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Abstract

Parcel logistics services play a vital and growing role in economies worldwide, with customers

demanding faster delivery of nearly everything to their homes. To move larger volumes more cost

effectively, express carriers use sort technologies to consolidate parcels that share similar geographic and

service characteristics for reduced per-unit handling and transportation costs. This paper focuses on an

operational planning problem that arises in two-stage sort systems operating within parcel transportation

networks. In this context, primary sorters perform an initial grouping of parcels into “piles” that are

subsequently dispatched when necessary to secondary sorters; there, each pile’s parcels are fine-sorted

based on their final destinations and service class for packing into outbound transportation vehicles. Such

systems must be designed to handle a high degree of uncertainty in the quantity and timing of arriving

parcels, yet must also group and sort the parcels to meet tight departure deadlines. Thus motivated,

this paper presents robust planning models that assign parcels to sort equipment while protecting

against different sources of demand uncertainty commonly faced by parcel carriers. We demonstrate the

computational viability of the proposed models using realistic-sized instances based on industry data,

and show their value in providing sort plan alternatives that trade off operational costs and levels of

robustness.

Keywords: Logistics, sorting operations, express parcel delivery, robust optimization

1 Introduction

Fast and reliable delivery is an essential element in the success of modern e-commerce, which is

growing rapidly and driving tremendous growth in demand for parcel logistics services. The global
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express parcel delivery market was valued at around $430 billion in 2019, a 13% increase from

2018 (Research & Markets, 2020). This growth trend is expected to continue, with more customers

requiring faster delivery of nearly everything to their homes. To move larger volumes more cost

effectively, parcel carriers typically operate hub-and-spoke transportation networks that enable

parcel flows to be consolidated. Parcel consolidation takes place in sort hubs within these networks,

with the goal of grouping parcels that share similar geographic and service characteristics into

larger containers to gain economies of scale in their handling and transportation operations.

A key component in parcel sort hub operations is the technology used to carry out the sorting

process. There is a wide variety of sort technologies, ranging from fully automated systems, such

as cross-belt sorters, tilt-tray sorters and sorting robotics, to semi-automated and manual systems,

such as put walls or cabinet-style installations that may require manual handling to complete the

sort process. These technologies are typically used within either a single-stage or a multi-stage sort

process, most commonly a two-stage process. A single-stage sort process uses a fully automated

sort system designed to have enough sort positions (destinations) and capacity to complete parcel

sorting in one step. Well-designed single-stage sort processes are efficient to operate; however, they

require large investments in space and equipment and are often not flexible to reconfigure once

installed. Two-stage sort processes, on the other hand, are designed to allow for a more flexible

setup that is often easier to reconfigure or expand once installed. They can also help reduce parcel

travel time in large hubs that operate a complex network of conveyors by eliminating the need

for a parcel to travel throughout the complete conveyor system (Boysen, Briskorn, et al., 2019).

Contrary to a single-stage sort process, a parcel in a two-stage sort system may go through more

than one sort stage before it is considered sorted for its final destination. Two-stage sort systems

require careful planning and coordination between the stages to achieve operational efficiencies

and meet parcel sort deadlines.

This paper focuses on an operational planning problem that arises in two-stage parcel sort hubs

with primary and secondary sorters. Primary sorters perform an initial grouping of parcels into

piles that are dispatched as necessary to secondary sorters; there, each pile’s parcels are segregated

based on their final destinations and service classes for sort and packing before they are sent to the

loading area for dispatch. An example of a hub that operates a two-stage sort process is portrayed

in Figure 1.

Planning sort operations in this setting includes determining parcel assignment to primary
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Figure 1: An example of a two-stage sort process where a cross-belt sorter is used for primary sorting and put walls
are used for secondary sorting.

primary sorter
secondary sorters

put wall

cr
os

s-
be

lt 
so

rt
er

primary 
sort pile

1
2

3
4

6

7
8

5

10
9

1

7

2

10

…
…

…
…

secondary sorters

unloading conveyor

loading conveyor

sort pile positions. In some cases, it also involves determining a dispatch schedule of parcels

from primary to secondary sort areas to minimize transfer costs and/or better manage floor space.

An example setup where the latter decision is applicable includes two-stage sort systems that

involve manual transfer operations between the primary and secondary sort areas; see e.g. (Khir

et al., 2021). Usually, a relatively small number of sort pile positions are available at the primary

stage, while the sortation process must accommodate a large number of parcels with different

destinations and service requirements; thus, parcels with multiple destinations and/or deadlines

must often be assigned to one primary sort pile position. Parcels assigned to a pile with a single

geographic destination and dispatch deadline complete their sort process at the primary sort area,

while parcels assigned to piles with different geographic destinations and/or dispatch deadlines

are transferred to secondary sorters for detailed final sorting. The efficiency of such a system is

largely dependent on how well parcels are assigned to the available primary sort positions, which

is the focus of this work. The main challenge is to find an efficient assignment while taking into

account (1) the limited number of primary sort positions, (2) the limited downstream capacity for
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secondary sorting, and (3) parcel sort time deadlines.

Sort plans are traditionally generated in advance of operations using expected demand values,

and they are operated and modified every few weeks using updated demand forecasts and

consolidation plans (Jarrah et al., 2016; Khir et al., 2021; Novoa et al., 2018). During an actual

operational day, however, parcel arrivals can vary significantly from expectations in terms of both

volume and timing; thus, operating plans that are based on expected flows may be overly costly in

practice or may not meet desired levels of service. To illustrate, consider for example a case where

a group of parcels shows up an hour later than their expected arrival time, or a case where more

parcels arrive than expected for a particular destination. These variations may cause imbalanced

operations across the sort hub; importantly, sorters may not have enough capacity to process all

arrivals by their sort deadlines, delaying their ultimate delivery. The frequent changing of sort

plans to address fluctuation is not practical, so it is important to generate plans that take into

account demand changes while remaining cost-effective and feasible for longer periods of time.

In this paper, we make the following main contributions:

1. Introduce robust optimization models to configure primary sort equipment operating within

express parcel delivery sort hubs by explicitly incorporating various sources of demand

uncertainty commonly faced by parcel carriers. Using practitioner insights and industry

data, we propose robust models that hedge against uncertainty in arrival quantities and/or

arrival times that are critical for meeting sort time deadlines.

2. Demonstrate the computational viability of the proposed models using realistic-sized in-

stances based on industry data and show that high-quality solutions can be obtained in

relatively short computation times.

3. Show the value of the proposed robust models in providing hub managers with sort plan

alternatives that quantify trade-offs between operational costs and different levels of robust-

ness.

4. Extend the model to explore the value of introducing more flexibility to sort operations by

allowing pile assignments to change during a sort shift. We show that a single reconfiguration

can help reduce the price of robustness, especially during shifts that process small parcel

volumes heading to a wide range of destinations.
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The remainder of this paper is organized as follows: Section 2 discusses related literature.

Section 3 describes the problem and presents the corresponding nominal formulation. Section 4

presents robust formulations that incorporate uncertainty in arrival quantities and/or arrival times.

Section 5 illustrates the computational and operational performance of the proposed models using

real-sized instances. Finally, Section 6 presents our conclusions.

2 Related Literature

A well-studied stream of research in the context of parcel sort hubs focuses on decisions related to

facility location (see Alumur and Kara, 2008 and Farahani et al., 2013 for comprehensive reviews),

facility layout (see e.g., Bartholdi and Gue, 2004; Fedtke and Boysen, 2017; Zi and Gao, 2020),

and other tactical network design related problems (see e.g., Crainic, 2000 and Baldi et al., 2019) .

