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Matching

Source: math.stackexchange

• Matching: No two edges share a node.

• Max-weight matching can be solved efficiently (Edmonds, 65).

• Myriad applications…



• Nodes, edges may arrive/depart over time.
• Must match sequentially, with partial information.

• Bipartite graph: Models supply and demand in 
dynamic markets

• E.g. ride-hailing, online ads, gig economy

• Non-bipartite: Platform matches agents
• E.g. organ exchanges, transportation marketplaces, ride-

sharing

Dynamic Matching



Motivation: Freight transportation

• Shipment requests dynamically appear over time 
• A broker platform either assigns or auctions these requests to carriers 
• Carriers (usually truck drivers) want to avoid deadhead 

• The platform bundles requests to reduce the deadhead distance 

𝑖𝑖 𝑗𝑗  

Deadhead : driving without a paying load

Shipment from 𝑖𝑖 to 𝑗𝑗

𝑜𝑜1 𝑑𝑑1 

𝑑𝑑2 
𝑜𝑜2 

Shipment 1

Shipment 2

Matching reward for a request pair : 
Deadhead distance saved 

𝑑𝑑 𝑑𝑑1, 𝑜𝑜1 + 𝑑𝑑 𝑑𝑑2, 𝑜𝑜2 − 𝑑𝑑 𝑑𝑑1, 𝑜𝑜2 − 𝑑𝑑(𝑑𝑑2, 𝑜𝑜1)



Motivation: Ride-Sharing

• Trip requests dynamically appear over time 
• Customers may be willing to share rides for a lower fare

• The platform pairs requests to reduce the travel distance 

𝑖𝑖 𝑗𝑗  

Trip from 𝑖𝑖 to 𝑗𝑗

𝑜𝑜1 𝑑𝑑1 

𝑜𝑜2 
𝑑𝑑2 

Trip 1

Trip 2

Matching reward for a request pair : 
Travel distance saved 

𝑑𝑑 𝑜𝑜1,𝑑𝑑1 + 𝑑𝑑 𝑑𝑑1, 𝑜𝑜2 − 𝑑𝑑 𝑜𝑜1, 𝑜𝑜2 − 𝑑𝑑(𝑑𝑑2,𝑑𝑑1)



Motivation: Two widely used policies

Batching policy
• Accumulate a batch of arriving nodes within a fixed period and optimize 

matches over each such batch
Greedy policy
• Make matching decisions as opportunities arise by optimizing over 

available nodes 

In spite of their prevalence, there have been a limited number of studies 
analyzing the performance of these policies 
• Anderson et al. (2017)
• Aouad and Saritac (2022) 
• Ashlagi et al. (2022)



Problem description

Assumptions & Notations
• Node types 𝑁𝑁 = {1, … ,𝑛𝑛} 
• Each period: Bernoulli arrivals, 𝑝𝑝𝑖𝑖 ∈ (0,1] for 𝑖𝑖 ∈ 𝑁𝑁
• Sojourn time 𝜏𝜏 ∈ ℕ
• Match reward 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0
• Objective : maximize long-run average reward 

1 3 5 

𝑖𝑖

𝑗𝑗

𝑘𝑘

2 4 Day𝑁𝑁 = 𝑖𝑖, 𝑗𝑗, 𝑘𝑘  
𝜏𝜏 = 3 

Current day
3

Current day
4



Batching and Greedy policies 

Batching policy solves a max-reward matching problem and clears 
out the system every 𝜏𝜏 periods 

(Randomized) Greedy policy solves a max-reward matching 
problem every period (with a restricted set of nodes)
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Batching and Greedy policies 

Batching policy solves a max-reward matching problem and clears 
out the system every 𝜏𝜏 periods 

(Randomized) Greedy policy solves a max-reward matching 
problem every period (with a restricted set of nodes)

𝑖𝑖

𝑗𝑗

𝑘𝑘

𝑁𝑁 = 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 , 𝜏𝜏 = 3 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝛿𝛿,𝑤𝑤𝑖𝑖𝑖𝑖 = 1
 
𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖 = 𝑝𝑝 < 1,𝑝𝑝𝑖𝑖 = 1 

1 3 5 2 4 Day



Main Results

Asymptotic optimality
• 𝐻𝐻(𝜏𝜏) : average reward of policy 𝐻𝐻 with sojourn 𝜏𝜏 

• Assumption: bounded support 

𝐵𝐵 𝜏𝜏 ≥ 𝑂𝑂𝑂𝑂𝑂𝑂 𝜏𝜏 − 𝒪𝒪(1/ 𝜏𝜏)

𝐵𝐵 𝜏𝜏 ≥ (1 − 𝜖𝜖)𝑂𝑂𝑂𝑂𝑂𝑂 𝜏𝜏 − 𝒪𝒪(𝑒𝑒−𝜏𝜏𝜏𝜏),   𝜖𝜖 > 0

𝐺𝐺 𝜏𝜏 ≥ 𝑂𝑂𝑂𝑂𝑂𝑂 𝜏𝜏 − 𝒪𝒪(1/𝜏𝜏)

