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Abstract

We study the linked tactical design problems of fleet sizing and partitioning a service region into ve-

hicle routing zones for same-day delivery (SDD) systems. Existing SDD studies focus primarily on

operational dispatch problems and do not consider system design questions. Prior work on SDD system

design has not considered the fleet sizing decision when a service region may be partitioned into zones

dedicated to individual vehicles; such designs have been shown to improve system efficiency in related

vehicle routing settings. Using continuous approximations to capture average-case operational behavior,

we consider first the problem of independently maximizing the area of a single-vehicle delivery zone.

We characterize area-maximizing dispatching policies and leverage these results to develop a procedure

for calculating optimal areas as a function of a zone’s distance from the depot, given a maximum num-

ber of daily dispatches per vehicle. We then demonstrate how to derive fleet sizes from optimal area

functions and propose an associated Voronoi approach to partition the service region into single-vehicle

zones. We test the fleet sizing and partitioning approach in a computational study that considers two

different service regions and demonstrate its pragmatism and effectiveness via an operational simula-

tion. Using minimal computation, the approach specifies fleet sizes and builds vehicle delivery zones

that meet operational requirements, verified by simulation results.

1. Introduction
Online purchasing continues to be a key factor in the growth of retail sales: total first-quarter e-commerce

spending in the United States in 2020 grew by $18 billion from the previous year, an increase of 14.5%
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(United States Census Bureau 2020). Driven in part by restrictions and safety concerns during the COVID-

19 pandemic, U.S. online spending in May 2020 alone grew 77.8% from the previous May (Adobe Analytics

2020). Increased competition among e-commerce retailers has led to faster delivery time guarantees through

next-day delivery and same-day delivery (SDD) services. Amazon offers SDD to its customers in over 8,000

cities and towns in the U.S. (Amazon 2018), and traditional retail stores such as Target and Walmart have

also begun offering SDD services in recent years (Thomas 2019).

Due to low order volumes and large numbers of potential delivery locations, last-mile delivery is gen-

erally cost-inefficient in contrast to other parts of a freight logistics system. SDD presents additional chal-

lenges due to significantly tighter time constraints, in contrast to traditional last-mile delivery systems that

allow for longer response times. In SDD systems, request arrival, order picking and processing, vehicle

loading, and delivery all occur within the span of a service day. This contrast is evident even between SDD

and next-day delivery, where most order processing occurs prior to the delivery operations that take place

during the business day (Klapp et al. 2020). The result is that SDD systems often dispatch an individual

vehicle on multiple routes during the service day, serving fewer customers per time unit. Controlling costs

in such routing systems is of critical importance, and careful planning is required.

In recent years, the operations research community has devoted considerable attention to optimizing

operational SDD problems (i.e., focusing on day-to-day issues, such as dispatching and routing) (e.g., Côté

et al. 2019, Dayarian et al. 2020, Klapp et al. 2018a, Voccia et al. 2019). Defining aspects of such problems

include the accumulation of orders over the course of a service day, a “cutoff” time after which orders are

no longer eligible for SDD, and delivery deadlines that may be order-specific, as in food delivery (Reyes

et al. 2018), or common to all orders placed during the same day. Decisions such as vehicle dispatch times

and order acceptance and rejection are made dynamically, and are planned using heuristic methods due to

the problems’ underlying complexity. Operational planning problems seek to optimize metrics of efficiency,

such as maximizing orders served or minimizing total routing time, while assuming fixed system features

and parameters.

On the other hand, research on tactical SDD problems, focusing on design decisions made less fre-

quently, has been more scarce (Stroh et al. 2021). Tactical decisions include the sizing or composition of

delivery vehicle fleets and the selection of order cutoff times and delivery deadlines (but exclude long-term

strategic decisions such as fulfillment center placement). Stroh et al. (2021) analyze tactical design issues

for relatively small, fixed service regions served either by a single vehicle or a small fleet, where each ve-
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hicle serves customer locations scattered throughout the entire service region. Nevertheless, in many SDD

settings, a single depot may serve a significantly larger service region with many hundreds or even thousands

of deliveries per day (perhaps even an entire metropolitan area). In such cases it is impractical to have every

vehicle serving all possible customer locations, and it is much more efficient to geographically partition

customers into zones with dedicated delivery vehicles (Bramel and Simchi-Levi 1995). Our motivation is

precisely the design of SDD systems at this larger scale.

1.1 Contributions

Our work addresses the tactical problems of fleet sizing and region partitioning for SDD systems when each

vehicle is responsible for independently serving orders within a distinct service sub-region or zone. We rely

on analytical continuous approximation methods to ensure transparency and interpretability. Specifically:

1. Using continuous approximations to model average-case system behavior, we consider the travel of

a single vehicle making same-day deliveries within a single sub-region (zone) from a single depot.

Orders accumulate until a fixed cutoff time and share a common deadline, while vehicles must return

to the depot by the end of the service day after delivering all orders. We consider a problem of

maximizing the area of such a zone such that all same-day orders can be feasibly served with a single

vehicle and characterize the structure of area-maximizing vehicle dispatching policies. We leverage

this structure to propose a straightforward exact method for calculating maximal zone areas.

2. We use zone area maximization results to guide fleet sizing calculations for same-day delivery sys-

tems. Defining each vehicle’s load in relation to the maximum area of its associated zone, we demon-

strate how computationally inexpensive Voronoi partitioning procedures can be adapted to the SDD

context to design zones for each vehicle in a fleet.

3. We validate our design approach by simulating discrete order arrivals served by an operational pol-

icy that mimics the structure of the tactical area-maximizing policies. We demonstrate that our de-

signs perform well empirically, that they accurately predict various system metrics (such as expected

number of orders served), and that they are robust to uncertainties (e.g. order arrivals and locations)

important in practice.

The remainder of the paper is organized as follows. We briefly review the relevant literature in Section 2.

In Section 3, we propose and analyze a continuous approximation model for fleet sizing in SDD systems.
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In Section 4, we describe a method for translating our fleet sizing results into service region partitions.

Section 5 details the computational validation of our models. Section 6 provides concluding remarks. The

appendices contain technical details, proofs, and experimental data omitted from the main body.

2. Literature Review
SDD problems are closely related to the vehicle routing problem (VRP) and its variants. VRPs with prob-

abilistic customers (e.g., Ulmer et al. 2018, 2019a) provide useful models for the random nature of orders

placed within a SDD system; Oyola et al. (2017, 2018) survey models and solution methods for the broader

class of stochastic VRPs. The pickup and delivery VRP (Savelsbergh and Sol 1995) and the VRP with

customer release times (Cattaruzza et al. 2016a) reflect the necessity for same-day orders to be picked up

from a depot after the orders are placed. SDD vehicles often leave the depot multiple times over the course

of a service day, as in multi-trip VRPs (Cattaruzza et al. 2016b, Paradiso et al. 2020). Operational SDD

problems in the literature generally incorporate aspects of some or all of the aforementioned VRP variants

as well as general characteristics of dynamic VRPs (Pillac et al. 2013, Psaraftis et al. 2016).

An example of such an operational problem is the SDD problem for online purchases (SDDP-OP). As

introduced by Voccia et al. (2019), the setting of the SDDP-OP involves a fixed fleet and a single depot.

The objective is to maximize the expected total number of fulfilled orders, and the problem is solved via

approximate dynamic programming (DP). Côté et al. (2019) study an extension to the SDDP-OP in which

vehicles are allowed to pre-emptively return to the depot. Another operational SDD model is the dynamic

dispatch waves problem (DDWP) as studied in Klapp et al. (2018a,b, 2020). In the DDWP, orders arrive

stochastically over the course of a service day and are served by a single uncapacitated vehicle. The objective

is to minimize the sum of routing costs and penalties for unserved orders. Klapp et al. (2018b) consider the

DDWP in one dimension; the deterministic version of the problem is solved via DP, and heuristics are

proposed for the stochastic version. The two-dimensional DDWP is studied in Klapp et al. (2018a). In

Klapp et al. (2020), a variant is studied in which orders are immediately accepted or rejected upon request.

Additional operational SDD problems studied in the literature consider drones (Dayarian et al. 2020,

Ulmer and Thomas 2018), autonomous vehicles (Ulmer and Streng 2019), and other extensions (Ulmer

2017, Ulmer et al. 2019b, Yao et al. 2019). Common among these problems, as well as the SDDP-OP

and DDWP, are fixed system features at the tactical level: design parameters such as fleet size and order

cutoff times are assumed to be given. While it is possible to gain tactical managerial insights by repeatedly
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solving operational problems (see the simulation study of delivery deadlines by Ulmer (2017)), doing so

can be computationally expensive. Additionally, operational problems are often solved heuristically without

optimality guarantees, potentially decreasing the reliability of any associated insights. Stroh et al. (2021),

however, directly study SDD system design at the tactical level with the use of continuous approximation

methods, which we briefly discuss next.

The use of continuous approximations in routing relies on the Beardwood-Halton-Hammersley (BHH)

Theorem (Beardwood et al. 1959) for the traveling salesperson problem (TSP): the length of the optimal

TSP tour through n points selected from a continuous distribution over a two-dimensional zone of area A

approaches β
√

An as n increases, where β is a constant. The theorem motivates a closed-form approxima-

tion of routing times as a function of the number of stops on the route. Subsequent work studies BHH-type

approximations for zones of different shapes (Daganzo 1984) and with different underlying metrics (Newell

and Daganzo 1986a,b). Empirical estimates of the BHH routing constant for varying tour sizes are calculated

by Applegate et al. (2007) and Johnson et al. (1996) for Euclidean and rectilinear (Manhattan) distances, re-

spectively, and Merchán and Winkenbach (2019) empirically validate continuous approximation approaches

in the context of urban route distances. Examples of recent work in urban last-mile logistics that use con-

tinuous approximations for routing times include Bergmann et al. (2020), Carlsson and Song (2018), and

van Heeswijk et al. (2019). Of particular relevance to our work are Lei et al. (2012) and Franceschetti et al.

(2017a), in which continuous approximations are used in conjunction with discrete optimization methods to

solve fleet sizing and partitioning problems for VRPs. However, these studies assume that vehicles dispatch

once per day, and all customer locations are realized prior to the vehicles’ departure. In contrast, to capture

SDD system features, our work allows vehicles to dispatch multiple times per day and assumes delivery

requests arrive dynamically over the course of the service day. Comprehensive surveys of logistical appli-

cations of continuous approximation methods are presented in Ansari et al. (2018) and Franceschetti et al.

(2017b).

In Stroh et al. (2021), orders accumulate continuously over a service region at a fixed homogeneous rate

per area and per time until a cutoff time. The time required to serve q orders, where q is possibly fractional,

is represented by a concave, increasing dispatch time function, such as the sum of a BHH square root term

and a per-order service time. Continuous approximations of both order accumulation and routing time are

used to model average-case system behavior. Vehicles dispatch from a single depot, and each vehicle is

responsible for orders in the entire region. All orders must be served by the end of the service day, and all
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vehicles must return to the depot by the end of the service day. The objective is to minimize total dispatch

time. Tactical dispatching solutions with optimality guarantees are developed for both single-vehicle fleets

and infinite fleets. While the setting of Stroh et al. (2021) is similar to ours, the problems considered in

this work are significantly different. First, the prior work assumes that every vehicle may serve orders from

the entire region (i.e., no partitioning of the service region), which is inefficient when regions grow larger.

Second, Stroh et al. (2021) seek to minimize the total dispatch time under this assumption. In contrast, we

explicitly seek to minimize the number of vehicles required to serve the region when it is partitioned into

individual vehicle routing zones, as is common in practice. Finally, the prior work assumes that the order

rate is constant over time. We relax this assumption in Section 3.4.

In many practical routing contexts, when the number of potential customer locations is large, it is often

preferable to partition a service region into smaller zones. Our work is focused specifically on partitioning

a region into single-vehicle delivery zones, where each vehicle is independently responsible for serving

demand within a zone. As discussed by Zhong et al. (2007), such a scheme improves efficiency by increasing

drivers’ familiarity with a smaller geographical area. Given a set of “generator” points in a plane region, a

Voronoi partition or tessellation of the region can be used to create zones by assigning to each generator r the

set of all points that are closer to r than to any other generator. A common extension is the multiplicatively-

weighted Voronoi tessellation, in which distances to each generator are multiplied by differing positive

weights in order to balance the area or load of each zone. Weighted Voronoi partitions are often used in

conjunction with continuous approximation methods, including for facility location (e.g., Carlsson and Jia

2013, Ouyang and Daganzo 2006) and the design of vehicle routing zones (Carlsson and Delage 2013,

Ouyang 2007). A centroidal Voronoi tessellation is another extension in which the generator and centroid

of each zone coincide (Du et al. 1999). We propose an approximate two-stage weighted centroidal Voronoi

tessellation (WCVT) scheme for service region partitioning adapted from Galvão et al. (2006), Ouyang

(2007), and Ouyang and Daganzo (2006), which we discuss further in Section 4. WCVT schemes tend to

produce partitions with compact, connected zones and equitable workloads without the need for solving

computationally expensive integer programs. Other partitioning schemes for vehicle routing zones include

those that incorporate large neighborhood search heuristics (Lei et al. 2012) and iterative ham-sandwich cuts

(Carlsson 2012, Carlsson et al. 2021); however, these are less suitable for our specific problem setting. Lei

et al. (2012) require a set of deterministic customers — significantly more numerous than than the number

of zones — along with a set of stochastic customers, while our problem assumes that all customers and their
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locations are stochastic. Carlsson (2012) requires, as inputs, fixed seed points corresponding to each zone,

which our problem setting does not include. Carlsson et al. (2021) impose additional constraints on each

vehicle zone that are not relevant to our specific problem.

3. Area Maximization and Fleet Sizing
We consider an SDD system operating on a daily basis in a simply connected, two-dimensional service

region R with a single depot from which a fleet of homogeneous, uncapacitated vehicles are dispatched.

SDD orders are placed by customers beginning at the start of the service day. The system should operate

such that, on average, SDD orders placed by a target cutoff time are delivered by vehicles that all return to

the depot by an end-of-day deadline. Each vehicle is permitted a maximum number of dispatches from the

depot. Our goal is to design this system by partitioning the region into non-overlapping zones, each served

by a single vehicle. Specifically, we seek a partition that uses a minimum number of vehicle zones while

respecting the system’s aforementioned constraints.

We develop a continuous approximation optimization model of the system to solve this tactical design

problem. The model is formally characterized as follows:

· The discrete order arrival process is approximated by assuming that demand for same-day deliveries

(i.e., orders) accumulates deterministically and continuously throughout the service region at a con-

stant, geographically homogeneous rate of λ orders per unit area per unit time. Orders accumulate

from the beginning of the service day at time t = 0 until the order cutoff time t = N. We assume

without loss of generality that λ = 1 and all other parameters are scaled appropriately.

· Each vehicle in the fleet is responsible for delivering orders that accumulate in a distinct zone within

the region. The fleet is assumed to be homogeneous, and vehicles are assumed to travel at a homoge-

neous, constant speed throughout the region.

· Vehicles are dispatched from a single depot no earlier than t = 0 and must return no later than the end

of the service day t = T , where 0 < N < T . All orders that accumulate in the service region during

the interval [0,N] must be served by time T .

· Each vehicle may be dispatched at most Dmax times over the course of the service day, where the

parameter Dmax is an input selected by the system designer. Individual vehicles serving different

zones may operate different dispatch schedules and may perform a different number of dispatches per
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day. Vehicles are uncapacitated and not constrained to carry an integer number of orders.

· The time required to complete a vehicle dispatch is given by a continuous function fρ that depends

only on the number of orders served, the vehicle’s zone’s area, and the location of the vehicle’s zone’s

centroid.

Clearly the order process and fulfillment approximation is only appropriate in a tactical model of the day-

to-day operational realities of such a system. At the operational level, the order arrival process is uncertain

and might be modeled as a stochastic process, e.g., a homogeneous Poisson process with rate λ . With any

finite fleet, it is therefore impossible to guarantee that all orders received by the cutoff time N can be served

while meeting the deadline T in every operational realization. Hence, the tactical cutoff time N and deadline

T are “targets” used for planning purposes and may be dynamically adjusted at the operational level, as we

discuss in Section 5. As stated earlier, each vehicle also serves a distinct zone at the operational level.