This literature survey focuses on the operational planning of sort systems once design decisions

related to hub location, technology selection, and equipment layout and sizing have been fixed.

Much of the research on this topic examines inbound and outbound operations that interface

with single-stage sort systems. It addresses two primary decision problems, determining the

processing schedules of inbound/outbound vehicles (see e.g., Boysen et al., 2017; Chen et al., 2019;

McWilliams, 2009; McWilliams and McBride, 2012; McWilliams et al., 2005; Zhou et al., 2021),

and the assignment of destination to unloading/loading doors (see e.g., Haneyah et al., 2014;

Jarrah et al., 2016; Novoa et al., 2018). Several studies investigate operational policies to improve

the throughput and service performance of automated sorters in order fulfillment centers and

warehouses (Çeven & Gue, 2017; Gallien & Weber, 2010; Yu et al., 2019). We refer the reader to

Boysen, Briskorn, et al., 2019 and Haneyah et al., 2013 for in-depth reviews of related work with a

focus on hubs operating fully automated sortation conveyors, a setting that is studied widely in

the literature. Only a few studies consider semi-automated or manual sort equipment, such as

put walls (Boysen, Stephan, et al., 2019; Khir et al., 2021). The modeling presented in this paper is

flexible and can be used for sort hubs operating high- and/or low- tech sort solutions.

Relatively little work has been done on the detailed planning and control of sort operations,

especially in the context of multi-stage sort systems. The authors in Briskorn et al., 2017 propose

exact dynamic programming approaches to determine the scheduling and routing of shipments

in closed-loop tilt tray conveyors such that the total makespan is minimized. Their general
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setting considers a one-stage sort system, and therefore, a single destination is to be assigned

to one and only one loading station, a key difference from the destination-to-pile assignment

problem that arises in two-stage sort systems, which requires many-to-one assignments. The

authors in Werners and Wülfing, 2010 focus on optimizing transport activities within parcel sort

hubs operated by Deutsche World Post Net. A chance-constrained approach is used to address

demand stochasticity and is shown to generate optimal solutions in around 24 hours for real-life

instances. Closely related to our research, Novoa et al., 2018 examines the problem of assigning

parcel destinations to secondary sort workstations with the objective of improving workload

balance in an automated parcel sort hub while explicitly incorporating stochasticity in parcel flows.

Parcels are expected to be continuously processed and, therefore, service or time requirements

are not explicitly considered in the paper, a key difference between this work and ours. A chance-

constrained approach is used to model demand uncertainty in balancing constraints while a robust

optimization approach is used to model demand uncertainty in capacity constraints; we use a

robust optimization approach similar to the latter in our work. The computational experiments

show that high quality solutions can be achieved within one-hour time limit mainly when the

robustness level for capacity constraints is less restrictive, i.e., when the uncertainty budget is

relatively large, and when the variability between package flows is high. In instances where the

robustness level is more restrictive, i.e., when the uncertainty budget is not large, and when there

is low variability between parcel flows, the proposed models become less tractable and result in

solutions with quite large relative optimality gaps. In our work, we use comparable instances

in composition and size and show that the proposed robust models can generate high-quality

solutions for various robustness levels in moderate CPU time.

More closely related to our research, the authors in Khir et al., 2021 introduce a sort plan

design problem in the context of two-stage sort systems. An optimization-based approach is

proposed that decomposes the problem into two subproblems: (1) a primary sort assignment

problem that determines an assignment of parcels to primary sort equipment using an integer

program, and (2) a secondary sort dispatch schedule problem that determines a dispatch schedule

from primary to secondary sort areas for piles that require secondary sorting using a backward

recursion algorithm. The assignment model is shown to preserve the feasibility of second-stage

dispatch decisions while being computationally efficient and optimal for many practical objective

functions, thereby enabling the generation of cost-effective plans that are time-feasible with respect
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to parcel deadlines. However, the proposed model is deterministic and does not take into account

the inherent stochasticity in demand, a missing practical consideration that is important to ensure

the feasibility of sort operations, but requires more involved techniques.

To model demand uncertainty, different stochastic and robust optimization approaches have

been proposed in the literature (see Bakker et al., 2020; Keith and Ahner, 2019; Sahinidis, 2004

for comprehensive reviews). In our work, a robust optimization framework is used to generate

solutions that remain feasible for all possible demand realizations that belong to pre-defined uncer-

tainty sets; a probability distribution is not required in this setting. Different robust optimization

approaches have been proposed in the literature which vary mainly in their modeling choice as

well as resulting solutions’ level of conservatism. We refer the reader to Gabrel et al., 2014 and

Bertsimas et al., 2011 for comprehensive reviews on the topic. In this paper, we use variations

of the budgeted uncertainty models proposed by Bertsimas and Sim, 2004 to generate plans that

are immunized against various changes in demand profiles. This type of uncertainty retains the

complexity of the original problem. It also offers an explicit control on the level of conservatism of

the resulting solutions using a budget of uncertainty, thereby allowing hub manager to evaluate

trade-offs between operational costs and robustness levels to ultimately operate plans that are

cost-effective under a desired level of protection against uncertainty.

3 Problem Description and Nominal Model

This paper considers a sort hub that operates a two-stage sort system with primary and secondary

sorters designed to process small parcels and flats. A typical day in a sort hub is organized into

non-overlapping sort shifts. Let T denote the set of equally spaced time points that constitutes a

sort shift, and suppose that a sort plan is to be designed for the shift.

The primary sort stage utilizes high-speed cross-belt sorters with a fixed number of discharge

points that are mainly used for high-level grouping of parcels into piles. Define P to be the set

of primary sort piles that corresponds to these discharge points. Moreover, define C ⊆ T to be

the set of possible pile deadlines. A pile with deadline c ∈ C requires all of its assigned parcels

to complete their sort requirements by time c. A pile may or may not require secondary sorting

depending on the mix of parcels assigned to it. Let S be the set of sort modes that indicates each

pile’s sort requirement, where s = 1 indicates that a pile is assigned a single destination and
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service class and therefore does not require secondary sorting, while s = 2 indicates that a pile is

assigned multiple destinations and/or service classes and requires secondary sorting.

The secondary sort stage operates multiple stations, each dedicated to processing one of the

primary sort piles, with a processing rate of µ parcels per unit time (measured in the discretization

of T ). A typical secondary sort station includes a fixed number of n sort positions (e.g., cabinets

or discharge points) depending on the configuration of the sort equipment used. Each station is

responsible for processing a pre-assigned pile with secondary sort mode s = 2 by segregating its

constituent parcels into one of the n sort positions. Parcels that complete their sort requirement

are then packed into bags or other containers and moved to the loading area for shipping.

Each arriving parcel belongs to a commodity type; let K be the set of all commodity types

arriving to the sort hub during a sort shift. Each commodity k ∈ K is defined by a unique pair of a

final destination and a sort time deadline dk. All arriving parcels that belong to commodity k are

required to finish their sorting no later than time dk in order to meet their service guarantee for

on-time delivery. Each commodity k is associated with a nominal arrival profile that represents its

expected parcel arrival times t ∈ T and the associated expected arrival quantities qk
t , measured

in parcels. We assume that decisions related to parcel sequencing and loading onto primary sort

belts are fixed, and therefore, each commodity’s arrival profile correspond to parcels’ arrival times

to primary sort piles. Table 1 summarizes all of the notation used later in our modeling.