𝐺𝐺 𝜏𝜏 ≥ (1 − 𝜖𝜖)𝑂𝑂𝑂𝑂𝑂𝑂 𝜏𝜏 − 𝒪𝒪((1 + 𝜖𝜖)−𝜏𝜏),   𝜖𝜖 > 0

𝐵𝐵 𝜏𝜏, 𝐼𝐼 ≤ 𝐺𝐺 𝜏𝜏, 𝐼𝐼 − Ω(1/ 𝜏𝜏) 



Main Results

Impatient nodes 
• Unmatched node 𝑖𝑖 abandons the system w.p. 𝑑𝑑𝑖𝑖 𝜏𝜏  in each period 

Batching vs. Randomized Greedy 
• Batching – oblivious to distributions, more vulnerable to impatience 
• Randomized Greedy – requires expectations, allows more impatience, 

better asymptotic performance

Policy Assumption
Batching 𝑑𝑑𝑖𝑖 𝜏𝜏 = 𝒪𝒪(𝜏𝜏−𝛽𝛽) for 𝛽𝛽 > 1, 𝑖𝑖 ∈ 𝑁𝑁

Randomized Greedy 𝑑𝑑𝑖𝑖 𝜏𝜏 = 𝜊𝜊(1), 𝑖𝑖 ∈ 𝑁𝑁



Analysis - Roadmap

• Analysis for a single pair 

• Analysis for the general case
• Randomization 
• Policy comparison  

• Extension to impatient setting 



Analysis for a single pair {𝒊𝒊, 𝒋𝒋}

Batching policy
• Matching frequency is 𝔼𝔼 min 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑖𝑖 /𝜏𝜏 
• 𝐴𝐴𝑖𝑖 is number of type 𝑖𝑖 arrivals in 𝜏𝜏 periods, (𝐴𝐴𝑖𝑖 ∼ 𝐵𝐵𝑖𝑖𝑛𝑛(𝜏𝜏, 𝑝𝑝𝑖𝑖))  

min{𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑖𝑖}  −  𝔼𝔼 min 𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑖𝑖 /𝜏𝜏     =
𝒪𝒪 1/ 𝜏𝜏  if 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝒪𝒪(𝑒𝑒−𝜏𝜏(𝑝𝑝𝑗𝑗−𝑝𝑝𝑖𝑖)) if 𝑝𝑝𝑖𝑖 < 𝑝𝑝𝑖𝑖

Batching policy 
frequency

Fluid matching frequency

• Proof uses basic probability inequalities
• If 𝑝𝑝𝑖𝑖 < 1 − 𝜖𝜖 𝑝𝑝𝑖𝑖, then 𝒪𝒪(𝑒𝑒−𝜏𝜏𝜏𝜏), else, discard type 𝑖𝑖 arrivals w.p. 𝜖𝜖



Analysis for a single pair {𝒊𝒊, 𝒋𝒋}

Greedy policy
• Discrete-time Markov chain

• Chain is ergodic with unique stationary distribution 𝜋𝜋 
• Matching frequency is ∑𝑆𝑆 𝜋𝜋 𝑆𝑆 𝛼𝛼(𝑆𝑆)
• 𝛼𝛼(𝑆𝑆) is number of matches in state 𝑆𝑆 following greedy policy 

State 𝑆𝑆

3 2 1 

𝑖𝑖 1 1 0

𝑗𝑗 1 0 0
𝛼𝛼 𝑆𝑆 = 1

remaining day



Analysis for a single pair {𝒊𝒊, 𝒋𝒋}

Transition process

period period

State 

1 1 0

1 0 0

Post-state 

The policy matches 
available pairs

State 

Remaining periods 
decrease by 1

Next state 

New node types 
arrive

0 1 0

1 0 0

1 1 0

1 0 0

1 0 0

0 0 0

2 1

1 0

0 0



Analysis for a single pair {𝒊𝒊, 𝒋𝒋}

Next state State 

(1)

(3)

(2)

w.p. 

w.p. 

w.p. 

w.p. 

Post-state 

2 1

1 0

0 0

1 1 0

1 0 0

1 1 0

0 0 0

0 1 0

1 0 0

0 1 0

0 0 0

1 0 0

0 0 0

1 1 0

1 0 0

1 0 1

1 0 0

1 0 1

0 0 0



Analysis for a single pair {𝒊𝒊, 𝒋𝒋}

The long-run average matching frequency is

   
𝑝𝑝 − 𝑝𝑝 1−𝑝𝑝

1+2 𝜏𝜏−1 𝑝𝑝
 𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖 = 𝑝𝑝 

𝑝𝑝𝑖𝑖 −
𝑝𝑝𝑗𝑗−𝑝𝑝𝑖𝑖 𝑝𝑝𝑖𝑖 1−𝑝𝑝𝑖𝑖

𝑝𝑝𝑗𝑗 1−𝑝𝑝𝑗𝑗 𝑞𝑞−2𝜏𝜏−𝑝𝑝𝑖𝑖 1−𝑝𝑝𝑖𝑖
 𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖 < 𝑝𝑝𝑖𝑖 , 𝑞𝑞 = 1−𝑝𝑝𝑗𝑗