To characterize the vehicle dispatch time approximation more completely, consider a single-vehicle zone

with area A ≥ 0. Let ρ ≥ 0 represent the travel time from the depot to the zone’s centroid. We model the

total time a vehicle takes to serve n orders in this zone with a single dispatch using four distinct components:

(i) a constant setup time at the depot α , with α ≥ 0;

(ii) a total linehaul time 2ρ , representing the vehicle’s travel time to and from the zone;

(iii) a BHH routing time between orders β
√

An, where β > 0 is an appropriately chosen BHH constant;

(iv) a service time γn proportional to the number of orders, where γ ≥ 0 is the service time per order;

The use of the BHH function to create an approximation of travel time within the zone relies on the assump-

tion that order locations are independently sampled from a continuous distribution over the zone (Stroh et al.

2021). Figure 1 illustrates the total dispatch (setup, travel, and service) time of a single vehicle performing

a single dispatch. In general, this is a slightly conservative estimate, since, in an optimal tour, the vehicle

would be unlikely to travel as far as the centroid of the depot to begin serving orders.

The (continuous) number of orders that accumulate in the zone over a period of length τ is Aτ . Therefore,

the total time a vehicle takes to serve the orders accumulating over a period of length τ with a single dispatch

is given by the dispatch time function fρ(A,τ) = 2ρ +α +βA
√

τ + γAτ . The dispatch time function fρ is

continuous, increasing in A for fixed τ > 0, and non-negative. Additionally, for fixed A > 0, fρ is increasing

and strictly concave in τ .
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Figure 1: Components of total dispatch time

Finally, the assumption that vehicles are uncapacitated is justified by the small physical size of products

commonly offered for SDD (office supplies, household goods, etc.), the comparatively smaller order volume

served, and by the tendency for delivery vehicles to operate under full capacity when time constraints sig-

nificantly restrict flexibility (Klapp et al. 2018a,b, Stroh et al. 2021). The constant order rate assumption is

relaxed in Section 3.4, and the assumption regarding the homogeneity of vehicle travel is revisited in Section

5.2.

We now seek to determine the minimum number of vehicles required to feasibly serve the region given

this tactical approximation model, and to do so we solve a zone area maximization problem, the solution

of which leads directly to a minimum fleet size via evaluating an integral (Daganzo 2005, Erera 2000).

Specifically, given a fixed centroid with associated linehaul travel time ρ , we seek to determine the maximum

area of a zone around the centroid, independent of other zones and service region boundaries, such that a

vehicle can feasibly serve all zone orders with at most Dmax dispatches.

3.1 Zone area maximization

Consider a single-vehicle zone, associated dispatch time function fρ , number of dispatches D, and service

day defined by N and T . Without loss of generality, assume α = 0 unless stated otherwise for convenience

(since we can include half of the setup time into the linehaul travel time ρ).

We assume that orders are not differentiated geographically for batching purposes; i.e., when the vehicle

is dispatched with n orders, those orders are distributed uniformly across the zone with a density n/A.

We can therefore describe a dispatching policy with exactly D dispatches by a D-tuple of ordered pairs(
(t1,τ1),(t2,τ2), . . . , (tD,τD)

)
. The dispatch departure times t1, . . . , tD satisfy 0 ≤ t1 ≤ ·· · ≤ tD ≤ T . For

each d ∈ [D], where [D] = {1,2, . . . ,D}, the corresponding τd represents the duration of time during which

orders accumulate to be served by the d-th dispatch. We refer to τd as the accumulation time of the d-
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th dispatch, and qd = λAτd = Aτd as the quantity of the d-th dispatch (i.e., number of orders). For the

policy to be feasible, it must serve all orders and therefore satisfy ∑d∈[D] τd = N. A feasible policy also

cannot serve orders before they accumulate; i.e., ∑i∈[d] τi ≤ td for all d. Since orders placed at different

times are geographically invariant, we assume without loss of generality that all orders for the d-th dispatch

accumulate before any orders accumulate for the (d + 1)-th dispatch; thus, the accumulation intervals for

subsequent dispatches partition the time from 0 to N.

For example, consider a dispatching policy for a setting with D = 3, N = 65 and T = 100. Suppose the

vehicle first departs from the depot at t1 = 15 with all of the orders accumulated in the time interval [0,15],

departs again at t2 = 40 with all of the orders that accumulated in the time interval [15,35], and departs again

with all of the remaining orders at t3 = 70. The policy would be denoted as
(
(15,15),(40,20),(70,30)

)
.

Figure 2 illustrates this dispatching policy to scale (with arrows representing the dispatch departure and

arrival times) when A = 1 and fρ(A,τ) = 8+2A
√

τ +0.1Aτ .

Figure 2: Dispatching policy example

τ1 τ2 τ3

T0 N

fρ(A,τ1)

t1

fρ(A,τ2)

t2

fρ(A,τ3)

t3

To ensure feasibility, the area to be served by a given policy cannot be so large as to entail overlapping

dispatches or a violation of the deadline T . Our goal is to find the maximum area associated with at least

one dispatching policy that serves the area feasibly. While we are restricted to policies having at most Dmax

dispatches, the actual number of dispatches in an area-maximizing policy is left as a decision. For example,

consider a zone centered at the depot (ρ = 0). In a one-dispatch policy, the vehicle is idle during the interval

[0,N], so introducing a second dispatch to serve some orders during this interval leads to a more “efficient”

use of the vehicle. Thus, it may initially seem that using as many dispatches as possible (i.e., Dmax) is

desirable; this is not necessarily the case.

Define AD(ρ) as the maximum area of the zone for a given ρ if the vehicle makes exactly D dispatches

over the course of the service day. Also, define A+
D(ρ) = max{Ad(ρ) | d ≤ D}, the maximum area of the

zone if the vehicle can dispatch at most D times. Our goal is to characterize A+
Dmax

(ρ); from a tactical

planning and design perspective, we are primarily interested in the cases where Dmax is small and we can

simply find A+
Dmax

(ρ) by calculating AD(ρ) for all D ∈ [Dmax].
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Two conditions are necessary for the vehicle to feasibly complete D dispatches for some area A > 0:

2Dρ < T and 2ρ < T −N. Because the minimum dispatch length is 2ρ , the former condition ensures that

D dispatches can take place in the time interval [0,T ]. Since the last dispatch must depart no earlier than N

to serve all orders, the latter condition ensures that a dispatch departure time is feasible in the time interval

[N,T ]. If these conditions are not satisfied, we define AD(ρ) = 0. Observe that, for a given value of ρ , it

may not be feasible for the vehicle to complete Dmax dispatches. As such, for all ρ , define Dmax(ρ)≤ Dmax

to be the maximum number of dispatches the vehicle can feasibly complete while respecting the dispatch

constraint imposed by the system designer.

For fixed ρ ≥ 0 and 0 < D ≤ Dmax(ρ), we define AD(ρ) ≥ 0 as the optimal value of the following

non-convex optimization problem:

AD(ρ) = max
t,τττ,A

A (1a)

s.t. td ≥
d

∑
i=1

τi ∀d ∈ [D], (1b)

td+1 ≥ td + fρ(A,τd) ∀d ∈ [D−1], (1c)

T ≥ tD + fρ(A,τD), (1d)

D

∑
d=1

τd = N, (1e)

τd ≥ 0 ∀d ∈ [D]. (1f)

Note that D is an input to (1). For each dispatch, constraints (1b) restrict the vehicle to depart with no

more orders than have accumulated. For each dispatch d within the first D− 1 dispatches, constraints

(1c) ensure that the vehicle returns to the depot after the d-th dispatch before departing on the (d + 1)-th

dispatch. Similarly, constraint (1d) ensures that the vehicle returns to the depot for the last time no later

than T . Constraint (1e) ensures that all of the orders in the interval [0,N] are served, and constraints (1f)

restrict order sizes to be non-negative. Additionally, constraints (1b) and (1e) together ensure that the last

dispatch departs no earlier than N. Note that problem (1) always has a feasible solution with A = 0; thus,

the necessary feasibility conditions are also sufficient for the feasibility of D dispatches when the zone area

is not fixed in advance.
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3.2 Optimal policy structure

When D = 1, if the feasibility conditions are satisfied, an optimal area-maximizing policy is clear: the

sole dispatch should depart at N with all accumulated orders and return at T . This implies τ1 = N and

fρ(A,τ1) = T −N, so 2ρ +βA
√

N + γAN = T −N. Solving the equation for A gives

A1(ρ) =
T −N−2ρ

γN +β
√

N
. (2)

Observe that the feasibility condition 2ρ < T−N impliesA1(ρ)> 0. However, problem (1) does not readily

admit a closed-form optimal solution for D > 1. To develop a procedure for calculating AD(ρ) for general

D, we now state a series of results regarding the structure of area-maximizing policies.

For d ∈ [D− 1], we say that there is waiting after dispatch d if td + fρ(A,τd) < td+1. Similarly, there

is waiting after dispatch D if tD + fρ(A,τD) < T . For some area A, we say that an associated policy(
(t1,τ1), . . . ,(tD,τD)

)
involves waiting if there is waiting after at least one dispatch d ∈ [D]. The policy

illustrated in Figure 2 involves waiting, since there is waiting after every dispatch. The following lemma

states that waiting after even a single dispatch can be “redistributed” such that there is waiting after every

dispatch; the proof is deferred to Appendix A.

Lemma 1. Consider an area A > 0 and an associated feasible policy P =
(
(t1,τ1), . . . ,(tD,τD)

)
. If P

involves waiting, there exists a feasible policy P̂ =
(
(t̂1, τ̂1), . . . ,(t̂D, τ̂D)

)
serving A that includes waiting

after every dispatch d ∈ [D].

If a policy involves waiting after every dispatch, constraints (1c) and (1d) hold strictly. Thus, the area A

can be increased slightly while keeping the solution feasible. The next theorem follows from this idea.

Theorem 2. Let D≤ Dmax(ρ). Any optimal D-dispatch policy for AD(ρ) does not involve waiting.

Proof. Let AD(ρ) > 0 and let P =
(
(t1,τ1), . . . ,(tD,τD)

)
be an associated optimal D-dispatch policy that

involves waiting. By Lemma 1, there exists some optimal D-dispatch policy P̂ =
(
(t̂1, τ̂1), . . . , (t̂D, τ̂D)

)
that

includes waiting after every dispatch. By the continuity of fρ , there exists some ε > 0 such that P̂ is feasible

for an area AD(ρ)+ ε , a contradiction.

Therefore, when A = AD(ρ), constraints (1c) and (1d) hold at equality. This result is consistent with

other SDD contexts (Klapp et al. 2018b, Stroh et al. 2021), where we expect the vehicle to operate continu-

ously until the end of the service day once it makes its first dispatch. A direct consequence of the theorem is
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Figure 3: No-wait dispatching policy satisfying conditions (a) and (b) of Theorem 3

T0 N

that, at optimality, t1 = τ1 and the last dispatch returns to the depot exactly at T . As in Lemma 1, if t1 > τ1,

the first dispatch can depart earlier to introduce waiting before the second dispatch, so the policy (and asso-

ciated area) cannot be optimal. The next theorem, proved in Appendix A, leads to a full characterization of

policies that maximize the zone area when at most Dmax dispatches are allowed.

Theorem 3. Let D≤ Dmax(ρ). If AD(ρ) =A+
Dmax

(ρ), the optimal D-dispatch policy satisfies the following

conditions:

(a) each dispatch takes all accumulated, unserved orders at the time of departure, and

(b) the final dispatch departs at N.

Equivalently, when A =AD(ρ) =A+
Dmax

(ρ), constraints (1b) hold at equality.

Figure 3 illustrates an example of a dispatching policy that satisfies the conditions in Theorems 2 and 3.

We next discuss how to find such policies and their uniqueness.

3.3 Calculating maximum zone areas

We define a new function gρ(A, t) for all A > 0 and t ≥ 2ρ as follows: if fρ(A,τ) = t, then gρ(A, t) = τ . In

other words, given an area A and a total dispatch duration t, gρ(A, t) is the accumulation time of the dispatch.

The function has a closed-form expression; when fρ(A,τ) = 2ρ +βA
√

τ ,

gρ(A, t) =
(

t−2ρ

βA

)2

. (3a)

When fρ(A,τ) = 2ρ +βA
√

τ + γAτ and γ > 0,

gρ(A, t) =

(
−βA+

√
(βA)2 +4γA(t−2ρ)

2γA

)2

. (3b)

A short derivation of both expressions appears in Appendix A. By definition, for a fixed t, gρ is monotoni-

cally decreasing in A. Additionally, for a fixed A, gρ is monotonically increasing in t.
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Define f (0)ρ (A,τ) = τ and f (d)ρ (A,τ) = fρ(A, f (d−1)
ρ (A,τ)) for all d ≥ 1; f (d) is the duration of the d-th

dispatch when the first dispatch occurs at time (and accumulates) τ . Similarly, define g(0)ρ (A, t) = t and

g(d)ρ (A, t) = gρ(A,g
(d−1)
ρ (A, t)) for all d ≥ 1; here, g(d) is the accumulation time for the (D− d + 1)-th

dispatch when the D-th (final) dispatch duration is t. A D-dispatch policy that satisfies the conditions in

Theorems 2 and 3 has τD = g(1)ρ (A,T −N), τD−1 = g(2)ρ (A,T −N), and so on. Because the sum of all

accumulation times is N, the associated area A must satisfy

D

∑
d=1

g(d)ρ (A,T −N) = N. (4)

The quantity ∑
D
d=1 g(d)ρ (A,T −N) is continuous and monotonically decreasing in A, so (4) can have at most

one solution. Indeed, when 2Dρ < T and 2ρ < T −N, the area can be chosen such that ∑
D
d=1 g(d)ρ (A,T −N)

is arbitrarily small or arbitrarily large. Thus, for a given feasible D, there is exactly one policy and associated

area that satisfies the conditions in Theorems 2 and 3, which we can find by numerically solving (4).

Suppose now thatAD(ρ) =A+
D(ρ); the zone area is maximized for exactly D dispatches when at most D

dispatches are allowed. Then, an additional consequence of these results allows us to easily verify, without

solving (4), whether the area A+
D(ρ) can be feasibly served with exactly D+1 dispatches. The proof of the

following result is contained in the appendix.

Proposition 4. Consider D≤Dmax(ρ)−1. AssumingAD(ρ) =A+
D(ρ), thenAD+1(ρ)≥A+

D(ρ) if and only

if
D

∑
d=1

f (d)ρ (A+
D(ρ),0)≤ N. (5)

Suppose condition (5) does not hold. Then, for any D′ > D,

D′

∑
d=1

f (d)ρ (A+
D(ρ),0)≥

D

∑
d=1

f (d)ρ (A+
D(ρ),0)> N.

It follows that, if A+
D(ρ) =AD(ρ) and AD+1(ρ)<A+

D(ρ), then AD′(ρ)<A+
D(ρ) for all D′ > D. We may

therefore conclude that, for a given ρ , the optimal areas are non-decreasing in the number of dispatches until

some optimal D∗, after which AD∗(ρ)>AD′(ρ) for all D′ ∈ {D∗+1, . . . ,Dmax}. Thus, the problem of cal-

culatingA+
Dmax

(ρ) is equivalent to finding D∗ and the corresponding areaAD∗(ρ). Algorithm 1 consolidates

our results into an iterative root-finding procedure for solving the zone area maximization problem. For a
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given ρ and maximum number of dispatches Dmax, the algorithm calculates A+
Dmax

(ρ) by determining D∗

and the corresponding area AD∗(ρ).

