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Abstract This work addresses a home health care schedul-

ing problem (HHCSP) faced by home care agencies. In

home health care scheduling, there is a desire to retain

consistency with respect to the home health aide ser-

vicing each patient; this consistency is referred to as

continuity of care. To address this preference for con-

tinuity of care, we propose a rolling horizon approach

to the scheduling problem and introduce the consistent

home health care scheduling problem (Con-HHCSP).

The goal is to be able to quantify and control the devi-

ation of the new schedule suggested each day from the

existing schedule in place, so that some of the existing

assignments may be retained in the new schedule that

is produced. We present two different methods to solve

Con-HHCSP on a daily basis: an integer programming-

based method with approximations and a variant of a

petal heuristic. We discuss the performance and com-

putational efficiency of these methods.

Keywords Home health care services · continuity of
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Highlights

– We focus on the desire to maintain consistency in

the patient-aide assignments in a health care schedul-

ing problem, where the set of patients changes very

frequently making the existing schedule infeasible.
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– We propose and compare multiple methodologies in-

cluding a mathematical modelling and a flexible and

effective heuristic.

– We analyze the cost and consistency trade-off over

shorter and longer time periods, and in different net-

work structures.

1 Introduction.

Due to the increasing average age of the population, es-

pecially in developed countries, there is a growing need

for long-term medical care and assistance for elderly

people. It is advantageous - both to providers and to pa-

tients - to provide this care in the patient’s home as long

as possible. For providers, a long-term stay in hospitals

or nursing homes is more costly than providing care

and assistance to patients in their homes. Meanwhile,

patients feel more comfortable in their own homes, re-

sulting in improved quality of life. Therefore, programs

for aging in place, which include an individual’s free-

dom to choose the place to live regardless of his age or

level of ability, are widely endorsed by social and health

services providers. The corresponding growth in home

care services, i.e., services delivered outside of a struc-

tured setting, motivates the study of the scheduling of

aides who visit patient homes.

Home care services vary with respect to the scope

and structure of the care they provide. In this work, we

consider hospice care, which is aimed at relieving ter-

minally ill patients from pain, stress, and suffering. In

the United States, in order for a patient to be hospice-

eligible their physician must certify that their expected

remaining lifetime is less than six months if their con-

dition were to run its normal course. Hospice care fo-

cuses on pain management and improved patient qual-

ity of life during this time period rather than focusing
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on curative care. We address a real-world home health

care scheduling problem (HHCSP) faced by a home care

agency in the United States. The agency has operated

for more than two decades and has branches in over

twenty states. To lay out the details of the problem

and provide effective solutions using real-world data,

we collaborated with one of the agency’s branches. The

branch provides a number of different services in accor-

dance with the patients’ needs and plan of care includ-

ing social work, nursing, and chaplain visits. Patients

are located in settings including their home, skilled nurs-

ing facilities, and assisted living facilities, amongst oth-

ers. The service most commonly provided is patient per-

sonal care; this service is performed by home health

aides (HHAs) who are trained and certified health care

workers.

Any proposed solution method to the scheduling

problem must consider the unique characteristics of home

care service. One of the most critical characteristics is

that over time aides develop a personal relationship

with the patients and families they are servicing. As

such, there is a desire to retain consistency with re-

spect to the HHA servicing each patient. This consis-

tency in care, referred to as continuity of care, serves

to increase the overall patient quality of care and pa-

tient and family satisfaction. Continuity of care allows

a HHA to better monitor patient status without loss

of information, so that patients perceive a better qual-

ity of service with greater predictability and coherence

[1]. Patients also get comfortable with their aides over

time and prefer to be served by the same aide due to

the private and sensitive nature of the service they get.

It is therefore desirable to maintain consistency in the

patient-aide assignments.

Continuity of care policy has usually been addressed

in the literature by developing models for a long plan-

ning period and keeping the aide-patient assignments

consistent over time. However, the goal in a long-term

plan is to keep the assignments consistent, with an as-

sumption that there is no change in the data set. How-

ever, in real applications, the patient data set changes

over time. Here, we acknowledge this and aim for con-

tinuity of care in a changing environment. In the hos-

pice care setting, there is a frequent need to change

the schedules due to unpredictable changes in the pa-

tient set. This is due to the nature of the hospice care

environment, where a patient’s expected remaining life-

time is less than six months. In fact, according to 2014

data, average patient length of stay in hospice is ap-

proximately 70 days with a median of around 23 days

and often is as short as seven days or less [2]. Moreover,

28.2% of the patients leave the service within 7 days,

26.5% of them leave after 7 but within 30 days, and

only 13.1% of them stay longer than 180 days [2]. The

patients leaving the service or entering the service are

not predictable. Thus, it is not possible to schedule for

future periods, where the set of patients is unknown.

This reveals the need for adopting a rolling horizon ap-

proach in the solution method, where we solve a daily

HHCSP problem when there is a change in the data set

and keep the new patient-aide assignments consistent

with the previous schedule.

The need for frequent schedule changes coupled with

the desire to maintain continuity of care motivates us

to develop a solution method that updates an exist-

ing schedule rather than creating a new schedule from

scratch. In this work, we present two different con-

structive methods to solve HHCSP on a daily basis:

an integer programming-based method with approxi-

mations and a variant of a petal heuristic. We also im-

plement various improvement heuristics, such as single

swap, double swap, combined single and double swap,

and Large Neighborhood Search (LNS) heuristic. Using

our heuristic methods for HHCSP, we observed that

the daily cost of operations is decreased by $3,268,
which constitutes around 43% improvement over the

current schedule in operation, with 76% decrease in la-

bor cost (cost of idle time for full-time aides and work-

ing hours for part-time aides), 40% decrease in travel

costs, slight increase in over-time cost and 33% increase

in preference violation cost. We present adjustments on

these methods to address the schedule updating prob-

lem, where the goal is to be able to quantify and con-

trol the deviation from the existing schedule in place,

so that some of the existing assignments may be re-

tained in the new schedule that is produced. We discuss

the performance and computational efficiencies of these

methods.

The contributions of this paper are threefold. First,

we introduce the consistent home health care schedul-

ing problem (Con-HHCSP). Second, to the best of our

knowledge, this work is the first to present solution

methods and analysis for Con-HHCSP for a multi-aide

problem using a rolling horizon approach. Although

continuity of care has been taken into consideration in

the literature, the vast majority of the proposed meth-

ods aim to create a long-term schedule with a consis-

tency in the aide-patient assignments without consid-

ering a dynamic approach. Finally, quantifying the de-

viation from the prior period’s schedule will provide

business decision-makers with a quantifiable measure

of the actual cost of the continuity of care policy and

allow for relaxations or limitations in the policy based

on this cost analysis.
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2 Literature Review.

The Home Health Care Scheduling Problem (HHCSP)

can be seen as a variant of a multi-depot, multi-vehicle

routing problem (VRP) with various labor-related and

time-related constraints. However, HHCSP has some

aspects that are unique to scheduling such as a desire

to retain consistency in the HHA-patient assignments,

a need to assign HHAs with preferred skills, and a need

to consider specific labor-related constraints.

The uniqueness of the HHCSP problem, coupled

with the growth in home health services, has resulted in

a growing body of HHCSP literature. Comprehensive

literature reviews of home-health care logistics prob-

lems and workforce scheduling problems can be found

in [3–9]. Many variants of HHCSP have also been stud-

ied. Some of the key differences between the problems

are whether HHAs are heterogeneous or homogeneous

(e.g., with respect to skills, availability), length of the

planning horizon (e.g., daily or weekly planning hori-

zon), whether or not to consider time windows, and

the need to model simultaneous / interdependent vis-

its. Moreover, the objective functions may differ among

the problems. Although most studies consider minimiz-

ing travel cost as a part of the objective, some studies

also consider maximizing HHA utilization, maximizing

patient satisfaction, or simultaneously optimizing mul-

tiple objectives.

The main characteristic of our work which differ-

entiates it from the existing literature is its focus on

ensuring continuity of care using a rolling horizon ap-

proach. In addition, our problem includes complexities

such as having part-time and full-time aides with differ-
ent constraints, and patient preferences that are han-

dled as soft constraints. Therefore, among the refer-

ences reviewed in the survey papers above, we summa-

rize the most relevant papers with similar key features

and complexities. We include a group of papers with

consistency requirements, as well as some papers with-

out consistency requirements with other similarities in

our review. We explain the similarities and differences

of these papers below, and summarize some key features

in Table 7 in the Appendix.