Table 1: Summary of sets and parameters

T set of integer time points t that constitutes a sort shift, t ∈ {1, 2, . . . , |T |}
P set of primary sort piles p ∈ {1, 2, . . . , |P|}
C set of deadlines, C ⊆ T
S set of secondary sort modes s ∈ {1, 2}
K set of commodities k ∈ {1, 2, . . . , |K|}
µ secondary sort processing rate, in parcels per unit time measured in the discretization of T
dk deadline of commodity k ∈ K, dk ∈ C
ℓk expected last arrival of parcels with commodity type k ∈ K, ℓl ∈ T
qk

t expected number of parcels with commodity type k ∈ K arriving at time t ∈ T

The goal of an operational planning model is to generate a cost-effective and robust assignment

of commodities to primary sort pile positions while taking into account: (1) the limited capacity of

secondary sorters, (2) parcel sort time deadlines, and (3) the inherent uncertainty in arrival quanti-

ties and/or arrival times of parcels that could have detrimental impact on sort plan performance
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as well as its time feasibility. In this section, we first present a nominal formulation addressing (1)

and (2).

3.1 Nominal problem formulation

We recall an integer programming formulation for the nominal primary-sort assignment (NPA)

problem that was first introduced in Khir et al., 2021 . The NPA determines a cost-effective

assignment of commodities to piles using expected arrival quantities, denoted by qk
t for every

commodity k at time t, while taking into account limited sort capacities as well as parcel deadlines.

The decision variables are:

yp,c,s =


1, if pile p with deadline c and sort mode s is used

0, otherwise,
and

xk
p,c,s =


1, if commodity k is assigned to pile p with deadline c and sort mode s

0, otherwise.

The NPA integer programming model is formulated as follows:

Minimize
x,y

c(x, y) (1a)

subject to ∑
s∈S

∑
p∈P

∑
c∈C

xk
p,c,s = 1 ∀k ∈ K, (1b)

∑
p∈P

∑
c∈C

∑
s∈S

yp,c,s ≤ |P|, (1c)

∑
k∈K

xk
p,c,2 ≤ nyp,c,2 ∀p ∈ P , c ∈ C, (1d)

∑
k∈K

xk
p,c,1 ≤ yp,c,1 ∀p ∈ P , c ∈ C, (1e)

∑
k∈K

∑
t<τ≤c

qk
τxk

p,c,2 ≤ µ(c − t) ∀t ∈ T , p ∈ P , c ∈ C. (1f)

The objective function (1a) is written in a generic form c(x, y), and is assumed to be some linear

function of these decision variables. Later in Section 5, we describe possible objective functions;

for the purpose of our computational experiments, we model two objectives that we derived in

consultation with our industry partner and optimize for them in lexicographical fashion.
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Constraints (1b) ensure that each commodity is assigned to only one primary sort pile, i.e., its

associated parcels cannot be split across multiple piles. Constraints (1c)-(1d) are capacity-related

constraints that are dependent on the configuration of sort equipment employed at each stage.

Constraint (1c) ensures that no more than |P| primary sort piles are used, where |P| is the number

of available discharge points in primary sort belts. Similarly, constraints (1d) ensure that no

more than n commodities are assigned to primary sort piles with sort mode s = 2, where n is

the number of available sort positions in each secondary sort station. A primary sort pile with

sort mode s = 1 does not require secondary sorting and, therefore, is allowed to be assigned at

most one commodity, as modeled in constraints (1e). Finally, constraints (1f) are time-feasibility

constraints to ensure that all commodities that require secondary sorting meet their sort time

deadlines. The intuition behind these constraints is based on simple deterministic queuing analysis

using cumulative arrival and service curves, as illustrated in Figure 2 and explained in more detail

in Khir et al., 2021. In particular, these constraints guarantee that each point on the cumulative

arrival curve for every pile lies above its secondary sort deadline line, which has a slope equal to

the secondary sort rate µ; this consequently ensures that there is enough secondary sort capacity

to process all arrivals to every secondary sort pile by their deadline. Note that constraint set (1f)

in its current form presents a special case where the time it takes to carry out non-sort related

activities is negligible. That is, activities like transfers between primary and secondary sort areas or

equipment configuration do not result in noticeable loss in sort capacity. The model, however, can

be easily adjusted to account for such losses. More specifically, the right-hand side of constraints

(1f) can be changed to µ(c − t − r); this corresponds to shifting the secondary-sort deadline line

in Figure 2 by r time units to the left, where r is measured in the discretization of T , thereby

reducing the remaining available secondary sort time and capacity.

4 Robust Problem Formulations

The NPA model is guaranteed to generate feasible sort operations as long as the actual arrival

profiles for a sort shift are precisely known and used when generating sort plans. However, in

practice, hub managers typically generate sort plans in advance of operations using expected arrival

profiles, and fix them for several weeks to achieve stability and efficiency in operations. It is not

difficult to see then that variations from these expected arrival profiles could lead to infeasibility
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Figure 2: An example to illustrate the modeling idea behind constraints (1f) to ensure time-feasibility of pile assign-
ments. Under constraint (1f), scenario 1 is feasible because every point on the arrival curve for a pile (grey
curve) lies above its secondary-sort deadline line (green dashed), while scenario 2 is infeasible, meaning
there is not enough capacity to process all assigned arrivals by the pile’s deadline.
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during an actual operational shift; specifically, they could lead to violations of constraints (1f).

To illustrate, consider a pile assignment generated using the NPA formulation as shown in

Figure 3. Scenario 1 shows a feasible pile assignment using nominal arrival profiles. In an actual

demand realization, parcel arrival quantities could increase from their nominal arrival quantities

(scenario 2), parcels could arrive later than their expected arrival times (scenario 3), and parcel

quantities could simply increase or decrease over time (scenario 4). Clearly, these changes could

lead to infeasibility, as sorters are no longer guaranteed to have enough capacity to process all

arrivals by their deadline.

Figure 3: An example of a nominal pile assignment under different demand realizations
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To address demand uncertainty, we develop a robust optimization approach to generate plans

that are protected against different types of uncertainty commonly experienced in practice, as

discussed in the preceding examples. In particular, we seek to generate pile assignments that

remain feasible for all possible demand realizations that belong to pre-defined uncertainty sets.
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Scenario 3. Delayed arrivals
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We use the interval budgeted uncertainty representation proposed in Bertsimas and Sim, 2004 to

encode our knowledge of possible demand realizations. The size of these sets is controlled by an

uncertainty budget to allow planners to gain insights about trade-offs between operational costs

and robustness, to ultimately operate plans that are cost-effective and reflective of their desired

level of risk tolerance.

Recall that we use qk
t to represent nominal arrival quantities for every commodity k at time

t. We now introduce q̃k to denote a potential demand realization for commodity k, where

q̃k = (q̃k
0, q̃k

1, ..., q̃k
|T |). The goal is to design plans that are guaranteed to remain feasible for all

demand realizations q̃k that belong to an uncertainty set Q. We consider the following three types

of uncertainty sets, illustrated in Figure 4:

Commodity-based model: Every commodity k ∈ K can have its arrival profile scaled up by a

fraction α ∈ [0, 1] in the worst case; the parcel volume arriving then by any time t may be 1 + α

times the nominal projection at that same time. To control conservatism, changes from nominal

forecast values are limited to Π commodities in total. Therefore, we define

Qcommodity =
{

q̃ : q̃k = qk + αqkξk, ∑k∈K ξk ≤ Π, 0 ≤ ξk ≤ 1, ∀k ∈ K
}

where ξk is an independent random variable subject to uncertainty.