Algorithm 1: Determining maximum zone area with at most Dmax dispatches
Input : N, T , ρ , Dmax, Dmax(ρ), and dispatch time function fρ(A,τ)

Output: optimal number of dispatches D∗ and corresponding area A+
Dmax

(ρ) =AD∗(ρ)

1 initialize A1(ρ) =
T−N−2ρ

γN+β
√

N
and D∗ = 1

2 for D = 2, . . . ,Dmax(ρ) do

3 if ∑
D−1
d=1 f (d)ρ (AD−1(ρ),0)≤ N then

4 set AD(ρ)← A s.t. ∑
D
d=1 g(d)ρ (A,T −N) = N

5 set D∗← D

6 else

7 break

8 set A+
Dmax

(ρ)←AD∗(ρ)

The specific method used to solve ∑
D
d=1 g(d)ρ (A,T −N) = N for A should be chosen with parameters

appropriately tuned to ensure numerical precision. While we have proven the mathematical correctness

of Algorithm 1 in theory, numerical root finding methods in practice are correct within a certain toler-

ance. This tolerance should be negligible relative to the range of areas under consideration. We use the

scipy.optimize.brenth method in Python (Brent 1973, SciPy 2019) with the default absolute tolerance

of 2× 10−12. The scipy.optimize.brenth method, like many other root-finding routines, requires the

user to provide lower and upper bounds on the value of A that solves the equation. A suitable lower bound

on this area is A1(ρ); we next discuss an upper bound.

In order to obtain an absolute limit on the area a vehicle can serve under any circumstances, we consider

the limiting behavior of A+
Dmax

(ρ) as Dmax → ∞, and whether this limit is bounded. Consider the limit

limD→∞AD(ρ); for all ρ > 0, this limit is equal to zero because we violate the condition 2Dρ < T when

D is sufficiently large. Therefore, a finite D̂ maximizes AD(ρ), and this quantity is bounded above by

A+
D̂
(0). When ρ = α = 0, the D-dispatch policy associated with AD(0) is also feasible for AD+1(0) if an

additional dispatch with zero quantity is appended. Hence,A1(0)≤A2(0)≤A3(0)≤ ·· · by induction, and

A∞ = limD→∞AD(0) = limDmax→∞A+
Dmax

(0) is nonzero.

It can be easily seen that A∞ is finite. For any number of dispatches D and area A, a lower bound for

the total dispatch time across all dispatches is γAN +βA
√

N by the concavity of fρ for fixed A. Because
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all dispatches must take place in the time interval [0,T ], it follows that AD(ρ)≤ T
γN+β

√
N

for any ρ and D.

Therefore, A∞ is bounded above by this finite quantity as well. By our previous results, A∞ is the unique

area that satisfies
∞

∑
d=1

g(d)0 (A∞,T −N) = N. (6)

While this series likely has no closed form (even when γ = 0), we empirically observe that the terms of

the series rapidly approach zero, and A∞ can be accurately estimated using only the first few terms of the

series; in our experience, the effect of using more than eight to ten terms is negligible. Additionally, for

all D, AD(ρ) is bounded above by AD(ρ − ε) for all ε ∈ [0,ρ]. It follows that, when ρ > 0, the limit

limDmax→∞A+
Dmax

(ρ) =A+
D̂
(ρ) is similarly finite and bounded above by A+

D̂
(0)< A∞.

Figure 4 presents optimal area functions for two different parameter settings with T = 100 for all ρ such

thatA1(ρ)> 0. For each D≤ 4, the functionAD(ρ) is plotted for all ρ such that using exactly D dispatches

induces a greater maximum area than using fewer than D dispatches. For each D, the smallest value of ρ for

which using exactly D dispatches is no longer strictly preferable to using less than D dispatches is marked

on the horizontal axis in the corresponding color. For example, in the first plot, using exactly four dispatches

does not induce a greater maximum area than using three dispatches when ρ ≥ 4.25; this cutoff is marked

Figure 4: Optimal area function examples
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in red on the horizontal axis.

When α > 0, we compute the optimal area functions by first assuming α = 0 and calculating optimal

areas as above, then shifting the functions to the left by α

2 . In the first case with α = 0, we estimate

A∞ by approximating the infinite series in (6) with its first ten terms. We observe well-behaved, although

not necessarily linear, area functions. The optimal area functions also exhibit diminishing returns as more

dispatches are added. When the functions AD(ρ) and AD+1(ρ) intersect, they do so at the point (ρ,A)

where

D

∑
d=1

g(d)ρ (A,T −N) =
D+1

∑
d=1

g(d)ρ (A,T −N) = N.

We also observe a relationship between N and the optimal number of dispatches. In the first case, where

N = 60, A2(ρ) > A1(ρ) for all ρ . In the second case, where N = 70, A3(ρ) > A2(ρ) > A1(ρ) for all ρ .

We close our discussion with two related results that generalize this observation. Proofs of these results are

deferred to Appendix A.

Proposition 5. Let 2≤ D≤ Dmax(ρ), and suppose AD(ρ) =A+
Dmax

(ρ).

(a) If N
T > D

D+1 , the accumulation times of the optimal D-dispatch policy are monotonically decreasing.

(b) If N
T = D

D+1 , the accumulation times of the optimal D-dispatch policy are all equal to N
D .

(c) If N
T < D

D+1 , the accumulation times of the optimal D-dispatch policy are monotonically increasing.

Proposition 6. For any D≥ 2, N
T ≥

D−1
D if and only ifAD(ρ)>AD−1(ρ)> · · ·>A1(ρ) for all ρ satisfying

2ρ < T −N.

3.4 Time-varying order rates

Until this point, we assume that the order arrival rate is a constant λ = 1. We briefly discuss a generalization

of this setting. Suppose instead that customers are more likely to place SDD orders later in the day, when

the delivery time guarantee T is closer to their time of order; this applies, for example, if we assume SDD

demand is driven by customers’ desire for shorter turnaround times. It follows that customers are more

likely to place SDD orders closer to the cutoff time N.

Mathematically, we represent this customer behavior via an order rate function. For all t ∈ [0,N], the

order rate per unit time per unit area within the region is given by λ (t); the function is assumed to be non-
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decreasing over time, strictly positive, and integrable. In this setting, it can be shown that area-maximizing

policies are structurally identical to those implied by Theorems 2 and 3.

Theorem 7. Assume λ (t) is non-decreasing, strictly positive, and integrable. Let D≤Dmax(ρ). IfAD(ρ) =

A+
Dmax

(ρ), the optimal D-dispatch policy satisfies the following conditions:

(a) the policy does not involve waiting,

(b) each dispatch takes all accumulated, unserved orders at the time of departure, and

(c) the final dispatch departs at N.

The motivation and justification for Theorem 7 mirror those in the original constant-rate setting. We defer

the technical discussion of this result, including its proof, to Appendix B for brevity. Theorem 7 implies an

efficient method, analogous to Algorithm 1, for calculating A+
max(ρ), also detailed in Appendix B.

3.5 Fleet sizing

We now return to the problem of determining the minimum number of vehicle zones needed to serve the

service region R when each vehicle can make at most Dmax dispatches over the course of the service day.

For all points r ∈ R, let ρr denote the travel time from the depot to r. Because the maximum total area of a

zone centered at r is A+
Dmax

(ρr), we intuitively require at least 1/A+
Dmax

(ρr) vehicles to serve a sub-region of

unit area centered at r. Thus, the fleet size implied by the continuous approximation model is given by the

value of the following integral evaluated over the service region (Erera 2000, p. 154):

VCA =
∫

r∈R

1
A+

Dmax
(ρr)

dr. (7)

To this point, we have assumed orders arrive continuously and deterministically in order to model average-

case system behavior. In practice, however, order arrivals are stochastic and discrete. Using more than

VCA vehicles leads to an average zone size less than A+
Dmax

(ρ) in the resulting partition, increasing the

overall robustness of the system. On the other hand, using fewer than VCA vehicles leads to an average zone

size greater than A+
Dmax

(ρ) and will likely require adjusting other parameters (e.g., shifting the order cutoff

time earlier) to meet service level requirements and customer expectations on average. The exact fleet size

should be determined on a case-by-case manner, with VCA as a guideline, based on the preferences of system

managers and the cost of operating vehicles. We use ⌈VCA⌉ vehicles in our computational studies.
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4. Partitioning
We now discuss how to apply our results from the previous section to partition a service region R into vehicle

zones, using weighted centroidal Voronoi tessellation (WCVT) schemes (Galvão et al. 2006, Ouyang 2007).

For notational convenience, define the function A(·) for all points r ∈ R as A(r) = A+
Dmax

(ρr). Given

an integer number of vehicles m, where m is determined using (7) as a guideline, we are interested in

constructing a balanced partition of the region into m compact zones. Analogous to similar contexts where

relative load is defined with respect to restrictions on vehicle capacity or driver working time, we interpret

the load of a zone relative to its maximum possible area. Formally, we define the centroidal load factor

(CLF) of a zone Z as area(Z)/A(centroid(Z)). Our goal is to approximately balance the zone CLFs across

R, as measured by all CLFs falling within a user-defined interval [CLFmin,CLFmax] (e.g., [0.91,0.99]).

As a result, the area of each zone Z will not correspond exactly to A(centroid(Z)). For practical pur-

poses, it is impossible to create m zones each with a CLF of exactly 1, because it is unlikely that m=VCA ∈Z

unless a synthetic instance was constructed explicitly for that purpose. In addition, by allowing a small in-

terval for CLFs rather than requiring an exact number, we obtain more compact zones compared to when

we require an exact balance.

Voronoi-type tessellations create zones by assigning to each generator point r the set of all points that

are closer to r than to any other generator. An approximate WCVT can be constructed by selecting initial

generator points, then iteratively updating zones, weights, and generator points until zone centroids and

generator points approximately coincide. We first describe a method for selecting initial generator points,

followed by an iterative WCVT procedure for approximately balancing loads.

4.1 Initial generator locations

To select initial generator locations, we use an “automated sliding procedure” similar to that proposed in

Ouyang (2007) and Ouyang and Daganzo (2006); these studies focus on balancing customer demand across

zones rather than CLF. Aside from various algorithmic parameters, which we describe and motivate next,

the inputs to this method are the region R, maximum area function A(r), and the number of zones/vehicles

m. We summarize our version of the method here and defer additional examples and further discussion to

the aforementioned references.

We consider m closed balls or disks (circles in the Euclidean metric, diamonds in the rectilinear metric)

C1, . . . ,Cm located within the service region R, with corresponding centers c1, . . . ,cm, where the area of each
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disk is proportional to A(ci). We seek to pack the disks into the region without overlap by sliding the disks

based on two kinds of repulsive “forces”.

Figure 5: Repulsive forces on
disks for automated sliding

procedure

(a) Directions of disk overlap
forces

(b) Direction of boundary
force

The first type of force occurs when two disks overlap. We quantify

the degree of overlap between two disks Ci and C j by

σi j = 1−
∥∥ci− c j

∥∥
radius(Ci)+ radius(C j)

. (8)

The magnitude of the repulsive force between two disks is a nonnega-

tive increasing function v(σ) of their degree of overlap, with v(σ) = 0

for σ ≤ 0. As in Ouyang and Daganzo (2006), we take v(σ) to be lin-

ear for σ > 0 with limσ↓0 v(σ) > 0. These repulsive forces act along

the axis through the centers of both disks, as illustrated in Figure 5a.

The second kind of force occurs when part of a disk protrudes outside

of the region boundary. For a disk Ci, if Ci \R ̸= ∅, a repulsive force

along the axis through centroid(Ci\R) and ci pushes the disk back into

R, as illustrated in Figure 5b. The magnitude of this boundary force,

when it occurs, is always set to (m+ 1) · v(1) to ensure that overlap

forces never push disks completely outside of R.

The sliding of the disks proceeds iteratively. In each iteration,

forces are calculated, disks are moved a small distance based on a step-size parameter µ , and areas are

updated based on the new locations of the disk centers. As recommended by Ouyang and Daganzo (2006),

we decrease the step size by a multiplicative factor of ∆µ at each iteration (i.e., µ← µ ·∆µ , where 0≪ ∆µ <

1), although constant step sizes may be used as well. The algorithm terminates when the maximum overlap

between any two disks is within a user-defined tolerance σmax and no disks extend outside of the region.

As in Ouyang and Daganzo (2006), we additionally include a shrinkage coefficient κ by which all disk

areas are scaled; i.e., the area of a disk at a point r is κ ·A(r). This ensures the eventual termination of the

procedure, since disk overlaps vanish if κ is sufficiently small. If we do not find a solution in pmax iterations,

we reduce κ by performing the update κ ← κ ·∆κ (where 0≪ ∆κ < 1), reset µ to its initial value µ0, and

continue. The initial shrinkage coefficient κ0 should depend on the ratio of m to VCA. If m > VCA, using

κ0 = 1 is sufficient; otherwise, a value of κ0 larger than VCA/m should be used. Finally, we might also
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encounter instances where overlapping disks stop moving due to opposing balanced forces (such solutions

are referred to as “singular points” (Okabe et al. 2000) or “degenerate locations” (Ouyang and Daganzo

2006)). We add a small random perturbing force to each disk at each iteration to prevent this occurrence.

Algorithm 2 formalizes the full method. For notational convenience, unif(x,y) denotes a function which

generates a value uniformly at random in the interval [x,y]. Additionally, norm(⃗x) denotes a function which

normalizes the two-dimensional direction vector x⃗ to have unit magnitude.

Algorithm 2: Initial generator location selection
Input : κ0,∆κ ,µ0,∆µ ,σmax, pmax,εmax, region R, maximum area function A(r), number of zones

m, force function ν(σ)

Output: generator locations c1, . . . ,cm

1 initialize disk centers c1, . . . ,cm randomly within R

2 initialize p = 0, κ = κ0,µ = µ0, disks Ci with centers ci and areas A(ci) for all i ∈ [m]

3 while (maxi, j{σi j}> σmax) or (
⋃m

i=1Ci \R ̸=∅) do

4 set p← p+1

5 for disks i ∈ [m] do

6 for j ∈ [m]\{i} do

7 set ϕ⃗i j← norm(ci− c j) // direction of overlap force

8 if Ci \R ̸=∅ then

9 set ψ⃗i← norm(ci− centroid(Ci \R)) // direction of boundary force

10 else

11 set ψ⃗i← (0,0)

12 set F⃗(i)← (m+1) ·ν(1) · ψ⃗i +∑ j ̸=i ϕ⃗i jν(σi j)+
(

unif(−εmax,εmax),unif(−εmax,εmax)
)

13 set ci← ci +µ · F⃗(i) for all i ∈ [m] // update disk centers

14 if pmod pmax = 0 then

15 set κ ← ∆κ ·κ , µ ← µ0, p = 0

16 else

17 set µ ← ∆µ ·µ

18 update disk areas as κ ·A(ci) for all i ∈ [m]

19 update σi j for all i, j ∈ [m], i ̸= j via equation (8)

The resulting configuration of disk centers exhibit spacing between each other and with the boundaries

of the region. The final value of κ represents the factor by which all zones have been scaled down relative to
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their maximum area. Figure 7a in Section 5 shows an example output of this algorithm. These disk centers

are used as initial generator locations for the WCVT balancing procedure, which we discuss next.

4.2 Balancing zone loads

Simply creating a standard Voronoi partition from the output of the sliding procedure does not guarantee that

the CLFs of the resulting zones are within the desired interval [CLFmin,CLFmax]. We employ an iterative

WCVT load balancing procedure (Galvão et al. 2006, Ouyang 2007) to refine the solution.

This procedure requires the service region R to be discretized into small disjoint “blocks” B1, . . . ,Bℓ.

A simple approach is to discretize the region as a uniform grid, which we do in our computational studies

with 0.1 mile× 0.1 mile squares. Blocks defined in geographical surveys (e.g. Rossiter 2011) may also

be appropriate. Finer discretizations (i.e., with larger ℓ) allow for more detailed zone boundaries while

increasing the computational time required. The choice of ℓ and the discretization is ultimately left to the

system manager. Aside from various algorithmic parameters, which we describe and motivate next, the

inputs to the procedure are these blocks B1, . . . ,Bℓ with corresponding centroids b1, . . . ,bℓ, initial generator

locations c1, . . . ,cm, and the maximum area function A(r).

