirical ratios that the policies achieved with
respect to this benchmark: The ratio for (11) is 0.9817, and for the TD Ranking Policy
(Torrico et al., 2018) we get 0.9795. Naturally, both ratios increase in value, and their
absolute difference remains roughly the same.

Interestingly, our results also reveal that the bound from (9) is not improved much with
the addition of inequalities (12), especially considering the significant additional computing
time. In light of these results, we also performed experiments to test the bound given by
(6) and (12) only (without inequalities (8)). However, the resulting bounds were much
looser, confirming that inequalities (8) are crucial to providing a tight bound.

In terms of policies, our new heuristic (11) is consistently better than the time-
dependent ranking policy, the best performing policy from the literature. This improve-
ment occurs in almost every tested instance, though the magnitude of the improvement
varies. The new policy is near-optimal for small instances, and cuts the gap for large
instances, by about 0.7% to 1% on average in absolute terms. This improvement in pol-
icy quality mirrors results in other areas, such as revenue management, where heuristic
policies derived from time-indexed relaxations also outperform policies stemming from
“static” LP’s; see e.g. Adelman (2007); Zhang and Adelman (2009).

The results for regular graphs are in Table 2, shown here in absolute terms since we
are not averaging multiple experiments. We observe similar improvements in terms of
upper bounds, where our new bound significantly cuts the gap, by around 7%. On the
other hand, we observe no improvement on the policy side. Intuitively, this last result
is unsurprising, since both heuristic policies depend on dual multipliers of LP’s that are
symmetric for regular instances, in the sense that they both have dual optimal solutions
in which every value at some stage is equal. Both policies are thus choosing a match
uniformly at random.
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Table 2: Experiment results for regular graphs.
Instance (4) + (5) (9) Exp. Matching (11) TDR Policy Torrico et al. (2018)
3-regular 95.2447 87.9224 85.5680 79.8960 79.8960
4-regular 98.3130 90.9901 89.2247 82.8647 82.8647
5-regular 99.4079 92.8303 91.5918 85.1153 85.1153
6-regular 99.7945 94.0548 93.2837 86.9821 86.9821

5 Conclusions

This work proposes dynamic relaxations for the i.i.d. OBM problem and studies them from
a polyhedral point of view. While several past results have used different LP relaxations,
ours is the first to explicitly consider the time dimension. Among various benefits of the
approach, this allows for the model to accommodate time-varying edge weights, and also
allows us to elide the instance’s structure in the analysis, by capturing all of this infor-
mation in the problem’s objective. Our study centers on the polyhedron of time-indexed
achievable probabilities Q, and includes a large class of facet-defining inequalities for this
polytope based on choosing complete bipartite subgraphs. Furthermore, our experiments
confirm that the time-indexed approach offers significant benefits; the bound given by the
simplest members of our proposed inequality family already significantly outperforms the
best empirical bounds given by static LP’s, and a heuristic policy derived from this new
bound also significantly outperforms the best policy based on a static relaxation.

Our results motivate a variety of questions for future work. For example, we would
like to understand the structure of valid inequalities that are not based on complete
bipartite subgraphs, to potentially further improve the dual bound. Using Fourier-Motzkin
elimination and the software PORTA, we have derived the full description of Q for small
cases, such as n = m = T = 3. We observed many different inequalities, including some
that are somewhat similar to our general family (7), so there may be a more general class
to propose that still lends itself to analysis similar to ours.

Much of the literature on OBM studies the worst-case performance of heuristic policies
based on relaxations. Although that was not our goal in this work, the positive empirical
results we observed when implementing our new heuristic policy suggest a similar analysis
for that policy, especially since it appears to differ in structural terms from many OBM
heuristics. More generally, an interesting question is whether a polyhedral analysis similar
to ours can be applied to derive new bounds and policies in related online matching and
resource allocation contexts.
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6 Appendix

6.1 Remaining Proofs

Proof of Theorem 5. The case h = 1 is already covered by the proof of Proposition 3.
Consider the case h = n − 1 and t = 1; the other cases follow a similar construction of
linearly independent points. Let J = {0, . . . , n− 2} and assume without loss of generality
that iτ = i for all τ ∈ [n − 1]. This assumption is possible since J does not depend
on iτ and the proof for the general inequality with different iτ can be adapted from this
particular case. The specific inequality is