Parcel-based model: Every commodity k ∈ K can have its arrival profile scaled up or down by

a fraction α ∈ [0, 1] in the worst case. To control conservatism, total absolute changes in arrivals from

nominal forecast values are limited to Γ parcels in total across all commodities throughout a sort

shift, and total arrivals are not allowed to exceed the total nominal arrival quantities throughout a

sort shift by more than a fraction ∆ ∈ [0, 1]. Therefore, we define

Qparcel =
{

q̃ : q̃k = qk + αqkξk, ∑k∈K ∑τ∈T αqk
τ |ξk| ≤ Γ, ∑k∈K ∑τ∈T αqk

τξk ≤ ∆ ∑k∈K ∑τ∈T qk
τ ,−1 ≤ ξk ≤ 1, ∀k ∈ K

}
.
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Time-based model: Parcels can be delayed to arrive after their expected arrival time by at

most δ time units measured in the discretization of T , in the worst case, as long as they arrive

by their latest feasible arrival time ℓk. Delays in arrivals are limited to Γ parcels in total across all

commodities. Therefore, we define

Qtime =
{

q̃ : q̃k
t = qk

t + ∑t−δ≤τ<t qk
τξk

τ , ∑k∈K ∑τ∈T qk
τξk

τ ≤ Γ, 0 ≤ ξk
t ≤ 1, ∀k ∈ K, t ∈ T , t ≤ ℓk

}
.

We limit our presentation and computational experiments to these three primary models of

demand uncertainty that separately capture changes in either arrival quantities or arrival times.

While these changes are typically experienced simultaneously in the real world, it is likely that

one source of uncertainty is more significant than the others, depending on characteristics of

the particular sorting hub under consideration (hub location, size, etc.). Therefore, treating each

uncertainty source independently provides hub managers with a better understanding of the

impact each has on operational performance measures, ultimately directing attention to design

options that better suit hub-specific dynamics. We note that it is also possible to build robust

model variants that capture changes in both parcel arrival volumes and times, by combining our

modeling ideas; a specific example that allows for parcel increases, decreases, and/or delays is

presented in the Appendix.

Figure 4: An illustration of the three models of uncertainty considered, each discussed in more detail in the following
subsections.

(a) Commodity-based Model (b) Parcel-based Model (c) Time-based Model

In the remainder of the section, we discuss each of the uncertainty models in more detail and

formulate the corresponding robust counterparts of NPA. Notice that constraint set (1f) is the only

set of constraints that requires modification, since it is the only set of constraints that involves the

uncertain demand quantity q̃k
t . Therefore, we reformulate constraints (1f) to generate assignments

that are immunized against the different sources of uncertainty described earlier. The general
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robust reformulation is

Minimize
x,y

c(x, y) (2a)

subject to (1b)− (1e) (2b) - (2e)

∑
k∈K

∑
t<τ≤c

qk
τxk

p,c,2 + βt,p,c,2(B, x̄) ≤ µ(c − t) ∀t ∈ T , p ∈ P , c ∈ C. (2f)

Here, βt,p,c,2(B, x̄) is a protection function, a buffer that we quantify based on our choice of

the uncertainty set and the desired level of robustness B, which is represented by Π in the

commodity-based model and Γ in the parcel- and time-based models.

4.1 Commodity-based formulation

In this robust model, the goal is to generate sort plans that are protected against increases in

commodity demand arriving during a sort shift, which could adversely impact the operational

performance of sort plans and their time feasibility. Suppose that q̃k, the uncertain demand of

commodity k, takes a random value in the interval [qk, (1 + α)qk], where α is a maximum possible

deviation from a nominal demand value. In reality, it is unlikely that all commodities’ demand will

change to their worst value simultaneously. We denote Π to be the uncertainty budget, measured

in commodities, which we assume to be an integer here. Our goal is to generate plans that are

protected against all cases with up to Π commodities having their arrival profiles scaled up by α in

the worst case. Notice that in this model of uncertainty, we consider only positive scaled deviation

from commodities’ arrival profiles, as shown in Figure 4(a).
In order to generate a robust counterpart, we first define an adversary problem corresponding

to this model of uncertainty. Given an assignment vector x̄, the protection function βt,p,c,2(Π, x̄) is
given by the optimum of the following optimization problem:

βt,p,c,2(Π, x̄) = Maximize
λ

∑
k∈K

∑
t<τ≤c

[αqk
τ x̄k

p,c,2]λ
k (3a)

subject to ∑
k∈K

λk ≤ Π, (3b)

0 ≤ λk ≤ 1 ∀k ∈ K. (3c)

The objective function (3a) measures the number of parcels that could arrive to pile p with
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deadline c during the interval (t, c] on top of its assigned nominal demand, which is to be

maximized from an adversarial perspective. Constraint (3b) sets a limit on the number of

commodities that could contribute to such an increase in arrival quantities by allowing up to Π

commodities to assume their worst-case deviation, where Π here is a user-defined input parameter

that is used to control the desired level of conservatism of the generated plans. Since the constraint

matrix of this linear program is totally unimodular, at an optimal extreme point solution the

variable λk equals 1 if commodity k assumes its worst-case deviation during the sort shift, and

0 otherwise. We next present the corresponding robust formulation for the commodity-based

uncertainty model.

Proposition 1. The robust counterpart of the NPA formulation under the commodity-based uncertainty
model can be formulated as the following mixed-integer program:

Minimize
x,y,z,u

c(x, y) (4a)

subject to (1b)− (1e) (4b) - (4e)

∑
k∈K

∑
t<τ≤c

qk
τ xk

p,c,2 + Πzt,p,c,2 + ∑
k∈K

uk
t,p,c,2 ≤ µ(c − t) ∀t ∈ T , p ∈ P , c ∈ C, (4f)

zt,p,c,2 + uk
t,p,c,2 ≥ ∑

t<τ≤c
αqk

τ xk
p,c,2 ∀k ∈ K, t ∈ T , p ∈ P , c ∈ C. (4g)

Proof. We first consider the following dual formulation of the commodity-based adversary problem,
modeled in (3):

Minimize
z,u

Πz + ∑
k∈K

uk (5a)

subject to z + uk ≥ ∑
t<τ≤c

αqk
τ x̄k

p,c,s ∀k ∈ K, (5b)

z ≥ 0, (5c)

uk ≥ 0 ∀k ∈ K. (5d)

Since (3) is feasible and bounded, its dual formulation (5) is also feasible and bounded by strong

duality, and therefore, they generate the same objective function value. It follows then that the

protection function βt,p,c,2(Π, x̄) equals the optimum of the dual formulation (5). Substituting (5)

in Model (2), we obtain the robust mixed-integer formulation (4) under the commodity-based

uncertainty set.

Constraints (4f)-(4g) in Model (4) replace constraints (1f) in the nominal model NPA. While

the resulting reformulation (4) requires adding up to (|P| × |C| × |T |) + (|K| × |P| × |C| × |T |)
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continuous variables and up to (|K| × |P| × |C| × |T |) constraints, it is still tractable for realistic-

sized instances found in practice as we show later in Section 5. Notice that the implicit maximum

value of the uncertainty budget Π under the commodity-based model equals min(|K|, n), where

|K| is the total number of commodities arriving during a sort shift and n is the number of

commodities that can be assigned to the same pile with secondary sort mode s = 2. Therefore,

Π = min(n, |K|) corresponds to the maximum protection case under the commodity-based model,

while Π = 0 corresponds to the nominal case.

4.2 Parcel-based formulation

In this robust model, the goal is to generate sort plans that are protected against increases or

decreases in commodity demand arriving during a sort shift. That is, we now assume that

q̃k ∈ [(1 − α)qk, (1 + α)qk], where α is still defined as a pre-specified deviation from nominal

demand values. Unlike the commodity-based formulation presented earlier, in this model we

express the uncertainty budget in terms of parcel count and not commodity count, i.e., we limit the

number of positive or negative changes from nominal demands to at most Γ parcels. Furthermore,

we place an additional restriction on aggregate changes throughout the sort shift. In particular,

we limit increases in total arrivals to a fraction ∆ ∈ [0, 1] from the nominal total arrival quantities.