At each iteration, we create zones by assigning blocks to generators based on the distance between block

centroids and generators, scaled by a quantity proportional to the zone’s weight and inversely proportional

to the zone’s maximum area. After each iteration, weights and generator locations are updated. A zone’s

weight is increased if its area in the previous iteration was too large and decreased if its area in the previous

iteration was too small relative to its “ideal” area — its area if every zone had equal CLF — and the area of

other zones. Each generator is also moved slightly closer to its associated zone’s centroid. Both updates use

a constant step parameter η , where 0 < η ≪ 1. As the process evolves, generator locations approximately

converge to their corresponding zone centroids and CLFs approximately balance across zones.

Minimally, any solution should require that zones are connected. While the WCVT zones produced in

any given iteration are not guaranteed to be connected, we empirically observe that disconnected components

are rare, very small compared to the primary component, and organically rapidly removed by weight and

centroid changes in the balancing algorithm. We additionally use the following stopping criteria:

(i) all zone CLFs falling within the user-defined interval [CLFmin,CLFmax], and

(ii) the maximum distance between any zone’s generator and centroid being less than a user-defined δ .
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The first measures balance across zones, while the second criteria signals a degree of convergence of the

process. From a managerial perspective, it may additionally be useful to observe and compare intermediate

solutions as the process evolves. In our two computational studies, we use condition (i) with CLF intervals of

[0.91,0.99] and [0.89,0.94], respectively. To this end, we include soft lower and upper bounds Θ−≤CLFmin

and Θ+ ≥ CLFmax to speed up convergence. For a zone Zi with generator zi, if area(Zi)/A(zi) > Θ+,

the zone’s weight is increased by θ+, and if area(Zi)/A(zi) < Θ−, the weight is decreased by θ−, where

0 ≤ Θ− < Θ+ ≤ 1, 0 < θ−≪ 1, 0 < θ+≪ 1. We also use condition (ii) with a maximum distance of 0.1

miles in both studies. Algorithm 3 formalizes the full method.

We close our methodological discussion with an overall summary of the hierarchy of the two steps in

our approach: fleet sizing followed by partitioning. With inputs N, T , α , β (which may require estimation

Algorithm 3: WCVT zone CLF balancing
Input : CLFmin,CLFmax,δ ,η ,Θ−,Θ+,θ−,θ+, number of zones m, initial generator locations

{c1, . . . ,cm}, maximum area function A(r), blocks {B1, . . . ,Bℓ}

Output: SDD zones Z1, . . . ,Zm

1 initialize generator location zi← ci and weight wi = 1 for all i ∈ [m]

2 while (∃ disconnected zone ) or (∃i ∈ [m] s.t. CLF(Zi) /∈ [CLFmin,CLFmax]) or

(maxi{∥zi− centroid(Zi)∥}> δ ) do

3 set Zi←∅ for all i ∈ [m]

4 set ai←
A(zi) · area(R)

∑
m
j=1A(z j)

for all i ∈ [m] // area if all zones had equal CLF

5 for k ∈ [ℓ] do

6 set i∗← argmini∈[m]

{
wi

ai
∥zi−bk∥

}
// find block’s closest generator

point, adjusted for weight and max area

7 update Zi∗ ← Zi∗ ∪Bk // add block to corresponding zone

8 update zi← (1−η)zi +η · centroid(Zi) for all i ∈ [m] // update generators

9 for i ∈ [m] do

10 update wi← (1−η)wi +η · area(Zi)

ai
// update weight

11 if area(Zi)/A(zi)> Θ+ then

12 update wi← wi +θ+

13 else if area(Zi)/A(zi)< Θ− then

14 update wi← wi−θ−
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beforehand), γ , ρ , and Dmax, our area maximization procedure calculates A+
Dmax

(ρ); this allows the fleet

sizing procedure to output an approximate minimum number of vehicles required VCA. We then characterize

the maximum area at any point r in the region by the function A(r) =A+
Dmax

(ρr), which further allows us to

define the load at each point r as 1/A(r). Defining load in this way permits us to adapt existing partitioning

methods — of which there are many — to our setting. The specific partitioning procedure we use in this

paper requires the inputs listed in Algorithms 2 and 3, including a number of desired zones m chosen using

VCA as a guideline; it outputs a partition of the region into m disjoint single-vehicle zones.

5. Computational Study
We empirically test our approach in two computational studies to evaluate the model’s approximations and

predictions. We simulate SDD operational settings in which orders arrive according to a Poisson point

process, and where exact vehicle routing times are computed based on order delivery locations. In our first

study designed on a synthetic instance, we consider a region with homogeneous rectilinear vehicle travel

and a constant order rate over time. In our second study, we demonstrate how our approach can be adapted

to a realistic case study in a real-world metropolitan area, with inhomogeneous vehicle travel time and a

time-varying order rate over the course of the service day, as described in Section 3.4.

During the tactical design stage, the cutoff N and deadline T are fixed. However, due to the stochastic

nature of order arrivals in practice, it is impossible to guarantee that all orders accumulated by the cutoff

can be feasibly served by the deadline. Therefore, at the operational level, at least one of these parameters

must be flexible. As in many recent operational SDD studies (e.g., Chen et al. 2021b,a, Klapp et al. 2018a),

we consider the vehicle return deadline T to be inviolable at the operational level. We instead allow for

dynamic cutoff time adjustments in our operational simulations. We consider the tactical cutoff time N

to be a target (possibly representing the cutoff time advertised to customers), and compare the simulated

operational cutoff times to this target. We use ⌈VCA⌉ vehicles to create service region partitions; therefore, if

our approach is valid, we expect orders to be cut off slightly later than N on average at the operational level.

Each of the two studies demonstrates a different approach for empirically deriving routing functions.

We compute the fleet sizing integrals numerically in Python 3.7.3 by the method of Xiao and Gimbutas

(2010), as implemented in the quadpy library (Schlömer 2020), on polygonal service regions triangulated

with the tripy library (Bolgert 2019). We create the service region partitions in MATLAB R2019b, and we

calculate optimal TSP solutions with an arc-based integer programming formulation implemented in Gurobi
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9.0.1 via Python. In our second study, we use the open source tools VeRoViz (Peng and Murray 2020) and

Openrouteservice to generate customer locations and calculate travel times on the road network.

5.1 Synthetic Experiment

We first consider a service region with a total area of 194.5 square miles. The depot is located in the

southwest corner of the region (see Figure 7a). Vehicle travel is given by the rectilinear (Manhattan) metric.

We assume a vehicle speed of 25 miles per hour (mph), a setup time per dispatch of five minutes, and a

per-order service time of 2.5 minutes.

To develop dispatch time functions for the tactical model, we require a suitable BHH routing constant

β , the expected ratio between the length of the TSP tour and the square root of the number of stops n in

a region of unit area (Beardwood et al. 1959). The rectilinear BHH constant is empirically estimated as

0.8943 by Johnson et al. (1996) for large n. However, it is helpful to build an estimate more appropriate for

scenarios — such as ours — where the number of locations to be visited by any tour is likely to be relatively

small. Within a diamond-shaped zone, our empirical estimates of the BHH constant range from 1.1162 for

n = 15 to 0.9841 for n = 90. We use the constant 1.0533 (scaled appropriately) in our dispatch functions,

corresponding to our estimate for n = 30.

The service day extends from 8 AM to 8 PM with a target order cutoff time of 2 PM. Each vehicle is

allowed at most Dmax = 3 dispatches per day. Orders arrive at a rate of two per hour per square mile. To

ensure that the order arrival rate is λ = 1, as in Section 3, we re-scale all parameters to be measured in

increments of 30 minutes. Figure 6 displays the resulting dispatch time function, re-scaled time parameters,

and optimal area functions for up to three dispatches per vehicle. The continuous approximation fleet size

guideline is VCA = 17.13 vehicles for Dmax = 3. For comparison, the fleet size guidelines are 25.64 and 17.75

for Dmax = 1 and 2, respectively. We partition the service region into ⌈VCA⌉= 18 single-vehicle zones.

Figure 6: Maximum area functions, first computational study
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Figure 7: Service region partitioning, first computational study (axes’ coordinates in miles)

(a) Output of sliding procedure (b) Zones shaded by expected orders, 8AM to 2 PM

The automated sliding procedure terminated after 2,705 total iterations in just under 49 seconds of

runtime with a final shrinkage coefficient of κ = 0.5730. The disk centers of the resulting output, shown in

Figure 7a, are used as the initial WCVT generator locations. To construct the partition, the service region

was discretized into 19,625 blocks via a grid comprised of 0.1 mile× 0.1 mile squares. We stopped the

WCVT balancing process when every zone was connected, all CLFs fell within the range [0.91,0.99], and

the largest distance between any zone’s generator and centroid was below 0.1 miles. The process terminated

after 50 iterations in 6 minutes, 32 seconds of runtime. Table C1 in Appendix C lists the input parameters

used in both phases of the partitioning procedure, and Table C2 in Appendix C records the evolution of the

WCVT process.

Note that the final average centroidal load factor of 0.9483 nearly coincides with the ratio between

the minimum suggested fleet size and the actual fleet size used, VCA/18 ≈ 0.9516. Individual zone areas

range from 8.18 square miles to 14 square miles (corresponding to zones 14 and 1, respectively). Figure 7b

illustrates the final partition with zones shaded by their expected number of orders placed by 2 PM (i.e., the

zone’s area multiplied by N). In order to minimize expected total dispatch cost, we determine the number

of dispatches for each vehicle to be the minimum D such that the associated zone area is at least AD(ρ). In

this case, the maximum area functions imply that zones farther from the depot require fewer dispatches to

serve their area. The vehicles serving zones 1, 2, 3, 5, 6, 10, and 15 must dispatch three times each (i.e., the

zones’ areas exceed A2(ρ)). The remaining zones only require dispatching twice daily.
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5.1.1 Simulation results

To study the performance of the tactical partition at the operational level, we now assume that orders arrive

at the same rate but as a uniform Poisson point process over the service region. Our operational policy for

a single-vehicle zone, which mimics the structure of the tactical area-maximizing policies discussed earlier,

is defined as follows.

Consider the perspective of a dispatcher at the start of the service day; specifically, suppose that the

zone’s vehicle is designated to dispatch three times daily and serves an area A. Denote the set of accumulated

unserved orders as I; at t = 0, I =∅. Also, let TSP(I∪{0}) denote the duration of a tour through the depot

and all points in I, including setup and per-order service times. As the day progresses, order requests arrive

and I grows. Each time an order arrives, the dispatcher re-calculates TSP(I∪{0}). Using the zone’s routing

function to estimate future tour durations, the dispatcher first dispatches the vehicle to serve I at a time χ1

so that the vehicle’s expected final return to the depot occurs at the deadline. Formally, the dispatcher solves

χ1+TSP(I∪{0})+ fρ

(
A,TSP(I∪{0})

)
+ f (2)ρ

(
A,TSP(I∪{0})

)
= T for χ1. Occasionally, an order request

may arrive at a time t such that t +TSP(I ∪{0})+ fρ

(
A,TSP(I ∪{0})

)
+ f (2)ρ

(
A,TSP(I ∪{0})

)
> T . In

such a case, the vehicle is dispatched immediately at χ1 = t without serving this newest request on the first

dispatch. The orders served by the first dispatch (all except potentially the last arriving) are removed from I.

A similar process is repeated by the dispatcher to calculate the dispatch time χ2 for the second dispatch.

The vehicle obviously cannot depart on its second dispatch prior to returning to the depot from its first

dispatch at some time χ
+
1 . Thus, at the time of the vehicle’s return, if χ2 +TSP(I ∪{0})+ fρ

(
A,TSP(I ∪

{0})
)
≥ T , the vehicle departs on its second dispatch immediately at χ

+
1 with all orders in I. Otherwise, the

dispatcher again re-calculates TSP(I∪{0}) whenever more arrive, and instead solves χ2 +TSP(I∪{0})+

fρ

(
A,TSP(I ∪ {0})

)
= T to determine the second order time. As before, an order that would push the

expected final return time past T is left behind.

An analogous process is followed by the dispatcher to determine χ3, solving the equation χ3 +TSP(I∪

{0}) = T after the second dispatch’s return at χ
+
2 if required, with a slight modification. For the final

dispatch, if an order arrives that would require the vehicle to return after the 8 PM deadline, the order is

not offered same-day delivery service and the vehicle departs immediately if it is at the depot. The time of

this service rejection (or the time of the vehicle’s final dispatch, if no such rejection occurs) represents the

dynamically adjusted operational order cutoff time for the zone, which may occur before or after the tactical
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target cutoff time of 2 PM. The operational cutoff time necessarily varies across zones and from day to day,

reflecting the operational necessities of a system with a inviolable end-of-day deadline T . An analogous

operational policy is used for the two-dispatch zones.

We simulate a total of 100 service day realizations using this operational policy, and we record the

number of orders served and the cutoff time for each zone and each day. We summarize key results here

and include additional data in Appendix C. The expected number of daily orders placed within the service

region between 8 AM and 2 PM is approximately 2,334. In our simulations, the operational policy serves

about 2,469 orders per day on average, an improvement of approximately 5.77% relative to the expected

quantity. For each zone, Figure 8 displays the ratio between the daily average quantity served and the

expected quantity served versus the zone’s CLF. The value of this ratio is greater than one for each zone,

indicating that each vehicle serves at least its expected number of orders on average. A downward trend in

the value of this ratio is evident as the zone CLFs increase.

Figure 8: Ratios between average quantity served and expected quantity served, first computational study
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The cutoff time used for tactical planning is 2 PM. In our simulations, the mean operational cutoff time

was 2:22 PM across zones. Each zone cuts off orders at or later than 2 PM an average of 86.56 days (of the

100 service days simulated). Figure 9 plots the average cutoff time by zone versus CLF; a downward trend

is once again evident, and each zone cuts off orders later than 2:11 PM on average. These results suggest

that our efficient tactical fleet sizing and partitioning approach produces quality solutions that exceed cutoff

time targets on average. Additional data is included in Appendix C.

5.1.2 A posteriori operational bound

We have shown, using a fairly simple operational dispatching policy, that our tactical design scheme per-

forms well in practice. While not a focus of this work, more sophisticated operational vehicle dispatching
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Figure 9: Average order cutoff times, first computational study
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policies may provide improved results in terms of routing cost or orders served. As we discuss in Section 2,

many recent studies focus on operational dispatching policies in the SDD context under various assumptions

(e.g., Côté et al. 2019, Klapp et al. 2018a, Ulmer et al. 2019b, Voccia et al. 2019). We next briefly consider

the question of benchmarking our operational policy against potential improved policies.

Recall that, like our tactical policies, our operational policy does not group orders geographically: at

every dispatch departure time, the vehicle departs with all accumulated unserved orders regardless of each

order’s delivery location within the zone. To benchmark our operational policy, we compute a “hindsight-

optimal” upper bound on the number of orders served within each zone. For each daily realization and each

zone, we assume the dispatcher knows in advance the time each potential order is placed as well as the

order’s delivery location. With this information, we seek to maximize the number of orders served over the

course of the service day with a fixed number of dispatches (as prescribed by our tactical model). To reflect

the notion of an order cutoff time, we include an additional constraint: if an order is served, all earlier orders

within the zone must also be served.

For every daily realization, we solve the hindsight-optimal problem for zones 1, 3 (the largest and small-

est three-dispatch zones, respectively), 11, and 14 (the largest and smallest two-dispatch zones, respectively).

We use the best upper bound on the objective after 30 minutes as an a posteriori bound on the quantity of

orders served. We include our MIP formulation of this a posteriori problem with additional computational

details in Appendix C. For each zone, Table 1 reports the average quantity served by our operational policy,

the average objective value of the best integer-feasible solution found during the optimization, and the aver-

age best upper bound on the objective. We also report the average and standard deviation across realizations

of the gap between the operational policy and upper bound as well as the best solution and upper bound (i.e.,
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Table 1: A posteriori upper bounds

Average quantity served Operational-UB gap Best solution-UB gap

Zone D
Oper.

policy

Best

solution

Upper

bound
Avg. Std. dev. Avg. Std. dev.

1 3 175.97 176.03 201.33 14.42% 3.02% 14.39% 3.01%

3 3 143.89 143.96 157.53 9.54% 2.87% 9.49% 2.90%

7 2 136.17 136.45 138.73 1.88% 1.27% 1.67% 1.31%

14 2 105.85 106.80 107.85 1.87% 1.75% 0.95% 1.58%

the MIP optimality gap).