To the best of our knowledge, Bennett & Erera’s

(2011) paper is the first to consider a rolling horizon

myopic planning approach to handle continuity of care

in a home health care context. However, our work differs

from theirs in important aspects. First, they consider a

single-nurse case of the problem, while we propose so-

lution methods for a multiple-nurse case as the service

areas of the nurses overlap in our problem setting. Sec-

ond, they consider a weekly schedule with a very strict

requirement of consistency in the visit times, by forcing

the visit times occurring on the same weekdays to be at

the same time from week to week. On the other hand,

we focus on the consistency in nurse assignments, since,

based on the information we obtained from the home

health care agency, we concluded that consistency in

nurse assignments is critical in the hospice care context.

Third, they propose various heuristic methods to han-

dle the problem, while we propose both a MIP model

and related heuristics, which means we can benchmark

the performance of one with the other. Lastly, we were

able to use a real data set and had an opportunity to see

the performance and cost effectiveness of our methods

in a real-world situation.

Our rolling horizon approach to handling continuity

of care is conceptually similar to the idea of generating

a master plan and updating it to generate daily opera-

tional plans. In this approach of master and operational

schedules, the goal is to generate a master schedule

which is used in the long-run and to create daily sched-

ules to account for the daily changes in the data sets

or operations. Nickel et al. [11] and Jensen [12] study

master plan and daily operational plans for the home

health care scheduling problem. Although our problems

are similar, there are some key differences. They assume

that the daily changes that are handled via the oper-

ational plan are usually insignificant. However, in our

context, the change may be significant so that a new

master plan is needed. Moreover, they mainly focus on

consistency in terms of visit times – since it is more

critical in their context. In our setting, consistency of

patient-aide assignments is more critical and we there-

fore ensure that our methodology handles this require-

ment.

Cappanera & Scutellà [13] have made an impor-

tant contribution to the home health care literature

by creating a joint model to handle assignment, and

scheduling aspects of the home health care problem.

Although both our mathematical model for HHCSP

and the model they propose consist of similar compo-

nents, there are several aspects that differentiate our

work from theirs. First, they do not consider the con-

sistency requirement in their work whereas we place

significant emphasis on this requirement in the current

work. Although they aim to create a weekly schedule

where the continuity of care is ensured by keeping the

nurse assignments the same throughout the week, they

do not consider preserving the consistency in the next

period when they need to re-optimize the schedule. We

provide MIP models and heuristics both for HHCSP

and Con-HHCSP. Moreover, their MIP-based model is

not able to solve some of the instances, or may take a

significant amount of time to solve some instances due

to the complex nature of the problem. We propose both
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a MIP-based model and heuristics to enable fast and

high quality solutions for a variety of instances. There-

fore, our work has unique contributions in the context

of home health care problems as well as in a wider con-

text of VRP where consistency may be present as an

important component of the problem.

The continuity of care has mostly been handled via

solving the problem in a long planning horizon, rather

than using a rolling horizon approach, as in the work

of Carello & Lanzarone [14] and Yalçındağ et al. [15].

As mentioned earlier, this approach is not applicable in

all settings such as hospice care. There are also some

papers which account for patient preferences when solv-

ing the daily home care scheduling problem, but they do

not consider continuity of care or updating the sched-

ule with consistency concerns [16, 17]. Thus, our work

differs from these papers in terms of the main focus on

updating the schedules in case of significant changes in

the dataset.

Besides the home health care setting, consistency

concerns appear in many different fields. In the vehi-

cle routing problem (VRP) studied in transportation

literature, consistency concerns became important af-

ter a shift in practice from cost-oriented operations to

customer-oriented operations [18]. Many companies pre-

fer drivers to visit the same customers roughly at the

same time when the customers need service, since this

helps drivers develop relationships with customers, re-

sulting in better customer service [19]. [18, 20, 21] stud-

ied variants of VRP, where the consistency constraints

are combined with the traditional VRP constraints. More-

over, consistency has been addressed in the Travelling

Salesman Problem (TSP) [22], and the dynamic schedul-

ing problem for aircraft landings [23].

3 Problem Description and Model.

3.1 Consistent Home Health Care Scheduling Problem

(Con-HHCSP).

Home Health Care Scheduling Problem (HHCSP) is a

variant of a multi-depot, multi-vehicle routing problem

with labor-related and time-related constraints. We be-

gin by describing the problem. Each day, each HHA

is assigned a set of patients to be visited at scheduled

times. The HHA travels from his home to deliver care

to his assigned patients in accordance with the assigned

schedule. The HHA travels from patient to patient; fol-

lowing completion of his daily assignments, the HHA

returns home. We consider deterministic travel times

and distances between patient locations; these distances

may be calculated using a geographic information sys-

tem tool. Service times are also considered to be deter-

ministic, having a value roughly estimated based on

prior experience. In our problem setting, we assume

common service times across all patients.

Time-related constraints enforce regular working hours,

i.e., these constraints enforce that all visits begin no ear-

lier than a specified start time and end no later than

a specified end time. Labor-related constraints are spe-

cific to the employee type: the workforce is comprised

of part-time (PT) and full-time (FT) HHAs and each

is bound by different rules. FT HHAs are scheduled to

work a fixed number of hours per week; a FT HHA who

works more than his regular scheduled hours is paid for

his excess hours at an hourly overtime rate. However,

the sum of regular hours and overtime hours may not

exceed a maximum allowable number of working hours.

PT HHAs are paid at an hourly rate and may work

up to a specified weekly regular number of hours with

this hourly rate. If a PT HHA works beyond the max-

imum number of permissible hours per week, then the

PT HHA must receive additional benefits such as in-

surance; the cost of these benefits is covered by the em-

ployer. Our labor-related constraints are different from

similar home health care scheduling problems discussed

in the literature. Although most studies consider het-

erogeneous aides (e.g., skilled nurses), this heterogene-

ity mostly affects the assignment decisions. In our case,

the heterogeneity in cost calculations and time restric-

tions introduces additional complexity to the problem.

In addition to the labor-related constraints, we con-

sider patient preferences when assigning patients to the

PT and FT HHAs. Namely, patients may specify one

or more HHAs that they prefer and/or characteristics

of HHAs that they prefer (e.g., gender, languages spo-

ken). These preferences are treated as soft constraints

where a penalty is introduced to the objective function

for each preference violation.

Similar to the labor-related constraints, having soft

constraints for the assignment decisions is not common

in the literature. In most cases, staff assignments are

restricted due to hard constraints such as skills require-

ments. Modeling preferences as a soft constraint and in-

troducing a penalty for preference violation introduces

the challenge of appropriately selecting a penalty. Based

on discussions with the company, we note that patient

preferences are seriously considered (as these may di-

rectly impact customer satisfaction) but are balanced

against costs incurred in meeting these preferences. We

therefore introduced these preferences as a soft con-

straint and impose a violation penalty equal to an av-

erage cost of visiting a patient.

The consistent home health care scheduling prob-

lem (Con-HHCSP) arises when there is a need to solve

HHCSP to create a new schedule due to a change in
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the dataset (e.g., change in available HHAs, change in

patients requiring care) and there is a desire to retain

consistency between the patient-aide assignments in the

new schedule and the patient-aide assignments in the

prior period schedule. Here, consistency is measured by

the ratio of the patient-aide assignments that remain

consistent across the current and prior period sched-

ules. When calculating this ratio, note that we only

consider the patients requiring service in both the prior

period and the current period. Based on the problem

setting, the consistency preference may be very strict –

such that all of the patients requiring service in both

periods must be served by the same aide in the current

period (as the aide who provided service in the prior

period) – or it may be loose, such that only some of

the patient-aide assignments must be retained between

the prior period and current period schedules. In other

words, the cost associated with changing the patient-

aide assignments affects the scheduling decisions made.

In addition to the consistency preference, this prob-

lem has a dynamic nature. If all data parameters re-

mained constant over time, then decisions could be made

for a long-term planning horizon. However, frequent

changes in the dataset do not allow for long-term plan-

ning; for example, changes in aide availability (due to

high staff turnover that characterizes the industry) as

well as changes in the patients requiring care (due to

the nature of the hospice industry) are both common.

Thus, a method for dynamically updating schedules is

required. In this study, we only consider changes in the

set of patients requiring care and assume that the set

of aides and other data parameters remain constant.

In an effort to further decrease the size of the feasi-

ble region, we analyze the structure of our problem and

observe that the maximum number of patients that may

be visited by an HHA each day isM = ⌊H/minj∈J{uj}⌋,
where H is the maximum number of working hours and

uj is the service time for patient j belonging to the set

of patients J . Since service time is the main compo-

nent of the total time and service times are assumed

constant over all patients in our problem setting, this

upper bound is very useful. In fact, when we solve the

model without this bound we observe that most good

quality solutions have all HHAs visiting at most M pa-

tients. (In rare cases, we observed HHAs visiting M +1

patients; these cases involved overtime costs.) In ad-

dition, in considering the agency’s current practice we

observe that to establish fairness in workload among the

HHAs, the agency assigns at most M patients to each

HHA. Thus, we add this cut to the model (constraint

(1c)) as a useful tool for cutting the feasible region as

well as to balance workload and limit overtime costs.

