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Abstract

Motivated by applications in cloud computing, we study interval scheduling problems ex-
hibiting economies of scale. An instance is given by a set of jobs, each with start time, end
time, and a function representing the cost of scheduling a subset of jobs on the same machine.
Specifically, we focus on the max-weight function and non-negative, non-decreasing concave
functions of total schedule weight. The goal is a partition of the jobs that minimizes the total
schedule cost, where overlapping jobs cannot be processed on the same machine. We propose a
set cover formulation and a column generation algorithm to solve its linear relaxation. For the
max-weight function, which is already NP-hard, we give a polynomial-time pricing algorithm;
for the more general case of a function of the total weight, we have a pseudo-polynomial algo-
rithm. To obtain integer solutions, we extend the column generation approach using branch-
and-price. We computationally evaluate our methods on two different functions, using both
random instances and instances derived from cloud computing data; our algorithm signifi-
cantly outperforms known integer programming formulations (when these are available) and
is able to provably optimize instances with hundreds of jobs.

1 Introduction

Interval scheduling, sometimes also called fixed interval scheduling, is a broad class of problems
arising in operations research, computer science, production, scheduling, and logistics. Generally,
interval scheduling problems task the decision maker with scheduling a set of jobs by assigning
them to machines. Each job is defined by a fixed start and end time and each machine can only
process one job at a time. A feasible solution is a partition of jobs into schedules such that jobs
within the same schedule do not overlap in time. Various objectives are used in interval scheduling
problems and are typically specific to the application.

Interval scheduling and its related problems have numerous applications. Some of these
include channel assignment [23], fleet planning [28], bus scheduling [29], satellite scheduling
[20, 33], and circuit design [34]. We are primarily interested in interval scheduling for its applica-
tions in the area of cloud scheduling. An important problem in cloud services is the allocation of
virtual machine (VM) requests to machines. Each VM request has a start time, end time and a set
of resource requirements, and the goal is to assign the VMs to machines such that each machine’s
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capacity is never exceeded. Such allocation problems lead to a temporal bin packing problem,
with typical objectives including either to minimize the total number of machines required to pro-
cess all VMs [12, 19], or to minimize some operating cost, e.g. power consumption [3]. Interval
scheduling is a special case in which each machine can only process one VM at a time, as when
managing requests for very large services, such as certain machine learning systems. When VM’s
cannot run in parallel on the same machine, the assignment component of the problem is some-
what simplified, allowing for the consideration of more complex and/or realistic objectives; this
is one of our main motivations.

In this work, we study the cost minimization form of interval scheduling. Given some func-
tion that computes a cost for each schedule, the decision maker seeks a partition of the jobs that
minimizes the sum of schedule costs. We study cost functions exhibiting economies of scale;
specifically, we focus on the max-weight function and concave functions of total schedule weight.
The max-weight function models a scenario in which different sizes of servers are available, e.g,
servers with different CPU capacities. The cost of a server is proportional to its size; therefore,
the cost of running a group of VMs together is proportional to the most resource-intensive VM in
the group. Functions of total weight are flexible enough to model many important applications,
e.g., rent-or-buy scheduling [15]. Specifically, concave functions capture the increased efficiency
of scheduling jobs on the same machine. In the context of VM scheduling, one example of this
efficiency is the reduction in start-up and shut-down costs.

Interval scheduling with the max-weight function and many concave functions is known to be
NP-Hard, and despite various theoretical results, work on exact solution approaches is limited.
With this motivation, we propose an approach based on column generation for a set covering
formulation. We summarize our primary contributions as follows:

1. To the best of our knowledge, we are the first to address the exact optimization of certain
NP-Hard variants of interval scheduling.

2. We propose efficient pricing algorithms for the cases of a max-weight function and more
general functions based on a schedule’s cumulative weight.

3. For the specific case of the max-weight function on path instances, which is known to be
polynomially solvable, existing formulations and our proposed set cover formulation are
fractional; we provide a tight linear programming formulation. (In a path instance, each job
overlaps only with its immediate predecessor and successor.)

4. We present a detailed computational study demonstrating the effectiveness of our approach;
in particular, we are able to exactly optimize instances with up to several hundred jobs.

The outline of the paper is as follows. In the next section we provide an overview of the rel-
evant literature. In Section 3, we give a formal description of our model, provide the relevant
preliminaries, and introduce our set covering formulation. In Section 4, we describe our col-
umn generation algorithm, present details of our pricing algorithms, and extend our approach to
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branch-and-price. In Section 5, we study the special case of the max-weight schedule cost on a
path. Section 6 details the results of our computational study, and Section 7 concludes.

2 Literature Review

The literature on interval scheduling is extensive. In the most basic variant, the goal is to minimize
the number of machines required to process all jobs. This can be solved in linear time using a first-
fit rule [32]. Much of the interval scheduling literature focuses on a related problem that asks,
for some integer k, what is the maximum cardinality or maximum-weight set of jobs that can be
processed on k machines. [9] provide a O(n + k) algorithm for the cardinality case and a O(nS(n))
algorithm for the weighted case, where S(n) is the running time of a shortest-path algorithm on
a graph with O(n) edges. [2] propose a linear programming (LP) approach, making use of a
graph-theoretic interpretation of interval scheduling: For a given instance, its conflict graph is an
interval graph constructed by creating a node for each job and adding an edge between two nodes
when the corresponding jobs overlap. The incidence matrix formed using the maximal cliques
in the interval graph has the consecutive ones property and is therefore totally unimodular; this
leads to an integral linear program capable of solving the weighted k-machine problem. The
survey [27] provides a detailed overview of common variants of k-machine interval scheduling.
Example variants include allowing for machine downtime [7], non-identical machines [2, 31], and
jobs requiring multiple processing intervals [4].