Figure 10: Fleet size sensitivity, corner depot
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Within the family of operational

policies that use fixed zone boundaries

and a fixed number of dispatches for

each vehicle, these results show that

our policy performs well with respect

to the daily number of orders served.

For the two-dispatch zones, our opera-

tional policy is often optimal, and the

average upper bounds are within 2%

of our operational benchmark. For the

three-dispatch zones, the average bounds are still fairly close to the operational benchmark, with gaps of

under 15% and 10% for zones 1 and 3, respectively. These wider gaps are likely due to the computational

difficulty of finding improved solutions for the relatively larger three-dispatch instances, suggesting that the

true gaps may be significantly lower. These results are consistent with a posteriori bounds calculated with

respect to total dispatch time for similar operational policies, and are also in line with gaps observed by

more sophisticated operational policies (e.g. Klapp et al. 2018a, Stroh et al. 2021).

5.1.3 Sensitivity and managerial insights

The continuous approximation fleet sizing approach facilitates tactical decision-making even without con-

structing partitions and conducting simulations; we illustrate two examples here. System managers may be

interested in the effect of shifting the order cutoff time on fleet maintenance and travel costs. A retailer

that anticipates increased adoption of their SDD service will be interested in how many vehicles they need
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to purchase to keep up with demand. Both questions may be answered by performing sensitivity analyses

using Algorithm 1 and equation (7) to calculate the value of VCA as the cutoff time and order rate are varied

by small increments. Figures 10a and 10b show how the fleet size guideline varies with cutoff time and

order rate, respectively.

5.2 Real-World Case Study

Figure 11: Service region, second
computational study

Until this point, we have assumed that service regions

are geographically homogeneous with respect to vehicle

travel. Our first computational study demonstrates that

the methodological approach presented in Sections 3 and

4 produces high-quality solutions in such homogeneous

regions. However, in some real-world environments,

travel speeds may vary within the region based on the

presence of various types of roads (e.g., highways vs. res-

idential streets). In this second computational study, we

illustrate one potential approach for adapting our meth-

ods to such real-world service regions.

We consider a service region of approximately 46 square miles within Broward County, Florida, depicted

in Figure 11 with the depot location marked. The service day again ranges from 8 AM to 8 PM, but we now

move the tactical order cutoff time to 4 PM. Time units are taken to be minutes, resulting in N = 480 and

T = 720. As in the previous study, we assume a setup time per dispatch of α = 5 minutes and a per-order

service time of γ = 2.5 minutes. Vehicles may dispatch at most Dmax = 3 times per day and travel along

roads at their speed limits. Travel times are asymmetric in general. The order rate per minute per square mile

is given by a non-decreasing function λ (t) illustrated in Figure 12, which is geographically homogeneous.

The average order rate over the interval [0,N] is two orders per hour per square mile as in the previous study.

Our initial goal, as before, is to appropriately characterize the maximum area function for all points

in the region. The particular features of this region, however, require us to slightly adapt our approach

in two ways. First, we empirically observe that the BHH functional form β
√

An no longer provides a

sufficiently accurate approximation for (asymmetric) TSP tour durations. Rather, the growth of the expected

TSP duration (not including setup or per-order service times) with n includes both square root and linear
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components. This is because, for a fixed zone, a greater number of customers implies that the quickest path

between any two consecutive customers on a TSP tour is less likely to involve travel on high-speed major

roads – a phenomenon which is not observed when travel times are simply given by a homogeneous metric.

To correct for this, we instead use dispatch duration approximations of the form 2ρ+α+β
√

An+β linn+γn

for n customers, where β lin > 0. Note that simple rearrangement gives 2ρ +α +β
√

An+(β lin+γ)n, which

maintains the fundamental structure of the previous dispatch time functions. Thus, our stated theoretical

results and algorithms remain valid.

λ (t)

t (min.)
0 120 360 480

1/75

1/30

4/75

Figure 12: Orders per min. per sq. mi.

The region is bounded to the west, east, and south

by highways with vehicle speed limits up to 70 mph. In

contrast, most roads in the region are minor residential

streets with speed limits of 30 mph or lower. Major

non-highway roads are spread throughout the region

with intermediate speed limits. The varying frequency

of different types of roads at different parts of the re-

gion implies that average vehicle speeds also vary be-

tween different parts of the region. As such, assuming identical constants β and β lin throughout the region

could lead to a coarse approximation. We instead estimate routing constants at ten separate representative

points within the region. To define a dispatch function at any other point r, we linearly interpolate between

the routing constants associated with these representative points. Given a dispatch function for any point r,

we can then calculate the maximum area A(r) in the usual fashion.

Specific computational details regarding routing constant estimation and interpolation are provided in

Appendix C. Our approach for fitting dispatch functions in this study was developed specifically for the

region at hand to demonstrate the practical applicability of our theoretical results, and is not necessarily a

prescriptive procedure for use in every region. For example, β lin constants may not always be required to

produce accurate estimations of expected tour duration.

5.2.1 Fleet sizing and partitioning

Once we have defined A(r) across the region, our fleet sizing and partitioning schemes proceed as before.

Integrating 1/A(r) over the region implies a minimum fleet size of VCA = 7.33 vehicles. For comparison,

the fleet size guidelines are 14.37 and 8.35 for Dmax = 1 and 2, respectively. We partition the region into
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⌈VCA⌉= 8 zones. Because most roads in the region are oriented north-south or east-west, we continue to use

diamond-shaped disks in the automated sliding procedure. This procedure terminates in 995 total iterations

in 2 minutes, 7 seconds of runtime with a final shrinkage coefficient of κ = 0.5314. The disk centers of the

resulting output are used as the initial WCVT generator locations.

Figure 13: Partitioned service region, second
computational study

To construct the partition, the region was dis-

cretized into 4,735 blocks via a grid comprised of

0.1 mile× 0.1 mile squares. We stopped the WCVT

balancing process when every zone was connected,

all CLFs fell within the range [0.89,0.94], and the

largest distance between any zone’s generator and

centroid was below 0.1 miles. The process termi-

nated after 57 iterations in 2 minutes, 58 seconds of

runtime. Table C3 in Appendix C records the evo-

lution of the WCVT process, and Table C1 in Ap-

pendix C lists the parameters used in both phases

of the partitioning procedure. The final partition is

illustrated in Figure 13 with zone centroids marked.

Zone areas range from 5.37 to 6.33 square miles. As in the prior study, the final average CLF of 0.9135

nearly coincides with the ratio between the computed minimum fleet size and the actual fleet size used,

VCA/8≈ 0.9165. Unlike the prior study, three dispatches are required to serve each zone.

5.2.2 Simulation results

We again simulate 100 service day realizations with the same operational policy, albeit with asymmetric

TSPs due to the nature of the underlying road network. Customer locations are generated uniformly at

random via VeRoViz and assigned to their closest location on the road network. Distances are calculated

with Openrouteservice via VeRoViz. For the simulated cases in which orders are cut off after N, we assume

that the order rate for all t > N is λ (t) = λ (N) = 4/75 orders per minute per square mile.

Based on our tactical cutoff time of 4 PM, we expect to serve 733 orders per day in the region. In our

simulations, we are able to serve 763 orders per day on average, an improvement of 4.1%. As we would

expect based on zone CLFs, every zone cuts off orders later than 4 PM on average; these average simulated
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cutoff times range from 4:08 PM (zone 7) to 4:23 PM (zone 5). Each zone cuts off orders at or later than

4 PM an average of 72.88 days (of the 100 service days simulated). These results are similar to those of

our first computational study, which demonstrates the practical value of our fleet sizing and partitioning

approach on real-world road networks and when order rates vary over time. Detailed simulation results for

each zone are given in Appendix C.

6. Conclusions
In this paper, we study the tactical problem of partitioning a single-depot SDD service region into single-

vehicle zones. Using continuous approximations on order arrivals and routing times, we first study the

sub-problem of independently maximizing the area of a zone served by a single vehicle. We characterize the

structure of area-maximizing vehicle dispatch policies, which allows for the calculation of maximum zone

areas as a function of the travel time from the zone to the depot. We show how fleet size guidelines can be

derived directly from these optimal area functions. We also demonstrate how optimal area functions can be

used to create feasible partitions of the service region, extending existing partitioning approaches (Galvão

et al. 2006, Ouyang 2007, Ouyang and Daganzo 2006) to the modern context of SDD. We provide two

examples of the fleet sizing and partitioning scheme on service regions with different features. In simulations

where discrete orders arrive stochastically, we show that a simple operational dispatching policy combined

with our partitions produces solutions that meet order cutoff time targets in a vast majority of daily instances.

Because of the straightforward method for fleet sizing and the computationally inexpensive partitioning

procedure, our technique lends itself to gaining practical tactical insights. Overall, our approach creates an

actionable plan for producing well designed vehicle routing zones that satisfy system requirements.

Our work presents multiple avenues for further exploration. An area for future work is the analysis of op-

timal single-vehicle dispatching policies for extensions of our area-maximization problem. Such extensions

may include orders placed before the start of the service day, spatially inhomogeneous order arrivals, capac-

itated vehicles, and time-dependent vehicle speeds. The last of these potential extensions represents a point

of consideration for future applications of continuous approximation methods in other contexts. Our optimal

tactical dispatching policies rely on the concavity and monotonicity of BHH-style dispatch functions, and

our partitioning approach assumes each zone is served by a single vehicle; however, more complex parti-

tioning schemes involving multiple vehicles working in tandem to serve all orders within a zone may lead to

increased efficiency. While Stroh et al. (2021) briefly discuss a heuristic dispatching policy for arbitrarily-
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sized fleets working within the same region, continued work in this area could focus on deriving optimal

area-maximizing and cost-minimizing policies to facilitate such partitions. At the operational level, future

work may consider the dynamic assignment of orders across zone boundaries to improve the flexibility of

the SDD system or further reduce the number of vehicles required.
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Applegate D, Bixby R, Chvátal V, and Cook W (2007) The Traveling Salesman Problem: A Computational

Study. Princeton University Press.

Beardwood J, Halton J, and Hammersley J (1959) The shortest path through many points. Mathematical

Proceedings of the Cambridge Philosophical Society, 55(4):299–327.

Bergmann F, Wagner S, and Winkenbach M (2020) Integrating first-mile pickup and last-mile delivery on

shared vehicle routes for efficient urban e-commerce distribution. Transportation Research Part B,

131:26–62.

Bolgert S (2019) tripy 1.0.0. URL https://pypi.org/project/tripy/.

35

https://www.adobe.com/content/dam/www/us/en/experience-cloud/digital-insights/pdfs/adobe_analytics-digital-economy-index-2020.pdf
https://www.adobe.com/content/dam/www/us/en/experience-cloud/digital-insights/pdfs/adobe_analytics-digital-economy-index-2020.pdf
https://www.adobe.com/content/dam/www/us/en/experience-cloud/digital-insights/pdfs/adobe_analytics-digital-economy-index-2020.pdf
https://press.aboutamazon.com/news-releases/news-release-details/amazon-expands-free-shipping-everyone-holiday-season
https://press.aboutamazon.com/news-releases/news-release-details/amazon-expands-free-shipping-everyone-holiday-season
https://pypi.org/project/tripy/


Bramel J and Simchi-Levi D (1995) A location based heuristic for general routing problems. Operations

Research, 43(4):649–660.

Brent R (1973) Algorithms for Minimization Without Derivatives. Prentice-Hall.

Carlsson J (2012) Dividing a territory among several vehicles. INFORMS Journal on Computing, 24(4):565–

577.

Carlsson J and Delage E (2013) Robust partitioning for stochastic multivehicle routing. Operations Re-

search, 61(3):727–744.

Carlsson J and Jia F (2013) Euclidean hub-and-spoke networks. Operations Research, 61(6):1360–1382.

Carlsson J, Liu S, Salari N, and Yu H (2021) Provably good region partitioning for on-time last-mile delivery.

In review, URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3915544.

Carlsson J and Song S (2018) Coordinated logistics with a truck and a drone. Management Science,

64(9):4052–4069.

Cattaruzza D, Absi N, and Feillet D (2016a) The multi-trip vehicle routing problem with time windows and

release dates. Transportation Science, 50(2):676–693.

Cattaruzza D, Absi N, and Feillet D (2016b) Vehicle routing problems with multiple trips. 4OR, 14:223–259.

Chen X, Ulmer M, and Thomas B (2021a) Deep Q-learning for same-day delivery with vehicles and drones.

European Journal of Operational Research, in press.

Chen X, Wang T, Ulmer M, and Thomas B (2021b) Same-day delivery with fairness. In review, URL

https://arxiv.org/abs/2007.09541.
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Appendix A Omitted Proofs

A.1 Proof of Lemma 1

Consider an area A > 0 and an associated feasible dispatching policy P =
(
(t1,τ1), . . . ,(tD,τD)

)
that involves

waiting. To avoid the trivial case, assume D > 1. There exists some d ∈ [D] such that there is waiting after

dispatch d.

If d = 1, set P′ =
(
(t ′1,τ

′
1), . . . ,(t

′
D,τ

′
D)
)
=
(
(t1,τ1), . . . ,(tD,τD)

)
. Suppose instead that d ≥ 2. Let ε > 0

equal the waiting time after dispatch d. Define t̄d = td + ε

2 , then define t̄d−1 = td−1 +
ε

4 , and so on until

t̄1 = t1 + ε

2d . Set P′ =
(
(t ′1,τ

′
1), . . . ,(t

′
D,τ

′
D)
)
=
(
(t̄1,τ1), . . . ,(t̄d ,τd),(td+1,τd+1), . . . ,(tD,τD)

)
. Observe that

P′ is identical to P except that the first d departure times have been shifted such that there is waiting after

each of the first d dispatches. If d = D, set P̂ = P′; this is the desired policy. Suppose instead that d < D.

Consider two cases.

Case I: τ ′d+1 > 0. Because there is waiting after the d-th dispatch of P′, by the continuity of fρ there exists

some δ ∈ (0,τ ′d+1) such that (t ′d +δ )+ fρ(A,τ ′d +δ )< t ′d+1. Thus, if we replace t ′d by t ′d +δ , τ ′d by τ ′d +δ ,

and τ ′d+1 by τ ′d+1−δ , then there is waiting after both the d-th dispatch and the (d +1)-th dispatch.

Case II: τ ′d+1 = 0. Let the waiting time after the d-th dispatch of P′ be µ > 0. If we replace t ′d+1 by t ′d+1−
µ

2 ,

then we have waiting after both the d-th dispatch and the (d +1)-th dispatch.

We can repeat this pairwise replacement procedure via the relevant case for the (d +1)-th dispatch and

the (d + 2)-th dispatch, followed by the (d + 2)-th dispatch and the (d + 3)-th dispatch, and so on until

the (D− 1)-th dispatch and the D-th dispatch; denote the resulting policy P̂. By our construction, P̂ is a

D-dispatch policy feasible for A with waiting after every dispatch.

A.2 Proof of Theorem 3

For notational convenience, let D̂ = Dmax(ρ). Let D̂≥ 2 and 2≤D≤ D̂ such thatA+
D̂
(ρ) =AD(ρ) = A > 0.

Let P represent the set of all D-dispatch policies feasible for A such that for some d ∈ [D], the corresponding

constraint (1b) holds at strict inequality. For the purposes of contradiction, suppose that P is nonempty. For

all policies P ∈ P , define kP as the smallest dispatch index such that the corresponding constraint (1b) holds

at strict inequality. Define

P0 = argmin
P∈P

{kP}.
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Let P0 =
(
(t1,τ1), . . . ,(tD,τD)

)
and define k = kP0 . Because A is the optimal area, Theorem 2 implies t1 = τ1,

so k≥ 2. By definition, ∑
d
i=1 τi = td for all d < k, and ∑

k
i=1 τi < tk. Define V = ∑

k
i=1 τi, the total accumulation

time of the first k dispatches, and W = tk + fρ(A,τk), the return time of the k-th dispatch. If k = D, then W =

T ; otherwise, W equivalently represents the departure time of the (k+1)-th dispatch. Note that by Theorem

2, for all d ∈ [k−1], the return time of dispatch d is td + fρ(A,τd) = td+1. This implies fρ(A,τd) = τd+1 for

all d ∈ [k−2]. Assume that τ1, . . . ,τk−1 > 0 and consider three cases.