ZnN,J +
n−1∑
τ=1

nn−τZτi,J ≤ 1 +
n−2∑
τ=1

nτ . (19)

We know that z ∈ [0, 1]n
3
, but for the description of the points (and the proof) we

will just consider the coordinates involved in the inequality, i.e., z ∈ [0, 1]p, where p :=
(2n − 1)(n − 1). For the rest of the points, the construction is similar to the one in the
proof of Proposition 3. Recall that eτk,j denotes the canonical vector in [0, 1]p, i.e. a vector
with a 1 in coordinate (k, j, τ) and zero elsewhere, indicating a match of impression k with
ad j in stage τ . Consider the elements of J as an (n − 1)-tuple, i.e., (0, . . . , n − 2). For
j ∈ J , we define

j + (0, . . . , n− 2) := (j, . . . , j + n− 2) mod (n− 1).
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Any addition or substraction with j ∈ J is modulo (n− 1) for the remainder of the proof.
We denote the circulation of J as the following set of (n− 1)-tuples:

circ(J) := {j + (0, . . . , n− 2)}j∈J
= {(0, . . . , n− 2), (1, . . . , n− 2, 0), . . . , (n− 2, 0, . . . , n− 3)}.

Note that circ(J) can be viewed as a matrix. Each element of circ(J) corresponds to a
sequence of ads in the process from stage n to stage 1. Since we have n stages and any
of those sequences has size n − 1, then clearly there is no matching in some stage or an
arriving node repeats. We now describe the family of linearly independent points.

I. Fix k ∈ N and j ∈ J . In stage n, if node k appears, then match it to node j, with
probability 1/n. For the remaining stages match according to (j, j+1, . . . , j+n−2) ∈
circ(J), i.e., j is matched first, j + 1 second and so on. In terms of probability, if i
appears in stage n− 1, then it is matched to j with probability (1− 1/n) · 1/n. For
the rest, the probability is 1/n. So, we have the point

1

n
enk,j +

1

n

(
1− 1

n

)
en−1i,j +

1

n

n−2∑
τ=1

en−1−τi,j+τ . (20)

By a simple calculation, it is easy to see that each of these points achieves the right-
hand side of (19). Since we chose an arbitrary k ∈ N and j ∈ J , we have n(n − 1)
points in this family.

II. Fix j ∈ J . In this family we repeat j in stages n− 1 and n− 2. If i appears in stage
n− 1, match it to node j with probability 1/n. If i appears in stage n− 2 and it did
not appear in n−1, match it to j with probability (1−1/n) ·1/n. For the remaining
stages match according to (j + n− 2, j, j + 1, . . . , j + n− 3) ∈ circ(J); in particular,
in stage n match any k ∈ N that appears with node j + n− 2, in stage n− 3 match
i to j + 1 if it appears, and so forth. So, we have the point

1

n

∑
k∈N

enk,j+n−2 +
1

n
en−1i,j +

1

n

(
1− 1

n

)
en−2i,j +

1

n

n−3∑
τ=1

en−τ−2i,j+τ (21)

By a simple calculation, we get the right-hand side of (19). Since we chose an
arbitrary j ∈ J , we have n− 1 points in this family.

III. Fix j ∈ J ; in this family we have two different options in stage n− 3. If i appears in
stage n − 1, match it to j with probability 1/n. If i appears in stage n − 2, match
it to j + 1, also with probability 1/n. If i appears in stage n− 3, match it to j + 1
with probability (1 − 1/n) · 1/n, or if j + 1 was matched in stage n − 2, then to
node j with probability (1− 1/n) · 1/n2. For the remaining stages match according
to (j + n − 2, j, j + 1, . . . , j + n − 3); in stage n match any k ∈ N that appears to
j+n− 2, in stage n− 4 match i to j+ 2 if it appears, and so forth. So, we have the
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point

1

n

∑
k∈N

enk,j+n−2 +
1

n
en−1i,j +

1

n
en−2i,j+1

+

(
1− 1

n

)[
1

n2
en−3i,j +

1

n
en−3i,j+1

]
+

1

n

n−4∑
τ=1

en−τ−3i,j+τ+1 (22)

By a simple calculation, we get the right-hand side of (19). Since we chose an
arbitrary j ∈ J , we have n− 1 points in this family.