Table 1 Notation for the Con-MIP model of Con-HHCSP

Index Sets
J Set of patients requiring service in the current period
J0 Patients who require care in both the prior period

and the current period. (Intersection of the current
set of patients and the prior period set of patients.)

F Full-time home health-aides (FT HHAs)
P Part-time home health-aides (PT HHAs)
G All HHAs. G = F ∪ P
Gj HHAs preferred and available to serve patient j ∈ J .

Gj ⊆ G
Loc The set of all pair of nodes that can be visited by

any aide. Loc = {J × J ∪G× J ∪ J ×G}
Data Parameters

H Length of regular workday, in hours
B Maximum number of daily hours a part-time em-

ployee may be scheduled before changing to full-time
status

M The upper bound on the maximum number of pa-
tients an aide can visit on a day, as explained in
Section 4.1

α Maximum ratio between a journey with overtime
hours and the regular workday length H. E.g.: α =
1.25, H = 8 implies that HHAs may not work more
than 10 hours a day, including overtime

sj Average duration of visit to patient j ∈ J
s Minimum duration of visit to patients s =

minj∈J sj
Dab distance from location a to location b, for (a, b) ∈

Loc
Tab travel time from location a to location b, for (a, b) ∈

Loc
cT Cost of transportation per mile driven
cF Cost of labor per hour worked for full-time HHA
cP Cost of labor per hour worked for part-time HHA
cOP Associated cost increase if a part-time HHA works

over 5B hrs/wk (B hrs/day) and is converted to a
full-time HHA (health insurance, etc.)

cOF Penalty associated with hours of over-time work full
full-time HHAs

λP Penalty associated with violating aide-assignment
preferences

λ Inconsistency penalty associated with changing the
aide-patient assignment when updating the schedule

x0
gj Indicator data equal to 1 if and only if aide g ∈ G

visits patient j ∈ J0 in the previous period
Variables

xgj Binary variable equal to 1 if and only if HHA g ∈ Gj

visits patient j ∈ J
ygab Binary variable equal to 1 if and only if HHA g ∈ G

traverses the arc (a, b) ∈ Loc. Note that, yggg = 1
if the aide g ∈ G does not work on that day.

wg Total working hours for HHA g ∈ G
θp Binary variable equal to 1 if and only if wp > B for

p ∈ P .
Og Total daily overtime hours for HHA g ∈ G
γf Idle time for FT HHA f ∈ F (γf = max(0, H−wf ))
Pj Binary variable equal to 1 if and only if patient j ∈ J

is assigned a non-preferred HHA
dgj Inconsistency variable, binary variable equal to 1 if

and only if patient j ∈ J0 was assigned to aide g ∈ G
in the prior period and is reassigned to a different
aide in the current period.
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We don’t consider break and rest rules explicitly

in our problem, but we believe that they can be easily

incorporated into the schedule. We create the schedules

in a way that the total number of working hours do

not exceed the limit. If there is a lunch break, or other

rest rules, they can be added into the schedule. Since

we don’t have time windows in this problem, addition

of the breaks does not make the schedule infeasible, or

affect the overall costs. If the part-time aides have other

restrictions in terms of the working hours or days, these

requirements can be handled by changing the available

aide set for the specific day, or changing the maximum

number of hours allowed for that particular aide. For

example, if a set of aides cannot work on Wednesdays,

then they can be removed from the aide set for that day.

Similarly, if an aide can only work in the afternoon for 2

hours on a certain day, the maximum time limit can be

set to 2 hours in the constraint which ensures that, and

the resulting schedule can be shifted to the appropriate

time window for that aide.

min
∑
g∈G

(a,b)∈Loc

cT ygabDab +
∑
f∈F

cF γf +
∑
p∈P

cPwp

∑
f∈F

cOFOf +
∑
p∈P

cOP θp +
∑
j∈J

λPPj +
∑
j∈J0

g∈G

λdgj (1a)

s.t.
∑
g∈G

xgj =
∑

g∈Gj

xgj + Pj = 1 ∀j ∈ J (1b)

∑
j∈J

xgj ≤ M ∀g ∈ G (1c)

wg =
∑
j∈J

sjxgj +
∑
i∈J

Tijygij

 ∀g ∈ G (1d)

wg ≤ αH ∀g ∈ G (1e)

γf ≥ max(0, H − wf ) ∀f ∈ F (1f)

Of ≥ max(0, wf −H) ∀f ∈ F (1g)

(αH −B)θp ≥ Op ≥ max(0, wp −B) ∀p ∈ P (1h)∑
b∈J∪{g}

yggb =
∑

a∈J∪{g}
ygag = 1 ∀g ∈ G (1i)

∑
a∈J∪{g}

ygaj =
∑

b∈J∪{g}
ygjb = xgj ∀g ∈ G, ∀j ∈ J (1j)

∑
a∈S,b∈S

ygab ≤ |S|−1 ∀g ∈ G, ∀S ⊆ J (1k)

x0
gj − xgj ≤ dgj ∀g ∈ G, ∀j ∈ J0 (1l)

dgj ∈ {0, 1} ∀g ∈ G, ∀j ∈ J0 (1m)

xgj ∈ {0, 1} ∀g ∈ G, ∀j ∈ J (1n)

ygab ∈ {0, 1} ∀g ∈ G, ∀(a, b) ∈ Loc (1o)

θp ∈ {0, 1} ∀p ∈ P (1p)

We now describe the mathematical model of Con-

HHCSP, which we refer to as Con-MIP, using the no-

tation presented in Table 1. The key model assump-

tions are (i) patients do not have time-windows, (ii)

patients require only one HHA to be present in a ser-

vice visit, (iii) all visits to the same patient have the

same average duration, (iv) an HHA’s day begins when

he arrives at his first patient and ends when he leaves

his last patient, and (v) part-time HHAs and full-time

HHAs have different associated time (availability) re-

strictions and labor costs. The objective is to minimize

the sum of the travel costs (from the patient homes to

the homes of the aides), idle time cost which is the time

that is not spent on duty for full-time aides, labor cost

for part-time aides, overtime costs for all aides, overuse

cost for part-time aides when their daily workload ex-

ceeds a specified amount, and the costs associated with

patient preferences. The objective function includes all

of these six components in their explained order below.

Note that labor cost for full-time aides is not part of

the equation as it is fixed.

Constraints (1b) ensure that every patient is visited

once. They also assign the value of the preference vio-

lation variable Pj . Constraints (1c) establish an upper

bound on the number of patients that may be visited by

an aide, based on the service time and the total work-

ing hours. Constraints (1d) calculate the actual work-

ing time in a day, which is equal to the sum of travel

times between patients plus visit durations. Constraints

(1e) define an upper bound for the total working hours.

Constraints (1f) define idle time for full-time aides and

restrict the idle time to be non-negative. Constraints

(1g) define extra working hours for full time HHAs as

total hours worked by the HHA minus the number of

hours FT HHAs are scheduled to work and restricts

this value to be non-negative. Constraints (1h) sets the

overuse indicator equal to one if working hours of a

PT HHA exceeds the maximum permissible number of

hours per week. Constraints (1i) and (1j) are the rout-

ing constraints for travel between patients. Each HHA

will begin from home and return to home as the start

point and end point of his daily work “route”. Rout-

ing flows will be balanced. Constraints (1k) are used to

eliminate subtours. Note that there are exponentially

many subtour elimination constraints, so that a cutting

algorithm is implemented to handle them.

To calculate the value of the inconsistency variables

dgj ,∀j ∈ J, ∀g ∈ G, we add the following set of con-

straints (1l) to the model. dgj takes a value of 1 if and

only if HHA g was assigned to patient j in the prior

period but is not assigned in the current period (and

patient j ∈ J0). The inconsistency penalty is applied

for each positive dgj variable. Note that we write these

constraints only for the patients who are in both the

prior period dataset and in the current period dataset.

Moreover, the variable dgj is not set equal to 1 if HHA

g was not assigned to patient j in the prior period but
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is assigned in the current period, since this would result

in double counting the changes in assignments.

In order to improve the formulation, we add some

cuts to the model. Constraints (2a) ensure that the vari-

able yggg becomes 1 when an aide g ∈ G does not visit

anyone, and becomes 0 when he visits at least one pa-

tient. Constraints (2b) set the overuse variable θp for

part-time aide p to 1 if the aide makes more visits than

the maximum number of visits that can be assigned to

a part-time aide, which is found by B/s - a maximum

time that a part-time aide can work, divided by the

minimum service time.

