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Abstract

Motivated by applications in cloud computing, we study a temporal bin packing problem
with jobs that occupy half of a bin’s capacity. An instance is given by a set of jobs, each with
a start and end time during which it must be processed, i.e., assigned to a bin. A bin can ac-
commodate two jobs simultaneously, and the objective is an assignment that minimizes the
time-averaged number of open or active bins over the horizon; this problem is known to be
NP-Hard. We demonstrate that a well-known “static” lower bound may have a significant
gap even in relatively simple instances, which motivates us to introduce a novel combinatorial
lower bound and an integer programming (IP) formulation, both based on an interpretation
of the model as a series of connected matching problems. We theoretically compare the static
bound, the new matching-based bounds, and various linear programming bounds. We per-
form a computational study using both synthetic and application-based instances, and show
that our bounds offer significant improvement over existing methods, particularly for sparse
instances.

1 Introduction

Temporal bin packing (TBP) is a problem of emerging importance in operations research and com-
puter science. It generalizes the well-known bin packing problem, sometimes referred to as the
static bin packing problem, by having jobs that arrive and depart over time. There are several
variants, but generally the goal is an assignment of jobs to bins that minimizes some cost or per-
formance measure while respecting bin capacities. We are interested in the objective of minimizing
the time-averaged number of open or active bins required to process all jobs; in this objective, a
bin is considered active only when some job is assigned to it, while other variants consider a bin
active for the whole horizon if a job is ever assigned to it.

Our primary motivation stems from applications in cloud computing. Cloud computing op-
erations have grown rapidly in recent years, with a market size of $483.98 billion in 2022 [1].
Furthermore, some estimate that by 2030 nearly 8% of the world’s energy consumption will go to
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cloud computing activities [37]. A key factor driving operating cost and energy usage of a server
cluster is how efficiently virtual machines (VMs) are assigned to servers. Even small relative im-
provements in server utilization can lead to large absolute gains; for example, [20] suggest a 1%
packing efficiency improvement can lead to cost savings of roughly $100 million per year for Mi-
crosoft Azure. The problem of assigning VMs to physical servers is naturally modeled as a TBP.
Each VM has a start time, end time, and some resource requirement. The goal is an assignment
of VMs to servers that respects resource capacities while minimizing the time-averaged number
of servers, which closely relates to operating cost and energy use. In practice, this problem has to
be solved in an online manner as information regarding future VM requests in unknown; how-
ever, the offline model is important for evaluating the performance of an online algorithm, and to
support medium-term management decisions such as how many servers to add to a cluster.

Additional applications come from optical network design, in which a fiber cable system needs
to be designed in a manner that satisfies demands for communication signals. Two signals within
the same cable cannot be carried within the same channel, and each cable has a fixed number
of channels; the goal is to design a system that minimizes the total required length of fiber. The
special case of a line system, in which all signals can be thought of as travelling along a one-
dimensional line, is equivalent to the temporal bin packing problem.

We study the variant of TBP with large jobs each using over 1/3 and at most 1/2 of a bin’s
capacity. This is equivalent to constraining each bin to contain at most two jobs at a time; we
denote this special case TBP2. In the cloud computing context, this occurs in specialized systems
that focus on serving resource-intensive requests, such as certain machine-learning systems that
may only have two available GPUs per server. TBP2 has been studied previously and is known to
be NP-Hard. Our work focuses on two directions: first, we provide a novel integer programming
(IP) formulation; second, we propose various lower bounds for the problem, studying them both
theoretically and empirically. We summarize our main contributions below.

1. We propose a novel formulation for TBP2 that interprets the model as a series of related
matching problems, and that empirically outperforms a standard assignment-based formu-
lation.

2. We theoretically study multiple lower bounds based on both combinatorial and polyhedral
techniques, and derive a bound hierarchy.

3. We conduct a computational study to evaluate the performance of our proposed IP formula-
tion and compare multiple lower bounds, assessing both strength and scalability, and using
both synthetic and application-based instances. The results show that novel bounds based
on interpreting the problem as a sequence of connected matching problems improve on well-
known bounds, particularly for sparse instances, while maintaining scalability.

Our primary theoretical contribution, Theorem 6.7, is summarized graphically in Figure 1. Each
node in the graph represents a different lower bound, and a directed edge from i to j indicates
that j weakly dominates i, i.e., the lower bound produced by j is at least as large as i’s. The
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bound cASGN is the linear relaxation of a standard assignment formulation for bin packing, while
cSTAT is similarly adapted from a standard lower bound for static bin packing based on allowing
fractional jobs. The bound cPART is the linear relaxation of an exponentially large set partition
formulation. The bounds cCLQ, cDEG, and cMATCH are novel bounds based on modeling TBP2 as
a series of connected matchings: cCLQ can be interpreted as a strengthened version of cSTAT that
adds additional constraints on when jobs can be repacked; cDEG is the linear relaxation of a new
matching-based formulation; finally, cMATCH strengthens cDEG by adding valid inequalities.

cPART cDEG cSTAT

cCLQ

cMATCH

cASGN

Figure 1: Graphical representation of Theorem 6.7. Arcs indicate that the bound at the tail is less
than or equal to the bound at the head.

The outline of the paper is as follows. Section 2 summarizes relevant results from the literature.
Next, in Section 3 we formulate TBP2 and present some preliminary results. In Section 4, we study
clique instances and use them to derive a new lower bound. After that, Section 5 presents our IP
formulation along with an additional formulation based on a set partitioning model. In Section 6,
we provide our lower bound hierarchy, establishing the relative strengths of the discussed bounds.
In Section 7, we present our computational study. We conclude in Section 8, while an appendix
includes proofs omitted from the main body.

2 Literature Review

Static bin packing, or just bin packing, is among the most well-known NP-Complete problems
[18]. Much of the bin packing literature focuses on approximation algorithms and their associated
guarantees. The family of X-Fit algorithms is among the most studied, specifically First Fit and
Best Fit [24]. If jobs are sorted in order of decreasing size, both the First Fit and Best Fit algorithms
are tight 3/2-approximations and no algorithm can have a better guarantee unless P = NP [40];
conversely, if jobs aren’t sorted the algorithms are tight 17/10-approximations [13]. Despite the
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negative approximability results in [40], [26] provide an algorithm with a worst-case additive gap
of O(log2(OPT)) where OPT is the optimal number of bins. This method is based on solving the
linear relaxation of the Gilmore-Gomory formulation for the cutting stock problem [19]. Addi-
tionally, [12] proves that the First Fit with sorted jobs has a tight guarantee of 11/9OPT + 6/9.
More recently, [23] proposed an algorithm with a worst-case additive gap of O(log(OPT)), using
techniques from discrepancy theory and building on a previous result from [39].

In addition to its applications in approximation algorithms, the Gilmore-Gomory LP is also
of note as it is conjectured that its optimal solution satisfies the modified integer round-up prop-
erty, which suggests the number of bins needed in an optimal solution is at most the objective of
the Gilmore-Gomory LP rounded up plus one. While the Gilmore-Gomory LP is known to pro-
vide strong bounds in practice, it requires the solution of an exponentially sized LP via column
generation methods; research has aimed to find lower bounds with provable guarantees that are
efficiently computable. For example, [31] propose multiple polynomially computable bounds aris-
ing from continuous relaxations of the problem, and the strongest is guaranteed to be at least 3/4
of the optimal solution; [15] provides an alternate method of efficiently obtaining lower bounds
through the use of dual feasible functions, and gives a bound with a 1/2 multiplicative guarantee.
For further references on bin packing we refer the reader to the surveys [7, 10].

The literature contains multiple notions of temporal bin packing. In our model the objective
is to minimize the time-average number of active bins; an alternate model instead focuses on
minimizing the total number of bins needed to pack all jobs. We first discuss results for the lat-
ter model, itself a special case of the more general vector bin packing model. In [9], the authors
present a branch-and-price algorithm along with various methods for efficiently obtaining upper
and lower bounds; [17] provide a matheuristic based on column generation methods. Other al-
gorithms come from the vector bin packing literature and include branch-and-price [22], arc-flow
approaches [4], and heuristics [28, 33, 36]. This TBP model has also been applied to problems in
cloud scheduling. For instance, [41] use a variant to model a problem in virtual machine consoli-
dation; [3] consider a variant in which the objective is a combination of both the total number of
servers and the number of server “fire-ups”, which [32] builds on by providing model reduction
techniques and an improved formulation.