IV. Fix j ∈ J and stage s ∈ [n− 4]; the previous family can be generalized for stage s,
but increasing the number of options, i.e., in stage s we have n− s− 1 options from
the previous stages. If i appears in stage n−1, match it to j with probability 1/n, if
i appears in stage n− 2, match it to j+ 1 with probability 1/n, and continue in this
way until stage s+1, where if i appears, match it to node j+n−s−2 with probability
1/n. If i appears in stage s, we consider ads (j+n− s− 2, . . . , j+ 1, j) in this order
of priority, so that i is matched to j + n − s − 2 with probability (1 − 1/n) · 1/n;
each subsequent ad’s probability of being matched to i decreases exponentially until
j, which has probability (1 − 1/n) · 1/nn−s−1. For the remaining stages (including
stage n) match according to (j + n− 2, j, j + 1, . . . , j + n− 3); in stage n match any
k ∈ N that appears with j + n − 2, in s − 1 match i to j + n − s − 1 if it appears,
etc. So, we have the point

1

n

∑
k∈N

enk,j+n−2 +
1

n

n−s−2∑
τ=0

en−τ−1i,j+τ

+

(
1− 1

n

)[n−s−2∑
τ=0

1

nn−τ−s−1
esi,j+τ

]
+

1

n

s−1∑
τ=1

es−τi,j+n−s−2+τ (23)

The left-hand side of (19) evaluated at this point is

1 +
n−1∑
τ=s+1

nn−τ

n
+

(
1− 1

n

) n−s−2∑
τ=0

nn−s

nn−τ−s−1
+

s−1∑
τ=1

nn−τ

n
= 1 +

n−2∑
τ=1

nτ .

Finally, since we chose an arbitrary j ∈ J and s ∈ [n − 4], we have (n − 1)(n − 4)
points in this family.

V. Fix j ∈ J . For this family we do not match in stage n, and in the remaining stages
we match according to (j, j + 1, . . . , j + n− 2) ∈ circ(J). If i appears in stage n− 1
match it to j with probability 1/n, if i appears in stage n− 2, match it to j+ 1, and
so on. So we have the point

1

n

n−2∑
τ=0

en−τ−1i,j+τ (24)

By a simple calculation, we get the right-hand side of (19). Finally, since we chose
an arbitrary j ∈ J , then we have n− 1 points in this family.
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With these families, we have p points in total. Denote by (k, j, τ) the index of a vector
z ∈ [0, 1]p, which indicates that k ∈ N is matched to j ∈ J in stage τ . In any of these
points consider the following order of components (starting from the first one): (1, 0, n),
(1, 1, n), . . ., (1, n− 2, n), . . ., (n, 0, n), . . ., (n, n− 2, n), (i, 0, n− 1), . . ., (i, n− 2, n− 1),
. . ., (i, 0, 1), . . ., (i, n− 2, 1).

The rest of the proof consists of showing that these families define a set of linearly
independent points, and we prove this using Gaussian elimination. Arrange these points
as column vectors in a matrix A,

A = [I, II, III, IV,V] =

(
B1 B2

B3 B4

)
,

where B1 is a n(n−1)×n(n−1) diagonal matrix with entries 1/n; these values correspond
to the expression 1

ne
n
k,j given in bullet I. These columns can be used to make B2 a zero

matrix, yielding

Ā =

(
B1 0
B3 C

)
.