1

M

∑
j∈J

xgj ≤ 1− yggg ≤
∑
j∈J

xgj ∀g ∈ G (2a)

∑
j∈J

xpj −
B

s
≤ (M −

B

s
)θp ∀p ∈ P (2b)

4 Methodology.

As HHCSP is a variant of VRP, it is NP-hard. Solv-

ing to optimality is possible only for very small size

instances. This motivates the development of approxi-

mate or heuristic methods. We develop two main con-

structive methods to generate high-quality solutions.

The first method is a mixed-integer programming model

with approximations. The second method is a petal-

based heuristic adapted for this specific problem. We

also use various improvement heuristics, such as swap

and LNS heuristics. These methods, described in this

section, are computationally tested, with results out-

lined in Section 5.

4.1 Mixed Integer Programming Model with

Approximations.

As the original Con-HHCSP is intractable, we re-formulate

the problem by integrating some approximations in or-

der to simplify it. Our aim is to be able to solve the

problem for larger instances while obtaining a high-

quality solution. We impose three main approximations:

clustering, within cluster travels, and maximum num-

ber of visits. These approximations are explained below.

Clustering: The original arc-based formulation of a

HHCSP requires all combinations of edges to be consid-

ered as a possible route. However, most good solutions

are less likely to include routes going back and forth

between the farthest points. For example, suppose A

and B are two nodes in City 1 and C is a node in City

2, which is far away from City 1. If an aide is scheduled

to visit locations A, B, and C on a given day, one would

not expect the visit order to be A-C-B, or B-C-A (since

it would be more reasonable to visit two nodes in City 1

and to then travel to City 2). Since we don’t have time

windows, this assumption is reasonable in our prob-

lem setting – considering both time and travel cost. We

therefore re-structure our graph as a set of clusters of

patients and consider routing constraints to be between

clusters and within each cluster rather than between all

patients. In other words, an HHA travels between the

clusters by visiting each cluster at most once. When an

HHA visits a cluster, he may travel within the cluster

(between the patients). Note that an aide may or may

not visit all patients within a cluster he is visiting. The

clusters are generated based on the location of the pa-

tients only, whereas the decision of assigning an aide

to a patient includes not only the location associated

costs but also the consideration of patient preferences,

and continuity of care. Therefore, we adopt a flexible

clustering approach, which is used to divide the network

into large or small neighborhoods and not necessarily

into a group of patients to be visited by the same aide.

This re-formulation enables us to decrease the number

of routing variables and constraints in our model.

Table 2 Notation to be used in Con-MIP-A in addition to
the notation presented in Table 1

Index Sets
K Clusters
Jk Patients in cluster k ∈ K
Kg Clusters that HHA g ∈ G can visit (i.e., there are

patients in that cluster who prefer HHA g ∈ G)
Loc The set of all pair of nodes that can be visited by

any aide. Loc = {K ×K ∪G×K ∪ K ×G} ∪
{K × J [k] ∪ J [k]× J [k] ∪ J [k]×K}

Data Parameters
Dab distance from location a to location b, for (a, b) ∈

Loc
Tab travel time from location a to location b, for (a, b) ∈

Loc
O(j) The pre-determined visiting order of the patient

j ∈ J in its cluster as explained in Section 4.1.
Variables

xgk Binary variable equal to 1 if and only if aide g ∈ Gj

visits cluster k ∈ K
ygab Binary variable equal to 1 if and only if, HHA g ∈

G traverses the arc (a, b) ∈ Loc. Note that, yggg =
1 if the aide g ∈ G does not work on that day.

Within-cluster visits: We cluster the patients using

a hierarchical clustering with a ”complete” (or ”max-

imum”) linkage method. In this method, the distance

between two clusters u and v is calculated as follows:

d(u, v) = max(d(u[i], v[j])) for all points i in cluster

u and j in cluster v. In our model, we choose a small

distance as a clustering criterion (i.e., 3 miles where

the average distance between all patients is 32.5 miles),

so that the distance between all nodes in a cluster is
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very small. Consequently, a travel distance between two

routes within the same cluster is very small. The result

is many symmetric solutions in our model; we add an

integer cut (constraint (3n)) to eliminate some of these

symmetric solutions and to obtain a smaller feasible re-

gion. To decide which symmetric solution to promote,

we solve a TSP for patients within each cluster and

save the optimal TSP solution as a preferred order. In

the mathematical model we set equal to zero all arcs

that violate the preferred order. This method is inspired

from Cappanera & Scutellà’s work [13].

min
∑
g∈G

(a,b)∈Loc

cT ygabDab +
∑
f∈F

cF γf +
∑
p∈P

cPwp

+
∑
f∈F

cOFOf +
∑
p∈P

cOP θp +
∑
j∈J

λPPj +
∑
j∈J0

g∈G

λdgj (3a)

s.t.
∑
g∈G

xgj =
∑

g∈Gj

xgj + Pj = 1 ∀j ∈ J (3b)

∑
j∈J

xgj ≤ M ∀g ∈ G (3c)

wg =
∑

k,l∈K

Tlkyglk +
∑
k∈K

∑
i,j∈Jk

Tijygij

+
∑
j∈J

sjxgj ∀g ∈ G (3d)

wg ≤ αH ∀g ∈ G (3e)

γf ≥ max(0, H − wf ) ∀f ∈ F (3f)

Of ≥ max(0, wf −H) ∀f ∈ F (3g)

(αH −B)θp ≥ Op ≥ max(0, wp −B) ∀p ∈ P (3h)

xgj ≤ xgk ≤
∑
j∈Jk

xgj ∀g ∈ G, ∀k ∈ K,∀j ∈ Jk (3i)

∑
b∈K+g

yggb =
∑

a∈K+g

ygag = 1 ∀g ∈ G (3j)

∑
b∈Jk+k

ygkb =
∑

a∈Jk+k

ygak = 1 ∀g ∈ G, ∀k ∈ K (3k)

∑
a∈K+g

ygak =
∑

b∈K+g

ygkb = xgk ∀g ∈ G, ∀k ∈ K (3l)

∑
a∈Jk+k

ygaj =
∑

b∈Jk+k

ygjb = xgj

∀g ∈ G, ∀k ∈ K,∀j ∈ Jk (3m)

ygab = 0 ∀g ∈ G, ∀(a, b) ∈ Loc : O(a) > O(b) (3n)∑
a∈S,b∈S

ygabx ≤ |S|−1 ∀g ∈ G, ∀S ⊆ K (3o)

x0
gj − xgj ≤ dgj ∀g ∈ G, ∀j ∈ J0 (3p)

dgj ∈ {0, 1} ∀g ∈ G, ∀j ∈ J0 (3q)

xgj ∈ {0, 1} ∀g ∈ G, ∀j ∈ J (3r)

ygab ∈ {0, 1} ∀g ∈ G, ∀(a, b) ∈ Loc (3s)

θp ∈ {0, 1} ∀p ∈ P (3t)

xgk ∈ {0, 1} ∀g ∈ G, ∀j ∈ J,∀k ∈ K (3u)

Based on the approximations explained above, we

modify the original MIP model to obtain mixed integer

programming model with approximations (Con-MIP-

A). The changes in the notation, index sets, data pa-

rameters, and the variables are explained in Table 2.

The objective function 3a of Con-MIP-A remains

the same as in Con-MIP. Note, however, that the rout-

ing variable ygab is defined on different arcs Loc set as

defined in Table 2.

Since we cluster patients and consider routing be-

tween clusters and between patients within each cluster,

the routing constraints and time constraints are mod-

ified as follows. Constraints (3d) calculate the actual

work done by aides, by adding the travel times between

the visited clusters / patients and the service time for

each patient visited. Constraints (3j) - (3m) ensure the

connectivity in the between-cluster and within-cluster

routes. Constraints (3n) are used to eliminate symmet-

ric solutions in within-cluster routing as explained in

Section 4.1. Constraints (3o) are used to eliminate sub-

tours between the clusters. As mentioned before, a cut-

ting plane algorithm is implemented to handle the ex-

ponential number of subtour elimination constraints. In

addition to the constraints of Con-MIP model, we add

the constraints (3i) - (3r) that are used to define the

cluster-aide assignment variables and the visit times for

the clusters. Constraints (3i) ensure that a cluster as-

signment variable is set to one if at least one patient in

that cluster is visited by an aide, and that no patients

in that cluster are visited if the cluster assignment vari-

able is zero. Like patient assignment variables, cluster

assignment variables are also binary variables as indi-

cated by constraints (3r).