The TBP model we consider, sometimes referred to as offline dynamic bin packing, has re-
ceived attention as well. Most related to our work is the literature on the uniform job case, in
which each bin can accommodate g jobs simultaneously, where g is some positive integer. In [42],
the authors show that TBP with uniform jobs is NP-Hard, even when g = 2, which corresponds
to our model TBP2. The authors of [16] prove that a First Fit algorithm is a 4-approximation; [6]
demonstrate how prior results on fiber minimization and line system design in [2, 29] yield two
2-approximations. In [34], the authors study special cases, providing a gHg

Hg+g−1 -approximation,
where Hg is the g-th harmonic number, when all jobs intersect, and a (2− 1/g)-approximation for
proper instances, in which no job is properly contained within another.

The more general case in which jobs have non-uniform sizes is also of interest. The authors in
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[27] provide a 5-approximation and extend the result to a setting with flexible start times, while
[38] describe a 4-approximation based on dual coloring. Most recently, [5] provide two algorithms
with asymptotic approximation guarantees of 2Π∞ and Π∞, respectively, where the second algo-
rithm has a larger additive term; the constant Π∞ ≈ 1.69 originates in the bin packing approxima-
tion results of [30]. In the context of cloud computing, [8] use an IP formulation to solve a variant
in which all jobs have the same starting time.

3 Model Formulation and Preliminaries

Let J = {1, . . . , n} be a set of jobs. The temporal bin packing problem asks the decision maker to
assign jobs to bins such that the time-average number of used bins is minimized, while respecting
bin capacity. Each job i ∈ J is specified by a start and end time 0 ≤ si < ei. Without loss of
generality, we assume that mini∈J si = 0 and maxi∈J ei = 1. In this work, we consider the case
in which a bin can hold at most two jobs simultaneously and use the acronym TBP2 throughout
for this problem; this special case of temporal bin packing is known to be NP-Hard [42]. In the
remainder of the paper, we say a bin is active at time τ if it contains one or more jobs in that
moment. A bin is open at time τ if it is active but not at capacity; i.e., it only has one job assigned
in that instant.

It is useful to introduce a representation of TBP2 based on discretizing the time horizon; see
e.g., [6]. Consider the increasing sequence of distinct start and end times, i.e., let T = {si : i ∈ J} ∪
{ei : i ∈ J}, and let T(t) indicate the t-th value in ascending order for t ∈ T = {1, . . . , |T | − 1}.
Then, the interval It :=

[
T(t), T(t+1)

)
is the t-th period, with weight wt = T(t) − T(t−1). We use J(t)

to denote the subset of jobs that are present during period t, that is, J(t) = {i ∈ J : [si, ei) ∩ It 6= ∅}.
Using this discretization, the problem can naturally be modelled as an IP in the style of [25].

Letting B = {1, 2, 3..., bmax} be a set of bin indices where bmax is some sufficiently large number
(such as n), we have the formulation

min ∑
b∈B

∑
t∈T

wtyb,t (1a)

subject to

∑
b∈B

xi,b = 1 ∀i ∈ J (1b)

∑
i∈J(t)

xi,b ≤ 2yb,t ∀b ∈ B, t ∈ T (1c)

xi,b, yb,t ∈ {0, 1}. (1d)

The x variables denote job-to-bin assignments, and the y variables track when a bin is active. IP (1)
also provide a means of obtaining a lower bound on the optimal time-average number of bins via
its linear relaxation; we use cASGN to denote the objective of this relaxation. It is worth noting that
the bound obtained by cASGN is a temporal equivalent of the trivial bin packing bound obtained
by summing the total demand.

Instead of minimizing the time-average number of bins, temporal bin packing can be equiv-
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alently thought of as maximizing the time-averaged savings of the solution [34]. Intuitively, the
savings are the bins we do not open by assigning two jobs together. Letting c∗ be the original opti-
mum, and z∗ be the optimal time-average savings, based on our normalization to the time interval
[0, 1], these quantities are related by

c∗ = ∑
i∈J

(ei − si)− z∗; (2)

the cost and savings of any solution are related in the same way.

3.1 Static Bound

The bound cASGN is typically poor, motivating the need for stronger bounds that can be computed
efficiently. For example, consider the following reformulation of IP (1),

min ∑
b∈B

∑
t∈T

wtyb,t (3a)

subject to

∑
b∈B

xi,b,t = 1 ∀i ∈ J, t ∈ T (3b)

∑
i∈J(t)

xi,b,t ≤ 2yb,t ∀b ∈ B, t ∈ T (3c)

xi,b,t−1 = xi,b,t ∀i ∈ J, b ∈ B, t ∈ T \ {1} (3d)
xi,b,t, yb,t ∈ {0, 1}. (3e)

IPs (1) and (3) are equivalent; the only difference is the expansion of the decision variables xi,b into
|T| copies and the addition of temporal linking constraints (3d). A natural relaxation of (3) is to
remove constraints (3d). If these constraints are removed, the problem decomposes into |T| static
bin packing problems. This approach was previously studied in [9]. In the general case, these
sub-problems are themselves NP-Hard, but in practice solving the decomposed problems is easier
than solving IP (1). In our case, the sub-problems admit an analytic solution, and we obtain the
bound

cSTAT = ∑
t∈T

wt
⌈
|J(t)|/2

⌉
, (4)

because when jobs require half of a bin’s capacity, at any point in time we need a number of bins at
least equal to half the number of jobs, rounded up. As (4) is obtained by a relaxation, cSTAT ≤ c∗;
we refer to cSTAT as the static bound. Using this bound, it follows that any solution has a cost of at
most twice the optimum: the solution that assigns every job to a separate bin has a cost no larger
than 2cSTAT, and any other solution has lower cost.

For TBP with uniform job sizes, the solution to each sub-problem is obtained by rounding
the ratio of the period demand to bin capacity, and thus the static bound can viewed as a nat-
ural temporal extension of the L1 bound for static bin packing [31]. It has also been previously
called the demand profile bound in [6]. The static bound can be computed in O(n log(n)) time. The
bound cSTAT is commonly used to evaluate performance in real-world cloud systems, as it can be
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computed efficiently and improves on cASGN .

3.2 Three-Period Instance

In this section we focus on the special case |T| = 3, the simplest case where cSTAT < c∗ is possible.
Consider the following example, adapted from [29] and depicted in Figure 2: J = {1, 2, 3}, s1 =

s2 = 0, s3 = (1− ε)/2, and e1 = (1 + ε)/2, e2 = e3 = 1, so that w = ((1− ε)/2, ε, (1− ε)/2).
Then, cSTAT = 1 + ε while c∗ = 3/2 + ε/2, and therefore c∗/cSTAT → 3/2 as ε→ 0.

1−ε
2

ε 1−ε
2

Figure 2: Three-period example.

We establish that this is the worst the static bound can do for any three-period instance with
the following proposition, proved in Appendix A.1.

Proposition 3.1. In a three-period instance, c∗ − cSTAT ≤ 1/2.

3.3 Worst-Case Additive Gap

Although c∗ − cSTAT ≤ 1/2 for three-period instances, we now show that no such constant addi-
tive gap holds in general. We consider a subset of instances in which all jobs overlap; these kinds
of instances are discussed in more detail below and in Section 5. Specifically, for a fixed |T|, spec-
ify some period t̂ ∈ T. Create a job for each possible start, end period pair before and after period
t̂, respectively. Abusing notation to denote as (t1, t2) the job that starts in period t1 and ends after
period t2, we create a job (t1, t2) for each (t1, t2) ∈ {1, 2, .., t̂} × {t̂, t̂ + 1, ..., |T|}. An example with
|T| = 7, t̂ = 4 is shown in Figure 3. Given |T| and t̂, the total number of jobs is n = t̂(1 + |T| − t̂).
We use this family of instances to establish the following proposition, proved in Appendix A.2.

Proposition 3.2. There is no constant β ≥ 0 such that c∗ − cSTAT ≤ β for all instances.

4 Clique Instances

The examples in Sections 3.2 and 3.3 belong to a broader class of instances; in this section we focus
on this special case and use it to derive a lower bound method. A clique instance is specified by
some time point at which all jobs overlap, i.e., the instance’s conflict graph representation forms
a clique. The conflict graph has a node for each job i ∈ J and edges for each pair i, j ∈ J that
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Figure 3: Example of instance from family with unbounded additive gap, where |T| = 7, t̂ = 4.
This particular instance has worst case additive gap of 2/3, with wt̂ = 0 and wt = 1/6 for t ∈ T \ {t̂}.

overlaps. For a clique instance with jobs C, we denote the time point at which all jobs overlap as
τC; there can be infinitely many points defining the same clique, and we are indifferent to which
of these points is chosen. Clique instances have been studied previously, see e.g., [34].

Because all jobs overlap, the problem reduces to a static packing; to guarantee feasibility the
decision maker only needs to consider the packing at time τC. As only two jobs can be placed
on the same bin, the problem of minimizing the time-average number of active bins reduces to
that of obtaining a minimum-cost perfect matching in the conflict graph with edge costs ci,j =

max(ei, ej) −min(si, sj), for i, j ∈ J. If n is odd, we augment the graph with a dummy job with
si = ei = τC. The problem of finding a minimum-cost perfect matching is well-studied and is
known to be efficiently solvable [14].