For instance, if the expected total arrivals during a sort shift is 10,000 parcels, and ∆ = 0.1, then

we want to consider cases that only result in at most 11,000 parcels arriving at the hub in total

across all commodities. This limitation reflects practical insights suggesting it is more common to

have accurate forecasting for aggregate arrival quantities during a shift rather than than accurate

commodity-specific arrival patterns. Figure 4(b) shows an example of a cumulative arrival profile

admissible under this model of uncertainty.
Similar to our derivation of the commodity-based formulation, we first define an adversary

problem corresponding to the parcel-based uncertainty model described earlier. Given an as-
signment vector x̄, the protection function βt,p,c,2(Γ, x̄) equals the optimum of the following
optimization problem:

βt,p,c,2(Γ, x̄) = Maximize
λ,π

∑
k∈K

∑
t<τ≤c

αqk
τ x̄k

p,c,2(λ
k − πk) (6a)

subject to ∑
k∈K

∑
τ∈T

αqk
τ(λ

k + πk) ≤ Γ, (6b)

∑
k∈K

∑
τ∈T

αqk
τ(λ

k − πk) ≤ ∆(∑
k∈K

∑
τ∈T

qk
τ), (6c)
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0 ≤ λk ≤ 1 ∀k (6d)

0 ≤ πk ≤ 1 ∀k (6e)

The objective function (6a) maximizes the changes, positive and negative, from nominal

arrival quantities for all commodities assigned to pile p with deadline c during the interval (t, c].

Constraint (6b) limits these changes to Γ parcels in total. Constraint (6c) ensures that the total

increases in arrival quantities do not exceed the total nominal arrivals by more than a fraction

∆ ∈ [0, 1]. In proposition 2, we use this adversary setting to derive a robust formulation that

corresponds to the parcel-based uncertainty model.

Proposition 2. The robust counterpart of the NPA formulation under the parcel-based uncertainty model
can be formulated as the following mixed-integer program:

Minimize
x,y,z,s,u,w

c(x, y) (7a)

subject to (1b)− (1e) (7b) - (7e)

∑
k∈K

∑
t<τ≤c

qk
τ xk

p,c,2 + Γzt,p,c,2 + ∑
k∈K

(∆ ∑
τ∈T

qk
τst,p,c,2 + uk

t,p,c,2 + wk
t,p,c,2) ≤ µ(c − t) ∀t, p, c, (7f)

∑
τ∈T

αqk
τ(zt,p,c,2 + st,p,c,2) + uk

t,p,c,2 ≥ ∑
t<τ≤c

αqk
τ xk

p,c,2 ∀k, t, p, c, (7g)

∑
τ∈T

αqk
τ(zt,p,c,2 − st,p,c,2) + wk

t,p,c,2 ≥ − ∑
t<τ≤c

αqk
τ xk

p,c,2 ∀k, t, p, c. (7h)

Proof. We first consider the following dual formulation of the parcel-based adversary problem,
modeled in (6):

Minimize
z,s,w,u

Γz + ∑
k∈K

(∆ ∑
τ∈T

qk
τs + uk + wk) (8a)

subject to ∑
τ∈T

αqk
τ(z + s) + uk ≥ ∑

t<τ≤c
αqk

τ x̄k
p,c ∀k (8b)

∑
τ∈T

αqk
τ(z − s) + wk ≥ − ∑

t<τ≤c
αqk

τ x̄k
p,c,s ∀k (8c)

z, s,≥ 0 (8d)

wk, uk ≥ 0 ∀k. (8e)

Since (6) is feasible and bounded, its dual formulation (8) is also feasible and bounded by strong

duality, and therefore, they generate the same objective function value. It follows then that the

protection function βt,p,c,2(Γ, x̄) equals the optimum of the dual formulation (8). Substituting (8) in

Model (2), we obtain the robust mixed-integer formulation (7) under the parcel-based uncertainty

set.
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Constraints (7f)-(7h) replace constraints (1f) in the nominal model NPA. The resulting refor-

mulation (7) requires adding up to (2 × |P| × |C| × |T |) + (2 × |K| × |P| × |C| × |T |) continuous

variables and up to (2 × |K| × |P| × |C| × |T |) constraints. The resulting model is still tractable

for realistic-sized instances found in practice as we show later in Section 5.

4.3 Time-based formulation

In this robust model, the goal is to generate sort plans that are protected against delays in demand

arrivals. We consider cases where parcels can be delayed to arrive after their expected arrival

time by δ time units in the worst case, as long as they arrive by their latest feasible arrival time

ℓk, q̃k
t ∈ [qk

t , ∑t−δ≤τ≤t qk
τ] for t ≤ ℓk. As in the previous model, we limit the number of changes to

Γ parcels, i.e., we consider cases where at most Γ parcels could arrive later than their expected

arrival times. Note that this model of uncertainty considers changes only in arrival times and not

in arrival quantities, as illustrated in Figure 4(c).
Similar to our derivation of the commodity- and parcel-based formulations, we first define an

adversary problem corresponding to the time-based uncertainty model described earlier. Given
an assignment vector x̄, the protection function βt,p,c,2(Γ, x̄) equals the optimum of the following
optimization problem:

βt,p,c,2(Γ, x̄) = Maximize
λ

∑
k∈K:ℓk>t

∑
t−δ+1≤τ≤t

[qk
τ x̄k

p,c,2]λ
k
τ (9a)

subject to ∑
k∈K

∑
τ∈T

qk
τλk

τ ≤ Γ, (9b)

0 ≤ λk
τ ≤ 1 ∀k ∈ K, τ ∈ T . (9c)

The objective function (9a) maximizes the number of parcels that could arrive due to delays to

pile p with deadline c during the interval (t, c]. Constraint (9b) limits the number of parcels that

could arrive due to delays to at most Γ parcels. Proposition 3 presents the robust formulation

corresponding to this model of the adversary problem.

Proposition 3. The robust counterpart of the NPA formulation under the time-based uncertainty model
can be formulated as the following mixed-integer program:

Minimize
x,y,z,u

c(x, y) (10a)

subject to (1b)− (1e) (10b) - (10e)

∑
k∈K

∑
t<τ≤c

qk
τ xk

p,c,2 + Γzt,p,c,2 + ∑
k∈K

∑
τ∈T

uk
τ,t,p,c,2 ≤ µ(c − t) ∀t, p, c, (10f)
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qk
τzt,p,c,2 + uk

τ,t,p,c,2 ≥ qk
τ xk

p,c,2 ∀p, c, k, t, τ, ℓk > t, t − δ + 1 ≤ τ ≤ t. (10g)

Proof. We first consider the following dual formulation of the time-based adversary problem,
modeled in (9):

Minimize
z,u

Γz + ∑
k∈K

∑
τ∈T

uk
τ (11a)

subject to qk
τz + uk

τ ≥ qk
τ x̄k

p,c,2 ∀k, τ, ℓk > t, t − δ + 1 ≤ τ ≤ t, (11b)

z ≥ 0, (11c)

uk
τ ≥ 0 ∀k ∈ K, τ ∈ T . (11d)

Since Model (9) is feasible and bounded, its dual formulation (11) is also feasible and bounded by

strong duality, and therefore, they generate the same objective function value. It follows then that

the protection function βt,p,c,2(Γ, x̄) equals also to the objective function of the dual formulation

(11). Substituting (11) in Model (2), we obtain the robust mixed-integer formulation (10) under the

time-based uncertainty set.