As in Con-MIP model, we add some cuts to Con-

MIP-A as follows. As in Con-MIP, constraints (4a) en-

sure that the variable yggg becomes 1 when an aide

g ∈ G does not visit anyone and becomes 0 when he

visits at least one patient. Similarly, constraints (4b)

ensure that the variable ygkk becomes 1 when an aide

g ∈ G does not visit anyone in a cluster k ∈ K, and

becomes 0 when he visits at least one patient in that

cluster. Constraints (4c) set the overuse variable θp for

part-time aide p to 1 if the aide makes more visits than

the maximum number of visits that can be assigned to

a part-time aide.

1

M

∑
j∈J

xgj ≤ 1− yggg ≤
∑
j∈J

xgj ∀g ∈ G (4a)

1

M

∑
j∈Jk

xgj ≤ 1− ygkk ≤
∑
j∈Jk

xgj ∀g ∈ G, ∀k ∈ K (4b)

∑
j∈J

xpj −
B

s
≤ (M −

B

s
)θp ∀p ∈ P (4c)

Con-MIP-A remains intractable despite these ap-

proximations. We therefore impose a computing time

limit and obtain a potentially sub-optimal solution. We
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apply a post - processing approach to the solution ob-

tained using Con-MIP-A to arrange the schedule and

minimize costs. We obtain the HHA-patient assignment

information from the Con-MIP-A solution and solve a

TSP to re-create the routes for each HHA. Since the

number of patients in an HHA’s route is limited, solving

this TSP can be achieved efficiently. In other problem

settings, where routes may be larger, a TSP heuristic

may be utilized. In addition to further minimizing costs,

this post-processing step also supports more accurate

comparisons among different schedules by eliminating

any idle times in the schedules and revealing the actual

costs.

Con-MIP-A is modified to obtain an approximate

Con-MIP model for the Con-HHCSP, which we refer

to as Con-MIP-A. The modifications are the same as

explained in section ??. In other words, we add index

set, data parameters, and variables to the model as de-

scribed in Table ??. The objective function is modified

to incorporate the consistency preference as in (??) and

the consistency constraints (1l) and (1m) are added to

Con-MIP-A.

4.2 Petal Based Heuristic for Con-HHCSP

The Petal Heuristic was first proposed by Foster &

Ryan [24] to address the vehicle scheduling problem.

This solution approach involves two stages. In the first

stage, a set of possible ”good” routes is created. In the

second stage, the assignment of the routes is made by

solving a set partitioning problem. This approach is

appropriate for our problem setting, as the number of

daily visits is limited. In our instances, a single HHA

can visit at most five patients each day so routing is

simplified once the visit assignment is determined. We

therefore develop a variant of this heuristic, denoted

Con-PH, to address Con-HHCSP.

We first develop an algorithm to create a ”good”

set of clusters. Here, ”good” clusters refer to groups of

patients who are highly likely to be visited by the same

aide (due to the patients’ similarities with respect to

location and preferences). When creating the clusters of

patients, we exclude infeasible sets, i.e., sets of patients

who cannot be visited by the same HHA on a single day

within regular working hours. Algorithm 1 is used to

generate a ”good” set of clusters of patients who can be

visited by the same HHA on a single day. Here, we aim

to group patients into clusters without considering the

order in which they are visited. The routes are created

after the clusters are formed.

The pseudo-code of our cluster generation algorithm

is written in Algorithm 1. Steps 1-5 are used to generate

all possible singletons and pairs of patients; steps 6-16

Algorithm 1: Algorithm for Cluster Genera-

tion
1 Initial Solution: C = ∅ (set of clusters),

Ignore=NULL ;
2 (Create all possible clusters of one and two patients)

forall i ∈ Patients do
3 C = C ∪ {(i)} ∪ ∅ /; forall j ∈ Patients \{i} do
4 if {(i, j)} /∈ C then
5 C = C ∪ {i, j}

6 for modified and unmodified distance matrices do
7 forall x ∈ [3, 4, 5] do
8 Create clusters of x patients forall i1 ∈

Patients do
9 Ignore=i1 ;

10 while There are less than Cx clusters
including patient i1 do

11 Cx: the number of clusters of size x
that each patient belongs to while
The size of the cluster is less than
x (|c|< x) do

12 Use Nearest Insertion to find
c = {i2, ..., ix} ∈ Patients \
Ignore. ;

13 Ignore=Ignore ∪{i2, ..., ix} ;
14 if {i1, i2, ..., ix} /∈ C is a feasible

route then
15 C = C ∪ {i1, i2, ..., ix}
16 c = {i1, i2, ..., ix−j}
17 Keep the first j elements of the

cluster the same, and create
more clusters, where
j ∈ {2, ..., x− 1}. Do this twice
for each j, starting with
j = x− 1.

are used to generate clusters of 3, 4, and 5 patients.

Note that in our instance an HHA may visit at most

five patients each day, so we limit the size of the clusters

to equal five. In other instances, the size of the clusters

may be set to a larger value in step 7 of the algorithm.

In step 10, we generate Cx number of clusters of size

x. Note that this value is pre-determined based on pre-

liminary experiments. In general, Cx should be large

enough to provide a wide variety of options to choose

from but small enough to be computationally feasible.

Given a set of patients, the number of clusters of size

x increases as x gets larger. Therefore, Cx should be

larger for larger values of x in order to include more

samples from the larger set of clusters. We repeat the

second part of the algorithm (steps 7-16) twice for mod-

ified and unmodified distance matrices. The unmodified

distance matrix is a location based distance matrix ob-

tained from Google Maps.

We modify this distance matrix based on patient

preferences and continuity of care. Namely, for each pair
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of patients, we add the preference cost to the distance

between them if all of their preferred aides are different.

In this way, we aim to cluster patients with similar aide

preferences. This also introduces more flexibility in op-

tions when we assign the clusters to HHAs using a set

partitioning formulation. To account for the deviations

from the previous schedule, we modify the distance ma-

trix as follows. For each pair of patients, we add the de-

viation cost to the distance between them if they were

visited by different aides in the previous assignment.

This way, we aim to cluster patients who have been

visited by the same aide in the previous assignment.

This approach to modify the distance matrix is novel.

These modifications to the distance matrix help to cre-

ate clusters based on location, preferences, and previous

assignments.

We further create clusters that guarantee highest

consistency. That is, we cannot guarantee that the clus-

ters generated using these modified and unmodified dis-

tance matrices will provide an option of retaining the

previous schedule. Therefore, in addition to the clusters

generated by Algorithm 1, we generate clusters that fo-

cus on consistency using the regret-based repair opera-

tors as follows. First, we take the routes of the previous

schedule as an initial set of clusters and remove patients

who are not in the current data set. Then, we use the

regret operator to insert each new patient into an aide’s

daily route by considering the regret cost of postpon-

ing an insertion to later iterations ([25]). In this way,

we generate a route for each aide that retains all of the

previous assignments.

The regret operator calculates the cost for several

insertion positions for each patient and finds the differ-

ence between the cost of the best insertion position and

the cost of the alternative insertion positions as follows:

∆i =

min(r,m)∑
k=2

(cki − c1i ).

Here, r is the regret operator parameter that refers to

the number of routes to be considered in comparison

and m is the total number of possible routes; cki refers

to the kth cheapest insertion cost for patient i. Based

on this cost calculation, the regret operator inserts the

patient with the largest difference between the cost of

the best insertion position and alternative insertion po-

sitions. Namely, i∗ = argmaxi∈I\{i} ∆i is inserted to

its cheapest position. The process is repeated until all

new patients are inserted. In our implementation, we

set the regret parameter equal to half the size of the

new patients.

After the clusters are created, we calculate the ”as-

signment costs” of each HHA to each cluster. The as-

signment cost includes travel cost (total distance within

the cluster plus distance to / from HHA’s home from /

to the nearest patient in the cluster), overtime cost, idle

time cost for FT HHA, hourly labor cost for PT HHA,

and the penalty for any preference violations (penalty

for one preference violation, multiplied by the number

of patients in the corresponding cluster who do not pre-

fer that HHA). The main steps involved in creating the

routes and calculating the costs of each cluster-HHA as-

signment are: (i) For each cluster, create a route using

TSP and calculate the minimum travel distance and the

travel time for the route. (ii) If the total travel time for

the route exceeds the daily time limit then delete this

route. Otherwise, add this route to the set of ”good”

routes. (iii) For each HHA, record the cost of visiting

each route if the total travel time of the route is within

the daily time limits.