4.1 Clique Bound

The static bound is obtained by allowing repacking between periods; cliques can be used in a
similar manner, allowing repacking between cliques instead of periods. An instance’s conflict
graph can thus be decomposed into its maximal cliques, with each clique sub-instance solved
separately. Furthermore, as the underlying graph is a conflict graph of interval jobs, there are a
linear number of maximal cliques, which can be computed in polynomial time. The cliques are
computed by simulating job arrivals and departures and creating a clique whenever a departure
follows an arrival. This process runs in O(n) time after sorting arrival and departure times, which
takes O(n log n) time.

Consider the conflict graph corresponding to jobs J; let m be the number of maximal cliques
andC = {C1, C2, . . . , Cm} denote the ordered set of maximal cliques arranged by increasing times
τCi . The clique bound is obtained by solving the sub-problem induced by each clique C ∈ C and
then summing the objectives. To define the clique sub-problems, we need to specify breakpoints
that mark where one clique ends and the next begins; these points specify where the repacking is
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allowed.
For clique Ci, define

sCi = min
j∈Ci\Ci−1

sj, eCi = max
j∈Ci\Ci+1

ej,

where C0 = Cm+1 = ∅. For consecutive cliques Ci−1 and Ci, the breakpoint must satisfy γi ∈
[eCi−1 , sCi); choosing breakpoints in this manner ensures that, for consecutive breakpoints γi−1, γi,
the instance created by truncating the horizon to the interval [γi−1, γi] is a clique instance. For
simplicity, we define γ0 = 0 and γm = 1. Now assume that we are given feasible breakpoints γi ∈
[eCi−1 , sCi), for each consecutive clique pair; let c∗(Ci, γi−1, γi) be the optimal cost of the instance
given by Ci over the interval [γi−1, γi], weighted by the length of interval [γi−1, γi]. The clique
lower bound for this γ is then

cCLQ(γ) = ∑
Ci∈C

c∗(Ci, γi−1, γi). (5)

Proposition 4.1. cSTAT ≤ cCLQ(γ) for any feasible choice of γ.

Proof. Assume first that the clique breakpoints are given. Let cSTAT(γi−1, γi) denote the static
bound for periods contained in the interval [γi−1, γi], splitting periods if necessary. We have

cCLQ(γ) = ∑
Ci∈C

c∗(Ci, γi−1, γi) ≥ ∑
Ci∈C

cSTAT(γi−1, γi) = cSTAT.

The final equality follows as the breakpoints γ define a full partition of the horizon.

Proposition 4.1 confirms that the clique bound is at least as good as the static bound regardless
of the choice of breakpoints. Moreover, the choice of breakpoints can affect the strength of the
clique bound. Before considering the optimization of the breakpoints, we analyze the cost of an
individual clique as a function of the breakpoints. Assume that for some Ci ∈ C and γ we have a
feasible solution, represented by the matching µ ∈ Mi, where Mi is the set of perfect matchings in
Ci’s conflict graph (with the addition of a single dummy job if |Ci| is odd). Let cµ be the weighted
cost of the matching truncated to the interval [sCi , eCi ] ⊆ [γi−1, γi]. The cost of the matching as a
function of µ, γ is

c(µ, γi−1, γi) = cµ + (sCi − γi−1)φ
−
µ + (γi − eCi)φ

+
µ ,

where φ−µ is the number of bins spanning [γi−1, sCi ] and φ+
µ the number of bins spanning [eCi , γi]

given the matching µ. Therefore,

c∗(Ci, γi−1, γi) = min
µ∈Mi
{cµ + (sCi − γi−1)φ

−
µ + (γi − eCi)φ

+
µ }.

As Mi is finite, the right-hand side is the minimum over a finite number of affine functions; there-
fore, it is a piecewise linear concave function of γ. Consequently, the problem of optimizing the
clique bound can be expressed as maximizing a sum of piecewise linear concave functions, and
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formulated as

max
m

∑
i=1

σi (6a)

subject to
σ1 ≤ cµ + (γ1 − eC1)φ

+
µ ∀µ ∈ M1 (6b)

σm ≤ cµ + (sC|C| − γm−1)φ
−
µ ∀µ ∈ Mm (6c)

σi ≤ cµ + (γi − eCi)φ
+
µ + (sCi − γi−1)φ

−
µ ∀i ∈ {2, ..., m− 1}, µ ∈ Mi (6d)

eCi ≤ γi ≤ sCi+1 ∀i ∈ {1, 2, ..., m− 1} (6e)
σ, γ ≥ 0. (6 f )

For each clique Ci, Mi may contain exponentially many perfect matchings; consequently, (6) may
contain exponentially many constraints. Nevertheless, starting from a heuristically chosen γ, we
can optimize (6) efficiently using constraint generation, as described in the following proposition.

Proposition 4.2. The separation problem for (6) can be solved by computing m = O(n) perfect matchings,
and thus (6) can be solved in polynomial time.

Proof. Assume we are given a candidate solution (σ∗, γ∗) to (6); for each clique Ci ∈ C we check
if there is a matching µ ∈ Mi with c(µ, γ∗i−1, γ∗i ) < σ∗i . This is done by fixing the value of γ∗

and then solving the corresponding clique problem over the interval [γ∗i , γ∗i+1]. As discussed in
the previous section, this can be done by solving a minimum-cost perfect matching. For Ci, if we
obtain a matching µ′ with c(µ′, γ∗i−1, γ∗i ) < σ∗i , we add constraint

σi ≤ cµ′ + (γi − eCi)φ
+
µ′ + (sCi − γi−1)φ

−
µ′ .

As there are O(n) maximal cliques; for any algorithm that computes a minimum-cost perfect
matching on a graph with n nodes in P(n) time, a full round of the separation routine runs in
O(nP(n)) time. Since there are polynomial-time algorithms for minimum-cost perfect matching,
the result follows from the equivalence of separation and optimization.

We use cCLQ to denote the optimal objective of (6), and refer to it as the clique bound. The
practical performance of the constraint generation algorithm can be improved by noting that each
solve of (6) provides a feasible choice of breakpoints γ∗ and an upper bound on cCLQ. During the
separation routine, as each clique is checked for an improving matching, each iteration computes
a lower bound given the current set of breakpoints. The algorithm can be terminated if the current
upper bound and lower bounds are sufficiently close.

In addition to providing a bound, partitioning the instance into cliques in this fashion also
leads to a simple approximation algorithm, which we describe in the following proposition.

Proposition 4.3. Let m be the number of maximal cliques. Then

c∗ ≤ (2− 1/m)cCLQ(γ)
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for any feasible choice of γ.

Proof. Take the clique Ci ∈ C with the highest sub-problem cost c∗(Ci, γi−1, γi). Next, fix the
packing decisions in the optimal solution to Ci’s sub-problem; pack any remaining jobs arbitrarily.
Letting cALG(γj−1, γj) be the cost of this solution over the interval [γj−1, γj], the algorithm obtains
a solution with cost

m

∑
j=1

cALG(γj−1, γj) ≤ 2 ∑
j 6=i

c∗(Cj, γj−1, γj) + c∗(Ci, γi−1, γi)

= 2cCLQ(γ)− c∗(Ci, γi−1, γi) ≤ (2− 1/m)cCLQ(γ).

For the first inequality, note that 2cSTAT is an upper bound on the cost of any feasible solution and
cSTAT ≤ cCLQ(γ) by Proposition 4.1. By construction, cALG(γi−1, γi) = c∗(Ci, γi−1, γi). For the
last inequality, Ci is the clique with the largest contribution to cCLQ(γ), implying c∗(Ci, γi−1, γi) ≥
cCLQ(γ)/m.

5 New Formulations

In this section we provide novel IP formulations for TBP2. Our main formulation uses the fact
that at most two jobs can be packed simultaneously within a bin, implying the total savings in the
bin are equal to the total overlap of jobs within the bin. Let O = {(i, j) | ∀i, j ∈ J, [si, ei) ∩ [sj, ej) 6=
∅, i 6= j} be the set of overlapping job pairs, and consider the formulation

max ∑
i,j∈O

oi,jρi,j (7a)

subject to

∑
j∈C|j 6=i

ρi,j ≤ 1 ∀C ∈ C, i ∈ C (7b)

ρi,j ∈ {0, 1} ∀i, j ∈ O (7c)

where oi,j = min(ei, ej) −max(si, sj) is the measure of overlap for an overlapping pair. The ρ

variables represent the decision to pair jobs i, j in the same bin, which only considers jobs that
have non-zero overlap. Constraints (7b) ensure that a job can only be paired with a single other
job at a time. We refer to the above formulation as the matching formulation, as it models TBP2
as a set of connected matching problems. We argue for the correctness of this formulation in the
following proposition.