Notice that the size of this formulation depends heavily on the choice of the time discretization

used in the model, which needs to be reasonably fine (e.g. 30 minutes) to capture the time-sensitive

nature of sort operations. Specifically, it requires adding up to (|P| × |C| × |K| × |T |2) constraints

and up to (|P| × |C| × |T |2) + (|P| × |C| × |K| × |T |2) variables to the nominal formulation, which

could pose a computational challenge when solving a realistic sized-instance. To circumvent this

issue, we consider a reformulation for the time-based uncertainty model using the the following

observation.

Proposition 4. An optimal solution for (9) has an objective function value equal to

min
(

Γ, ∑
k∈K:ℓk>t

∑
t−δ+1≤τ≤t

qk
τ x̄k

p,c,2

)
.

Proof. Recall that for a given budget Γ and an assignment vector x̄, the adversary problem modeled

in (9) is solved for every pile p with deadline c at time t. Clearly, a commodity that is not assigned

to pile p with deadline c has no impact on its objective function value in Model (9), and thus, an

optimal solution for Model (9) has λk
τ = 0 for all commodity k such that x̄k

p,c,2 = 0. Additionally,

among all commodities with x̄k
p,c,2 = 1, only those that are eligible for delays, i.e., parcels that

belong to commodities with ℓk > t, could impact the objective function value. Then, it follows from
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constraint (9b) that the maximum value of the objective function (9a) is either Γ, the uncertainty

budget, or the total number of parcels that are assigned to the pile and expected to arrive in the

past δ periods with ℓk > t, whichever is smaller.

Using Proposition 4, the adversary problem can be rewritten as

Maximize
λ

∑
k∈K

x̄k
p,c,2λk (12a)

subject to ∑
k∈K

λk ≤ Γ, (12b)

0 ≤ λk ≤ ∑
t−δ+1≤τ≤t

qk
τ ∀k ∈ K : ℓk > t. (12c)

The objective function (12a) maximizes the number of parcels that could arrive due to delays to

pile p with deadline c during the interval (t, c]. Constraint (12b) limits the number of parcels

that could arrive due to delays to at most Γ parcels. In Proposition 5, we use this version of the

adversary problem to specify the corresponding robust formulation for the time-based uncertainty

model.

Proposition 5. The robust counterpart of the NPA formulation under the time-based uncertainty model
can be formulated as the following mixed-integer program:

Minimize
x,y,z,u

c(x, y) (13a)

subject to (1b)− (1e) (13b) - (13e)

∑
k∈K

∑
t<τ≤c

qk
τ xk

p,c,2 + Γzt,p,c,2 + ∑
k∈K:ℓk>t

∑
t−δ+1≤τ≤t

qk
τuk

t,p,c,2 ≤ µ(c − t) ∀t, p, c, (13f)

zt,p,c,2 + uk
t,p,c,2 ≥ xk

p,c,2 ∀t, p, c, k, ℓk > t. (13g)

Proof. We consider the dual formulation of the time-based adversary problem given in (12):

Minimize
z,u

Γz + ∑
k∈K:ℓk>t

∑
t−δ+1≤τ≤t

qk
τuk (14a)

subject to z + uk ≥ xk
p,c,2 ∀k ∈ K : ℓk > t, (14b)

z ≥ 0, (14c)

uk ≥ 0 ∀k ∈ K. (14d)

Since (12) is feasible and bounded, its dual formulation (14) is also feasible and bounded by

strong duality, and therefore, they generate the same objective function value. It follows that the

protection function βt,p,c,2(Γ, x̄) equals the optimum of the dual formulation (14). Substituting
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(14) in (2), we obtain the robust mixed-integer formulation (13) under the time-based uncertainty

set.

Constraints (13f)-(13g) replace constraints (1f) in the nominal model NPA. The resulting

reformulation (13) requires adding up to (|P| × |C| × |T |) + (|K| × |P| × |C| × |T |) continuous

variables and up to (|K| × |P| × |C| × |T |) constraints. It is less dependent on the choice of time

discretization in the model when compared to (10), and is computationally efficient for solving

realistic-sized instances, as we show in Section 5.

5 Computational Study

The primary objectives of our experiments are to: (1) assess the computational performance of the

proposed robust models in terms of efficiency and solution quality, and (2) illustrate their value

by analyzing trade-offs between operational costs and various levels of robustness. Motivated

by our models’ computational tractability, we also investigate a model extension that allows for

more flexibility in sort operations; specifically, we allow pile assignments to be reconfigured once

during a sort shift. The model extension’s goal is to test whether introducing limited flexibility to

sort operations can help reduce the price of robustness of the sort plans while protecting against a

specific level of uncertainty.

We consider test instances based on data obtained from a major international parcel carrier.

When solving the models, we use a hierarchical optimization framework that optimizes for two

objectives: First, we minimize the expected number of required secondary sort hours, modeled as

Minimize ∑
p∈P

∑
c∈C

cyp,c,2.

We then fix the shift’s total secondary sort hours and optimize for a second objective, which is to

minimize the number of parcels that require secondary sorting (or equivalently, maximizing the

expected number of parcels that are directly sorted using primary sort equipment), to maximize

the utilization of primary sort equipment by reducing workload assigned to secondary sorters,
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modeled as

Minimize ∑
p∈P

∑
c∈C

∑
k∈K

∑
t∈T

qk
t xk

p,c,2.

Both objectives can be viewed as a proxy for minimizing sortation-related costs. Recall that in a

two-stage sort system each arriving parcel has to go through primary sorting, and if the parcel is

assigned to a pile with secondary mode s = 2, then it has also to go through secondary sorting

to complete its sort requirement. Therefore, reducing the number of secondary sort hours as

well as the number of parcels that require secondary sorting reduces total operational costs. The

proposed solution framework is flexible, however, and can accommodate other potential objectives

of interest, such as minimizing workload imbalance across secondary sorters and minimizing the

number of required secondary sorters.

All models were implemented in Python 3.8, and solved using Gurobi 9.0.2. A Linux computing

cluster, which employs HTCondor version 8.8.9 and machines with 8 GB memory, was used to

carry out the computations.

5.1 Description of test instances

We consider a sort system with |P| = 16 primary sort pile positions, n = 15 secondary sort

positions, and a secondary sort rate µ of 800 parcels per hour per station. We model all operations

using a 30-minute time discretization, i.e., each time period t is 30 minutes long. We use demand

data obtained from a large parcel carrier as basis for generating instances of different size and

composition. The data consist of parcel flow information during different sort shifts with peak

arrivals taking place during night hours. A general description of our test instances, including

operational shift structure and demand volume, is given in Table 2.

We consider cases where demand can deviate by at most 30% from nominal values, i.e., we set

α = 0.3 in the commodity- and parcel-based models. We also allow demand to be delayed by at

most 2 periods from expected arrival times, i.e., we set δ = 2, which corresponds to a maximum of

60 minutes delay in the time-based model. In the parcel-based model, we consider cases where the

total arrivals during a sort shift won’t deviate from the expected total arrivals during a given sort

shift, i.e., we set ∆ = 0.
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Table 2: Characteristics of test instances created using data obtained from an international service provider

Sort Shift Instance
Total arrivals Average # of

parcels/commodity
Variability between

commodity sizes (CoV)parcels commodities
Daysort
(12pm - 4pm)

D.1 5682 45 126 0.80
D.2 4524 41 110 0.69

Twilight
(4pm - 9pm)

T.1 7104 35 203 0.72
T.2 8399 39 215 0.63
T.3 10183 42 243 0.70

Midnight
(9pm - 4am)

M.1 25470 38 670 0.71
M.2 28654 40 716 0.78
M.3 30082 35 860 0.84
M.4 31892 40 797 0.82
M.5 28238 32 883 0.73

5.2 Computational performance

We first evaluate the computational performance of each of the robust models in terms of run time

and solution quality. Figure 5 summarizes the run times for each of the instances over different

values of the uncertainty budgets, when solved to optimality using the three robust formulations.