Closely related to our work is the literature on submodular coloring, its complement, sub-
modular clique partitioning, and submodular interval scheduling, which is submodular coloring
restricted to interval graphs. In [10], the authors study value-monotone submodular functions
and provide a 5-approximation algorithm for interval graphs and a 7-approximation for perfect
graphs when the cost function is a non-decreasing weight-defined concave function. [21] explore
a broader class of submodular functions, referred to as value-polymatroidal; the authors provide a
dynamic programming algorithm for co-interval graphs. [16] present a robust coloring algorithm
and provide a 4-approximation algorithm for interval graphs for any concave function. Addition-
ally, [16] prove NP-Hardness for coloring interval graphs with strictly concave functions. This
result is based on a proof that minimum-entropy coloring is NP-Hard for interval graphs [8]. [14]
study coloring in general graphs with the max-weight function, in which the cost of a color class
is equal to weight of the highest-weight node contained in the class, and prove that it is NP-Hard
for interval graphs.

Methodologically, our work leverages column generation, which is used to solve linear pro-
grams with exponentially many variables. Such problems often arise when solving the linear
relaxation of exponentially-sized reformulations of integer programs (IP). These reformulations
are desirable because they typically provide stronger dual bounds compared to compact formu-
lations, and solutions to the relaxation can be used to generate heuristic primal solutions. For
a general reference on column generation, we refer the reader to [13]. Finding integer solutions
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to column generation models is challenging, as standard IP techniques like branch-and-bound
are ill-suited. This motivates the development of the branch-and-price algorithm [5], which com-
bines column generation with branch-and-bound. Branch-and-price algorithms have been used
successfully in many applications; some examples related to our problem include graph color-
ing [30], max-weight coloring [17], sum coloring [11], robust coloring [22], partition coloring [18],
clique partitioning with minimum size [26], and interval scheduling with a resource constraint [1].

3 Problem Statement and Preliminaries

We consider interval scheduling problems taking as input a set of n jobs J = {1, 2, 3, ..., n}, a vector
of job weights w ∈ Zn

+, and a cost function f : 2J → R+, where 2J denotes the power set of J.
Each job i ∈ J has a start-end time pair (si, ei), si, ei ∈ Z+, si < ei. We assume without loss of
generality that jobs are ordered by non-decreasing start times, then by end times if necessary. We
refer to subsets S ⊆ J as schedules, and S is a feasible schedule if jobs in S do not overlap in time,
[si, ei] ∩ [sj, ej] = ∅ for i, j ∈ S. Each interval scheduling instance has a corresponding graphical
representation G = (N, E). This conflict graph is an interval graph constructed by creating a node
for each i ∈ J and adding an edge between nodes when their corresponding jobs overlap in time.

The decision maker is interested in partitioning J into disjoint feasible schedules S1, S2, ..., Sk

such that the combined cost of the schedules is minimized. Letting S be the set of all feasible
schedules, the problem is

min
S1,...,Sk∈S

{ k

∑
ℓ=1

f (Sℓ) :
k⋃

ℓ=1

Sℓ = J; Sℓ ∩ Sm = ∅, ℓ ̸= m
}

. (1)

Problem (1) is equivalent to a minimum-cost coloring problem on the instance’s conflict graph.
We consider the following cost functions f :

1. Max-Weight: f (S) = maxi∈S wi

2. Non-Negative, Non-Decreasing, Concave: f (S) = h
(
∑i∈S wi

)
for some non-negative, non-

decreasing concave function h

Both of these functions belong to the class of value-polymatroidal functions [21] and value-
monotone submodular functions [10]. Additionally, both are known to be theoretically difficult;
the max-weight function and many weight-defined concave functions make (1) NP-Hard [14, 16].

Problem (1) with the max-weight function is a special case of the general max-weight coloring
problem restricted to interval graphs. The max-weight coloring problem has a natural mixed-
integer linear programming (MILP) formulation: Given a graph G = (N, E), let ∆ be the maximum
degree in G, and C its set of maximal cliques. If G is an interval graph, we additionally use C to
represent the corresponding sets of jobs in the underlying scheduling instance. The max-weight
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coloring problem is then formulated as

min
x,y

∆+1

∑
k=1

yk (2a)

s.t. ∑
i∈C

xi,k ≤ 1 ∀C ∈ C, ∀k ∈ {1, 2, .., ∆ + 1} (2b)

∆+1

∑
k=1

xi,k = 1 ∀i ∈ N (2c)

wixi,k ≤ yk ∀i ∈ N, ∀k ∈ {1, 2, .., ∆ + 1} (2d)

xi,k ∈ {0, 1} ∀i ∈ N, ∀k ∈ {1, 2, .., ∆ + 1} (2e)

yk ≥ 0 ∀k ∈ {1, 2, ..., ∆ + 1}. (2f)

The variables xi,k denote the binary decision to place job i in the k-th schedule, and the variables
yk keep track of the maximum-weight job in the k-th schedule. This formulation makes use of the
observation that an optimal solution would never require more than ∆ + 1 colors.

For general graphs, (2) may be exponentially large depending on the graph’s number of max-
imal cliques. When restricted to interval graphs, the model is polynomial as the number of max-
imal cliques is O(n). Despite this advantage, in practice modern MILP solvers struggle to solve
(2) for interval scheduling instances with even a moderate number of jobs, in part because of its
symmetry.

3.1 Set Covering Formulation

We propose a formulation for (1) with exponentially many variables. Our model operates in the
space of schedules, with each binary variable indicating whether to use a particular schedule. This
yields

min
z ∑

S∈S

f (S)zS (3a)

s.t. ∑
S∈S,S∋i

zS ≥ 1 ∀i ∈ J (3b)

zS ∈ {0, 1} ∀S ∈ S. (3c)

We use S ∋ i to denote the requirement that schedule S contains i; the variable zS represents the
binary decision to use schedule S in the solution. Although feasible solutions should technically
be partitions of the job set J, we relax the equality constraint to greater-than-or-equal in (3b), tran-
sitioning from a partition model into an equivalent covering model; the equivalence follows from
the monotonicity of the function f . This helps improve the convergence of the column generation
algorithm.
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4 Solution Methodology

We solve the linear relaxation of (3) with column generation. The algorithm maintains a restricted
master problem (RMP) that only contains a subset of the variables. Letting SRMP ⊆ S denote the set
of schedules currently in the RMP, we obtain

min
z

{
∑

S∈SRMP

f (S)zS : ∑
S∈SRMP,S∋i

zS ≥ 1, i ∈ J; zS ≥ 0, S ∈ SRMP

}
. (4)

Given a particular set of schedules SRMP, we solve (4) and use the optimal dual multipliers to
check if any schedule S ̸∈ SRMP has negative reduced cost; this is known as the pricing problem. If
we find any such schedules, we add them to SRMP and re-solve. Otherwise, the current solution is
optimal for the linear relaxation of (3).