Proposition 5.1. IP (7) is a valid formulation for TBP2.

Proof. The objective maximizes the overlap of jobs paired together in the solution. This is equiv-
alent to maximizing the savings, which by (2) is equivalent to minimizing the assignment’s cost.
It then suffices to argue that a solution of (7) is feasible if and only if it corresponds to a feasible
solution for TBP2. First, assume that we are given a feasible solution to TBP2. That is, consider a
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partition of J; for each B ⊆ J in this partition, set ρi,j = 1 for each (i, j) ∈ (B× B) ∩O, and 0 other-
wise. This creates a feasible solution to (7); constraint (7b) is not violated, as we assumed a feasible
partition of J and each set B in this partition never packs more than two job simultaneously.

Now assume we are given a solution ρ for (7). Consider the graph given by nodes representing
jobs, and edges where the corresponding ρ variables are equal to 1. Define a solution of TBP2 by
assigning nodes in a connected component of this graph to the same bin; clearly every job belongs
to some component. Let B be the node set of one of these components; B is a feasible assignment,
as constraints (7b) ensure that at most two jobs in the same clique are in the same component.
Observe that we only need to consider overlap at times corresponding to maximal cliques because
if jobs overlap at any point, they are members of at least one common maximal clique.

IP (7) is similar in size to IP (1), having O(n2) variables and O(nm) constraints compared to
O(nbmax) variables and O(max(n, |T|bmax)) constraints; however, (7) is typically somewhat larger
given a reasonable choice of bmax. One advantage of (7) over (1) is that it does not exhibit the
same level of symmetry. Any feasible solution x, y to (1) can be transformed into an equivalent
solution by permuting x, y along their bin indices. We further compare the formulations’ strength
theoretically in Section 6 and empirically in Section 7.

As with (1), we obtain a bound from the linear relaxation of (7). We define zDEG as the optimal
objective value for the linear relaxation of IP (7) and cDEG as the equivalent value converted to
time-average bins via (2); we refer to the latter as the degree bound.

The formulation (7) can be interpreted as a sequence of linked matching problems. Within each
clique C ∈ C, the constraints (7b) are identical to degree constraints in a matching formulation. As
such, for each clique C ∈ C we can include valid inequalities from the corresponding matching
polytope; specifically, we can add the well-known blossom inequalities [14]:

∑
i,j∈S

ρi,j ≤
|S| − 1

2
∀S ⊆ C, |S| odd. (8)

While there are exponentially many blossom inequalities, we can separate over the collection for
a single clique in polynomial time [35], and there are O(n) maximal cliques. We use zMATCH to
refer to the optimal fractional solution to (7) including blossom inequalities, and cMATCH as the
equivalent time-average number of bins via (2). We call the latter of these the matching bound.

5.1 Partition Formulation

Before continuing, we present one additional formulation, first presented in [9], based on a trans-
formation to a set partition model,

min ∑
S∈S

`SηS (9a)

subject to
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∑
S∈S(i)

ηS = 1 ∀i ∈ J (9b)

ηS ∈ {0, 1} ∀S ∈ S (9c)

where S is the set of all subsets of J that can be placed in a single bin, and `S is the time-averaged
active time of a bin with jobs S. The variables η represent the yes-or-no decision to use a bin
containing exactly S. IP (9) is potentially exponentially large, with O(2n) variables; solving it
requires special tools such as branch-and-price; the linear relaxation of (9) can be solved using
column generation. We use cPART to denote the objective of the linear relaxation of (9) and zPART

to be the equivalent optimal time-averaged savings via (2).

6 Comparison of Bounds

In this section we compare the theoretical performance of our previously discussed bounds: cASGN ,
cSTAT, cPART, cDEG, and cMATCH. First we argue the relative weakness of cASGN .

Proposition 6.1. cASGN ≤ cSTAT.

Proof. Consider a feasible, potentially fractional assignment of the x variables in IP (1). In each
period t, a feasible solution satisfies ∑i∈J(t) ∑b∈B xi,b = |J(t)|. A feasible, fractional value for the y
variables is yt,b = ∑i∈J(t)

xi,b
2 . The total cost incurred in this period by this solution is wt ∑b∈B yt,b =

wt ∑b∈B ∑i∈J(t) xi,b/2 = wt|J(t)|/2 ≤ wt
⌈
|J(t)|/2

⌉
.

Proposition 6.2. cASGN ≤ cPART.

Proof. We show this by arguing that any solution to the linear relaxation of IP (9) implies an equiv-
alent fractional solution to IP (1). Let η be a feasible fractional solution. Associate with each ηS > 0
some bin index b ∈ B such that each ηS is assigned a unique bin; this can always be done as we can
add an arbitrary number of bins to IP (1) without altering the objective. We construct a solution
x, y by taking xi,b = ηS for i ∈ S and yt,b = ηS for t with S ∩ J(t) 6= ∅; therefore, the bin index b
corresponding to S accrues a cost of ∑t∈T yt,b = `SηS. The job assignment constraints are satisfied,
as ∑b∈B xi,b = ∑S∈S(i) ηS = 1. Capacity constraints are respected as, for each b, S pair, at most
two jobs, each with weight ηS, are present in each period and the right hand side of the capacity
constraint is 2yb,t = 2ηS whenever the bin is active during period t.

These results are not surprising; even in static bin packing, the equivalent of cASGN is known
to give poor bounds. Next, we show that cDEG, cSTAT and cCLQ are incomparable.

Proposition 6.3. The bounds cDEG and cSTAT are incomparable; that is, there exist instances in which one
bound is larger than the other.

Proof. We show this by providing two examples, one in which cDEG > cSTAT and one where
cDEG < cSTAT. For the former, consider a variation of the three-period example given in Figure 2
with w1 = 1/2, w2 = w3 = 1/4. In this case cDEG = c∗ = 3/2 and cSTAT = 5/4.
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For the latter, consider an instance with n = 3 and all jobs having si = 0 and ei = 1. This case
reduces to a static bin packing problem with bins that fit two jobs, and we have cSTAT = c∗ = 2
and cDEG = 3/2.

We have a similar result for cDEG and cCLQ.

Proposition 6.4. The bounds cDEG and cCLQ are incomparable.

Proof. As cCLQ ≥ cSTAT, we only need show an example with cDEG > cCLQ. Consider an instance
with n = 4, (s1, e1) = (0, 3/7), (s2, e2) = (0, 1), (s3, e3) = (2/7, 1), and (s4, e4) = (4/7, 5/7); see
Figure 4. In this example, cDEG = c∗ = 11/7 and cCLQ = 9/7.

2/7 1/7 1/7 1/7 2/7

Figure 4: Example with cDEG > cCLQ.

Next, we demonstrate that the clique bound is weaker than the linear relaxation of (7) strength-
ened with blossom inequalities.

Proposition 6.5. cCLQ ≤ cMATCH.

Proof. Assume we are given the clique bound cCLQ and the optimal choice of breakpoints γ. Con-
sider the LP

max ∑
C∈C

∑
i,j∈C

oC
i,jρ

C
i,j (10a)

subject to

∑
j∈C|j 6=i

ρC
i,j ≤ 1 ∀C ∈ C, i ∈ C (10b)

∑
i,j∈S

ρC
i,j ≤ |S| − 1

2
∀C ∈ C, S ⊆ C, |S| odd (10c)

ρC
i,j = ρD

i,j ∀C, D ∈ C, i, j ∈ C ∩ D (10d)

ρ ≥ 0 (10e)

where oCi
i,j = min(γCi , ei, ej) −max(γCi−1 , si, sj) is the overlap of jobs i, j truncated to the interval

[γi−1, γi]. LP (10) has optimal objective zMATCH. Now consider the relaxation in which constraints
(10d) are removed. The LP now decomposes into m sub-problems; however, for each clique the re-
sulting sub-problem is the maximization over a matching polytope, i.e., it yields integral solutions.
Consequently, each of these sub-problems yields the same solution as the sub-problems used to
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compute the clique bound. The result then follows by converting the objective of the relaxed LP
(10) to time-average number of bins.

Next, we show that the degree bound is equivalent to the linear relaxation of the partition
formulation; this proof is slightly longer and relegated to Appendix A.3.

Proposition 6.6. cPART = cDEG.

This result is somewhat surprising; typically, this type of set partition formulation yields strong
lower bounds compared to polynomially-sized formulations; however, here it is equivalent to the
linear relaxation of (7) without any additional constraints. Furthermore, cDEG itself sometimes
provides worse bounds than the simple cSTAT bound.

We now state the main result of this section, which summarizes our lower bound hierarchy.
The result is also depicted visually in Figure 1.

Theorem 6.7. The following statements hold:

1. cASGN ≤ cSTAT.