Case I: τk−1≤ τk. Because fρ is continuous, strictly concave, and increasing in τ for a fixed area, there exists

some 0 < ε < τk−1 such that tk−1+ fρ(A,τk−1−ε)≥V and tk−1+ fρ(A,τk−1−ε)+ fρ(A,τk +ε)<W . This

follows from the fact that τk−1 ≤ τk implies fρ(A,τk−1−ε)+ fρ(A,τk+ε)< fρ(A,τk−1)+ fρ(A,τk). Define

the policy

P1 =
(
(t1,τ1), . . . ,(tk−1,τk−1− ε),(tk−1 + fρ(A,τk−1− ε),τk + ε),(tk+1,τk+1), . . . ,(tD,τD)

)
.

Note that P1 involves waiting after the k-th dispatch (as illustrated in Figure A2) and is feasible for A, so A

is not the optimal D-dispatch area, a contradiction.

Figure A1: (k−1)-th and k-th dispatches in policy P0, Case I

τk−1 τk

tk−1 tk W

fρ(A,τk−1) fρ(A,τk)

Figure A2: (k−1)-th and k-th dispatches in policy P1

τk−1− ε τk + ε

tk−1 tk W

fρ(A,τk−1− ε) fρ(A,τk + ε)

Case II: τk−1 > τk and fρ(A,τk) ≥ τk. Because tk−1 + τk = V , it follows that tk−1 + fρ(A,τk) ≥ V . As

tk−1 + fρ(A,τk−1)+ fρ(A,τk) =W , trivially tk−1 + fρ(A,τk)+ fρ(A,τk−1) =W . Therefore, the policy
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P2 =
(
(t1,τ1), . . . ,(tk−1,τk),(tk−1 + fρ(A,τk),τk−1),(tk+1,τk+1), . . . ,(tD,τD)

)
is feasible for A. Observe that P2 was constructed by “swapping” the dispatch accumulation times τk−1 and

τk (as illustrated in Figure A4). Because ∑
k−1
i=1 τi = tk−1 and τk−1 > τk, we have that τk +∑

k−2
i=1 τi < tk−1. This

implies that kP2 < k, which contradicts the definitions of k and P0.

Figure A3: (k−1)-th and k-th dispatches in policy P0, Case II

τk−1 τk

tk−1 tk W

fρ(A,τk−1)
fρ(A,τk)

Figure A4: (k−1)-th and k-th dispatches in policy P2

τk τk−1

tk−1 tk W

fρ(A,τk)
fρ(A,τk−1)

Case III: τk−1 > τk and fρ(A,τk) < τk. Define f (0)ρ (A,τ) = τ and f ( j)
ρ (A,τ) = fρ(A, f ( j−1)

ρ (A,τ)) for all

j ≥ 1. For all d ∈ [k−1], τd = f (d−1)
ρ (A,τ1). Additionally, define the function h by

h(τ) =
k−2

∑
j=0

f ( j)
ρ (A,τ).

In other words, h(τ) represents the total accumulation time of the first k− 1 dispatches if τ is the accu-

mulation time of the first dispatch. Note that tk−1 = h(τ1) and that h is an increasing continuous function.

Let µ = tk−1− h(0), and let ν be such that fρ(A,τk +ν) = W −V . Since τ1 > 0, we have that µ > 0, and

since fρ(A,τk)<W −V , we have that ν > 0. Define δ = min{µ,ν}. Because fρ is strictly increasing and

concave in τ for a fixed A and fρ(A,τk)< τk, it follows that fρ(A,τk +δ )< fρ(A,τk)+δ .

Because τk−1 > τk, it also follows inductively that τ1 > τ2 > · · ·> τk−1. Then, there exist ε1, . . . ,εk−1 > 0
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such that

(i) h(τ1− ε1) = tk−1−δ , and

(ii) fρ(A,τ j− ε j) = τ j+1− ε j+1 for all j ∈ [k−2].

Additionally, fρ(A,τk−1− εk−1)< fρ(A,τk−1). Therefore,

f (A,τk−1− εk−1)+ f (A,τk +δ )< δ + f (A,τk−1)+ f (A,τk). (A1)

In other words, we appropriately modify the first k−1 accumulation times such that the total accumulation

times of the first k−1 dispatches is δ lower than in P0, and the accumulation time of the k-th dispatch is δ

greater than in P0. By (A1), it is possible to complete both the new (k−1)-th and k-th dispatches in the time

interval [tk−1−δ ,W ], as W − tk−1 = fρ(A,τk +δ )< δ + fρ(A,τk−1)+ fρ(A,τk).

Figure A5: First k = 5 dispatches in policy P0, Case III

0 t4 V W

τ1 τ2 τ3 τ4 τ5

Figure A6: First k = 5 dispatches in policy P3 with waiting after the 4th dispatch

0 t4−δ V W

τ1− ε1 τ2− ε2 τ3− ε3 τ4− ε4 τ5 +δ

Thus, the policy

P3 =
(
(t1− ε1,τ1− ε1),(t2− ε1− ε2,τ2− ε2), . . . ,

(tk−1−δ ,τk−1− εk−1),(W − fρ(A,τk +δ ),τk +δ ),(tk+1,τk+1), . . . ,(tD,τD)
)

is feasible for A. Figures A5 and A6 illustrate policies P0 and P3 for an example with k = 5. Because (A1)

is a strict inequality, P3 includes waiting after the (k− 1)-th dispatch. Therefore, A is not optimal for D

dispatches, a contradiction.
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Hence, when τ1, . . . ,τk−1 > 0, we have arrived at a contradiction in every case. Suppose instead that one

of the first k−1 accumulation times for P0 is zero. If there are m > 0 dispatches with zero quantity among

the first k−1 dispatches (assuming m≤ D−2 to avoid triviality), we can remove all m of these dispatches

to be left with one of the following:

· some (D−m)-dispatch policy feasible for A that involves waiting; this implies A < AD−m(ρ) ≤

A+
D̂
(ρ), a contradiction, or

· some (D−m)-dispatch policy feasible for A such that ∑
d
i=1 τi < ti for some d. Because AD(ρ) =

A+
D̂
(ρ), we also haveAD−m(ρ) =A+

D̂
(ρ). However, in the previous part of the proof, we showed that

AD−m(ρ)<A+
D̂
(ρ), a contradiction.

Thus, we have shown that P =∅ as desired.

A.3 Derivation of equations (3a) and (3b)

We have that gρ(A, t) = τ such that fρ(A,τ) = t. When γ = 0, we wish to solve t = 2ρ + βA
√

τ for τ .

Simply rearranging this equation gives

τ =

(
t−2ρ

βA

)2

, (A2)

as desired. When γ > 0, we need to solve t = 2ρ + γAτ +βA
√

τ for τ . Making the substitution x =
√

τ and

rearranging gives

γAx2 +βAx+(2ρ− t) = 0. (A3)

Solving this quadratic equation for x gives

x =
−βA±

√
(βA)2−4γA(2ρ− t)

2γA
, (A4)

which implies

τ =

(
−βA±

√
(βA)2 +4γA(t−2ρ)

2γA

)2

. (A5)

The boundary condition gρ(A,2ρ) = 0 implies (3b) as desired.

A.4 Proof of Proposition 4

Let A+
D(ρ) = AD(ρ) > 0. To first prove the forward implication, suppose that AD+1(ρ) ≥ A+

D(ρ). Then,

by definition, AD+1(ρ) =A+
D+1(ρ); consider the optimal (D+1)-dispatch policy, with first departure time
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t1, associated with this area. By Theorems 2 and 3, the (D+1)-th dispatch of this policy departs the depot

at time N, so
D

∑
d=0

f (d)ρ (AD+1(ρ), t1) = N. (A6)

Since t1 ≥ 0,
D

∑
d=0

f (d)ρ (A+
D(ρ),0) =

D

∑
d=1

f (d)ρ (A+
D(ρ),0)≤ N (A7)

because fρ and its compositions are component-wise non-decreasing.

To prove the reverse implication, suppose that condition (5) holds. Consider the optimal D-dispatch

policy with first departure time t ′1. By Theorems 2 and 3, the D-th dispatch of this policy departs the depot

at time N, so
D−1

∑
d=0

f (d)ρ (A+
D(ρ), t

′
1) = N. (A8)

Observe that t ′1 ≥ 2ρ must hold, otherwise

D−1

∑
d=0

f (d)ρ (A+
D(ρ),2ρ)> N, (A9)

which is a contradiction since

D−1

∑
d=0

f (d)ρ (A+
D(ρ),2ρ) =

D

∑
d=0

f (d)ρ (A+
D(ρ),0) =

D

∑
d=1

f (d)ρ (A+
D(ρ),0)≤ N. (A10)

Therefore, we can feasibly insert an empty (zero-quantity) dispatch at time 0 in the optimal D-dispatch

policy, so AD+1(ρ)≥A+
D(ρ).

A.5 Proof of Proposition 5

Let A = AD(ρ) for notational convenience. Observe that, when the area is fixed at A, fρ is concave and

increasing in τ . If γA≥ 1, then for all τ > 0, fρ(A,τ)> τ .

If not, then there exists exactly one value τ∗ such that fρ(A,τ∗) = τ∗. Additionally,

· if τ < τ∗, then τ < fρ(A,τ)< τ∗, and

· if τ > τ∗, then τ > fρ(A,τ)> τ∗.

In all cases, the relevant properties imply that any policy with the “optimal structure” must have monotonic

(increasing, constant, or decreasing) dispatch accumulation times.
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Suppose N
T > D

D+1 . Then, the mean accumulation time across all dispatches 1
D ∑

D
d=1 τd is equal to 1

D+1 .

Because fρ(A,τD) = T −N < 1
D+1 and dispatch accumulation times are monotonic, the dispatch accumula-

tion times must be monotonically decreasing. Hence, the dispatch quantities are monotonically decreasing,

as desired. Analogous arguments imply the desired results in the cases of N
T = D

D+1 and N
T < D

D+1 .

A.6 Proof of Proposition 6

Proof for D = 2. Consider an area maximization problem with α = 0 and N
T ≥

1
2 . Let ρ ∈ [0, T−N

2 ). It

follows that 2ρ < N. The maximum one-dispatch area A1(ρ) is associated with a feasible dispatching

policy
(
(t1,τ1)

)
such that t1 = N. If a vehicle leaves the depot at t = 0 with no orders, it arrives back at

the depot before t1. Thus,
(
(0,0),(t1,τ1)

)
is a feasible two-dispatch policy for the area A1(ρ) that includes

waiting after the first dispatch. Therefore, A2(ρ) > A1(ρ). The converse is trivial, since if N
T < 1

2 , there

exists some ρ∗ ∈ [0, T−N
2 ) such that 4ρ∗ > T , implying A2(ρ

∗) = 0 <A1(ρ
∗).

Proof for D≥ 3. We prove the general claim by induction with D = 2 as the base case, proved above.

Consider an area maximization problem with α = 0, ρ ∈ [0, T−N
2 ) and some D ≥ 3 such that N

T ≥
D−1

D .

It follows that 2ρ < N
D−1 . Assume, for the purposes of induction, that AD−1(ρ) > AD−2 > · · · > A1(ρ)

since D−1
D−2 < D

D−1 ≤
N
T . The maximum (D− 1)-dispatch area AD−1(ρ) is associated with some optimal

(D− 1)-dispatch policy
(
(t1,τ1), . . . ,(tD−1,τD−1)

)
. Because AD−1(ρ) = A+

D−1(ρ), by Lemma 5 we have

that τ1≥ τ2≥ ·· · ≥ τD−1. Suppose t1 = τ1 <
N

D−1 . Then, ∑
D−1
d=1 τd <N, a contradiction, so t1≥ N

D−1 . As such,

if a vehicle leaves the depot at t = 0 with no orders, it will arrive back at the depot before t1. The example in

Figure A7 illustrates this argument for D−1 = 3: because accumulation times are non-decreasing, τ1 = t1

must represent at least 1/3 of the total accumulation time N. For any ρ ∈ [0, T−N
2 ), a zero-quantity dispatch

at time 0 must return to the depot before N/3.

Figure A7: Policy example with D−1 = 3 dispatches

T0 N
3

2N
3

N

fρ(A,0) = 2ρ

It follows that
(
(0,0),(t1,τ1), . . . ,(tD−1,τD−1)

)
is a feasible D-dispatch policy for the area AD−1(ρ)

that includes waiting after the first dispatch. Therefore, AD(ρ) > AD−1(ρ) > AD−2 > · · · > A1(ρ). The

converse is again trivial, since if N
T < D−1

D , there exists some ρ∗ ∈ [0, T−N
2 ) such that 2Dρ∗ > T , implying

AD(ρ
∗) = 0 <A1(ρ

∗).
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Appendix B Fleet Sizing for Time-Varying Order Rates
In this section, we relax the assumption that the order rate is constant over time and revisit the zone area

maximization and fleet sizing problems. Specifically, we assume that the order rate is non-decreasing over

time. While the main theoretical ideas are analogous to those in the constant-rate case, we re-define some

notation in order to formally motivate and derive theoretical results in this setting.

Suppose that, for each point in the region R, the order rate per unit area at time t is given by a (Riemann)

integrable function λ : [0,N]→R>0. We assume that λ is non-decreasing: for all 0≤ s< t ≤N, λ (s)≤ λ (t).

For all 0≤ s≤ t ≤ N, define

Λ(s, t) =
∫ t

s
λ (u)du

for notational convenience. Because of time-varying order rates, accumulation times τd are no longer nec-

essarily proportional to dispatch quantities, and we must define dispatch policies in a more detailed manner.

For each dispatch d, let ωd represent the dispatch quantity prior to scaling by area, i.e., qd = Aωd . A D-

dispatch policy is characterized by a D-tuple of ordered triplets
(
(t1,τ1,ω1),(t2,τ2,ω2), . . . , (tD,τD,ωD)

)
.

Note that, by definition, ωd = Λ
(
∑

d−1
i=1 τi,∑

d
i=1 τi

)
for all d ∈ [D]. However, we include the ωd variables in

dispatch policy definitions for notational clarity.

As before, suppose that the centroid of the zone whose area we wish to maximize is located ρ time units

from the depot. Because the quantity of orders on a dispatch d is Aωd , we can re-define the dispatch time

function fρ(A,ω) = 2ρ +α +βA
√

ω + γAω . For simplicity, we again assume α = 0. This dispatch time

function is continuous and increasing in A for a fixed ω > 0. For a fixed A > 0, fρ is also increasing and

strictly concave in ω .

For a fixed ρ ≥ 0 and 0 < D≤Dmax(ρ), assume that the feasibility conditions 2ρ < T −N and 2Dρ < T

are met. We define AD(ρ) as the optimal value of the following optimization problem:

AD(ρ) = max
t,τττ,ωωω,A

A (B1a)

s.t. td ≥
d

∑
i=1

τi ∀d ∈ [D], (B1b)

ωd = Λ

(
d−1

∑
i=1

τi,
d

∑
i=1

τi

)
∀d ∈ [D], (B1c)

td+1 ≥ td + fρ(A,ωd) ∀d ∈ [D−1], (B1d)
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T ≥ tD + fρ(A,ωD), (B1e)

D

∑
d=1

τd = N, (B1f)

τd ,ωd ≥ 0 ∀d ∈ [D]. (B1g)

B.1 Optimal policy structure

Due to the lack of assumptions on the behavior of λ (t) beyond it being non-decreasing and integrable, the

optimization problem above can be prohibitively difficult to solve by standard methods. As in our analysis

of the constant-rate setting, we instead seek to characterize properties of area-maximizing policies to derive

an efficient solution method. First, we state and prove a result analogous to Lemma 1. Note that the proof

of Lemma 8 is virtually identical to that of Lemma 1 aside from some changes in notation for consistency.

Lemma 8. Consider an area A > 0 and an associated feasible policy P =
(
(t1,τ1,ω1), . . . ,(tD,τD,ωD)

)
. If

P involves waiting, there exists a feasible policy P̂ =
(
(t̂1, τ̂1, ω̂1), . . . ,(t̂D, τ̂D, ω̂D)

)
serving A that includes

waiting after every dispatch d ∈ [D].