After solving (4), the pricing problem is

max
S∈S

{
∑
i∈S

πi − f (S)
}

, (5)

where πi is the dual multiplier of the covering constraint in (4) for job i. If the optimal value of
(5) is positive, this corresponds to a schedule with negative reduced cost that can be added to
SRMP. In the next two sub-sections, we respectively present methods for solving (5) when f is the
max-weight function or any function of the total schedule weight.

4.1 Pricing: Max-Weight Function

Substituting f (S) = maxi∈S wi in (5) yields the pricing problem

max
S∈S

{
∑
i∈S

πi −max
i∈S

wi

}
. (6)

Proposition 4.1. Problem (6) can be solved in O(nP(n)) time, where P(n) is the complexity of solving an
interval packing problem with n jobs.

Proof. Assume we fix an upper bound w̄ ∈ {w1, w2, ..., wn} on the weight of jobs we can put in a
schedule; then (6) reduces to

max
S∈S

{
∑
i∈S

πi : wi ≤ w̄, i ∈ S
}

.

That is, the problem reduces to finding a schedule maximizing the sum of the πi values, using
only jobs with wi ≤ w̄. If a solution S has maxi∈S wi < w̄, the same schedule S is optimal for a
smaller value of w̄.

This is an interval packing problem, a special case of the node packing or independent set problem
restricted to interval graphs [24]. As there are at most n distinct values for w̄, (6) can be solved by

6



solving at most n interval packing problems.

Proposition 4.1 implies that the complexity of (6) is determined by the complexity of the re-
sulting interval packing problem. Interval packing is well known to be polynomially solvable. We
present two algorithms for its solution, both of which we implement as part of our branch-and-
price methodology. The first of these methods is based on linear programming; given dual prices
π, we formulate the interval packing problem as

max
x

{
∑
i∈J

πixi : ∑
i∈C

xi ≤ 1, ∀C ∈ C; xi ≥ 0, ∀i ∈ J
}

.

For general graphs, this LP is not necessarily integral; however, for interval graphs the constraint
matrix of the formulation satisfies the consecutive-ones property, and is therefore totally unimod-
ular. This implies that an optimal extreme point is integer and yields the desired packing. Ad-
ditionally, as the number of maximal cliques in an interval graph is O(n), the LP can be solved
efficiently using any standard linear programming algorithm.

A full round of pricing in our scheme requires solving multiple interval packing instances; each
instance is specified by an upper bound w̄ on the weight of jobs admissible to the packing. This
upper bound can be incorporated into the LP by fixing xi = 0 when wi is greater than w̄. A benefit
of the linear programming approach is the ability to warm-start; we solve the sub-problems in
increasing order with respect to the weight upper bound, and each LP can be warm-started from
the previous optimal solution, as primal feasibility is maintained.

The second method to solve (6) is based on dynamic programming (DP). We define states
i ∈ {0, 1, 2, ..., n, n + 1}, where state i = 1, 2, .., n denotes that job i ∈ J was the last job added to
the schedule, and states 0, n + 1 serve as artificial start and stop points. At each state, the decision
maker determines which job is next in the schedule, or ends the schedule. The action set at i is
Ai = {j ∈ J : sj ≥ ei} ∪ {n + 1}, with rewards rj = πj for j ∈ J and rn+1 = 0. The initial state is 0
and its action set is A0 = J ∪ {n + 1}. We use vi to denote the optimal value at state i, that is, the
maximum weight of an interval packing containing i and only including jobs j ≤ i. We obtain the
recursion

vi = max
j∈Ai
{rj + vj}, ∀i ∈ J ∪ {0}, vn+1 = 0. (7)

The above DP has Θ(n) states and O(n) actions per state, making the total complexity O(n2).
While generally leading to a slower empirical running time than the LP method, the DP model
more easily incorporates side constraints on the structure of feasible schedules; specifically, it al-
lows merging and separation constraints that require or forbid certain jobs from running consecu-
tively in a schedule. These constraints are important as they correspond to branching disjunctions
in our branch-and-price algorithm described in Section 4.3.

It is possible to obtain a DP with linear complexity by instead making admit/reject decisions
at each job state. The jobs are considered in arrival order and if a job is admitted the decision
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maker receives the reward πi and the state transitions to the next job that could be feasibly added
to the schedule. It is easy to verify that an algorithm of this type has O(n) running time, but it
loses the ability to incorporate separation and merge constraints, the primary advantage of the DP
approach over LP. We discuss further details on this type of DP below in Section 4.2.

Identifying the most improving column requires solving O(n) interval packing problems;
however, any sub-problem may produce an improving column. An option is to conduct partial
pricing and terminate after finding any improving column. This typically trades a higher total
iteration count for a lower time per iteration. Likewise, it is also possible to conduct a full round
of pricing and return all improving columns instead of just the most improving. These imple-
mentation details can have a major impact on the running time and convergence of the column
generation algorithm. See Section 6.1 for details on this design decision.

4.2 Pricing: Function of Total Weight

Next we consider the pricing problem (5) when f is a function of the total schedule weight. That
is, for some function h, the cost is f (S) = h(∑i∈S wi). This includes the special case in which h is
non-negative, non-decreasing and concave. This leads to the pricing problem

max
S∈S

{
∑
i∈S

πi − h
(

∑
i∈S

wi

)}
.