The assignment cost for each aide and each route in-

cludes travel, labor (work time and idle time), overtime,

preference penalty, and inconsistency penalty costs. As

mentioned above, we first create a TSP tour with the

set of patients within each cluster generated with Algo-

rithm 1. Next, using the cheapest insertion algorithm,

we create a route for each aide by determining the first

and last patients to visit on the TSP tour of patients,

based on the home locations of the aide and the pa-

tients. Once all possible routes are created, total travel

costs, labor costs, and preference penalty costs are cal-

culated as in the objective function described in Section

3.1. We further add inconsistency cost to the overall

assignment cost between each cluster and aide. For a

given cluster-aide pair, if there are patients in the clus-

ter who were visited by another aide in the previous

schedule, then the unit cost of inconsistency is multi-

plied by the number of patients in this situation and

added to the assignment cost. This encourages the set

partitioning model solution to be consistent with the

previous schedule.

After the assignment costs are calculated, a vari-

ant of a Set Partitioning Problem is solved to assign

the routes to aides such that the cost of the resulting

schedule is minimized. The notation used in the set par-

titioning model is explained in Table 5 and the model

is presented in Appendix A. Once the route-aide as-

signments are made, the schedules are created by cal-

culating the arrival time for each patient in the pre-

determined routes.

To improve the solutions we obtain via Con-PH

or Con-MIP-A, we also develop fast and simple im-

provement heuristics. Specifically, we implemented var-

ious swap heuristics and a Large Neighborhood Search

heuristic adapted from Bent & Van Hentenryck’s work

[26]. Since its original version did not perform well due

to the special characteristics of our problem, we ad-
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justed Bent and Van Hentenryck’s heuristic for our prob-

lem. The detailed explanation and the algorithms of our

adjusted versions of swap heuristics, as well as the LNS

heuristic, can be found in the Online Appendix.

4.3 Extensions

Since the home health care research has been moti-

vated by practice, the problems addressed in the litera-

ture possess different needs and requirements [7]. Since

real-world data has mostly been used to test the meth-

ods, the proposed methods were tailored to a particu-

lar problem setting. Some main differences considered

in various studies are homogeneous vs. heterogeneous

aides, and daily vs. weekly schedules. In terms of the

consistency aspect of the problem we study here, con-

sistency in visit times could also be desired in some

settings. The petal-based heuristic we present is flexi-

ble to handle a wider range of problem features. In this

section, we present possible extensions to the method-

ology to handle different requirements.

In many home health care problems, there are het-

erogeneous sets of aides with different skill set which

make them eligible or ineligible for some visits. In some

cases, hierarchy between these skills are considered. For

example, an aide who can take care of the medications

can also take care of the household duties, while the

opposite is not true. The concept of skilled aides is sim-

ilar to the ”preferred aides” concept we presented in our

problem setting, except that assigning based on skills

needs to be a hard constraint while assigning based on

preferences can be a soft constraint. To handle this use

case, we can set the preference penalties high enough

such that the cost of accepting a mismatch of skills in

an assignment is higher than the total cost of any other

schedule.

In some health care scheduling problems, patients

do require visits less than 5 days a week, so that cre-

ating a weekly schedule is needed. There could be dif-

ferent use cases of this situation. If the patients specify

the days they want to be visited, then daily solution

methods can be applied. However, if the patients only

specify the number of days they need to be visited in a

week, then the visit days is also a decision to be made

and a weekly schedule is needed. We can adjust our

heuristic to handle such use cases. The patients in the

network can be defined multiple times to represent the

number of visits they need. Namely, if they need to be

visited 2 days a week, then the patient node is dou-

bled. The cluster generation algorithm can be adjusted

to generate larger clusters with enough patients to be

covered in 5 working days of an aide. Since the dupli-

cate nodes have the same address, they would be chosen

to be on the same cluster and visited by the same aide

throughout the week. After the clusters are assigned to

the aides, then TSP routes can be generated to find the

sequence of the visits. Re-arranging the sequence of the

nodes in each cluster is needed to make sure that a pa-

tient is not visited twice on the same day, but rather

visited by the same aide on different days.

In this work, we emphasize the consistency in the

patient-aide assignments, but visit time consistency may

also be desired in some settings. In this case, the regret

operators explained in section 4.2 can be used to create

a schedule where the routes are kept mostly the same,

and the new patients are inserted into the schedule.

This way, consistency in both patient-aide assignments

and visit times could be obtained. Moreover, we con-

sider consistency between two consecutive periods in

this study, but consistency over multiple periods can

also be explicitly modeled if it is desired. In this case,

the consistency constraint in the MIP model, or the

consistency costs handled in the heuristic can be ad-

justed to consider the multiple periods in the past in-

stead of only the last period.

5 Computational Experiments

In this section, we describe the results of a computa-

tional study aimed at comparing the performance of

the methods described in Section 4 and exploring the

effect of the continuity of care requirement on schedul-

ing decisions. For the purposes of this study, we ob-

tained data from a real-world home health care agency

operating in the United States. The experiments have

been performed on an Intel(R) Core(TM) Processor i7-

4785T (CPU 2.20 GHz) with 16 GB of memory, using

the solver Gurobi 7.0.1 with a maximum time limit of

12 hours for mixed integer programming models. In the

results, the computational times are expressed in sec-

onds of CPU time.

5.1 Data

We address a real-world home health care scheduling

problem faced by a hospice agency that operates in

the United States. This hospice agency has operated

for more than two decades and has branches in more

than 20 states. We collaborated with one of the agency’s

branches and used their data as the basis for our com-

putational experiments. This dataset, associated with

one city-branch of the agency, contains information on

98 patients and 24 aides. All data has been masked

in accordance with HIPAA requirements. The approxi-

mate locations of the patients and the aides are shown
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Fig. 1 Map of the real world data. Circled area represents
the dataset from which the ”intense” data instances are sam-
pled. Small markers represent patient locations; larger mark-
ers represent aide locations.

on the map in Figure 1. The dataset is available at

https:///....

Per government eligibility requirements, a patient is

deemed hospice-eligible if he has an expected remain-

ing lifetime of six months or less if his disease were to

run its normal course. The objective of hospice care

is not to provide curative care, but rather, to increase

patient quality of life and provide the patient with end-

of-life comfort and reduced pain. To increase patient

and family comfort during this final phase in life, the

agency asks the patients if they have any preferences

regarding the aide who provides care. In our dataset,

18 of the 98 patients expressed preferences. These pref-

erences yielded a list of aides that match the preferred

characteristics expressed by the patients. Of the 18 pa-

tients with a list of preferred aides, 16 patients have a

resulting preference list containing only a single aide;
the remaining two patients have multiple aides in their

preference list. 80 patients do not have any preferences.

The agency wishes to respect patient preferences, to the

extent possible.

The main operational costs include travel costs and

the labor costs. Aides drive to the patients’ homes and

receive reimbursement from the company on a per-mile

basis. Full-time aides receive wages in accordance with

a 40 hour work week as well as additional benefits; part-

time aides receive hourly wages. The costs and time pa-

rameters are listed in Table 6 in the Appendix. Travel

distance and travel time between each location is cal-

culated using Google Maps.

5.2 Instance Generation

We generate smaller size instances from our full dataset,

as described below. We consider three different geo-

graphical structures to be included in our computa-

tional experiments: (i) urban area, characterized by dense

data points in the city center and sparse data points in

the suburbs, (ii) city center, the center of the urban area

with dense data points, and (iii) rural area, character-

ized by sparse data points. The small instances are char-

acterized approximately by two fifths and three fifths of

the number of patients in the full data set; these result-

ing datasets are similar in size to instances considered

in the literature (See, for example, [11–13]). In addi-

tion to the full size instance, we generate 10 medium

and 10 large size instances for each of these three net-

work structures. In total, we generate 63 instances to

test. The performance of the methods on medium size

and large size instances is measured by taking the aver-

age performance over 10 instances in each category. We

also create one set of small size instances with urban

area structure to solve our Con-MIP models to opti-

mality and compare the optimal solutions. Using this

experimental setup, we aim to analyze the differences

between the performance of our methods in different

settings representing different geographical structures.

Namely, we analyze how the sparsity of the network

and the deviation of the distances between the nodes

affect the performances of the methods.

The patients for the urban area instances are sam-

pled uniformly at random from the full set of patients.

If any of the randomly selected patients have aide pref-

erences, these preferred aides are added to the dataset.

The remaining aides are sampled uniformly at random

from the full set of aides. In order to obtain a city cen-

ter structure, we first identify a dense area including 74

patients and 18 aides in our full dataset (depicted in

Figure 1). To make this dataset more dense – so that

it is representative of a city center – we halve the dis-

tances between all data points. The smaller instances

are sampled uniformly at random from this set of 74 pa-

tients. After preferred aides are added to the dataset,

the remaining aides are sampled uniformly at random

from the set of 18 aides in the dense dataset. The ru-

ral area instances include data points that are far from

each other. To obtain a rural area of n patients, we first

cluster the full dataset using a hierarchical clustering

[27] algorithm and obtain n clusters. In the hierarchi-

cal clustering algorithm, we used the maximum distance

criteria (i.e., the maximum absolute value of the dis-

tances between points in different clusters). Then, one

patient is chosen uniformly at random from each clus-

ter and added to the dataset. The aides are selected

as before, i.e., after the preferred aides are added, the

remaining aides are sampled uniformly at random from

the full set of aides. We also double the distances be-

tween all data points, to increase the sparsity. As a

result, the full data set of 98 patients that is used as an
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urban area instance is also used as a rural area instance

with an adjusted pairwise distances. The instances are

listed in Table 3.