Consider how the columns from families II, III, and IV look like after this elimination
procedure (family V is not affected). Fix g ∈ J and sum every point (20) over k ∈ N ; this
yields

1

n

∑
k∈N

enk,g +

(
1− 1

n

)
en−1i,g +

n−2∑
τ=1

en−1−τi,g+τ . (25)

IIa. Pick the point (21) associated with g + 1 ∈ J ,

1

n

∑
k∈N

enk,g +
1

n
en−1i,g+1 +

1

n

(
1− 1

n

)
en−2i,g+1 +

1

n

n−3∑
τ=1

en−τ−2i,g+1+τ . (26)

Subtract (25) from (26) to get

1

n
en−1i,g+1 +

1

n

(
1− 1

n

)
en−2i,g+1 +

1

n

n−3∑
τ=1

en−τ−2i,g+1+τ −
(

1− 1

n

)
en−1i,g −

n−2∑
τ=1

en−1−τi,g+τ ,

which is equivalent to

1

n
en−1i,g+1 +

(
−1 +

1

n

)
en−1i,g +

(
1

n
− 1

n2
− 1

)
en−2i,g+1 +

(
−1 +

1

n

) n−2∑
τ=2

en−1−τi,g+τ . (27)

IIIa. Pick the point (22) associated with g + 1 ∈ J ,

1

n

∑
k∈N

enk,g +
1

n
en−1i,g+1 +

1

n
en−2i,g+2

+

(
1− 1

n

)[
1

n2
en−3i,g+1 +

1

n
en−3i,g+2

]
+

1

n

n−4∑
τ=1

en−τ−3i,g+τ+2. (28)
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Subtract (25) from (28) to get(
−1 +

1

n

)
en−1i,g +

1

n
en−1i,g+1 +

1

n
en−2i,g+2 − e

n−2
i,g+1

+

(
1− 1

n

)[
1

n2
en−3i,g+1 +

1

n
en−3i,g+2

]
− en−3i,g+2 +

(
−1 +

1

n

) n−2∑
τ=3

en−1−τi,g+τ .

(29)

IVa. Pick the point (23) associated with g + 1 ∈ J and any s ∈ [n− 4],

1

n

∑
k∈N

enk,g +
n−s−2∑
τ=0

1

n
en−τ−1i,g+τ+1

+

(
1− 1

n

)[n−s−2∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
+

1

n

s−1∑
τ=1

es−τi,g+n−1−s+τ .

(30)

Subtract (25) from (30) to get

n−s−2∑
τ=0

1

n
en−τ−1i,g+τ+1 +

(
1− 1

n

)[n−s−2∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]

+
1

n

s−1∑
τ=1

es−τi,g+n−1−s+τ −
(

1− 1

n

)
en−1i,g −

n−2∑
τ=1

en−1−τi,g+τ ,

which is equivalent to(
−1 +

1

n

)
en−1i,g +

1

n
en−1i,g+1 +

n−s−2∑
τ=1

[
1

n
en−τ−1i,g+τ+1 − e

n−τ−1
i,g+τ

]

+

(
1− 1

n

)[n−s−2∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
− esi,g+n−s−1 +

(
−1 +

1

n

) n−2∑
τ=n−s

en−1−τi,g+τ .

(31)

Since B1 is a diagonal matrix, for the rest of the proof we focus on the matrix C,
formed by points in families IIa, IIIa, IVa and V. Next, we apply Gaussian elimination on
C.

IIIb. Subtract (27) from (29),(
−1 +

1

n

)
en−1i,g +

1

n
en−1i,g+1 +

1

n
en−2i,g+2 − e

n−2
i,g+1 +

(
1− 1

n

)[
1

n2
en−3i,g+1

+
1

n
en−3i,g+2

]
− en−3i,g+2 +

(
−1 +

1

n

) n−2∑
τ=3

en−1−τi,g+τ

− 1

n
en−1i,g+1 −

(
−1 +

1

n

)
en−1i,g −

(
1

n
− 1

n2
− 1

)
en−2i,g+1

−
(
−1 +

1

n

) n−2∑
τ=2

en−1−τi,g+τ ,

29



which is equivalent to(
− 1

n
+

1

n2

)
en−2i,g+1 +

1

n
en−2i,g+2 +

(
1

n2
− 1

n3

)
en−3i,g+1 −

1

n2
en−3i,g+2. (32)

IVb. For every s ∈ [n− 4], subtract (27) from (31),(
−1 +

1

n

)
en−1i,g +

1

n
en−1i,g+1 +

n−s−2∑
τ=1

[
1

n
en−τ−1i,g+τ+1 − e

n−τ−1
i,g+τ

]