We use DP to solve this problem: Define states (i, W) for i ∈ {0, 1, 2, ..., n+ 1} and W ∈ {0, 1, 2, ..., ∑i∈J wi},
where state (i, W) indicates that i was just added to the schedule and the sum of the scheduled
jobs’ weights is W. As with (7), we define the action set at state (i, W) as Ai = {j ∈ J : sj ≥
ei} ∪ {n + 1} and A0 = J ∪ {n + 1}. The reward for taking action j ∈ J is rj = πj and rn+1 = 0. The
initial state is (0, 0). Using ui,W to denote the optimal value at state (i, W), we get the recursion

ui,W = max
j∈Ai
{rj + uj,W+wi} ∀i ∈ J ∪ {0}, ∀W = 0, 1, ..., ∑

i∈J
wi (8a)

un+1,W = −h(W) ∀W = 0, 1, ..., ∑
i∈J

wi. (8b)

The DP has Θ(n ∑i∈J wi) states and each state has O(n) actions; therefore, it is pseudo-polynomial
with complexity O(n2 ∑i∈J wi). If ∑i∈J wi is a polynomial function of n, the complexity is polyno-
mial, e.g. when h is a function of the schedule’s cardinality. As before, an alternate DP formulation
with lower complexity is possible, at the cost of less modeling power; we discuss this approach
next.

Again, we define states (i, W) for i ∈ J and W ∈ {0, 1, ..., ∑i∈J wi}, where i now indicates
deciding whether to add i to the schedule or not. Specifically, the actions at (i, W) are to add i,
receiving reward πi and transitioning to state (ηi, W + wi), where ηi = min{j ∈ J : sj ≥ ei}, or to
reject i, receiving no reward and transitioning to (i + 1, W). The initial state is (0, 0). Letting σi,W
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denote the optimal value at state (i, W), we have

σi,W = max{πi + σηi ,W+wi , σi+1,W} ∀i ∈ {1, 2, 3, ..., n− 1}, ∀W = 0, 1, ..., ∑
i∈J/{n}

wi (9a)

σn,W = max(πn − h(W + wn),−h(W)) ∀W = 0, 1, ..., ∑
i∈J/{n}

wi. (9b)

This DP has Θ(n ∑i∈J wi) states and two actions per state, so the total complexity is Θ(n ∑i∈J wi).
This complexity is better than (8) by a factor of n, and is likely the faster pricing method when there
are no separation or merge constraints, i.e. at the root node of a branch-and-price tree. Lastly, as
with the max-weight function, it is possible to identify multiple improving columns. Both DP
recursions include information on the best schedule starting from job j for all jobs j ∈ J; any such
schedule may also provide an improving column.

4.3 Branch-and-Price Algorithm

We now extend the column generation approach to an exact algorithm for (3) by combining col-
umn generation and branch-and-bound. The LP at each node in the search tree is solved via
column generation. Instead of branching directly on the variables in (3), we adopt a branching
scheme common in the vehicle routing literature: We define arc variables θi,j ∈ [0, 1] for each pair
i, j ∈ J, i < j, of non-overlapping jobs, representing the decision that j immediately follows i in
some schedule. Given a fractional solution z∗, we define θi,j to equal to the sum of all z∗S variables
for S in which jobs i, j appear consecutively. Formally, θi,j = ∑S∈S 1{(i,j)∈S}z∗S, where 1{(i,j)∈S} indi-
cates that j immediately follows i in schedule S. For a solution with a fractional θi,j, the branching
decision partitions the solution space using the constraints θi,j = 1 and θi,j = 0. This is equivalent
to partitioning the space based on merge and separation constraints: j must immediately follow
i, or j cannot immediately follow i. Both recursions (7) and (8) can incorporate these branching
constraints by updating their respective action sets. In the θi,j = 0 branch, we eliminate the action
j from states at i. For the θi,j = 1 branch, j is the only action at i, and j is removed from the action
set of all other states. We outline additional details of our branch-and-price implementation in
Section 6.1.

4.4 Primal Heuristics

To complement the lower-bounds obtained from solving the linear relaxation of (3), we propose a
constructive heuristic and local-search algorithm for both the max-weight and concave functions.
We use a greedy packing heuristic to obtain an initial feasible solution. Starting from the initial set
of jobs U = J and an empty set of schedules V = ∅, we solve an interval packing problem to obtain
a feasible schedule S, update the sets to U ← U \ S and V ← V ∪ {S}, and repeat until U = ∅,
which is achieved when V corresponds to a feasible solution to (1). While not explicitly required,
we find that the heuristic’s performance improves using modified weights ŵi = w2

i ; this biases the
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heuristic to prefer scheduling high-weight jobs together over scheduling many low-weight jobs.
We use a local search heuristic to improve the initial solution found by the greedy heuristic.

Given a set of schedules V, the heuristic considers pairs of schedules Sℓ, Sm ∈ V and searches for
a pair of schedules S′ℓ, S′m such that f (S′ℓ) + f (S′m) < f (Sℓ) + f (Sm) and S′ℓ ∪ S′m = Sℓ ∪ Sm. The
local search repeatedly checks all pairs Sℓ, Sm ∈ V, updating as better schedules are found. The
search continues until no pair results in an improved solution.

The local search algorithm requires solving an optimization problem for the pairwise schedule
improvement. This is equivalent to the interval scheduling problem (1) restricted to instances
with conflict graphs having cliques of size at most two, i.e., the conflict graphs are bipartite. For
the max-weight function, this can be done directly using the formulation (2), limiting the number
of schedules to two. This problem can be solved in polynomial time, as we establish with the
following proposition.

Proposition 4.2. Given schedules Sℓ, Sm ⊂ J, the problem

min{max
i∈S′ℓ

wi + max
i∈S′m

wi : S′ℓ ∪ S′m = Sℓ ∪ Sm}

can be solved in polynomial time.

Proof. First assume that the instance’s conflict graph is connected. Ignoring symmetry, there is a
single solution to this problem using two schedules. Start at the earliest arriving job, then begin
assigning jobs in arrival order. By assumption the conflict graph’s coloring number is two and
this placement will produce a solution using two schedules, see [32]. To see this is the only solu-
tion, note that each job i’s color is determined entirely by the color of earliest arriving job j that i
overlaps. As the graph is connected, after choosing the color of the first arriving job the remaining
decisions are fixed.