1−𝑝𝑝𝑖𝑖
< 1

• Proof relies on solving balance equations in Markov chain 
• If 𝑝𝑝𝑖𝑖 < 1 − 𝜖𝜖 𝑝𝑝𝑖𝑖, then 𝒪𝒪((1 + 𝜖𝜖)−𝜏𝜏), else, discard type 𝑖𝑖 arrivals w.p. 𝜖𝜖



Fluid LP Relaxation

max
𝑧𝑧≥0

�
𝑖𝑖,𝑖𝑖∈𝑁𝑁

𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖 : �
𝑖𝑖∈𝑁𝑁\𝑖𝑖

𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖 ,∀𝑖𝑖 ∈ 𝑁𝑁

𝑧𝑧𝑖𝑖𝑖𝑖 : average matching frequency of a pair {𝑖𝑖, 𝑗𝑗}



Analysis for the general case 

Randomization

• 𝑧𝑧𝑖𝑖𝑖𝑖∗  : optimal solution of the fluid relaxation 

• ̅𝑧𝑧𝑖𝑖𝑖𝑖  = 𝑧𝑧𝑖𝑖𝑖𝑖∗ /∑𝑖𝑖∈𝑁𝑁\𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖∗  (normalized, asymmetric)

• Assign arriving type 𝑖𝑖 node to sub-type (𝑖𝑖, 𝑗𝑗) w.p. ̅𝑧𝑧𝑖𝑖𝑖𝑖

max
𝑧𝑧≥0

�
𝑖𝑖,𝑖𝑖∈𝑁𝑁

𝑤𝑤𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖 : �
𝑖𝑖∈𝑁𝑁\𝑖𝑖

𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖 ,∀𝑖𝑖 ∈ 𝑁𝑁

1 2 3 

𝑖𝑖

𝑗𝑗

𝑘𝑘 𝑗𝑗  

𝑘𝑘 𝑗𝑗   

𝑖𝑖 

Day



Analysis for the general case 

Policy comparison
• Batching dominates its randomized counterpart
• Modified Greedy policy: only optimize among nodes that randomized 

policy would have matched, delay executing matches

1 3 5 

𝑖𝑖

𝑗𝑗

𝑘𝑘

𝑖𝑖  

2 4 

𝑖𝑖 

𝑘𝑘 𝑗𝑗 

𝑘𝑘 

Day

𝑗𝑗 

1 3 5 

𝑘𝑘  

2 4 

𝑖𝑖 

𝑗𝑗 𝑗𝑗 

𝑖𝑖 

𝑘𝑘 



Impatient nodes

Unmatched node 𝑖𝑖 abandons the system w.p. 𝑑𝑑𝑖𝑖 𝜏𝜏  in each period 

Batching policy
• If 𝑑𝑑𝑖𝑖 𝜏𝜏 = 1/𝜏𝜏 and 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖 = 𝑝𝑝, 
  matching frequency → 𝑝𝑝(1 − 1/𝑒𝑒) < 𝑝𝑝 = greedy matching frequency 

Greedy policy 
• If 𝑑𝑑𝑖𝑖 𝜏𝜏 = 1 − 𝜖𝜖, 𝜖𝜖 > 0 and 𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑖𝑖 = 𝑝𝑝 < 1, 
   matching frequency → 𝑝𝑝2 < 𝑝𝑝 = fluid matching frequency 

Policy Assumption
Batching 𝑑𝑑𝑖𝑖 𝜏𝜏 = 𝒪𝒪(𝜏𝜏−𝛽𝛽) for 𝛽𝛽 > 1, 𝑖𝑖 ∈ 𝑁𝑁

Randomized Greedy 𝑑𝑑𝑖𝑖 𝜏𝜏 = 𝜊𝜊(1), 𝑖𝑖 ∈ 𝑁𝑁



Computational study

Ridesharing marketplace
• Manhattan, New York City (69 taxi zones)
• For-hire vehicle record, NYC Open Data platform 

(February 2020, 6-10 am, Mon to Fri except holidays)
• Matching reward for a request pair : travel miles saved 

Simulation parameters
• Policies : myopic, (delayed) greedy, batching, offline benchmark
• Time unit: 10 seconds 
• Time horizon length : 1 hour (360 periods) 
• 𝜏𝜏 ∈ {6, 9, 12, 15, 18}
• Simulation replication : 200 

Image source: NYC Taxi & Limousine Commission website



Computational study



Computational Study



Conclusions

• Prove asymptotic optimality of two widely used policies 
• batching and greedy policies 
• dynamic stochastic non-bipartite matching 
• freight transportation and ridesharing marketplaces 

• Extend to impatient setting 

• Show these policies perform well in practice with reasonably small 
sojourn periods 

• Motivate models in which 
• matching reward depends on its nodes’ waiting times 
• nodes’ sojourn periods are random 

sites.gatech.edu/alejandro-toriello
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