2. cASGN ≤ cPART.

3. cSTAT ≤ cCLQ.

4. cCLQ ≤ cMATCH.

5. cDEG = cPART.

6. cDEG ≤ cMATCH.

7. cDEG and cSTAT are incomparable.

8. cDEG and cCLQ are incomparable.

Proof. The result follows from Propositions 4.1, 6.1, 6.2, 6.3, 6.4, 6.5, and 6.6, along with the fact
that cDEG is obtained by relaxing the LP that produces cMATCH.

With the exception of the partition bound, these results are in line with intuition. The bound
cSTAT allows repacking but maintains an integer number of bins at all times; the clique bound cCLQ

is similar, but limits the points where repacking is allowed. Conversely, cDEG enforces a notion of
temporal consistency but allows fractional packings; these two competing strengths lead to the
incomparability results. Lastly, cMATCH improves on cCLQ by requiring temporal consistency be-
tween each clique sub-problem, and it improves on cDEG by adding valid inequalities that reduce
fractional packings within a clique.

While Theorem 6.7 establishes theoretical guarantees on how the various bounds perform rela-
tive to one another, it does not explain how large the gaps between bounds are in practice, or how
the incomparable bounds perform empirically. Similarly, while all of the bounds can be computed
in polynomial time, the stronger bounds tend to require more computational effort. We explore
the computational performance of these bounds next.

7 Computational Study

In this section we report results from a computational study of our bounds and formulations.
Our objective is twofold. First, we compare the matching-based formulation (7) against the more
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standard (1). Second, we assess the empirical performance of the various bounds we compared
theoretically in Section 6, with a focus on bound quality and scalability. We do not include cPART

and cASGN in this comparison; by Theorem 6.7, cPART = cDEG and cASGN ≤ cSTAT, and preliminary
experiments suggest that these methods scale worse than cDEG and cSTAT, respectively.

Except where noted, we conducted all experiments on a computer running Windows with a
3.20GHz Intel 6 Core i7 processor and 16 GB of RAM. We used Python 3.9.7 to build our exper-
imental code, and Gurobi 9.5.1 for LP and IP solves, with default parameters unless otherwise
stated. We used the NetworkX package for matching sub-problems and to separate blossom in-
equalities [21, 43].

7.1 Instance Design

We design synthetic instances using three integer parameters: the number of jobs n > 0, a maxi-
mum start time smax > 0, and the expected lifetime λ > 0. We construct an instance with n jobs
by sampling for each job i: a start time si, using a uniform integer distribution over [0, smax], and
a lifetime αi, using a geometric distribution with success probability 1/λ; that is, ei = αi + si. We
normalize the horizon to [0, 1] by dividing start and end times by maxi∈J ei. For our experiments,
we take smax = n; thus the density of each instance is controlled solely by the parameter λ.

We also obtain instances from a Microsoft Azure system that focuses on supporting machine
learning applications. In this system, jobs either occupy 100%, 50%, or 25% of a server; for our
experiments, we modify the instance to assume each job occupies 50%. We generate an instance
by sampling roughly three months of arrival and departure data in a cluster; we perform this
sampling over multiple server clusters to generate different instances. When sampling, some
virtual machines are already present at the start of the sampled period, in which case we include
their full lifetime in the instance.

7.2 Heuristics

Next, we briefly discuss the heuristics we used to obtain upper bounds in our experiments. The
first of these methods comes from IP (7). We solve the LP relaxation with blossom inequalities,
equivalent to computing cMATCH, and then solve (7), strengthened with the blossom inequalities
we found during the LP solve, using a fixed time limit. Our preliminary experiments suggest that
if the LP can be solved quickly, the solver can also find good solutions in a reasonable time even
if it cannot prove optimality. We use this heuristic in the sparse instance lower bound experiment
described in Section 7.4.

For instances in which the above approach is impractical, i.e. when computing cMATCH is in-
tractable, we use a combination of a constructive heuristic and a local search heuristic. The con-
structive heuristic iteratively solves a packing problem that aims to place as much volume into a
single bin as possible. Formally, starting with an empty set of bins B and a set of jobs J, we solve
the problem
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max ∑
i∈J

w̃ixi (11a)

subject to

∑
i∈C

xi ≤ 2 ∀C ∈ C (11b)

xi ∈ {0, 1} (11c)

where w̃i is some appropriately chosen weight for job i, such as its length. This IP can be solved as
a linear program, because its constraint matrix satisfies the consecutive ones property. Letting x be
the optimal solution and S = {i ∈ J : xi = 1}, we then set B = B ∪ {S} and J = J \ S. The process
repeats until J = ∅, which occurs when every job belongs to some bin. In our implementation,
instead of a job’s length, we use w̃i = (ei − si)

2, where si and ei are integer start and end times
before we normalize the instance; this appears to improve performance based on preliminary
testing.

We then improve the resulting solution through local search, which checks for all pairs of bins
in B if there exists a better solution also using two bins. Given two bins B1, B2 ∈ B, our imple-
mentation does this by solving (1) with bmax = 2 and jobs in B1 ∪ B2. This process repeats until
either we find no pair of improving bins or reach a specified time limit. We use this combination
of heuristics for the dense instances in the Section 7.4 and for the experiment detailed in Section
7.6.

7.3 IP Formulation Comparison

In the first experiment, we compare the performance of (1) and (7). We generate random synthetic
instances as described, using n = smax ∈ {200, 400, 600} and λ ∈ {5, 10, 20, 40, 80}, leading to
a total of 15 instances classes. For each of the classes, we generate five instances, and for each
instance we attempt to solve both formulations with a 600-second time limit. After each solve, we
collect the best upper and lower bounds (converting bounds from (7) to time-averaged bins) and
the resulting relative optimality gaps. We report the averages of the upper and lower bounds and
the geometric means of the relative gaps at termination for each instance class in Table 8.

In each row of the table, we highlight the best average upper and lower bounds. On average,
(7) obtains both better upper and lower bounds compared to (1), for all instance classes. Conse-
quently, (7) also leads to significantly improved gaps compared to (1). For all 200- and 400-job
instances, (7) has average gaps under 1% while (1) has gaps in the range of 5% to 8%. Even for
the worst parameter combination for (7), 600 jobs with expected lifetime of 80, the average gap
is only 1.53%. Additionally, for (7) gaps tend to increase with density, while for (1) the gaps are
fairly consistent across both size and density.

These results are not surprising given our theoretical comparison of cDEG and cASGN ; recall
that the linear relaxation of IP (1) is generally weaker than the relaxation of (7). A major weakness
of IP (1) is a high degree of symmetry; any solution can be used to create numerous other solutions
by permuting bin indices. At the extremes, IP (1) may have some advantage in scalability, since
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IP (7) IP (1)

n = smax λ UB LB % Gap UB LB % Gap

200 5 3.13 3.13 0.00 3.14 2.93 6.65
10 5.08 5.08 0.00 5.15 4.81 6.57
20 8.41 8.39 0.25 8.53 8.08 5.18
40 9.51 9.46 0.54 9.75 9.23 5.39
80 13.42 13.38 0.30 13.81 13.09 5.17

400 5 3.28 3.28 0.00 3.30 3.07 6.78
10 5.66 5.66 0.00 5.80 5.35 7.75
20 9.75 9.68 0.72 9.97 9.38 5.92
40 15.54 15.40 0.87 15.99 15.11 5.53
80 21.94 21.76 0.81 22.78 21.44 5.94

600 5 3.25 3.25 0.00 3.27 3.06 6.32
10 5.43 5.43 0.03 5.55 5.11 7.93
20 9.72 9.64 0.85 9.95 9.34 6.10
40 17.13 16.91 1.27 17.66 16.62 5.92
80 25.85 25.45 1.53 27.03 25.14 6.99

Table 8: IP (1), IP (7) averaged results on random instances with a 600s time limit.

usually |B| < n, but for the scales where this difference in formulation size could be impactful, IP
(1) would itself likely be intractable.

7.4 Lower Bound Comparison

We now report on two experiments comparing the performance of the bounds discussed in Section
6. First, we compare the bounds on instances with average job lengths λ ∈ {5, 10, 20}, which are
relatively sparse. We use n = smax ∈ {800, 1600, 2400}, and for each of the nine classes we generate
five instances. For each realization, we compute cSTAT, cCLQ, cDEG, and cMATCH, and record the
bound value and the computation time. We use dual simplex in the LP solves when computing
both cDEG and cMATCH. To obtain upper bounds, we use (7) with blossom inequalities as described
in Section 7.2, with an 1,800-second time limit for instances with λ = 5, 10 and a 3,600-second time
limit for λ = 20; we increase the time to compensate for the added difficulty at the higher density.
We report the averages of the running times and the geometric means of the resulting gaps relative
to the upper bound in Table 9.