+

(
1− 1

n

)[n−s−2∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
− esi,g+n−s−1

+

(
−1 +

1

n

) n−2∑
τ=n−s

en−1−τi,g+τ

− 1

n
en−1i,g+1 −

(
−1 +

1

n

)
en−1i,g −

(
1

n
− 1

n2
− 1

)
en−2i,g+1

−
(
−1 +

1

n

) n−2∑
τ=2

en−1−τi,g+τ ,

which is equivalent to(
− 1

n
+

1

n2

)
en−2i,g+1 +

1

n
en−2i,g+2 +

1

n

n−s−2∑
τ=2

[
en−τ−1i,g+τ+1 − e

n−τ−1
i,g+τ

]
+

(
1− 1

n

)[n−s−3∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
− 1

n2
esi,g+n−s−1. (33)

IVc. For every s ∈ [n− 4], subtract (32) from (33),(
− 1

n
+

1

n2

)
en−2i,g+1 +

1

n
en−2i,g+2 +

1

n

n−s−2∑
τ=2

[
en−τ−1i,g+τ+1 − e

n−τ−1
i,g+τ

]
+

(
1− 1

n

)[n−s−3∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
− 1

n2
esi,g+n−s−1

−
(
− 1

n
+

1

n2

)
en−2i,g+1 −

1

n
en−2i,g+2 −

(
1

n2
− 1

n3

)
en−3i,g+1 +

1

n2
en−3i,g+2,

which is equivalent to

1

n
en−3i,g+3 −

(
1

n2
− 1

n3

)
en−3i,g+1 +

(
1

n2
− 1

n

)
en−3i,g+2 +

1

n

n−s−2∑
τ=3

[
en−τ−1i,g+τ+1 − e

n−τ−1
i,g+τ

]
+

(
1− 1

n

)[n−s−3∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
− 1

n2
esi,g+n−s−1. (34)
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IVd. For every s ∈ [n− 5], subtract (34) corresponding to s+ 1 from (34) corresponding
to s,

1

n
en−3i,g+3 −

(
1

n2
− 1

n3

)
en−3i,g+1 +

(
1

n2
− 1

n

)
en−3i,g+2 +

1

n

n−s−2∑
τ=3

[
en−τ−1i,g+τ+1 − e

n−τ−1
i,g+τ

]
+

(
1− 1

n

)[n−s−3∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
− 1

n2
esi,g+n−s−1

− 1

n
en−3i,g+3 +

(
1

n2
− 1

n3

)
en−3i,g+1 −

(
1

n2
− 1

n

)
en−3i,g+2

− 1

n

n−s−3∑
τ=3

[
en−τ−1i,g+τ+1 − e

n−τ−1
i,g+τ

]
−
(

1− 1

n

)[n−s−4∑
τ=0

1

nn−τ−s−2
es+1
i,g+τ+1

]
+

1

n2
es+1
i,g+n−s−2,

which is equivalent to

1

n
es+1
i,g+n−s−1 +

(
1

n2
− 1

n

)
es+1
i,g+n−s−2 +

(
−1 +

1

n

)[n−s−4∑
τ=0

1

nn−τ−s−2
es+1
i,g+τ+1

]

− 1

n2
esi,g+n−s−1 +

(
1

n2
− 1

n3

)
esi,g+n−s−2

+

(
1− 1

n

)[n−s−4∑
τ=0

1

nn−τ−s−1
esi,g+τ+1

]
. (35)

For s = n− 4, we do not need this step, since from (34) we have

1

n
en−3i,g+3 +

(
1

n2
− 1

n

)
en−3i,g+2 +

(
− 1

n2
+

1

n3

)
en−3i,g+1

− 1

n2
en−4i,g+3 +

(
1

n2
− 1

n3

)
en−4i,g+2 +

(
1

n3
− 1

n4

)
en−4i,g+1.

Observe that for any s ∈ [n−4] and g ∈ J , we can multiply row (i, g, s+1) by −1/n
and we get the entry in row (i, g, s).