Figure 5: Run time to optimality for various robustness levels
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As the figures indicate, in all the three models, optimal solutions are found in relatively short

time for the nominal and maximum protection cases, i.e., when the uncertainty budget equals to

zero and when it is large enough to allow for all commodities/parcels to change to their worst-case

values. It takes relatively longer to solve instances when the robustness level is in the middle part

of the range. While the average time to solve the commodity-, parcel-, and time-based models

to proven optimality is 1462 seconds, 2133 seconds, and 1670 seconds, respectively, it takes on

average about 347 seconds, 502 seconds, and 22 seconds, respectively, to actually find an optimal

solution. Figure 6 summarizes the time it takes to find an optimal solution versus the time it takes

to find it and prove its optimality, averaged over all test instances, for various robustness levels.

This shows that high-quality solutions can be generated in relatively short time (under two hours),

which is practical given that sort assignments are generated every few weeks.

Figure 6: Time taken to solve instances to proven optimality compared to time taken to find an optimal solution,
averaged over all test instances
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5.3 Operational insights

We take a closer look into the solutions generated using the three robust formulations. We focus

on Midnight shift instances, the largest and busiest sort shifts, and therefore most sensitive to

changes in demand patterns. Figure 7 shows the number of required secondary sort hours under

different robustness levels.

As expected, in all of the models, the number of secondary sort operational hours is non-

decreasing as the value of the uncertainty budget increases. Operating plans with uncertainty

budget set to zero, which corresponds to the nominal case, result in the least number of required

secondary sort operational hours, i.e. they are least expensive in terms of operational cost. On
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Figure 7: The number of required secondary sort hours for various robustness levels
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the other hand, for plans with uncertainty budget greater than zero, extending secondary sort

operational hours is often required to hedge against the specified level of uncertainty.

After optimizing for the secondary sort hours, we optimize for a secondary objective, the

number of parcels that require secondary sorting. Figure 8 shows the value of this secondary

objective for various robustness levels.

Figure 8: The number of parcels requiring secondary sort for various robustness levels
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Since we optimize for the two objectives in a hierarchical fashion, higher values of uncertainty

budgets do not necessarily result in non-decreasing values of the secondary objective we optimize

for. This is not unexpected, since we add a new restriction when solving the second problem that

is dependent on the first objective function value, which is non-decreasing in the value of the

uncertainty budget, thus providing more relaxed restrictions for the second problem for higher

uncertainty budgets. We next focus on the results generated by a couple of the instances to explain

this further and discuss the main results that a decision maker would want to consider when using

any of the three proposed robust models.
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Figures 9 and 10 show the results for instances M.1 and M.2, respectively. The proposed models

enable decision makers to examine the price of robustness when generating sort plans under

various types and levels of uncertainty. It is clear that there are considerable differences in the

resulting sort plans for uncertainty budgets between the two extreme cases, which are easier to

solve; this justifies the need for the robust models proposed in this work.

Figure 9: The number of secondary sort hours and parcels for instance M.1
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Figure 10: The number of secondary sort hours and parcels for instance M.2
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By examining the results in Figure 9, a hub manager using the parcel-based model can evaluate

plans generated at Γ values of 400, 500, 700, 800, 900, 1,200, 1,400, 1,500, or 10,000 parcels; the

remaining generated options have similar costs while providing less protection against uncertainty.

To illustrate this further, Figure 11 shows the corresponding pile compositions for different Γ

levels. Notice that even though pile assignments generated at Γ = 400 share the same cost with

the nominal plan, the generated pile composition is different; plans generated at Γ = 0 are not

guaranteed to be feasible for Γ = 400 while plans generated at Γ = 400 are guaranteed to be

feasible for any Γ ≤ 400. The same applies to plans generated at Γ = 1, 000 and Γ = 1, 200, where

the latter is guaranteed to be feasible for all Γ ≤ 1, 200, while the reverse is not true.

Table 3 provides a summary of the percent increase in operational requirements for various

robust plans for instance M.1, when compared to its nominal plan requirements. As the table
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Figure 11: (color online) Examples of pile assignments at different values of Γ, where each curve represents cumulative
arrivals to a pile with specific deadline.

Γ = 0 SS hours = 17 Γ = 400 SS hours = 17

Γ = 1000 SS hours = 21.5 Γ = 1200 SS hours = 21.5

Table 3: The price of robustness for instance M.1 under the parcel-based model

Budget
Secondary sort hours Secondary sort parcels Secondary sort stations

optimal value % increase optimal value % increase value % increase
0 17 0.00 10867 0.00 4 0.00

400 17 0.00 10892 0.23 4 0.00
500 17.5 2.94 10867 0.00 4 0.00
700 18 5.88 10867 0.00 4 0.00
800 19 11.76 11086 2.02 4 0.00
900 21 23.53 11663 7.32 5 25.00

1200 21.5 26.47 11663 7.32 5 25.00
1400 22 29.41 11663 7.32 5 25.00
1500 22.5 32.35 11663 7.32 5 25.00
10000 23 35.29 11799 8.58 5 25.00

indicates, a hub manager can protect against up to 700 parcels changing from their nominal values

(under the parcel-based uncertainty model) without the need to operate an additional secondary

sort station or increase secondary sorters’ workload; this is achieved by extending the operational

hours of a secondary sorter that is already in use by one hour only. Furthermore, the plan at
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Γ = 900 requires the same number of secondary sort stations required to protect against the fully

robust case. However, in the latter case, one of the secondary sorters needs to operate for two

additional hours.

Similarly, Figure 10 summarizes the results for instance M.2. In this case, a hub manager using

the time-based model is faced with five effective sort plan options, generated for Γ values of 200,

300, 500, 600, 700 or 10,000 parcels; the remaining options have similar costs while providing less

protection against uncertainty. Table 4 provides a summary of the percent increase in operational

requirements for various robust plans when compared to the nominal plan requirements.

Table 4: The price of robustness for instance M.2 under the time-based model

Budget
Secondary sort hours Secondary sort parcels Secondary sort stations

optimal value % increase optimal value % increase optimal value % increase
0 18 0.00 11558 0.00 4 0.00

200 18 0.00 11765 1.79 4 0.00
300 18.5 2.78 11785 1.96 4 0.00
500 19 5.56 11558 0.00 4 0.00
600 23 27.78 13222 14.40 5 25.00
700 23.5 30.56 12599 9.01 5 25.00

10000 24 33.33 12599 9.01 5 25.00

Notice that in this instance, operating plans that protect against higher levels of uncertainty

could result in reduced secondary sort workload. For example, operating a plan that protects

against up to 700 parcels arriving one hour later than their expected arrival times results in a

6% reduction in secondary sort workload when compared to plans that protect against up to 600

parcels arriving late; extending the operational hours by just 30 minutes changes pile compositions

such that more parcels get assigned to direct sort. A detailed pile composition for Γ = 600 and

Γ = 700 is shown in Figure 12.