In terms of empirical performance, the results suggest that cDEG ≤ cSTAT ≤ cCLQ ≤ cMATCH

in sparse instances. For all instances, cMATCH has an average gap of at most 0.12%. The next
best bound, cCLQ, results in gaps within the range of 0.85% to 1.05%. The clique bound cCLQ

improves on cSTAT by roughly 0.6% in absolute terms for the sparsest instances, the difference
decreasing with density. The static bound improves on the degree bound by about 2% in absolute
terms for the sparsest instances, and the difference again decreases with density. In general, the
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bounds grow closer and the resulting gaps decrease when the density increases. This is not entirely
surprising, as at maximum density the instance approximates a static bin packing problem where
all jobs span the full horizon and, for a sufficiently large number of jobs, all of the methods give
optimal or near-optimal lower bounds.

The presented gaps are also a function of upper bound quality. For this experiment, the upper
bound quality decreases as the density and number of jobs increase. We are able to find optimal
solutions for instances with λ = 5, upper bounds on average roughly 0.01% from optimal for
λ = 10, and at most 0.12% from optimal for λ = 20.

With respect to time, the computational effort increases with both size and density. As ex-
pected, cSTAT is the fastest to compute, followed by cCLQ, cDEG, and cMATCH. The clique bound can
be computed on average in less than five seconds for sparse instances; cDEG solves within a few
seconds for instances with λ = 5, 10, but takes over two minutes for instances with λ = 20. Con-
versely, cMATCH takes significantly more time, between approximately three and ten minutes on
average for the instances with n = 2, 400. We observe that cDEG, cMATCH exhibit the worst scaling
both in terms of number of jobs and density.

We now report on experiments using denser instances. Given the poor scaling of cMATCH, we
introduce an approximate version, ĉMATCH, in which we set a time limit of 3,600 seconds, mean-
ing we may terminate before separating all necessary blossom inequalities. As before, we use
dual simplex in our LP solves. We define instance classes with n = smax ∈ {800, 900, 1000} and
λ ∈ {40, 80}, again generating five instances in each class. We compute upper bounds using the
constructive heuristic and local search algorithm discussed in Section 7.2, with the local search
running until convergence; this takes less than 1,600 seconds per realization. We summarize re-
sults in Table 10.

For these dense instances, cSTAT ≤ cCLQ ≤ cDEG ≤ ĉMATCH; interestingly, the degree bound
is stronger than the clique and static bounds in this case. The strongest bound still comes from
ĉMATCH, even in the cases in which the blossom separation is only partial. As before, the gap
differences decrease and the gaps improve as density increases; however, some of this may be a
result of the heuristic’s performance in addition to the bounds.

In terms of scaling, we see notable increases in running times compared to the sparser instances
for all but the static bound. The clique bound requires approximately five times the computational
effort for n = 800 when λ = 80, compared to λ = 20. The increases in running time are more
severe for both cDEG and ĉMATCH, with the latter’s running time increasing by nearly a factor of 33
for the same instance classes.

From these experiments, we see that the matching bound, even when limited to only a partial
separation of blossom inequalities, provides a strong bound for both sparse and dense instances;
however, it become impractical to compute for dense instance or instances with a large number of
jobs. In these cases we expect the best performance in terms of scalability and bound quality come
from the clique bound.
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cSTAT cCLQ cDEG cMATCH

n = smax λ % Gap Time % Gap Time % Gap Time % Gap Time

800 5 1.59 0.00 0.96 1.29 3.65 0.53 0.00 27.22
10 1.42 0.00 1.05 1.48 2.17 0.99 0.03 34.75
20 1.01 0.00 0.85 2.25 1.05 13.02 0.03 80.01

1,600 5 1.53 0.00 0.96 1.74 3.47 1.95 0.01 100.98
10 1.27 0.01 0.96 2.08 1.93 3.67 0.03 109.86
20 0.99 0.01 0.84 3.16 1.10 64.99 0.06 282.53

2,400 5 1.56 0.01 1.00 2.08 3.52 4.45 0.01 212.63
10 1.33 0.01 0.97 2.72 2.11 6.37 0.04 222.43
20 1.05 0.01 0.89 4.79 1.20 146.43 0.12 637.81

Table 9: Comparison of cSTAT, cCLQ, cDEG, and cMATCH on sparse instances.

cSTAT cCLQ cDEG ĉMATCH

n = smax λ % Gap Time % Gap Time % Gap Time % Gap Time

800 40 2.33 0.01 2.23 3.92 2.18 126.64 1.61 390.98
80 1.95 0.02 1.90 12.44 1.74 756.00 1.43 2,593.07

900 40 2.52 0.01 2.44 3.94 2.36 155.92 1.84 464.87
80 1.96 0.02 1.91 11.06 1.84 1,083.42 1.49 3,330.88

1,000 40 2.38 0.01 2.29 4.31 2.26 223.44 1.71 602.49
80 1.93 0.02 1.89 11.13 1.75 1,505.21 1.47 3,496.53

Table 10: Comparison of cSTAT, cCLQ, cDEG, and ĉMATCH on dense instances.

7.5 Application-Based Instances

Next, we evaluate our methods’ performance on seven instances drawn from a real-world cloud
system, Microsoft Azure, as described in Section 7.1. For each of these instances, we solve (7) with
a 600-second time limit. We also test one additional instance constructed by combining all jobs
from the original seven; for this instance, we solve the IP with a time limit of 7,200 seconds. In
addition to the IP solves, we compute cSTAT and cCLQ.

For each instance, Table 11 displays the number of jobs, plus average job length and standard
deviation as a percentage of the horizon. The table also includes the best upper and lower bounds
from (7), cSTAT, cCLQ, and corresponding running times. We highlight upper and lower bounds
when they are provably optimal.

Overall, these instances appear easier than the synthetic instances. For five of the original
instances, we could solve (7) within the 600-second time limit. Furthermore, even for the instances
in which the IP could not be solved within the time limit, both cSTAT and cCLQ provide lower
bounds with an absolute gap of 0.03 or smaller. For these instances, cCLQ does not appear to
improve much on cSTAT, even when the instance is sparse. Notably, for the 484-job instance, both
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IP (7) cSTAT cCLQ

n Avg. Length +/- UB LB Time LB Time LB Time

299 0.32% 1.16% 0.541 0.541 0.08 0.538 0.00 0.541 0.93
140 3.99% 13.87% 3.105 3.105 0.15 3.085 0.00 3.090 0.91
567 0.18% 0.87% 0.525 0.525 0.65 0.525 0.00 0.525 1.54
484 13.69% 6.89% 33.343 33.241 600 33.338 0.00 33.343 11.60
798 0.62% 3.85% 2.747 2.747 3.75 2.721 0.00 2.728 1.62

1,872 0.03% 0.33% 0.384 0.384 0.09 0.382 0.00 0.384 3.96
3,774 0.19% 0.94% 3.764 3.762 600 3.749 0.00 3.753 8.55

7,934 0.91% 3.79% 38.435 36.495 7,200 36.512 0.01 36.525 846.00

Table 11: Evaluation of IP (7), cSTAT, and cCLQ using real data.

cSTAT and cCLQ improve on the best bound the solver obtains within the time limit, and cCLQ

provides a tight lower bound for this instance. Interestingly, the 484-job instance also has the
longest jobs as a percentage of the horizon.

For the large, aggregate instance, (7) has a larger gap, approximately 5%. Both cSTAT and cCLQ

improve on the best bound found by the solver, but only marginally. This instance requires a
significant increase in computing time; the LP relaxation of (7) takes over an hour to solve, and
cCLQ also takes significantly longer.

7.6 Large-Scale Instances

In our final set of experiments, we test the scalability of our methods using very large synthetic
instances. To accommodate these larger instances, we use a different computational setup. We
now use a Linux machine with a 64-core AMD Epyc CPU and 1 TB RAM, and implement our
methods using C++. We still use Gurobi 9.5.1, but run LP solves using the barrier method with
crossover disabled. We solve matching problems with the LEMON graph library [11]. We compute
upper bounds using the previously described constructive and local search heuristics; see Section
7.2.

We compare the performance of cSTAT, a clique bound, and cDEG. To reduce computing times,
we do not optimize breakpoints to compute cCLQ; instead, we heuristically choose breakpoints
and only solve one matching per maximal clique. Specifically, for each Ci ∈ C we set γ̂i = eCi .
This choice of breakpoints corresponds to taking the earliest feasible breakpoint between cliques.

We use instances with n = 100, 000 and λ ∈ {5, 10, 20, 40, 80}, generating five random realiza-
tions for each choice of λ. For upper bounds, we run the heuristics with a 3,600-second time limit.
For each choice of λ we compute average running times for cSTAT, cCLQ(γ̂), and cDEG, and the
geometric means of the corresponding gaps relative to the upper bound; we summarize results in
Table 12.