IIb. Finally, pick a point (24) in family V for g ∈ J ,

1

n
en−1i,g +

1

n
en−2i,g+1 + · · ·+ 1

n
e1i,g+n−2. (36)

Now multiply (36) by (1− n) and subtract it from (27) for g ∈ J , yielding

1

n
en−1i,g+1 +

(
−1 +

1

n

)
en−1i,g +

(
1

n
− 1

n2
− 1

)
en−2i,g+1

+

(
−1 +

1

n

) n−2∑
τ=2

en−1−τi,g+τ −
1− n
n

n−2∑
τ=0

en−τ−1i,g+τ ,
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which is equivalent to
1

n
en−1i,g+1 −

1

n2
en−2i,g+1.

Since we have g+ 1 in those two stages, we have a general expression for any g ∈ J ,

1

n
en−1i,g −

1

n2
en−2i,g . (37)

As before, we can multiply row (i, g, n−1) by −1/n to get the entry in row (i, g, n−2).

Now, we can organize the points in C as

C = [V, IIb, IIIb, IVd
n−4, . . . , IV

d
s , . . . , IV

d
1],

where IVd
s corresponds to the block of points (g ∈ J) with s ∈ [n− 4]. C has the form

C =



Cn−1 Dn−2 0 0 0 . . . 0 0
Cn−2 − 1

nDn−2 Dn−3 0 0 . . . 0 0
Cn−3 0 − 1

nDn−3 Dn−4 0 . . . 0 0
...

. . .
...

C2 0 0 0 0 . . . − 1
nD2 D1

C1 0 0 0 0 . . . 0 − 1
nD1


,

where every Ci and Di are circulant matrices Kra and Simanca (2012) of size (n − 1) ×
(n− 1). Since the determinant is invariant under elementary row and column operations,
we can perform Gaussian elimination (of rows) from bottom to top, and we get

C̄ =



C̄n−1 0 0 0 0 . . . 0 0
C̄n−2 − 1

nDn−2 0 0 0 . . . 0 0
C̄n−3 0 − 1

nDn−3 0 0 . . . 0 0
...

. . .
...

C̄2 0 0 0 0 . . . − 1
nD2 0

C1 0 0 0 0 . . . 0 − 1
nD1


,

where

C̄n−1 = Cn−1 + n(Cn−2 + · · ·+ n(C2 + nC1))

= circ(1/n, 1, n, n2, . . . , nn−3),

Dn−2 = circ(1/n, 0, . . . 0),

Dn−3 = circ

(
1

n
,− 1

n
+

1

n2
, 0, . . . 0

)
...

Ds = circ

(
1

n
,− 1

n
+

1

n2
,− 1

n2
+

1

n3
, . . . ,− 1

nn−s−2
+

1

nn−s−1
, 0, . . . 0

)
...

D1 = circ

(
1

n
,− 1

n
+

1

n2
,− 1

n2
+

1

n3
, . . . ,− 1

nn−3
+

1

nn−2

)
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For C̄1, the last entry, nn−3, is greater than the sum of the remaining entries. The same
applies for Ds, with entry 1/n. Due to Proposition 18 in Kra and Simanca (2012) all these
matrices are nonsingular, so C̄ is nonsingular, and therefore C is nonsingular. This implies
that A is nonsingular, showing that these points are linearly independent, and proceeding
in the same way as we did in the proof of Proposition 3 for the remaining components, we
can show (19) is facet-defining.

Proof of Theorem 6. The proof is similar to Theorem 5. Again, assume h = n − 1 and
t = 1; the remaining cases follow a similar construction of linearly independent points.
Without loss of generality we can assume that iτ = i for all τ ∈ [n − 2]. As in the proof
of Theorem 5, this assumption is possible since J does not depend on iτ and the proof for
the general inequality with different iτ can be adapted from this particular case. So, we
have an inequality of the form

rZnN,J + nZn−1I,J +

n−2∑
τ=1

nn−τZτi,J ≤ r +

n−2∑
τ=1

nτ . (38)

We construct the following linearly independent points.