If the conflict graph has more than one connected component, an optimal solution is obtained
by constructing one schedule S′ℓ containing the schedule with minimum max-weight in each com-
ponent and placing the remainder in a second schedule S′m. By construction, this will create a
solution in which maxi∈S′ℓ

wi is minimized and maxi∈S′m wi = maxi∈Sℓ∪Sm wi; there will always be
at least one schedule with cost maxi∈Sℓ∪Sm wi. Finally, the construction of the schedules can be
done in O(n) time and the result follows.

For non-negative, non-decreasing concave functions, we use a similar argument as in Proposi-
tion 4.2.

Proposition 4.3. Given schedules Sℓ, Sm ⊂ J, the problem

min
{

h
(

∑
i∈S′ℓ

wi

)
+ h

(
∑

i∈S′m

wi

)
: S′ℓ ∪ S′m = Sℓ ∪ Sm

}
,

where h is a non-negative, non-decreasing concave function, can be solved in polynomial time.
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Proof. Consider the same algorithm as described in the proof of Proposition 4.2; instead of assign-
ing to S′ℓ the sub-schedules with minimum max-weight, assign the sub-schedule in each compo-
nent with the larger total weight. By the same argument as before, this will create the schedule
S′ℓ with the maximum total weight. As each job must be scheduled, after placing the remain-
ing jobs in S′m, it will be the schedule of minimum total weight. Finally, as this solution maxi-
mizes the difference h(∑i∈S′ℓ

wi)− h(∑i∈S′m wi), the concavity of h implies this solution minimizes
h(∑i∈S′ℓ

wi) + h(∑i∈S′m wi) and the result follows.

5 Max-Weight Function on Paths

In this section, we focus on the max-weight function restricted to instances where the conflict
graph is a path. Equivalently, each job 1 < i < n overlaps with its predecessor and successor,
i − 1 and i + 1, and with no other jobs. Unlike the more general problem setting we consider,
this special case is polynomially solvable [14]; however, there are instances in which the linear
relaxations of both (2) and (3) are fractional. Motivated by this discrepancy, we present a tight LP
formulation for this special case that leverages the algorithm in [14] and the fact that an optimal
solution never uses more than three schedules.

The intuition behind the algorithm is the following. Each schedule is defined by its highest-
weight job, and one of these is always the maximum-weight job, f (S1) = maxk∈J wk. Some job
i ∈ J defines the second schedule by having its highest-weight job, f (S2) = wi, and the third
schedule then satisfies f (S3) ≤ f (S2). This implies that j ∈ S1 if wj > wi; furthermore, for any
two jobs j, k ∈ S1, j < k with an even number of jobs in between, a feasible solution must have
ℓ ∈ S3 for some job ℓ ∈ {j + 1, j + 2, ..., k− 2, k− 1}; we use ℓ ∈ (j, k) to denote the latter condition.
(Conversely, if there is an odd number of jobs between j and k, they can be assigned in alternating
fashion to S1 and S2.) Denote job i’s minimal even pairs as

E(i) = {(j, k) : j, k ∈ J; wj, wk > wi; j < k; k− j = 1 mod 2; wℓ ≤ wi, ℓ ∈ (j, k)}.

We illustrate idea with the six-job example in Figure 1(a), with weight vector w = (6, 1, 2, 5, 3, 4).

6 1 2 5 3 4(a)

6 1 2 5 3 4(b)

6 1 2 5 3 4(c)

Figure 1: Example path instance with six jobs.

Suppose f (S2) = w5 = 3; then S1 must contain the first, fourth and sixth jobs, as w1, w4, w6 > 3.
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Clearly, we also assign the fifth job to S2. However, we cannot assign both the second and third
jobs to S2, because they are adjacent; one of these must go in S3, so we place the second job there,
since it has the lower weight of the two. The resulting schedule is illustrated in Figure 1(b).

Suppose instead that f (S2) = w4 = 5. In this case, S1 must contain the first job. However,
this also means there are no even pairs, and we can simply assign jobs to S1 and S2 in alternating
fashion. This schedule is illustrated in Figure 1(c). For this instance, these are essentially the only
options: If we choose f (S2) ≤ 2, we force S1 to contain adjacent jobs, which is infeasible. This can
also be interpreted as having even pairs of the form (j, j + 1), which have no interior element and
thus cannot include a job in S3. Finally, if we choose f (S2) ∈ {4, 6}, we are forced into one of the
previously illustrated schedules.

Formally, there is an optimal solution satisfying the following conditions [14, Theorem 7]:

C.1 The solution uses at most three schedules, S1, S2, S3, where possibly S3 = ∅.

C.2 maxk∈J wk = f (S1) ≥ f (S2) ≥ f (S3).

C.3 Given f (S2) = wi, S3 contains exactly one job ℓ ∈ (j, k) from each (j, k) ∈ E(i).

Based on this, we formulate

min ∑
i∈J

(wixi + λi) (10a)

s.t. ∑
i∈J

xi = 1 (10b)

xi = ∑
j<ℓ<k

yi,ℓ ∀i ∈ J, ∀(j, k) ∈ E(i) (10c)

λi ≥ ∑
j<ℓ<k

wℓyi,ℓ ∀i ∈ J, ∀(j, k) ∈ E(i) (10d)

xi, λi ≥ 0 ∀i ∈ J (10e)

yi,ℓ ≥ 0 ∀i, ℓ ∈ J. (10f)

The LP (10) has Θ(n2) variables and O(n2) constraints.

Lemma 5.1. A feasible solution of (10) with integer x, y variables corresponds to a feasible solution of
the max-weight interval scheduling problem on a path instance that satisfies conditions C.1–C.3, and vice
versa.