Table 3 Instances used in the computational experiments

# Instances # Patients # Aides Instance Name
Type 1: (Urban area, 32, 40) ∗

1 98 24 u-98-24
10 60 15 u-60-15
10 40 10 u-40-10
20 16 4 u-16-4
20 18 5 u-18-5

Type 2: (City center, 16, 20)
1 74 18 c-74-18
10 60 15 c-60-15
10 40 10 c-40-10

Type 3: (Rural area, 48, 60)
1 98 24 r-98-24
10 60 15 r-60-15
10 40 10 r-40-10

∗ (Geometry, Average distance between two points (miles),

Average time between two points (mins))

5.3 Results

We compare the performance of our Con-MIP formula-

tion with Con-MIP-A and with the petal-based heuris-

tic solution. In this computational study, our heuris-

tic solution consists of the schedule obtained using the

petal-based heuristic and improved using the combined

single and double swap heuristic. We denote this solu-

tion as H throughout the paper. This section presents

the results of both Con-MIP formulation and heuris-

tics for Con-HHCSP, as well as consistency and cost

trade-off analysis over shorter and longer time periods.

Before presenting the detailed results of the computa-

tional study, we also compared the schedule generated

by our heuristic methods for HHCSP with the sched-

ule that is used by the agency in order to see the value

of our methods in practice. In this comparison, we ob-

served that the daily cost of operations is decreased

by $3,250, which constitutes around 42% improvement

over the current schedule in operation.

In this section, we present our results for Con-HHCSP

methods. For this analysis, we generate an updated set

of instances from our original instances (presented in

Table 3). The updated dataset represents the data of

the next period of the original dataset. To generate the

updated datasets, we assume that 10% of the patients

in the original dataset change in the next period while

the set of aides and data parameters in Table 6 remain

the same. We sample uniformly at random from the ex-

isting set of patients to identify the patients that leave

the dataset. The patients added to the dataset are sam-

pled uniformly at random from the set of patients in the

full dataset; patients are only added to the updated in-

stance set if one of their preferred aides is in the exist-

ing set of aides. The total number of patients does not

change when we update the instance set. We first up-

date the schedules based on the updated dataset, using

both Con-H and Con-MIP-A, and compare the cost of

the schedules and the solution times of both methods.

We test the methods on 60 sets of medium and

large instances having different network structures, as

explained in Section 5.2. Further, we present our anal-

ysis of the impact of the inconsistency penalty on the

cost of the schedule; this analysis sheds insight on the

cost and consistency trade-off in this problem. Finally,

we analyze the long-term cost effect of the consistency

policy on the cost, by generating 50 updated dataset

instances and updating the schedules over 50 periods.

The results are presented below.

Comparing Con-MIP and the heuristic:

We first compare the results of Con-MIP and the

heuristics. The heuristic method, denoted by Con-H,

consists of solving the problem using Con-PH and then

applying the combined single and double swap heuristic

to improve the schedule. Note that we didn’t apply LNS

heuristic here, as we observed a small gap in the results

obtained after the swap heuristics. Also, since the so-

lution time for Con-MIP is small, we wanted to keep it

comparable for the heuristic as well. We present the gap

of the heuristic method compared to the MIP model,

which we quantify as ∆HD = vCon−H−vCon−MIP

vCon−MIP
× 100.

Let vCon−MIP be the cost of the schedule obtained with

Con-MIP, and vCon−H be the cost of the schedule ob-

tained via the heuristic method. We define ∆HD as the

percentage gap of heuristic method compared to the

MIP model. For each instance set, we take the average

of the ∆HD values of 10 instances within the instance

set. Note that here we set the inconsistency penalty (λ)

equal to half of the preference penalty, i.e., λ = λP /2.

Table 4 Results: The heuristic Con-H (petal-based heuristic
and combined single and double swap heuristics) vs. Con-
MIP. (Run times are reported in seconds. tCon-MIP: Con-MIP
Solution Time, tCon-H: Con-H Solution Time)

Con-MIP-A (1 h)
Instance ∆HD

(%)
(avg.)

∆HD

(%)
(min, max, st.dev)

Gap
(%)

tCon-MIPtCon-H

c-40-10 0.67 (0.0, 2.6, 0.9) 12 8721 203
c-60-15 1.22 (0.2, 3.7, 1.2) 0 2552 524
r-40-10 0.72 (0.0, 4.1, 1.4) 2 5225 212
r-60-15 0.75 (0.0, 3.6, 1.1) 0 1092 628
u-40-10 0.63 (0.1, 2.3, 0.9) 0 68 202
u-60-15 1.08 (0.0, 3.0, 1.1) 0 4527 546
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Table 4 presents the comparison between the heuris-

tic (Con-H) and the MIP formulation (Con-MIP). We

observe that the heuristic performs well compared to

the MIP formulation on average in all instances, with

gaps of less than 4.2% in all instances. One interesting

observation is the solution times. Although we would

usually expect a MIP model take more time, it is dif-

ferent in the consistent version of the problem. In half of

the instances, Con-MIP is faster than the heuristic due

to the consistency requirement, which eliminates many

symmetric solutions. Recall that in these instances, only

10% of the patients in the data set are replaced with

new set of patients, so that the majority of the schedule

can remain the same. This fact decreases the solution

time for Con-MIP. Since the solution time for Con-MIP

is small, we don’t report the results for Con-MIP-A.

However, for certain instances or for different parame-

ters (e.g., smaller inconsistency penalty or higher rate

of change in the dataset), where the performance of

Con-MIP may be lower, Con-MIP-A can be utilized.

Sensitivity analysis for the change in the dataset:

We analyze the effect of the percentage change in the

dataset on the performances of Con-H and Con-MIP-A.

Based on the information given by the home health care

company, the percentage change in the dataset ranges

between 10% to 60%. We design an experiment accord-

ingly, with instance sets of u-40-10 and u-60-15, where

we generate 10 instances for each of the different change

percentages. We observe that Con-H outperforms Con-

MIP-A on average in all of the instance sets, and has

a reliable performance with positive improvement over

Con-MIP-A in majority of the instances. We also ob-

serve less variability in terms of the solution time for

Con-H. As expected, the solution time for Con-MIP-A

increases as the change percentage increases. This is due

to the fact that a larger part of the schedule needs to be

recreated as the change percentage increases. Detailed

results are presented in the Online Appendix.

Sensitivity analysis for the cost vs. consistency trade-

off:

Next, we analyze how the consistency and cost are

affected by the use of different inconsistency penalties in

Con-PH. Here, consistency is measured by the number

of patients assigned to a different aide in the new sched-

ule as a percentage of the total number of patients who

are included both in the previous and the new datasets.

Here, we assume that 20% of the patients in the orig-

inal dataset are different in the new dataset. The in-

consistency penalty (λ) is obtained by multiplying the

inconsistency penalty coefficient (cλ) and the penalty

for the preference violation (λP ), i.e. λ = cλλ
P . When

we set cλ = 0, we obtain a schedule without consistency

restriction. We compare the cost of the schedules we ob-

Fig. 2 The consistency - cost trade-off, as the inconsistency
penalty increases (average over all instances).

tain with positive cλ values to the cost of the schedule

we obtain with cλ = 0 as follows:

∆Cλ =
vλCon−PH − v0Con−PH

v0Con−PH

× 100

For each instance set, we take the average of the

∆Cλ values of 10 instances within the instance set.

The detailed results of this analysis are presented in

the Online Appendix. We present a summary of the re-

sults in Figure 2, which depicts average results over all

instances. As observed, both the consistency and the

cost increase as the inconsistency penalty coefficient is

increased, illustrating the trade-off between cost and

consistency. We also present the percentage difference

between consistency and cost, and choose the value,

among the values we try, that maximizes this differ-

ence, which is cλ = 0.5. This means that for a given

cost, the gain from the consistency is maximized, i.e.,
the consistency and the cost trade-off is experienced

less, at cλ = 0.5. This result highlights the importance

of the selection of the inconsistency penalty. Note that,

in different settings, with different time and cost pa-

rameters, this value might differ. Our results indicate

that the best inconsistency penalty needs to be found

for each setting.