5.4 Other practical considerations: allowing pile reconfiguration

So far, we have presented results for the original formulation, which generates assignments of

commodities to primary sort piles that are fixed throughout a sort shift. This stable setting is

generally preferred in practice to ease process control and gain operational efficiencies, especially

when manual labor is involved. In this section, we explore the value of introducing more flexibility

to sort operations by allowing pile assignments to change once during a sort shift. Specifically, we
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Figure 12: (color online) Pile assignment by deadline for instance M.2 at Γ = 600 and Γ = 700. Notice that the
number of parcels that require secondary sorting is higher at Γ = 600 than at Γ = 700 while the latter has
slightly longer secondary sort hours.

Γ = 600
SS hours = 23 SS parcels = 13222

Γ = 700
SS hours = 23.5 SS parcels = 12599

want to see if such limited flexibility can help reduce the price of robustness in the generated plans

while protecting against various levels of uncertainty. To do so, we introduce a few modifications

to the original formulation, as detailed in the Appendix. In this model variant, we allow a pile to

be assigned a primary sort position p, a deadline c, a sort mode s and a sort interval i that defines

either an early sort interval, a late sort interval or a full sort interval that corresponds to the full

sort shift, as depicted in Figure 13.

Figure 13: An illustration of our modeling extension idea that allows for pile to be reconfigured during a sort shift. A
reconfiguration time in this setting is user-defined, i.e., it is an input to our problem.

Full sort interval

Early sort interval Late sort interval

Reconfiguration time

Under this setting, a pile that is assigned to an early sort shift can be reused to process other

commodities during the late sort shift. Parcels can be assigned to a sort interval as long as their

commodity first arrival time and their deadline both fall within the sort interval time window.

Therefore, a reasonable choice of a reconfiguration time is one that coincides with one of the pile

sort deadlines.

We test this variant for the commodity-based uncertainty model using the same test instances

presented earlier. Our results show that Daysort instances benefit the most from pile reconfig-
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uration, while Twilight and Midnight instances do not benefit as much. This can be explained

by parcel arrival patterns, which tend to be more spread out over longer time spans during the

Twilight and Midnight shifts, making assignments to early or late sort intervals less effective, and

impossible in many cases. However, this variant is still useful for Daysort instances, characterized

by smaller arrival quantities and a wider range of commodity types – typically parcels to be deliv-

ered to local and nearby destinations. Figure 14 shows the results for a Daysort instance. Recall a

Daysort shift starts at 12PM and ends at 4PM; in this instance, the most effective reconfiguration

time is found to be the one that coincides with the first sort deadline, which is 2PM.

Figure 14: Results of Instance D.1 using the commodity-based model variant, showing that we can generate fully
robust plans at the cost of nominal plans when we allow pile assignments to be reconfigured once.
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As the figures indicate, we can be fully robust (protect against the most conservative scenarios)

at the nominal plan cost when we allow piles to be reconfigured once during a Daysort shift; a

single reconfiguration forestalls the need to extend operational hours, increase secondary sort

workload or add extra secondary sorters. The very limited flexibility of allowing piles to be

reconfigured once can help reduce the price of robustness while hedging against uncertainty; the

presented variant allows generating more cost-effective alternatives to fixed sort plans that require

higher operational costs to protect against various levels of uncertainty.

6 Conclusion

In this paper, we develop robust optimization models to generate sort plans that assign parcels

to primary sort equipment operating within express parcel delivery sort hubs. Since frequently

changing sort plans to address fluctuation in demand is not practical, it is important to generate
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assignments that take into account demand changes and uncertainty while being cost-effective and

feasible for longer periods of time. We propose models that explicitly incorporate various sources

and levels of demand uncertainty commonly experienced in practice. Using practical insights

and industry data, we propose different uncertainty models that take into account changes in

arrival quantities and/or arrival times. We exploit problem structure to generate computationally

tractable robust models that solve realistic-sized instances, with high-quality solutions obtained

in relatively short CPU time. The proposed models can be used by hub managers to investigate

trade-offs between plans’ robustness and their associated operational costs, to ultimately operate

sort plans that are protected against desired levels of robustness for improved system and service

performances. The computational tractability of the proposed models allow us to extend our

model to test other practical considerations. In particular, we modify our formulation for the

commodity-based model to test the value of allowing piles to be reconfigured once during a

sort shift. Our results show that such limited flexibility can help reduce the price of robustness,

especially in Daysort shifts, which typically process small parcel volumes heading to a wide range

of nearby and local destinations.

Future research avenues include integrating sort decisions with other upstream and down-

stream system decisions, including network-wide load planning decisions. Examples include

building tractable models that optimize for the detailed sort process as well as inbound/outbound

truck scheduling decisions. Another interesting research avenue is to explore the value of introduc-

ing more flexibility in the operational planning of sort hubs while investigating the impact they

have on operational- and service-related performance measures. This includes: (1) moving from a

static to a dynamic sort planning framework that makes use of real-time data related to actual

parcel types, quantities, and arrival times and (2) introducing a more flexible worker schedule to

improve worker utilization in cases where the secondary sort stage is manually operated.
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7 Appendix

7.1 Parcel-time uncertainty model

In this model of uncertainty, every commodity k ∈ K can have its arrival profile scaled up or down
by a fraction α ∈ [0, 1] in the worst case. Additionally, parcels that belong to commodity type k
can be delayed to arrive after their expected arrival time by at most δ time units measured in the
discretization of T , in the worst case, as long as they arrive by their latest feasible arrival time
ℓk. Changes in arrival quantities due to demand fluctuations or delays are limited to Γ parcels in
total across all commodities, and total arrivals are not allowed to exceed the total nominal arrival
quantities by more than a fraction ∆ ∈ [0, 1] throughout a sort shift. Similar to our derivation of
the models presented in the paper, one can derive the corresponding robust counterpart following
a similar procedure, using the following linear adversary problem:

βt,p,c,2(Γ, x̄) = Maximize
λ,π,ρ

∑
k∈K

∑
t<τ≤c

αqk
τ x̄k

p,c,2(λ
k − πk) + ∑

k∈K
x̄k

p,c,2ρk (15a)

subject to ∑
k∈K

∑
τ∈T

αqk
τ(λ

k + πk) + ∑
k∈K

ρk ≤ Γ, (15b)

∑
k∈K

∑
τ∈T

αqk
τ(λ

k − πk) + ∑
k∈K

ρk ≤ ∆(∑
k∈K

∑
τ∈T

qk
τ), (15c)

0 ≤ λk ≤ 1 ∀k ∈ K (15d)

0 ≤ πk ≤ 1 ∀k ∈ K (15e)

0 ≤ ρk ≤ ∑
t−δ+1≤τ≤t

qk
τ ∀k ∈ K : ℓk > t. (15f)
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7.2 Model extension to allow for pile reconfiguration

In this variation, we allow a pile to be reconfigured once during a sort shift. For this, we introduce

I to denote the set of sort intervals, where i = 1 indicates an early sort shift, i = 2 indicates a late

sort shift, and i = 0 indicates a full sort shift. We modify all the decision variables by adding this

additional index. To generate a commodity-based model that allow piles to be reconfigured, we

need to replace constraints (2c) in (4) with:

∑
p∈P

∑
c∈C

∑
s∈S

yi
p,c,s ≤ |P| − ∑

p∈P
∑
c∈C

∑
s∈S

y0
p,c,s ∀i ∈ I \ {0}.

This is needed to ensure that at most |P| pile positions are used at any time during the sort shift.

We also need to add the following constraints to ensure that a pile position is used during an early

or late sort interval only if it is not used for a full sort interval.

yi
p,c,s ≤ (1 − y0

p,c,s) ∀i ∈ I \ {0}, p, c, s.

A similar reformulation can be applied to the parcel- and time-based uncertainty models.
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