Proof. Assume we have a feasible solution to (10) with integer x, y variables; suppose xi = 1. The
right-hand side of some constraint (10c) is zero if E(i) contains any pair of consecutive jobs, so
we may assume that all minimal even pairs (j, k) ∈ E(i) have k − j ≥ 3. Furthermore, these
constraints require yi,ℓ = 1 for some ℓ ∈ (j, k); we define S3 = {ℓ ∈ J : yi,ℓ = 1}. By construction,
S3 is a feasible schedule, as only one yi,ℓ variable equals 1 in each minimal even pair. To define S1

and S2, we begin by adding to S1 all jobs j ∈ J with wj > wi; the remaining jobs are placed into
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S1 and S2 in alternating fashion: For each minimal even pair (j, k) ∈ E(i) with ℓ ∈ S3 ∩ (j, k), jobs
m ∈ (j, ℓ) go into S1 if they have j’s parity and into S2 otherwise. Similarly, jobs m ∈ (ℓ, k) go
into S1 if they have k’s parity and into S2 otherwise. The operation is analogous but simpler for
“odd pairs,” where we simply place jobs into S1 and S2 in alternating fashion. This construction
ensures both S1 and S2 are feasible, as we never add adjacent jobs to the same schedule. This
solution satisfies C.1, C.2, and C.3.

Now assume we have schedules S1, S2, S3 satisfying C.1–C.3. To construct an integer solution
to LP (10), take i ∈ argmaxk∈S2

wk and set xi = 1, with xj = 0 otherwise. Condition C.3 requires
that S3 contain one job ℓ ∈ (j, k) for each (j, k) ∈ E(i). Set the corresponding yi,ℓ = 1 and the re-
maining y variables to zero. Lastly, set λi = maxℓ∈S3 wℓ and other λ variables to zero. Constraints
(10c) are satisfied, as there is exactly one yi,ℓ variable equal to one for each minimal pair in E(i).
Constraints (10d) are satisfied by construction. If S3 = ∅, E(i) = ∅ as well, so (10c), (10d) are
satisfied trivially.

We can now establish that (10) solves the scheduling problem.

Proposition 5.2. An optimal extreme point solution of (10) has integer x, y variables. Therefore, (10)
solves the max-weight interval scheduling problem on path instances.

Proof. We begin by analyzing the λ variables. At optimality, for each i ∈ J some constraint (10d)
must be tight to minimize each λi; thus

λi = max
(j,k)∈E(i)

∑
ℓ∈(j,k)

wℓyi,ℓ.

For the maximizing interval (j, k) in this expression, (10c) requires xi = ∑ℓ∈(j,k) yi,ℓ, so we minimize
λi by setting yi,m = xi, where m ∈ argmin(j,k) wℓ. Therefore, at optimality we have

λi = xi max
(j,k)∈E(i)

min
j<ℓ<k

wℓ, i ∈ J,

where λi = 0 if E(i) = ∅. In particular, for optimal solutions λ is a linear function of the x
variables.

By setting ci = max(j,k)∈E(i) minj<ℓ<k wℓ, we project out y and λ so that (10) is equivalent to

min
{

∑
i∈J

(wi + ci)xi : ∑
i∈J

xi = 1; x ≥ 0
}

,

the optimization of a linear function over a simplex, which has integral extreme points. At opti-
mality, xi = 1 for some i ∈ J and xj = 0 otherwise. It follows from our reasoning above that we
can take the y variables to be binary as well. The resulting optimal objective value corresponds to
f (S2) + f (S3) for an optimal set of schedules; recall that f (S1) = maxk∈J wk is a constant.
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6 Computational Study

In this section, we computationally evaluate our proposed methodology. Specifically, we examine
the lower bound provided by the linear relaxation of (3), the upper bound given by our heuristics,
and the performance of our branch-and-price algorithm, including its ability to improve both
lower and upper bounds and to prove optimality.

In terms of objective functions, we use the max-weight cost as well as the square root, f (S) =√
∑i∈S wi, as a representative of non-decreasing, non-negative concave functions of total weight.

We test our methods on both synthetic instances and instances derived from cloud computing us-
age data, and when possible also benchmark against the assignment formulation (2). We conduct
all experiments on a MacBook with a 2.7GHz Dual-Core Intel i5 processor. Our base code uses
Python 3.7.3, and the LP and IP solves use Gurobi 9.1 with default parameters unless otherwise
noted. In the following sub-sections we discuss details of our implementation and instance design
before summarizing our study’s results.

6.1 Implementation Details

While a basic column generation algorithm can solve the linear relaxation of (3), in practice it is
frequently enhanced with acceleration techniques, since the basic algorithm can suffer from slow
convergence and other issues related to degeneracy. In our implementation, we use in-out column
generation [6], which attempts to accelerate convergence by better selecting dual variables to use
in the pricing problem. We include here a brief description of our implementation of the method,
and refer the interested reader to [6] for more details: We maintain a dual feasible solution πin,
initialized to the zero vector, in addition to the potentially infeasible dual solution πout obtained
from the current solution to the restricted LP (4). We solve the pricing problem on the dual solu-
tion π̂ = γπout + (1− γ)πin, a convex combination of the “in” and “out” solutions using convex
multiplier γ ∈ (0, 1]. If π̂ is infeasible, we generate a new column; otherwise, we update πin ← π̂.
In addition to improving convergence times, the in-out method provides a way of obtaining valid
dual bounds if the column generation algorithm does not converge within a time limit. Based on
initial tests, we set γ = 0.2 at the root node and γ = 1 afterwards, equivalent to running the stan-
dard column generation algorithm after the root node. We observed that the in-out acceleration
method significantly reduced solve time at the root node, but was slightly slower than the basic
algorithm for subsequent nodes; the latter could be solved in a small number of iterations and
suffered from fewer computational difficulties compared to the root node, likely because of the
additional constraints.

We use the faster pricing algorithms at the root node and then the slower, more general algo-
rithms after adding branching constraints. Specifically, for the max-weight function we solve the
root LP using the LP-based pricing method and solve the remaining LP’s with DP (7). For concave
functions, we use the faster DP (9) to solve the root LP. For both functions, we perform full pricing
and incorporate all improving columns after each pricing iteration.
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There are various strategies to explore the branch-and-bound tree. In our implementation, at
each node we branch on the most fractional θi,j value, the one closest to 0.5, breaking ties at ran-
dom; if there is no fractional θi,j, the solution is feasible and we do not branch. We explore the
tree using an iterative depth-first search and process the 1-branch first, i.e. the branch with θi,j = 1.
The iterative depth-first search rule takes integer parameters α, β and follows standard depth-first
search for the first α nodes. After we open α nodes, we restart the search from a random unpro-
cessed node, reset the node count to zero, and update the threshold to α + β. This process repeats
until the search terminates. We designed our branching scheme in this manner after initial tests
suggested that the lower bound obtained at the root node is often tight, and that the optimality gap
tends to stem from the primal side. By biasing the search towards the 1-branches and performing
iterative depth-first “dives”, we attempt to steer the search to quickly obtain good feasible solu-
tions while avoiding unpromising areas of the search space. In our experiments, we set the search
parameters to α = 20 and β = 10.