For an inconsistency penalty of 0.5, the percentage

difference between the consistency and the cost for all

instances are shown on Figure 3. As we observe, the

percentage difference between the consistency and the

cost is above 80% for 93.33% of the instances. Also, we

see a balanced distribution of difference values among

all instances. Therefore, for our long-term analysis pre-

sented below, we use the inconsistency penalty value of

0.5.

Long-term effect of the consistency policy:

Finally, we analyze the long-term effect of the con-

sistency policy. In other words, we analyze how the cost

is affected if we continue updating the schedule with the
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Fig. 3 The percentage difference between the consistency
and the cost (excluding the inconsistency penalty), for the
inconsistency penalty coefficient of 0.5.

Fig. 4 The cost trade-off (∆Ct) over 50 periods.

consistency constraints over the long term. For each in-

stance, we generate 25 updated instances by changing

the set of patients by 10% at each period. In the analy-

sis presented above, we found that cλ = 0.5 is the best

inconsistency penalty coefficient to choose in order to

decrease the cost and consistency trade-off. Therefore,

in this long-term study, we set cλ = 0.5, and update

the schedule 25 times. At each period t, we compare

the cost of the updated schedules with the cost of the

schedules obtained when cλ = 0 as follows:

∆Ct =
v0.5,tCon−PH − v0,tCon−PH

v0,tCon−PH

× 100

Figure 4 displays the change in overall cost over time

when we update the schedule with the consistency pref-

erences (which keeps the schedule of period t similar to

the schedule of the previous period, t− 1). We observe

that the cost difference, (∆Ct), increases in the first

eight updates; after eight updates, the cost difference

appears to stabilize with some positive or negative de-

viations around an average percentage value. We note

that on average, the cost trade-off is experienced less in

areas with a city center structure. This trend may be

explained by the fact that in city center structures all

locations are relatively close to each other (as compared

with the other structures we studied). Therefore, the

cost difference between assigning the optimal aide and

assigning the aide imposed by the consistency policy is

smaller since aides’ locations are closer to each other.

Small distances between the locations affect both the

travel cost as well as time-related costs, resulting in a

smaller total cost. According to the results, we conclude

that the cost of updating the schedule increases for a

while, peaks at a certain period and remains at the peak

value for the remainder of the periods. Therefore, de-

pending on this percentage increase in cost, it may be a

better strategy to update the schedule for a few periods

and then create a new schedule from scratch. When to

create a new schedule may be determined based on the

company’s ability and willingness to absorb this cost

increase.

6 Conclusions.

In this paper we have addressed a daily home health

care planning problem; we proposed solution methods

for Con-HHCSP: a daily scheduling problem where the

new schedule to be created needs to be consistent with

the current schedule in use. We presented the compu-

tational results of the proposed solution methods for

Con-HHCSP. To the best of our knowledge, this work

is the first to introduce Con-HHCSP and propose so-

lution methods and analysis to dynamically handle a

consistency policy.

Our computational results reveal the potential of

the proposed Con-MIP-A and heuristic methods in ad-

dressing home health care problems. We observe that

the exact MIP model improves significantly with the

valid inequalities we add, as well as the cutting plane

algorithm we use to handle subtour elimination con-

straints. Con-MIP can also achieve optimality in a rea-

sonable time for some of the parameters (e.g., inconsis-

tency penalty, the rate of change in patient dataset).

However, MIP model can get intractable for mid to

large size instances, or for different parameters of Con-

HHCSP. In those cases, it is possible to find good fea-

sible solutions by solving the approximate MIP model.

Further, better solutions may be found with the heuris-

tics in a much shorter time. The effect of swap heuristics

was not negligible and they provided a very quick way

to further improve our solutions. Although we observe

an improvement in the solution when LNS heuristic

is applied as the final improvement heuristic, a non-

negligible increase in the computation time should be

noted. We compared the schedule created by our heuris-

tic methods with the schedule that is used by the home

care agency with whom we are collaborating. With our
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methods, the daily cost of operations is decreased by

$3,268, which constitutes around 43% improvement over

the current schedule in operation.

Based on our analysis of the continuity of care pol-

icy in Con-HHCSP, we observed that there is a signifi-

cant trade-off that must be considered between cost and

continuity of care. As the continuity of care policy is ap-

plied more strictly, the resulting cost increases. There-

fore, the selection of the inconsistency penalty coeffi-

cient, which determines the strictness of the continuity

of care policy, is critical. Moreover, the effect of the con-

tinuity of care policy on the cost may grow large in the

long-term. Our long-term analysis revealed a rapidly

increasing trend in the cost trade-off over time in the

first eight periods, and then a stabilized trend for the

remainder of the periods. This analysis should be used

as a basis for deciding how many times to update the

existing schedule and when to solve it from scratch.

One interesting result obtained in this study is that

the computation time for the MIP models of Con-HHCSP

is lower when the change in the dataset is small. This is

expected, since most of the schedule remains the same.

This introduces another research question: would it be

a good approximation to solve Con-HHCSP repetitively

instead of solving a MIP model to create a new schedule

from scratch for a longer planning horizon? The com-

plexity of the problem increases as the planning horizon

increases, so that obtaining a good quality solutions

becomes more difficult. These results suggest that, in

order to handle continuity of care requirements, solv-

ing Con-HHCSP may provide a good approximation

to an exact solution for a more complex multi-period

problem. We plan to analyze this further in our future

studies. Other directions for future research are differ-

ent variants of the problem, such as skilled nurses, time

windows, and interdependent visits. We believe that the

methodology we propose in this paper is adaptable to

different use cases of the problem.

Appendix

A Set Partitioning Model

Table 5 Notation for the Set Partitioning Model

Index Sets
P Patients
A Aides
C Clusters

Data Parameters
wac The cost of assigning cluster c ∈ C to aide a ∈ A

Variables
xap Assigning patient p ∈ P to aide a ∈ A
xac Assigning cluster c ∈ C to aide a ∈ A

min
∑
a∈A

∑
c∈C

wacxac

s.t.
∑
a∈A

xap = 1 ∀p ∈ P

∑
c∈C

xac = 1 ∀a ∈ A

∑
a∈A

xac ≤ 1 ∀c ∈ C

∑
c∋p

xac = xap ∀p ∈ P ; ∀a ∈ A

xap, xac ∈ {0, 1} ∀a ∈ A; ∀p ∈ P ; ∀c ∈ C

B Data

Table 6 Cost & Time Parameters

Item Value
Cost of transportation per mile driven (cT ) $3
Full-time hourly labor cost (cF ) $20
Part-time hourly labor cost (cP ) $15
Penalty cost for exceeding B hours in a week
for PRNs (cOP )

$ 2000

Hourly over-time penalty for full-time aides
(cOF )

$5

Weekly overuse threshold for PT (OPp) 30 hours
Daily overuse threshold for FT (OFf ) 8 hours
Length of regular workday (H) 8 hours
Maximum weekly total hours of PTs before
penalty (B)

30 hours

Workday length factor with overtime (α) 1.25
Maximum length of workday with overtime 10 hours
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C Literature Review

Table 7 Summary of the relevant papers in the literature

Planning
horizon

Patient - aide
assignment prefer-
ences

Continuity of
care

Schedule
updating
with con-
sistency

Bennett & Erera (2011) [10]
Weekly Single nurse assign-

ment
N/A (there is
a single nurse)

Consistency
in visit
times

Cappanera & Scutellà (2014) [13]
Weekly Skilled nurses (hard

constraints)
Limited num-
ber of aides
for a patient

N/A

Nickel et al. (2012) [11]
Weekly
and
daily

Skilled nurses (hard
constraints)

Limited num-
ber of aides
for a patient

Consistency
in visit
times

Jensen (2012) [12]
Several
weeks

Skilled nurses (hard
constraints), pre-
ferred nurses (soft
constraints)

Limited num-
ber of aides
for a patient

Consistency
in visit
times

Carello & Lanzarone (2014) [14]
Daily Skilled nurses (hard

constraints)
Limited num-
ber of aides
for a patient

N/A

Yalçındağ et al. (2016) [15]
Daily Skilled nurses (hard

constraints)
The same aide
for a patient

N/A

Braekers et al. (2016) [16]
Daily Skilled nurses (hard

constraints), pre-
ferred nurses (soft
constraints)

N/A N/A

Rasmussen et al. (2012) [17]
Daily Preferred nurses

(soft constraints)
N/A N/A

Heching et al. (2019) [28]
Weekly Skilled nurses (hard

constraints)
Same aide for
a patient

Fixed
variables

Our study
Daily Part-time and full-

time nurses (hard
constraints on work
hours), preferred
nurses (soft con-
straints)

The same aide
for a patient:
Handled via a
rolling hori-
zon approach

Consistency
in
patient-
aide
assign-
ments
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