The results show that cCLQ(γ̂) can improve on cSTAT’s gap by as much as 0.5% in absolute
terms; as before, this occurs for the sparsest instances with λ = 5. As density increases, this
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cSTAT cCLQ(γ̂) cDEG

n = smax λ Gap Time Gap Time Gap Time

100,000 5 1.99% 0.11 1.54% 0.13 3.91% 17.46
10 2.50% 0.11 2.26% 0.13 3.22% 36.52
20 3.33% 0.11 3.21% 0.13 3.47% 116.53
40 4.22% 0.11 4.16% 0.13 4.15% 991.85
80 4.62% 0.11 4.59% 0.13 4.51% 11,199.77

Table 12: Comparison of cSTAT, cCLQ(γ̂), and cDEG on very large instances.

difference decreases to 0.03% on average for λ = 80. Similar to previous experiments, cDEG does
noticeably worse than the static and clique bounds for λ = 5, 10, 20, and then improves on them
for the denser instances. In terms of scaling, using the alternate computational setup we are able
to compute cSTAT and cCLQ(γ̂) in less than a second on average. For cDEG, we observe generally
poor scaling with respect to density. For the sparsest instances, the LP solves in approximately
17 seconds on average, but this increases to over three hours for the densest instances. Lastly,
contrary to the previous experiments, the gaps are larger for higher densities. We suspect that this
is a consequence of the significant difficulty of finding high-quality feasible solutions for higher-
density instances at this scale.

8 Conclusion

In this work, we studied temporal bin packing with half-capacity jobs. Using the equivalence be-
tween minimizing time-average bins and maximizing time-average savings, we provided a novel
IP formulation based on matchings. Additionally, we studied various lower bounds for the prob-
lem. We demonstrated that the easily computed static bound can have an arbitrarily large ad-
ditive gap. With this motivation, we studied clique instances, and derived a new lower bound
approach that improves the static bound. We then compared these bounds, along with various
linear programming bounds obtained from our new formulation and a set partition formulation.
We derived a hierarchy of these bounds, specifically demonstrating how many of the bounds can
be obtained as relaxations of our new formulation. Finally, we conducted a computational study
using a variety of synthetic and application-based instances. We compared our novel formulation
against a more standard assignment IP, and demonstrated its improved performance. Addition-
ally, we extended our theoretical comparison of bounds with an empirical study, showing that
for small- to medium-sized instances, the LP relaxation of our new formulation supplemented
with blossom inequalities provides a near-optimal lower bound. For larger instances, the clique
bound scales well while improving on the static bound, particularly for sparse instances; for dense
instances, new formulation’s LP relaxation is stronger than both the static and clique bounds.

While we have shown the strength of the new formulation and its linear relaxation, particularly
when including blossom inequalities, we still find instances in which we cannot prove optimality
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within a reasonable time. One future avenue of research is to conduct a further polyhedral study
of this formulation with the goal of determining valid inequalities that can help close this gap.
Based on preliminary empirical observations, even relatively simple instances can have a complex
facial structure, with many facets beyond blossom inequalities.

An additional area of future work is to determine how these results relate to temporal bin
packing variants with more general job sizes; however, even the uniform case is quite challenging.
Many of our results are based on matchings, and have hyper-graph matching analogues when job
demands are uniformly 1/k of capacity for some integer k, but even for k = 3, the underlying
hyper-graph matching is NP-Hard and there is not an immediate analogue to IP (7). For the
general TBP, the main idea behind cCLQ still applies, but the sub-problems are themselves static
bin packing models with a modified objective: a bin’s cost is scaled by how long it must be open,
which depends on the earliest and latest job assigned to it. To our knowledge, this bin packing
variant has itself not been addressed before in the literature.
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A Remaining Proofs

A.1 Proof of Proposition 3.1

In the three-period problem there are six possible start/end period configurations: three single-
period jobs, two two-period jobs, and one three-period job. We use nt1,t2 to denote the number of
jobs that start at the beginning of period t1 and end at the end of period t2, for t1, t2 ∈ {1, 2, 3}
with t1 ≤ t2. Before arguing the main result, we require the following lemma.

Lemma A.1. In a three-period problem, any two jobs i, j spanning two or three periods that share the
same start and end periods (si = sj, ei = ej) can be paired and removed from the instance without loss of
optimality.

Proof. Assume otherwise that we have two jobs i, j with si = sj = 0 and ei = ej that cannot be
placed on the same bin in an optimal solution. First, consider the case in which jobs i, j have
ei = ej = 1, i.e., they span all three periods. Let the two bins these jobs are placed in be B and D,
respectively. Let cB and cD be the costs of the two bins; note cB = cD = w1 + w2 + w3. Consider
the alternate solution in which B′ = {i, j} and D′ = {k|∀k ∈ (B ∪ D)/{i, j}}. The cost satisfies
cB′ + cD′ ≤ 2(w1 + w2 + w3) = cB + cD and B′ and D′ are feasible as B, D are feasible.

Now, consider the case in which si = sj = 0 and i, j 6∈ J(3); this case covers both two-period
cases via symmetry. As before, assume that jobs i and j are put in bins B and D. If n3,3 = 2 we
construct B′ to contain i, j and the two single-period jobs in period 3 and place the remainder in
D′. The bin costs satisfy cB′ + cD′ ≤ cB + cD by the same argument as with the three-period jobs by
pairing jobs i, j each with one of the single-period jobs. Note bin B′ could equivalently be split into
two bins without changing the total cost, one containing i, j and the other containing the single-
period jobs. Now assume that n3,3 < 2; in this case set B′ = {i, j} and D′ to be the remainder. If
J(3) = ∅, B′, D′ are optimal again by the same argument as with the three-period jobs. Assume
that J(3) 6= ∅; then,

cB′ + cD′ ≤ 2(w1 + w2) + w3 ≤ cB + cD.

Lemma A.1 implies we can reduce a three-period instance by pre-processing pairs of two- and
three-period jobs with matching start and end times. After applying this reduction, the resulting
instance has n1,2, n2,3, n1,3 ∈ {0, 1}.

Lemma A.2. In a three-period instance with n1,2, n2,3, n1,3 ≤ 1, c∗ − cSTAT ≤ 1/2.

Proof. Consider the cases with one or more of n1,2, n2,3, n1,3 = 0. Pack all non-single-period jobs on
a single bin, and then pack all single-period jobs greedily, filling in open bins first before opening
new bins. This placement results in a solution with cost equal to the static bound. Now assume
there is one of each of the non-single-period jobs; these jobs require at least two bins. Assume that
w1 ≥ w3. If n1,1 > 0 or n3,3 > 0, a single-period job can be paired with the complementary two-
period job and packed with the three-period job optimally by the same argument as in Lemma
A.1. After removing these jobs, the instance returns to the first case and has no gap. Now assume
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that n1,1, n3,3 = 0; the optimal packing must then incur an absolute gap of at least w3. The single-
period jobs in period 2 can be placed greedily, and the optimal solution matches the static bound
in this period.

Finally, we conclude that the worst-case gap occurs when w1 = w3 = (1 − ε)/2, w2 = ε,
n1,1, n3,3 = 0, and n1,2, n2,3, n1,3 = 1. The result follows by taking the limit ε→ 0.

The proposition follows by combining Lemmas A.2 and A.1.

A.2 Proof of Proposition 3.2

We prove this result by by showing that a sequence of the instances described in Section 3.3 has
an increasing additive gap c∗ − cSTAT. Consider instances with |T| = 4k − 1 for some positive
integer k, t̂ = (|T|+ 1)/2, and uniform period weights. These parameters imply n = (|T|+ 1)2/4,
which is even given our choice of |T|. Furthermore, |J(t)| is even for each t ∈ T, and for each
t ∈ {1, 2, ..., t̂} the number of jobs starting in period t is (|T|+ 1)/2. As we have an even number
of jobs in each period, cSTAT = ∑t∈T |J(t)|/2|T|.

As this instance has a single maximal clique, we can use a matching formulation [34]. Consider
the following formulation,

min ∑
i,j∈J

ci,jxi,j (12a)

subject to

∑
j∈J|j 6=i

xi,j ≥ 1 ∀i ∈ J (12b)

xi,j ∈ {0, 1} ∀i, j ∈ J (12c)

where ci,j = max(ei, ej)−min(si, sj) = ∑t∈T 1{{i,j}∩J(t) 6=∅}/|T|.
Let ĉi,j = ∑i,j∈J 1{|{i,j}∩J(t)|=1}/2|T|. Intuitively, if we pair jobs i and j, this coefficient mea-

sures the number of periods in which exactly one of the jobs is active but not the other. Since
the relaxed solution of the cSTAT bound does not include any machines with only one active job
at any time, we can rewrite the objective of (12) as ∑i,j ci,jxi,j = cSTAT + ∑i,j ĉi,jxi,j. The quantity
cSTAT = ∑t∈T |J(t)|/2|T| does not depend on matching decisions, so we can equivalently optimize
(12) with this new objective.