Finally, our branch-and-price algorithm obtains upper bounds in two ways. First, at the root
node we obtain a feasible solution using the greedy and local-search heuristics described in Sec-
tion 4.4; additionally, we use the schedules generated by these heuristics as the initial columns in
the restricted LP (4) at the root node. At all other nodes, we implement a rounding heuristic; this
heuristic obtains a feasible solution by greedily rounding the node’s LP solution into a feasible
solution for (3). We sort the schedules corresponding to non-zero variables in the LP solution by
cumulative schedule weight. We add the schedule with highest cumulative weight to the solu-
tion, then re-sort the remaining schedules considering only the weights of jobs not covered by a
previously included schedule. This process repeats until we obtain a feasible solution.

6.2 Instance Design

We use two types of instances to test our methods, randomly generated synthetic instances and
instances constructed from a public cloud computing data set. We generate a random n-job in-
stance by first specifying tmax, the latest point at which jobs may arrive; each job i is created by
sampling a start time si from the integer uniform distribution over interval [0, tmax] and sampling
its length from the integer uniform distribution over [1, 10].

For cloud instances, we use a publicly available Microsoft Azure data set [25]. The data set
is comprised of two weeks of requests for virtual machine allocations; each request is associated
with an arrival time and a departure time. The data set includes other application-specific data
related to resource consumption; however, for our model we are only concerned with request start
and end times. To generate an n-job instance, we select a random starting point in the data set,
and take the next n arriving requests, creating jobs using their start and end times. We also check
if the instance is sufficiently sparse to avoid easy cases in which feasible schedules contain only
a few jobs. Specifically, we compute maxCi∈C |Ci|/n, where maxCi∈C |Ci| is the cardinality of the
largest clique in the conflict graph, and reject the instance when this ratio exceeds 0.3.

For both instance types we assign weights as uniform random integers in the interval [1, 100].
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We also considered generating weights correlated to job length, but found in initial tests that
uncorrelated weights lead to more difficult instances. We generate small instances with n = 100,
moderate instances with n = 250, and large instances with n = 400. In addition, for max-weight
synthetic experiments we also test very large instances with n = 550.

6.3 Max-Weight Function: Small and Moderate Synthetic Instances

For small and moderate instances with n ∈ {100, 250}, we test our branch-and-price algorithm and
also benchmark it against the assignment-type formulation (2). We use tmax ∈ {n, n/2, n/5}, and
generate ten instances for each pair (n, tmax). We test both methods with a time limit of three hours;
the results are summarized in Table 1. For each set of instances, we compare the geometric mean
of the optimality gaps at termination, the average running time of instances where the method
proves optimality (in seconds), and the percentage of the instances that are solved to optimality.
We also compute the geometric means of the optimality gaps at the root node.

Table 1: Branch-and-price and assignment formulation experiments with the max-weight function
on small, moderate synthetic instances.

n tmax Root Gap B&P Gap Sol. Time % Sol. Assign. Gap Sol. Time % Sol.
100 100 0.94% 0.00% 41.56 100% 0.00% 436.45 100%
100 50 3.25% 0.00% 43.04 100% 0.75% 1199.34 60%
100 20 1.66% 0.00% 15.01 100% 0.68% 405.86 30%
250 250 1.54% 0.00% 5892.44 100% 2.01% 2228.56 50%
250 125 2.64% 0.00% 2779.20 100% 3.02% - 0%
250 50 3.11% 0.00% 1006.74 100% 4.46% - 0%

The results verify that the proposed branch-and-price algorithm outperforms the assignment
formulation. For every test instance, the branch-and-price algorithm is able to prove optimality
within three hours. The class (n, tmax) = (100, 100) is the only one where the assignment bench-
mark solves all instances to optimality in the same time. Conversely, the assignment formulation
did not prove optimality for any of the (250, 125) or (250, 50) instances. The average solution
times are lower for the branch-and-price algorithm, and it scales better as the instances become
denser, while the assignment formulation struggles with dense instances. As a final observation,
the root LP’s lower bound in the branch-and-price tree is often tight, with any gap stemming from
the primal side. In contrast, with the assignment formulation the IP solver is often able to find a
strong primal solution, but struggles to improve the lower bound.

6.4 Max-Weight Function: Large and Very Large Synthetic Instances

To assess the scalability of our branch-and-price algorithm for the max-weight function, we also
considered larger synthetic instances. We use n ∈ {400, 550} and tmax = n/5. The choice of tmax
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is motivated by the prior experiments, which indicate that denser instances have larger root gaps
but also that the algorithm may scale well. For each pair n, we generate ten random instances and
use a six-hour time limit; Table 2 summarizes the results. We report the running times and the
optimality gaps at termination and at the root node. We also report the geometric means of final
optimality gaps and the average solution time of instances that are solved to optimality.