I. Fix k ∈ N and j ∈ J . In stage n, if node k appears, match it to node j, with
probability 1/n. For the remaining stages match according to (j, j+1, . . . , j+n−2) ∈
circ(J). In terms of probability, if any k′ ∈ I appears in stage n−1, then it is matched
to j with probability (1− 1/n) · 1/n, so the probability of matching j in stage n− 1
is (1− 1/n) · r/n. For the rest, the probability is 1/n. So, we have the point

1

n
enk,j +

1

n

(
1− 1

n

)∑
k′∈I

en−1k′,j +
1

n

n−2∑
τ=1

en−1−τi,j+τ . (39)

By a simple calculation, it is easy to see that each of these points achieves the right-
hand side of (38). Since we chose any arbitrary k ∈ N and j ∈ J , we have n(n− 1)
points in this family.

II. Fix j ∈ J and k ∈ I. In this family we repeat the same ad to match in stages
n − 1 and n − 2. If k appears in stage n − 1, match it to j with probability 1/n.
Then, if i appears in stage n− 2 and k did not appear in n− 1, match it to j with
probability (1 − 1/n) · 1/n. For the remaining stages match according to (j + n −
2, j, j + 1, . . . , j + n− 3) ∈ circ(J); in stage n match any k′ ∈ N that appears with
j + n− 2, in stage n− 3 match i to j + 1 if it appears, and so on. So, we have the
point

1

n

∑
k′∈N

enk′,j+n−2 +
1

n
en−1k,j +

1

n

(
1− 1

n

)
en−2i,j +

1

n

n−3∑
τ=1

en−τ−2i,j+τ . (40)

By a simple calculation, we get the right-hand side of (19). Finally, since we chose
an arbitrary j ∈ J and k′ ∈ I, we have r(n− 1) points in this family.
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V. Fix j ∈ J . In this family we do not match in stage n, and in the remaining stages we
match according to a vector in circ(J). If any k ∈ I appears in stage n − 1, match
it to j with probability 1/n, if i appears in stage n− 2, match it to node j + 1, and
so forth. So we have the point

1

n

∑
k∈I

en−1k,j +
1

n

n−2∑
τ=1

en−τ−1i,j+τ . (41)

By a simple calculation, we get the right-hand side of (19). Since we chose an
arbitrary j ∈ J , we have n− 1 points in this family.

Families III, and IV remain the same as in the proof of Theorem 5, so in total we have
(n− 1)(r + 2n− 2) points. The rest of the proof follows the same argument as Theorem
5.

Proof of Theorem 7. The proof follows the same argument as the previous two theorems,
the only difference being that the collection of points given by policies corresponding to I is
bigger; however, they still form a diagonal block, so we can apply the same procedure.

6.2 Detailed Experiment Results

Table 3: Experiment results for small instances.
Instance (4) + (5) (9) (9) + (12) Exp. Matching (1) (11) TDR Policy Torrico et al. (2018)