Proof. Consider an area A> 0 and an associated feasible dispatching policy P=
(
(t1,τ1,ω1), . . . ,(tD,τD,ωD)

)
that involves waiting. To avoid the trivial case, assume D > 1. There exists some d ∈ [D] such that there is

waiting after dispatch d.

If d = 1, set P′ =
(
(t ′1,τ

′
1), . . . ,(t

′
D,τ

′
D)
)
=
(
(t1,τ1), . . . ,(tD,τD)

)
. Suppose instead that d ≥ 2. Let ε > 0

equal the waiting time after dispatch d. Define t̄d = td + ε

2 , then define t̄d−1 = td−1 +
ε

4 , and so on until

t̄1 = t1 + ε

2d . Set

P′ =
(
(t ′1,τ

′
1,ω

′
1), . . . ,(t

′
D,τ

′
D,ω

′
D)
)
=
(
(t̄1,τ1,ω1), . . . ,(t̄d ,τd ,ωd),(td+1,τd+1,ωd+1), . . . ,(tD,τD,ωD)

)
.

Observe that P′ is identical to P except that the first d departure times have been shifted such that there is

waiting after each of the first d dispatches. If d = D, set P̂ = P′; this is the desired policy. Suppose instead

that d < D. Consider two cases.

Case I: τ ′d+1 > 0 (equivalently, ω ′d+1 > 0). Because there is waiting after the d-th dispatch of P′, by the
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continuity of fρ and Λ there exists some δ ∈ (0,τ ′d+1) such that (t ′d +δ )+ fρ

(
A,ω ′d +ζ

)
< t ′d+1, where

ζ = Λ

(
d

∑
i=1

τ
′
i ,δ +

d

∑
i=1

τ
′
i

)
.

Thus, if we replace t ′d by t ′d +δ , τ ′d by τ ′d +δ , ω ′d by ω ′d +ζ , τ ′d+1 by τ ′d+1−δ , and ω ′d+1 by ω ′d+1−ζ , then

there is waiting after both the d-th dispatch and the (d +1)-th dispatch.

Case II: τ ′d+1 = 0. Let the waiting time after the d-th dispatch of P′ be µ > 0. If we replace t ′d+1 by t ′d+1−
µ

2 ,

then we have waiting after both the d-th dispatch and the (d +1)-th dispatch.

We can repeat this pairwise replacement procedure via the relevant case for the (d +1)-th dispatch and

the (d + 2)-th dispatch, followed by the (d + 2)-th dispatch and the (d + 3)-th dispatch, and so on until

the (D− 1)-th dispatch and the D-th dispatch; denote the resulting policy P̂. By our construction, P̂ is a

D-dispatch policy feasible for A with waiting after every dispatch.

Similar to the constant-rate case, Lemma 8 implies that optimal dispatching policies do not involve wait-

ing. Furthermore, the area-maximizing policy structure derived for constant order rates remains optimal in

this case. Theorem 7, restated from Section 3.4, formalizes this result. The proof is very similar to that

of Theorem 3 but requires additional technical analysis at certain stages. We include it separately here and

note that the constituent numbered cases in this proof (and their associated figures) correspond directly to

the cases in the proof of Theorem 3.

Theorem 7. Assume λ (t) is non-decreasing, strictly positive, and integrable. Let D≤Dmax(ρ). IfAD(ρ) =

A+
Dmax

(ρ), the optimal D-dispatch policy satisfies the following conditions:

(a) the policy does not involve waiting,

(b) each dispatch takes all accumulated, unserved orders at the time of departure, and

(c) the final dispatch departs at N.

Conditions (b) and (c) are equivalent to the following: when A = AD(ρ) = A+
Dmax

(ρ), constraints (B1b)

hold at equality.

Proof. Lemma 8 and continuity imply condition (a) as in the proof of Theorem 2. We prove conditions

(b) and (c) here. For notational convenience, let D̂ = Dmax(ρ). Let D̂ ≥ 2 and 2 ≤ D ≤ D̂ be such that
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A+
D̂
(ρ) = AD(ρ) = A > 0. Let P represent the set of all D-dispatch policies feasible for A such that for

some d ∈ [D], the corresponding constraint (B1b) holds at strict inequality. For the purposes of contradiction,

suppose that P is nonempty. For all policies P ∈ P , define kP as the smallest dispatch index such that the

corresponding constraint (B1b) holds at strict inequality. Define

P0 = argmin
P∈P

{kP}.

Let P0 =
(
(t1,τ1,ω1), . . . ,(tD,τD,ωD)

)
and define k = kP0 . Without loss of generality, assume all parameters

are scaled so that ωk = τk.

Because A is the optimal area, the lack of waiting in optimal policies implies t1 = τ1, so k ≥ 2. By

definition, ∑
d
i=1 τi = td for all d < k, and ∑

k
i=1 τi < tk. Define V = ∑

k
i=1 τi, the total accumulation time of

the first k dispatches, and W = tk + fρ(A,τk), the return time of the k-th dispatch. If k = D, then W =

T ; otherwise, W equivalently represents the departure time of the (k + 1)-th dispatch. Note that, for all

d ∈ [k− 1], the return time of dispatch d is td + fρ(A,ωd) = td+1. This implies fρ(A,ωd) = τd+1 for all

d ∈ [k− 2]. Assume that τ1, . . . ,τk−1 > 0, which is equivalent to assuming ω1, . . . ,ωk−1 > 0, and consider

three cases.

Case I: ωk−1 ≤ ωk. Because fρ is continuous, strictly concave, and increasing in ω for a fixed area, there

exists some 0 < ε < ωk−1 such that tk−1+ fρ(A,ωk−1−ε)≥V and tk−1+ fρ(A,ωk−1−ε)+ fρ(A,ωk +ε)<

W . This follows from the fact that ωk−1 ≤ ωk implies fρ(A,ωk−1− ε) + fρ(A,ωk + ε) < fρ(A,ωk−1) +

fρ(A,ωk) due to strict concavity.

Choose 0 < δ < τk−1 such that

Λ

(
k−1

∑
i=1

τi−δ ,V

)
= ωk + ε. (B2)

Define the policy

P1 =
(
(t1,τ1,ω1), . . . ,(tk−1,τk−1−δ ,ωk−1− ε),

(tk−1 + fρ(A,ωk−1− ε),τk +δ ,ωk + ε),(tk+1,τk+1,ωk+1), . . . ,(tD,τD,ωD)
)
.

Note that P1 involves waiting after the k-th dispatch and is feasible for A, so A is not the optimal D-dispatch
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area, a contradiction.

Case II: ωk−1 > ωk and fρ(A,ωk) ≥ τk. Because tk−1 + τk = V , it follows that tk−1 + fρ(A,ωk) ≥ V . As

tk−1 + fρ(A,ωk−1)+ fρ(A,ωk) =W , trivially tk−1 + fρ(A,ωk)+ fρ(A,ωk−1) =W .

Define τ̂k−1 and τ̂k such that

Λ

(
k−2

∑
i=1

τi,
k−2

∑
i=1

τi + τ̂k−1

)
= ωk (B3)

and

Λ

(
k−2

∑
i=1

τi + τ̂k−1,
k−2

∑
i=1

τi + τ̂k−1 + τ̂k

)
= ωk−1. (B4)

Note that τ̂k−1 + τ̂k = τk−1 + τk. Additionally, ωk < ωk−1 implies τ̂k−1 < τk−1.

Therefore, the policy

P2 =
(
(t1,τ1,ω1), . . . ,(tk−1, τ̂k−1,ωk),(tk−1 + fρ(A,ωk), τ̂k,ωk−1),(tk+1,τk+1,ωk+1), . . . ,(tD,τD,ωD)

)
is feasible for A. Observe that P2 was constructed by “swapping” the unscaled dispatch quantities ωk−1 and

ωk, then adjusting the accumulation times accordingly. Because ∑
k−1
i=1 τi = tk−1 and τk−1 > τ̂k−1, we have

that τ̂k−1 +∑
k−2
i=1 τi < tk−1. This implies that kP2 < k, which contradicts the definitions of k and P0.

Case III: ωk−1 > ωk and fρ(A,ωk)< τk. Because fρ is continuous and λ (t) is non-decreasing, we can find

τ ′1 < τ1,τ
′
2 < τ2, . . . ,τ

′
k−1 < τk−1 such that the following conditions hold.

(i) fρ(A,ω ′d) = τ ′d+1 for all d ∈ [k−2], where ω ′d is defined as

ω
′
d = Λ

(
d−1

∑
i=1

τ
′
i ,

d

∑
i=1

τ
′
i

)
(B5)

for all d ∈ [k−1].

(ii) Defining

τ
′
k =V −

k−1

∑
i=1

τ
′
i (B6)

and

ω
′
k = Λ

(
k−1

∑
i=1

τ
′
i ,V

)
, (B7)

it holds that fρ(A,ω ′k)≤W −V .
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For completeness, define

t ′d =
d

∑
i=1

τ
′
d (B8)

for all d ∈ [k−1]. Intuitively, this procedure slightly decreases the first k−1 accumulation times in such a

manner that constraints (B1b) continue to hold at equality for all d ∈ [k−1], with no waiting after any of the

first k−2 dispatches. The accumulation time of the k-th dispatch is increased accordingly so that the first k

dispatches together together serve all of the accumulated orders in the interval [0,V ]. The idea is analogous

to that illustrated in Figures A5 and A6, except that the non-stationary order rate entails additional notational

maneuvering.

To ensure feasibility, it remains to be seen whether the enlarged k-th dispatch can be completed within

the interval [t ′k−1 + fρ(A,ω ′k−1),W ]. Define

δτ = τ
′
k− τk =

k−1

∑
i=1

τi−
k−1

∑
i=1

τ
′
i (B9)

and

δω = ω
′
k−ωk =

k−1

∑
i=1

ωi−
k−1

∑
i=1

ω
′
i . (B10)

Note that δτ is the additional accumulation time on the enlarged k-th dispatch, and δω is the additional

unscaled quantity on the enlarged k-th dispatch.

Recall that we assumed, without loss of generality, that parameters have been scaled so that ωk = τk.

Because the order rate is non-decreasing, δω ≤ δτ . Additionally, fρ(A,ωk) < τk implies fρ(A,ωk) < ωk.

Because fρ is concave and increasing for a fixed area, fρ(A,ωk)<ωk implies ∂

∂ω
fρ(A,ω)< 1 for all ω ≥ωk,

which in turn implies fρ(A,ωk +δω)< fρ(A,ωk)+δω . Therefore,

fρ(A,ω ′k) = fρ(A,ωk +δω)< fρ(A,ωk)+δτ ≤W −
(
t ′k−1 + fρ(A,ω ′k−1)

)
, (B11)

so the enlarged k-th dispatch can be completed within the desired interval. Formally, the following policy

P3 is feasible to serve A:

P3 =
(
(t ′1,τ

′
1,ω

′
1), . . . ,(t

′
k−1,τ

′
k−1,ω

′
k−1),(W − fρ(A,ω ′k),τ

′
k,ω

′
k),(tk+1,τk+1,ωk+1), . . . ,(tD,τD,ωD)

)
.

However, because fρ(A,ω ′k) < W −
(
t ′k−1 + fρ(A,ω ′k−1)

)
, P3 involves waiting between the (k− 1)-th and
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k-th dispatches. As such, A cannot be the optimal area, which is a contradiction.

Hence, when τ1, . . . ,τk−1 > 0, we have arrived at a contradiction in every case. Suppose instead that one

of the first k−1 accumulation times for P0 is zero. If there are m > 0 dispatches with zero quantity among

the first k−1 dispatches (assuming m≤ D−2 to avoid triviality), we can remove all m of these dispatches

to be left with one of the following:

· some (D−m)-dispatch policy feasible for A that involves waiting; this implies A < AD−m(ρ) ≤

A+
D̂
(ρ), a contradiction, or

· some (D−m)-dispatch policy feasible for A such that ∑
d
i=1 τi < ti for some d. Because AD(ρ) =

A+
D̂
(ρ), we also haveAD−m(ρ) =A+

D̂
(ρ). However, in the previous part of the proof, we showed that

AD−m(ρ)<A+
D̂
(ρ), a contradiction.

Thus, we have shown that P =∅ as desired.

B.1.1 Counterexample for decreasing order rates

For order rate functions which are not non-decreasing, the policy structure discussed above does not nec-

essarily correspond to maximal zone areas. Consider the following simple counterexample. Let N = 8,

T = 10, D = Dmax = 2, and ρ = 0. Let the dispatch function f0(A,ω) = A
√

ω . The order rate function is

λ (t) = 64 for t ≤ 1 and λ (t) = 1/7 for t > 1. Figure B1 illustrates this setting.

0 N = 8 T = 10

λ (t) = 64 λ (t) = 1
7

Figure B1: Counterexample problem setting

Observe that the policy
(
(1,1,64),(9,7,1)

)
can feasibly serve a zone area of A = 1. As illustrated in

Figure B2, the first dispatch takes all of the orders placed during the period [0,1], departs at t1 = 1 and

returns at t2 = 1+ f0(1,64) = 9. This leaves the vehicle with just enough time to feasibly complete the

second dispatch by the end of the service day.

Suppose we instead seek to adhere to the “optimal” policy structure above, and we wish to serve an area

of A = 1+ε for any ε ≥ 0. The structure dictates that the first dispatch must return at t = 8; because the area

is greater than 1, it follows that t1 = τ1 < 0.81, since the solution to t +
√

64t = 8 is t = 40−16
√

6 < 0.81.
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T0 N

Figure B2: Example dispatching policy with A = 1 (to scale)

It follows that τ2 > 7.19 and ω2 > 7
(1

7

)
+ 0.19(64) = 12.16. However, f0(1+ ε,12.16) > 2 = T −N for

any ε ≥ 0, so it is impossible for the desired policy structure to induce an optimal area in this setting.

B.2 Calculating maximum zone areas

We return to assuming that λ (t) is non-decreasing. The structure of area-maximizing policies in this case

is identical to the structure of those in the constant-rate case, so the process of calculating maximum zone

areas is quite similar to Algorithm 1. However, it may be impractical to derive closed-form expressions for

certain quantities when order rates are non-stationary, so the derivation of the algorithm in this case requires

a more general treatment.

For mathematical completeness, define λ (t) = λ (N) for all t > N and λ (t) = λ (0) for all t < 0. Define

the function hρ(A,τ) = fρ

(
A,Λ(0,τ)

)
, the duration of a dispatch that serves the orders that accumulate over

the interval [0,τ] in a zone with area A. Define h(0)ρ (A,τ) = τ and h(1)ρ (A,τ) = hρ(A,τ). For all d ≥ 2, define

the composition

h(d)ρ (A,τ) = fρ

(
A,Λ

(
d−2

∑
k=0

h(k)ρ (A,τ),
d−1

∑
k=0

h(k)ρ (A,τ)

))
. (B12)

Informally, h(d)ρ (A,τ) is the duration of the d-th dispatch if the first dispatch accumulates orders until τ

and all dispatches adhere to conditions (a) and (b) of Theorem 7. Because λ (t) is non-decreasing, h(d)ρ is

increasing in both A and τ for all d ≥ 1. Note that a D-dispatch policy that satisfies all conditions in Theorem

7 must have
D−1

∑
d=0

h(d)ρ (A,τ1) = N (B13)

and h(D)
ρ (A,τ1) = T −N.