Next, we construct a solution for (12). Order the jobs by increasing start periods and decreasing
end periods, and pair them in that order, setting the corresponding edge variables to one. Because
we have an even number of jobs starting in each of the periods 1, 2, .., t̂, each of these jobs is paired
with another job starting in the same period and ending one period apart; therefore, if jobs i, j are
paired, then 2|T|ĉi,j = 1. As n is even, the cost of this solution under the objective ĉ is (n/2) ×
(1/2|T|) = n/4|T|.

We show this solution is optimal by producing a corresponding dual bound. Consider the
dual of the linear relaxation of (12), with edge costs 2|T|ĉi,j,
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max ∑
i∈J

yi (13a)

subject to
yi + yj ≤ ∑

t∈T
1{|{i,j}∩J(t)|=1} ∀i, j ∈ J (13b)

yi ≥ 0 ∀i ∈ J (13c)

Construct a solution in which y(t1,t2) = 1 if t1 + t2 is even, and y(t1,t2) = 0 otherwise. The value of
this solution is n/2, as half of the y variables are set to one.

We now argue the solution’s dual feasibility. Given two jobs (t1, t2), (t′1, t′2), the left-hand side
of constraint (13b) has 0 ≤ y(t1,t2) + y(t′1,t′2)

≤ 2, as the y variables are binary. Furthermore, we have
1{|{i,j}∩J(t)|=1} = |t1 − t′1|+ |t2 − t′2| ≥ 1. Therefore, the constraints hold when y(t1,t2) + y(t′1,t′2)

≤ 1,
occurring when at most one of t1 + t2, t′1 + t′2 is even. It remains to consider the case in which both
are even; assume for contradiction that |t1 − t′1|+ |t2 − t′2| = 1; this means that either t1 = t′1 or
t2 = t′2. Without loss of generality, assume that t1 = t′1 and t2 < t′2. Then t2 + 1 = t′2, but this
implies that exactly one of t1 + t2, t′1 + t′2 is even. We thus conclude that |t1 − t′1|+ |t2 − t′2| ≥ 2,
and the constraints are satisfied.

By scaling this dual solution down by a factor of 2|T|, we obtain a feasible dual solution for
the LP relaxation of (12) with objective value n/4|T|, implying our primal solution is optimal.
Therefore,

c∗ − cSTAT =
n

4|T| =
(|T|+ 1)2

16|T| ≥ |T|
16

,

and the result follows as |T| can be made arbitrarily large.

A.3 Proof of Proposition 6.6

We prove the equivalent statement zPART = zDEG, splitting the result into two parts.

Lemma A.3. zPART ≤ zDEG.

Proof. We argue than any fractional solution to the maximization version of (9) implies a corre-
sponding fractional solution to (7) with the same objective value. Given a fractional solution η

to the partition formulation, we construct a solution ρ by setting ρi,j = ∑S∈S,S3i,j ηS, for job pairs
i, j ∈ O.

To see that ρ is feasible, suppose it violates constraint (7b) for some clique C and job i; this
implies 1 < ∑j∈C|j 6=i ρi,j ≤ ∑S∈S(i) ηS, but this contradicts the feasibility of η for the LP relax-
ation of (9). Furthermore, the objective coefficient of a set S in maximization terms is ωS =

∑i,j∈O 1{i,j∈S}oi,j; this implies

∑
i,j∈O

oi,jρi,j = ∑
i,j∈O

oi,j

[
∑
S∈S

1{i,j∈S}ηS

]
= ∑

S∈S

[
∑

i,j∈O
1{i,j∈S}oi,j

]
ηS = ∑

S∈S
ωSηS.

Lemma A.4. zDEG ≤ zPART.
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Proof. Take a solution ρ to the linear relaxation of (7). We make use of the following LP to obtain a
minimally infeasible projection of the solution ρ into the space of η variables:

min ∑
i∈J

νi (14a)

subject to

∑
S∈S(i)

ηS ≤ 1 + νi ∀i ∈ J (14b)

∑
S∈S,S3i,j

ηS = ρi,j ∀i, j ∈ J (14c)

η, ν ≥ 0 (14d)

This LP attempts to find a fractional solution η that corresponds to the solution ρ, while minimiz-
ing the violation of the partition constraints. We only need to consider over-coverage of a job, as
under-coverage can be resolved by appropriately assigning weight to η variables corresponding
to single jobs. If the optimal objective to LP (14) is zero, there is a feasible projection and the result
follows; assume otherwise that ∑i∈J νi > 0, and let i be some job with νi > 0.

Let S′(i) be the set of feasible sets containing i with ηS > 0. We assume the sub-graph induced
by each set is connected and that, for each S ∈ S′(i), every job in S overlaps job i. We may
assume this without loss of generality, as we can group all jobs up to and including the first job
overlapping i into a single job, and similarly for jobs after i. If the sets induce disconnected graphs,
they can be instead split into connected components with different η variables.

Construct a graph as follows. For each j ∈ S \ {i}, S ∈ S′(i), create a node (j, S); let the set
of these nodes be N. Two nodes (j1, S1), (j2, S2) ∈ N are adjacent if j1 = j2 or jobs j1, j2 overlap.
This graph is a conflict graph of the jobs that overlap i in the current solution, potentially copied
if a job j is in multiple sets in S′(i). We associate each node (j, S) ∈ N with a weight ζ(j,S) = ηS,
representing the amount of coverage that S provides in the constraints of (14).

Consider two cases. First, assume |S′(i)| equals the coloring number of this graph. If this
is the case, since the graph is the conflict graph of interval jobs, there must be some clique of
size |S′(i)|. This means there is some set of nodes N′ ⊆ N with |N′| = |S′(i)|, with all nodes
adjacent; let N′(j) be the set of these nodes containing j. As the nodes N′ are all adjacent, either
the corresponding jobs overlap or are duplicates of the same job. This means that there is some
maximal clique C ∈ C in the original instance containing all of the jobs covered by nodes in N′;
however, ρi,j ≥ ∑(j,S)∈N′(j) ζ(j,S) implies

∑
j∈C/{i}

ρi,j ≥ ∑
j∈C/{i}

∑
(j,S)∈N′(j)

ζ(j,S) = ∑
S∈S′(i)

ηS > 1,

contradicting the assumption that η is feasible. The equality follows as |N′| = |S′(i)| and no two
nodes (j1, S1), (j2, S2) ∈ N′ have S1 = S2. The last inequality follows from the assumption that i is
over-covered by η, i.e., that νi > 0.

Now assume instead that |S′(i)| is greater than the graph’s coloring number; we do not need
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to consider the case in which it is less, as the packings S ∈ S′(i) imply a coloring on this graph.
Because the constraint matrix of (7) is rational, a solution to its LP relaxation is rational; this implies
that a solution to (14) is also rational. For each S ∈ S

′(i) we can write ηS = pS/qS for some
pS, qS ∈ Z≥1. Let L be the least common multiple of qS for S ∈ S′(i). Modify the previous graph
by creating pSL/qS copies of each node (j, S) ∈ N, yielding nodes (j, S)ι for ι ∈ {1, 2, ..., pS L

qS
}; the

modified graph has the same edges as before. Each node (j, S)ι gets weight ζ(j,S)ι
= 1/L.

In this new graph, compute a minimum coloring. Let the set of color classes be K. We use
K(j) to denote the subset of those colors that contain nodes covering job j. We now modify the
η variables. First, set ηS = 0 for S ∈ S′(i) and leave the remainder unchanged. For each color
class K ∈ K, create a packing SK = {j : ∀(j, S)ι ∈ K} ∪ {i} and set ηSK = 1/L. If there are
K1, K2 ∈ K with SK1 = SK2 , the weights can instead be aggregated, but for simplicity we assume
that duplicate packings are allowed as they can be added to (9) without altering the objective. Let
S
′′(i) = {SK : K ∈ K}. This new solution does not change either the coverage of jobs j ∈ J/{i} or

ρi,j, as

∑
K∈K(j)

ηSK = ∑
S∈S′(i),S3j

pS L/qS

∑
ι=1

ζ(j,S)ι
= ∑

S∈S′(i),S3j
ζ(j,S) = ρi,j;

this follows as each node covering j must belong to a different class K and the ηS with i 6∈ S are
unchanged. Lastly, as we have computed a minimum coloring we know that the clique number
equals |K| = |S′′(i)|, and this new solution returns to the first case.

Finally, we conclude that an optimal solution to LP (14) has ∑i∈J νi = 0, implying that we can
always find a fractional solution to (9) matching the given fractional solution to (7).
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