S1 8.9613 8.7261 8.7170 8.5818 8.3976 8.3562 8.3452

S2 8.0125 7.7354 7.7147 7.4635 7.4055 7.4095 7.3980

S3 7.0252 6.8849 6.8795 6.8109 6.7241 6.7239 6.6546

S4 8.4799 8.1415 8.1282 8.1360 7.8468 7.8142 7.7895

S5 7.9805 7.4972 7.4654 7.3191 7.0849 7.0590 6.8223

S6 9.2650 8.5601 8.5289 8.4907 8.1364 8.1057 8.0802

S7 7.1327 6.9320 6.9155 6.7885 6.6895 6.6699 6.6709

S8 8.2993 7.8525 7.8181 7.6588 7.4762 7.4631 7.4203

S9 7.0193 6.6523 6.6320 6.4263 6.3451 6.3364 6.2574

S10 7.1206 6.9756 6.9700 6.9593 6.8103 6.7790 6.7588

S11 8.9684 8.5841 8.5519 8.3237 8.1223 8.0996 7.9973

S12 6.7110 6.4682 6.4537 6.3265 6.2555 6.2542 6.2542

S13 7.8013 7.5626 7.5543 7.7048 7.3845 7.3547 7.3122

S14 8.0801 7.7047 7.6880 7.5756 7.4003 7.3787 7.2813

S15 8.2220 8.0324 7.9922 7.9251 7.7369 7.7026 7.7021

S16 9.3714 8.8684 8.8560 8.9708 8.4948 8.4672 8.4034

S17 6.9684 6.8016 6.7739 6.6437 6.5785 6.5717 6.4977

S18 9.3936 8.8414 8.8248 8.8218 8.4484 8.4247 8.3458

S19 7.0304 6.7305 6.7138 6.5861 6.4776 6.4778 6.4772

S20 8.7322 8.4326 8.4139 8.2763 8.0769 8.0485 7.9651

34



Table 4: Experiment results for large, dense instances.
Instance (4) + (5) (9) Exp. Matching (11) TDR Policy Torrico et al. (2018)

LD1 99.8550 97.0381 99.8153 94.8957 94.8471

LD2 99.8035 97.1728 99.7964 95.5454 95.0983

LD3 99.9368 97.2471 99.8325 95.4772 95.1928

LD4 99.9083 97.3543 99.8998 95.7123 95.4918

LD5 99.9135 97.1967 99.9033 95.5889 95.3354

LD6 99.9533 97.3301 99.8303 95.5145 95.2998

LD7 99.9528 97.3809 99.9314 95.7929 95.3830

LD8 99.9100 97.3675 99.9006 95.7148 95.3640

LD9 99.7849 97.1600 99.7414 95.2710 95.0698

LD10 99.8933 97.2112 99.8805 95.6271 95.2136

LD11 99.9175 97.3080 99.8908 95.6526 95.1530

LD12 99.8668 97.3086 99.8597 95.5097 95.5914

LD13 99.7805 97.1135 99.6728 94.9733 94.6578

LD14 99.8641 97.3257 99.7695 95.3197 95.4821

LD15 99.9079 97.1715 99.8723 95.2706 95.2057

LD16 99.7806 96.8779 99.7579 94.8829 94.6222

LD17 99.7620 97.2239 99.7554 95.5676 95.4672

LD18 99.9504 97.3627 99.8417 95.7888 95.5311

LD19 99.9603 97.4715 99.9530 95.8706 95.7686

LD20 99.9392 97.1932 99.9263 95.2861 95.1938

Table 5: Experiment results for large, sparse instances.
Instance (4) + (5) (9) (9) + (12) Exp. Matching (11) TDR Policy Torrico et al. (2018)

LS1 79.1015 74.7635 74.7260 72.3904 69.7186 69.0988

LS2 79.0703 75.3885 75.3555 73.3026 70.8925 70.2621

LS3 78.0157 74.3402 74.3051 72.0072 69.6943 69.1178

LS4 78.6983 74.6555 74.6181 72.3612 69.7633 69.1302

LS5 81.8877 76.7406 76.7085 74.9893 71.6122 70.7586

LS6 81.4750 77.6830 77.6517 75.5756 72.8110 72.3019

LS7 84.0754 79.2133 79.1825 77.4263 73.6374 72.3566

LS8 71.9270 69.5745 69.5391 67.6728 65.7709 65.4557

LS9 77.0648 73.8295 73.7947 71.4234 69.3153 68.5672

LS10 82.5481 77.2318 77.2028 75.3500 72.2398 71.4496

LS11 73.6532 70.8502 70.8139 68.2690 66.2972 64.9590

LS12 81.1134 77.2298 77.1911 74.8116 71.9705 71.3263

LS13 75.2453 72.2625 72.2297 70.0278 67.6604 66.7906

LS14 80.7172 75.8009 75.7654 74.1015 70.7923 70.3709

LS15 74.7313 72.2967 72.2627 69.7801 68.0195 67.1434

LS16 75.9530 72.2955 72.2691 70.2883 67.5794 66.6571

LS17 78.9469 74.2399 74.2093 72.6022 69.4289 68.6303

LS18 79.2340 74.8535 74.8261 73.3324 70.1805 69.6408

LS19 78.6156 75.6028 75.5745 73.7973 71.2080 70.6332

LS20 82.8804 78.4299 78.3911 76.6972 73.1519 72.9224
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