Table 2: Branch-and-price experiments with the max-weight function on large and very large syn-
thetic instances.

n tmax Root Gap B&P Gap Sol. Time n tmax Root Gap B&P Gap Sol. Time
400 80 0.52% 0.00% 8697.42 550 110 3.68% 3.68% TL
400 80 4.76% 0.00% 10468.31 550 110 3.12% 3.12% TL
400 80 3.92% 0.00% 9235.76 550 110 5.39% 5.39% TL
400 80 1.33% 0.00% 7371.16 550 110 2.94% 2.94% TL
400 80 3.16% 0.00% 9328.55 550 110 2.31% 2.31% TL
400 80 1.04% 0.00% 9642.15 550 110 0.95% 0.95% TL
400 80 1.12% 0.00% 8437.06 550 110 3.16% 3.16% TL
400 80 2.36% 0.00% 9890.78 550 110 2.76% 2.76% TL
400 80 3.00% 0.00% 9531.93 550 110 2.86% 2.86% TL
400 80 2.05% 0.00% 7893.05 550 110 4.54% 4.54% TL

Avg. 1.92% 0.00% 9049.62 Avg. 2.92% 2.92%

The results indicate that the branch-and-price algorithm scales well to large instances, and is
able to reliably prove optimality in less than six hours. For the largest instances, the algorithm is
unable to reduce the root optimality gap. This difficulty stems from at least two sources: First,
the larger job number necessitates a much larger tree to improve the bound and prove optimality.
Second, and equally important, the LP solves at each node take significantly longer, meaning
we can process a smaller number of nodes within the time limit. Nonetheless, already at the root
node we obtain solutions and bounds yielding an average optimality gap of less than 3%. Based on
previous experiments, we conjecture that this gap stems primarily from the primal side; improved
heuristics could potentially help prove optimality.

6.5 Square Root Function: Synthetic Instances

For the square root function we limit ourselves to the root node; equivalently, we solve the linear
relaxation of (3) and run primal heuristics. We conduct our experiment in this manner for two
reasons: Our initial tests suggested that this approach often suffices to prove optimality for small
and moderate instances, while for large instances the LP relaxation itself takes a significant amount
of time. For each combination of n ∈ {100, 250, 400} and tmax = n/5, we generate ten instances,
and run our test with a six-hour time limit; Table 3 summarizes the results. For each instance
class, we report the geometric mean of the optimality gaps, the average running time for instances
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where the column generation algorithm converges, the percentage of instances where the column
generation algorithm converges, and the percentage of instances where we prove optimality.

Table 3: Column generation experiments with the square root function on synthetic instances.

n tmax CG Gap CG Time % Conv. % Sol.
100 20 0.00% 252.55 100% 100%
250 50 0.30% 4959.18 70% 70%
400 80 1.30% - 0% 0%

The results indicate that we can prove optimality for all instances where the column generation
algorithm converges. The column generation does not converge within the time limit for 30% of
the moderate instances and all of the large instances, and we use the dual bounds provided by
the in-out acceleration scheme. However, even for the large instances the average optimality gap
is only 1.3%. Compared with the max-weight function, the pseudo-polynomial complexity of
the pricing algorithm for the square root function makes solving the LP more computationally
difficult, but the resulting lower bound is typically stronger.

6.6 Cloud Data Instances

As a final experiment, we test our methods on instances derived from cloud computing data,
as described in Section 6.2. For the max-weight function, we test instances of all sizes, with
n ∈ {100, 250, 400, 550}, and for the square root function we exclude very large instances and use
n ∈ {100, 250, 400}; for each function and each n we generate ten instances. For the max-weight
function, we test the branch-and-price algorithm, and for the square root function we solve the
root node’s LP relaxation.

Table 4 summarizes the results for the max-weight function. We report the geometric means
of the root and terminal optimality gaps, the average running times of solved instances, and the
percentage of instances solved.

Table 4: Branch-and-price experiments with the max-weight function on cloud instances.

n Root Gap B&P Gap Sol. Time % Sol.
100 0.32% 0.00% 16.15 100%
250 0.53% 0.00% 864.48 100%
400 0.94% 0.15% 8589.58 80%
550 0.81% 0.81% 5584.67 40%

In general, we see that the application instances are easier than the synthetic instances. For
example, the branch-and-price algorithm is able to solve 40% of the very large instances with the
max-weight function, versus none of the analogous synthetic instances. Furthermore, the root
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optimality gaps are much lower than for the synthetic instances, less than 1% in all cases. An
explanation for this behavior may be the density, which tends to be higher in the cloud data;
correspondingly, the average solution times are similar to those of the synthetic instances with
tmax = n/5.

Table 5 summarizes the results for the square root function. We report average running times
of instances where the column generation algorithm converges, the geometric mean of the opti-
mality gaps at termination, the percentage of instances for which the algorithm converges, and
the percentage of instances solved.

Table 5: Column generation experiments with the square root function on cloud instances.

n CG Gap CG Time % Conv. % Sol.
100 0.01% 453.52 100% 90%
250 0.23% 6990.59 90% 60%
400 1.75% 17791.94 10% 0%

Overall, the column generation algorithm converges for more instances than the correspond-
ing synthetic experiment, but this does not lead to a significant change in average optimality
gaps. In contrast to the synthetic instances, the column generation algorithm may converge with-
out proving optimality. For example, despite converging for all moderate instances but one, the
resulting gaps are slightly lower than for the corresponding synthetic instances.

7 Conclusions

In this work, we propose an exact optimization approach for two classes of interval scheduling
problems exhibiting economies of scale; to our knowledge, this is the first such approach pro-
posed for these problems. Our approach is based on column generation and a set covering formu-
lation, using feasible schedules as decision variables. For the max-weight function and functions
of cumulative weight, we describe how to solve the linear relaxation of this formulation and pro-
vide efficient pricing algorithms. To obtain integer solutions, we extend this method to a full
branch-and-price algorithm and provide a detailed account of the relevant design decisions. As
a secondary result, we also provide a compact integral formulation for the max-weight function
on path instances, a polynomially solvable case for which no such formulation was known. Our
computational study provides evidence of our proposed method’s effectiveness. We can provably
optimize instances with as many as 400 jobs and can otherwise give solutions and bounds with
very small gaps.

While we have demonstrated the effectiveness of the set covering formulation on our chosen
objective functions, future work can extend the approach to other classes of functions. The ma-
jor requirement is to determine when the pricing problem can be solved efficiently. Both of the
problems studied belong to the more general class of submodular interval scheduling problems.
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In this case, the general form of the pricing problem is supermodular maximization subject to
interval packing constraints. To our knowledge, this specific problem has not been previously
addressed in the literature.

Another area of future work concerns how to leverage polyhedral results for the column gen-
eration model. In our computational study, we observed that the root LP often provides a tight
lower bound; however, it is easy to construct instances in which this is not the case, even when
the conflict graph is a path. For these instances, the lower bound could possibly be strengthened
by the addition of valid inequalities.
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