For all A > 0 and t ≥ 2ρ , define the function gρ(A, t) = τ such that fρ

(
A,Λ(T − t− τ,T − t)

)
= t. In

other words, gρ(A, t) is equal to the unique accumulation time τ such that the time taken to serve the orders

which accumulate over the interval [T − t− τ,T − t] over the area A is equal to t. Define g(0)ρ (A, t) = t and
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g(1)ρ (A, t) = gρ(A, t). For all d ≥ 2, define the composition g(d)ρ (A, t) = τ such that

fρ

(
A,Λ

(
T −

d−1

∑
k=0

g(k)ρ (A, t)− τ,T −
d−1

∑
k=0

g(k)ρ (A, t)

))
= g(d−1)

ρ (A, t). (B14)

Informally, g(d)ρ (A, t) is the accumulation time of the (D− d + 1)-th dispatch when the zone’s area is A

and the duration of the D-th (final) dispatch is t, assuming adherence to conditions (a) and (b) of Theorem

7. A D-dispatch policy which satisfies all conditions in Theorem 7 has has τD = g(1)ρ (A,T −N), τD−1 =

g(2)ρ (A,T −N), and so on. Because the sum of all accumulation times is N, the area A must satisfy

D

∑
d=1

g(d)ρ (A,T −N) = N. (B15)

The quantity ∑
D
d=1 g(d)ρ (A,T−N) is continuous and monotonically decreasing in A, so (B15) can have at most

one solution. Indeed, when 2Dρ < T and 2ρ < T −N, the area can be chosen such that ∑
D
d=1 g(d)ρ (A,T −N)

is arbitrarily small or arbitrarily large. Thus, for a given D, there is exactly one policy and associated area

that satisfies all conditions in Theorem 7, which we can find by numerically solving (B15). To facilitate

calculation, we next state and prove the equivalent of Proposition 4 for this case; the statement and proof of

Proposition 9 are virtually identical to those of Proposition 4 due to our particular definition of hρ and its

compositions.

Proposition 9. Let λ (t) be non-decreasing, strictly positive, and integrable. Consider D ≤ Dmax(ρ)− 1.

Assuming AD(ρ) =A+
D(ρ), then AD+1(ρ)≥A+

D(ρ) if and only if

D

∑
d=1

h(d)ρ (A+
D(ρ),0)≤ N. (B16)

Proof. Let A+
D(ρ) =AD(ρ) > 0. To first prove the forward implication, suppose that AD+1(ρ) ≥ A+

D(ρ).

Then, by definition,AD+1(ρ) =A+
D+1(ρ); consider the optimal (D+1)-dispatch policy, with first departure

time t1 = τ1, associated with this area. By Theorem 7, the (D+ 1)-th dispatch of this policy departs the

depot at time N, so
D

∑
d=0

h(d)ρ (AD+1(ρ), t1) = N.
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Since t1 ≥ 0,
D

∑
d=0

h(d)ρ (A+
D(ρ),0) =

D

∑
d=1

h(d)ρ (A+
D(ρ),0)≤ N

because hρ and its compositions are component-wise non-decreasing.

To prove the reverse implication, suppose that condition (B16) holds. Consider the optimal D-dispatch

policy with first departure time t ′1. By Theorem 7, the D-th dispatch of this policy departs the depot at time

N, so
D−1

∑
d=0

h(d)ρ (A+
D(ρ), t

′
1) = N.

Observe that t ′1 ≥ 2ρ must hold, otherwise

D−1

∑
d=0

h(d)ρ (A+
D(ρ),2ρ)> N,

which is a contradiction since

D−1

∑
d=0

h(d)ρ (A+
D(ρ),2ρ) =

D

∑
d=0

h(d)ρ (A+
D(ρ),0) =

D

∑
d=1

h(d)ρ (A+
D(ρ),0)≤ N.

Therefore, we can feasibly insert an empty (zero-quantity) dispatch at time 0 in the optimal D-dispatch

policy, so AD+1(ρ)≥A+
D(ρ).

As a final note, rearranging the dispatch time function gives

A1(ρ) =
T −N−2ρ

γΛ(0,N)+β
√

Λ(0,N)
. (B17)

The full algorithm for calculating maximum zone areas follows. Note that, given the updated definitions of

functions fρ , gρ , and hρ , this algorithm is virtually identical to Algorithm 1.
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Algorithm B1: Determining maximum zone area with at most Dmax dispatches, non-dec. λ (t)
Input : N, T , ρ , Dmax, Dmax(ρ), and dispatch time function fρ(A,ω)

Output: optimal number of dispatches D∗ and corresponding area A+
Dmax

(ρ) =AD∗(ρ)

1 initialize A1(ρ) =
T−N−2ρ

γΛ(0,N)+β

√
Λ(0,N)

and D∗ = 1

2 for D = 2, . . . ,Dmax(ρ) do

3 if ∑
D−1
d=1 h(d)ρ (AD−1(ρ),0)≤ N then

4 set AD(ρ)← A s.t. ∑
D
d=1 g(d)ρ (A,T −N) = N

5 set D∗← D

6 else

7 break

8 set A+
Dmax

(ρ)←AD∗(ρ)
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Appendix C Computational Details and Data

C.1 Dispatch function details, second computational study

In this section of the appendix, we provide additional computational details on our methodology for fitting

dispatch functions for the second computational study. Recall that, for each r in the region, we seek a

dispatch function of the form

fρ(A,ω) = 2ρ +α +βA
√

ω +(β lin + γ)Aω,

since the number of customers n = Aω , where the unscaled accumulation quantity ω is defined as in Ap-

pendix B. In this setting, not only does the linehaul time vary based on the location of r, but the routing

constants vary as well due to the inhomogeneity of road speeds in the region. Thus, for each point r, we

seek estimates of ρ , β , and β lin. In the remainder of this appendix, we use the notation ρr, βr, and β lin
r to

emphasize that these parameters vary with r. Inter-point travel times are calculated with Openrouteservice

via VeRoViz and are generally asymmetric.

Figure C1: Interpolated values of ρr (in minutes)

Our overall approach is to empirically calculate

these parameters for a selected number of points, and

use interpolation to estimate these parameters for the

remaining points in the region. We first examine the

linehaul times ρr. Let the depot’s location be de-

noted as x0. We select 50 points x1,x2, . . . ,x50 in the

region located at major road intersections. We first

define ρx0 = 0. For all i ∈ [50], we define ρxi such

that the total two-way linehaul time 2ρxi is equal to

the total calculated travel time from the depot to xi

and back. For all other points r /∈ {x0,x1, . . . ,x50},

we define ρr via simple linear interpolation between {x0,x1, . . . ,x50}, with linear extrapolation for points

outside conv({x0,x1, . . . ,x50}). Figure C1 illustrates the resulting value of ρr for all points in the region.

We next discuss estimating the routing constants βr and β lin
r . Within the region, we use the ‘isochrone’

feature in VeRoViz to select ten compact subregions S1, . . . ,S10 with corresponding centroids s1, . . . ,s10.

Each subregion S j is defined such that its area A j ≈ 7 square miles. The locations and approximate areas
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of the subregions were chosen to ensure most of the region is covered by at least one subregion and to

demonstrate that a sophisticated methodology is not required for this part of the procedure.

Figure C2: Subregions S1 (left) and S3 (right) for
routing constant estimation

For each S j and for each of n∈{15,20,25, . . . ,75},

we randomly generate 50 asymmetric TSP instances

of n points in S j. More specifically, points are gener-

ated uniformly at random, then assigned to the closest

location on the road network. Ignoring linehaul travel,

setup times, and per-order service, each instance is

then solved to optimality using Gurobi via Python.

For each Si, we fit the constants βs j , and β lin
s j

via the

functional form βs j

√
A jn+β lin

s j
n on the resulting tour

durations. As an example, consider S1, the subregion in the northwest corner of the region (Figure C2). The

empirically estimated corresponding routing constants are βs1 = 3.3921 and β lin
s1

= 0.8059. Expressed in

minutes, a dispatch function which uses these constants would then have the form

fρ(A,ω) = 2ρ +α +3.3921A
√

ω +(0.8059+ γ)Aω.

Finally, we define an interpolation method for estimating βr and β lin
r at an arbitrary point within the region.

For each of the 14 vertices of the region {v1, . . . ,v14}, define βvk = βs∗i and β lin
vk

= β lin
s∗i

where s∗i is the closest

subregion centroid to the vertex vk. For all other points r /∈ {s1, . . . ,s10,v1, . . . ,v14}, we define βr and β lin
r

via simple linear interpolation between {s1, . . . ,s10,v1, . . . ,v14}.

As a complete example, consider the point r denoted in Figure C2. Interpolation for the linehaul time

between the depot and r gives ρr = 4.7208 minutes. Interpolation between the routing constants associated

with S1 and the routing constants associated with S3 (βs3 = 4.2806, β lin
s3

= 0.8544) gives βr = 3.7581 and

β lin
r = 0.8259. Given that α = 5 and γ = 2.5, the resulting dispatch function is

fρ(A,ω) = 14.4416+3.7581A
√

ω +3.3259Aω.

Suppose λ (t) is given by Figure 12. For Dmax = 3, using this dispatch function and Algorithm B1 to solve

for the maximum area of a zone centered at r gives A(r) = 6.6412 square miles.
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C.2 Partitioning parameters and data

Table C1: Partitioning input parameters

Study κ0 ∆κ µ0 σmax pmax εmax [CLFmin,CLFmax] δ (mi.) η

#1 1 0.94 0.3 0.99 300 0.04 [0.91,0.99] 0.1 0.1

#2 1 0.9 0.3 0.98 150 0.04 [0.89,0.94] 0.1 0.1

Study Θ− Θ+ θ− θ+

#1 0.91 0.99 0.03 0.05

#2 0.88 0.95 0.05 0.05

Table C2: Evolution of the WCVT balancing process, first computational study

Iteration
Centroidal load factor Max. generator-

centroid dist. (mi.)Minimum Average Maximum Std. dev.

1 0.6177 0.9483 1.4663 0.2270 1.6630

10 0.8801 0.9483 1.0698 0.0476 1.1272

20 0.9093 0.9483 0.9772 0.0230 0.5335

30 0.9086 0.9483 0.9819 0.0234 0.1879

40 0.8961 0.9483 0.9894 0.0245 0.1286

50 0.9101 0.9483 0.9856 0.0226 0.0991

Table C3: Evolution of the WCVT balancing process, second computational study

Iteration
Centroidal load factor Max. generator-

centroid dist. (mi.)Minimum Average Maximum Std. dev.

1 0.5889 0.9131 1.3879 0.2614 0.9099

10 0.8572 0.9127 0.9774 0.0394 0.6643

20 0.8861 0.9129 0.9435 0.0203 0.2934

30 0.8598 0.9132 0.9543 0.0303 0.1501

40 0.8815 0.9132 0.9538 0.0221 0.0670

50 0.8141 0.9133 0.9671 0.0438 0.0658

57 0.8955 0.9135 0.9277 0.0089 0.0758
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C.3 Detailed simulation results

For each zone, we report the average and standard deviation of the quantity of orders served across the 100

simulated days. This average is compared to the expected number of orders that accumulate in the zone

during the pre-cutoff time window used for tactical planning (8 AM to 2 PM in the first study and 8 AM to 4

PM in the second study). The average and standard deviation of the cutoff time is also reported, along with

the number of days in which orders were cut off after the cutoff time used for planning.

Table C4: First computational study results

Orders served Cutoff (hrs. after 8 AM)

Zone CLF
Area

(sq. mi.)
Expected Avg. Std. dev. Avg. Std. dev. # cutoffs

after 2 PM

1 0.9850 14.00 168.00 175.97 4.11 6.19 0.30 79

2 0.9700 12.46 149.52 159.57 5.12 6.41 0.27 91

3 0.9702 11.42 137.04 143.89 4.81 6.36 0.32 85

4 0.9246 9.96 119.50 126.25 5.29 6.38 0.31 88

5 0.9856 13.41 160.92 169.72 5.27 6.30 0.31 82

6 0.9651 12.30 147.60 156.80 6.33 6.48 0.33 91

7 0.9548 10.83 129.96 136.17 5.81 6.24 0.30 77

8 0.9360 9.81 117.72 123.96 6.63 6.43 0.30 93

9 0.9393 9.04 108.50 114.89 5.17 6.38 0.30 86

10 0.9572 11.74 140.88 151.68 5.22 6.46 0.31 90

11 0.9296 10.66 127.92 134.83 6.25 6.36 0.32 89

12 0.9461 9.50 114.05 119.60 5.54 6.32 0.38 78

13 0.9294 8.80 105.55 112.69 5.75 6.43 0.31 90

14 0.9118 8.18 98.13 105.85 6.49 6.49 0.37 94

15 0.9622 11.94 143.28 151.81 5.33 6.46 0.31 90

16 0.9284 10.48 125.78 133.27 6.51 6.33 0.36 81

17 0.9641 10.55 126.60 130.97 5.58 6.28 0.29 86

18 0.9101 9.42 113.05 120.84 5.79 6.45 0.33 88

Avg. 0.9483 10.81 129.67 137.15 5.61 6.37 0.32 86.56

Total 194.50 2334 2468.76 21.73
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Table C5: Second computational study results

Orders served Cutoff (hrs. after 8 AM)

Zone CLF
Area

(sq. mi)
Expected Avg. Std. Dev. Avg. Std. Dev. # cutoffs

after 4 PM

1 0.9119 6.33 101.35 106.90 5.42 8.27 0.36 73

2 0.9159 5.74 91.78 94.77 5.56 8.20 0.38 72

3 0.9277 6.08 97.27 100.89 5.40 8.21 0.34 72

4 0.8955 5.67 90.72 97.05 6.43 8.38 0.38 86

5 0.9124 5.60 89.57 92.88 5.88 8.20 0.41 70

6 0.9092 5.37 85.85 88.55 5.77 8.17 0.40 69

7 0.9128 5.52 88.39 90.45 5.79 8.13 0.41 64

8 0.9228 5.49 87.78 91.60 6.05 8.24 0.35 77

Avg. 0.9135 5.72 91.59 95.39 5.79 8.22 0.38 72.88

Total 45.79 732.71 763.09 14.97

C.4 A posteriori Formulation

We use the following integer programming formulation to compute a posteriori bounds on the number of

orders served over the course of a service day.

Parameters:

· Node set: order locations [L], depot 0

· Edge set: unordered pairs of nodes E =
{
{i, j} | 0≤ i < j ≤ L

}
· Release times (order placement times): ri for all i ∈ [L], with r1 < r2 < .. . < rL

· Travel times: ce for all e ∈ E; these times do not include service or setup times

· Number of dispatches D, deadline T , setup time at depot α , and per-order service time γ

Variables:

· xd
e = 1 if the edge e ∈ E is used on the d-th dispatch, 0 otherwise

· yd
i = 1 if order i is on the d-th dispatch, 0 otherwise

· td , the dispatch departure time for each d ∈ [D]
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Model:

max
t,x,y

D

∑
d=1

L

∑
i=1

yd
i

s.t. ∑
e∈δ (0)

xd
e = 2 ∀d ∈ [D], (C1)

∑
e∈δ (i)

xd
e = 2yd

i ∀i ∈ [L],d ∈ [D], (C2)

D

∑
d=1

yd
1 ≤ 1, (C3)

D

∑
d=1

yd
i+1 ≤

D

∑
d=1

yd
i ∀i ∈ [L], (C4)

td + ∑
e∈E

(ce + γ)xd
e − γ +α ≤ td+1 ∀d ∈ [D−1], (C5)

tD + ∑
e∈E

(ce + γ)xD
e − γ +α ≤ T, (C6)

td ≥ riyd
i ∀i ∈ [L],d ∈ [D], (C7)

∑
e⊆S

xd
e ≤ |S|−1 ∀∅ ̸= S⊆ [L],d ∈ [D], (C8)

xd
e ∈ {0,1} ∀e ∈ E,d ∈ [D], (C9)

yd
i ∈ {0,1} ∀i ∈ [L],d ∈ [D]. (C10)

The objective is to maximize the number of orders served. Constraints (C1) ensure that the depot is

on every tour. Constraints (C2) ensure that a node is on tour d if and only if it is served by the d-th

dispatch. Constraints (C3) limit the first order (and implicitly, all future orders) to be on at most one dispatch.

Constraints (C4) allow order i+ 1 to be served only if order i is served. Constraints (C5) and (C6) ensure

that dispatch return times are feasible with respect to the next dispatch departure time or the deadline.

Constraints (C7) ensure that dispatch departures occur only after all associated orders have been placed.

Subtour elimination constraints (C8) are added during the optimization as necessary.

The operational solution is used as a warm start to the model. The optimization is initially run with a

time limit of one minute. The resulting upper bound is used as the value of L for the final optimization with

a time limit of 30 minutes.
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