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Abstract
We study a dynamic non-bipartite stochastic matching problem, where nodes appear following a

type-specific independent distribution and wait in the system for a given sojourn time. This problem
is motivated by applications in ride-sharing and freight transportation marketplaces, and is related to
other on-demand marketplaces. We study the asymptotic properties of two widely used policies, batch-
ing and greedy, by analyzing a single-pair case and then converting to the general counterpart using a
fluid relaxation and randomization. Finally, we present a computational study simulating freight trans-
portation and ride-sharing marketplaces to assess the empirical effectiveness of the policies. We show
that the batching policy is asymptotically optimal with respect to the sojourn time; similarly, while a
straightforward greedy policy may not be optimal, a greedy policy with randomized modifications is
asymptotically optimal. Perhaps more practically relevant, both policies converge exponentially fast to
approximate optimality. We also extend our model to an impatient setting in which each unmatched node
leaves at the end of each period with a type-dependent probability. We show that the results for the two
policies still hold under different assumptions about the nodes’ patience; roughly speaking, the batching
policy requires more patient nodes than the greedy policy to remain optimal. Our results suggest that
managers can achieve near-optimal performance by using simple greedy or batching policies, with only
a reasonably small maximum waiting time guarantee, and even in the presence of potentially impatient
nodes.

1 Introduction

Dynamic matching models arise in many applications, including organ exchanges (Anderson et al. 2017),

e-commerce platforms and online advertisement (Blanchet et al. 2022). In transportation systems, dynamic

matching models underpin applications such as ride-hailing (Zhang and Nie 2021), ride-sharing (Wang

et al. 2018), and freight transportation marketplaces (Montecinos et al. 2021), where drivers and riders or

multiple transport tasks are matched. Motivated by these applications, particularly ride-sharing and freight

transportation markets, we study a dynamic non-bipartite stochastic matching problem.

The rise of the sharing economy has increased interest in dynamic matching systems, particularly in

transportation platforms. As Feng et al. (2021) point out, system managers and policy makers struggle

1



to understand the efficiency of on-demand transportation systems and its impact on agent waiting times.

One way to assess the trade-off between increasing market thickness and agent delays is to fix a sojourn

period, the maximum time an agent waits in the system, and optimize the system’s average reward given

this maximum. A fixed sojourn period enables the system manager to provide a service guarantee: agents

will not wait longer than this time. Our main research question is whether the system can achieve near-

optimal performance with a reasonably small sojourn period in dynamic matching markets.

Matching policies are another crucial factor that managers need to determine. To solve dynamic non-

bipartite matching problems, several heuristics have been proposed in the literature and used in practice;

batching and greedy policies are two of the most widely used (e.g. Yan et al. 2020). Roughly speaking, a

batching policy accumulates a batch of arriving nodes within a fixed period of time and optimizes matches

over each such batch. Conversely, a greedy policy makes matching decisions as opportunities arise by

optimizing over available nodes. These policies are appealing because they are easy to implement, work

well in practice, and do not require much detailed information or assumptions, such as knowledge of node

arrival distributions. In spite of their prevalence, there have only been a limited number of studies analyzing

the performance of these policies (e.g. Anderson et al. 2017, Aouad and Saritaç 2022, Ashlagi et al. 2022).

In this work, we analyze the asymptotic properties of both.

Consider a freight transportation market, where shipment requests dynamically appear over time and a

broker platform either assigns or auctions these requests to carriers. Since carriers (usually truck drivers)

want to avoid deadheading, i.e. driving without a paying load, the platform may endeavor to bundle re-

quests to reduce the deadhead distance, which reduces the platform’s overall shipping costs. In principle,

any number of requests can be bundled, but grouping more than two requests may introduce operational

complexities, such as the potential for cascading effects if the first shipment in a bundle is delayed; for these

and other reasons, the platform may prefer to bundle only pairs of requests.

We can model the platform’s system as a dynamic non-bipartite matching problem in which nodes are

shipment requests and the matching reward for a request pair is proportional to the deadhead distance saved

if the same vehicle performs the requests sequentially instead of having each request served by a different

vehicle that must deadhead back to its origin. An analogous model applies to ride-sharing and other similar

applications, using different matching rewards. We study the case in which node arrivals in each period

follow a type-specific, i.i.d. distribution and wait in the system for a given uniform sojourn period. Our

concrete motivation comes from transportation marketplace applications, where the sojourn time represents
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the maximum waiting time the platform guarantees to shippers before a load is transported.

1.1 Contributions

Assuming the objective is to maximize the long-run average reward, our main contribution is to study the

asymptotic properties of batching and greedy policies in a setting where node arrivals follow type-specific

independent distributions and each node remains in the system for a fixed sojourn period τ ∈N. The batch-

ing policy solves a maximum-reward matching problem and clears out the system every τ periods. The

greedy policy solves a maximum-reward matching problem every period given the set of available nodes.

A straightforward implementation of the greedy policy may not be optimal, so in our analysis we randomly

restrict each node’s compatibility based on a fluid relaxation of the system. To simplify terminology, we

refer to our randomized greedy policy simply as a greedy policy when there is no danger of confusion.

We preview the main results in Table 1; we denote the average reward of the batching, greedy, and

optimal policies respectively as B, G, and OPT . We note that the batching policy is oblivious to node type

arrival distributions and uses only rewards and the sojourn time; the randomized greedy policy also requires

expected arrivals per period by type, but no other distributional information.

Policy Result Arrival Dist.
Batching B(τ)≥ OPT (τ)−O(1/

√
τ) finite variance

Batching B(τ)≥ (1− ε)OPT (τ)−O(e−τε) for small ε > 0 bounded support
Randomized Greedy G(τ)≥ OPT (τ)−O(1/τ) bounded support
Randomized Greedy G(τ)≥ (1− ε)OPT (τ)−O((1+ ε)−τ) for small ε > 0 bounded support

Table 1: Summary of convergence rate results and necessary assumptions.

We interpret our results as asymptotic properties of the batching and greedy policies with respect to the

sojourn period. By instead re-scaling arrival rates and keeping the sojourn period constant, our results also

apply to large-market regimes in which the arrival rates increase.

We also extend our model to consider impatient nodes, where each unmatched node leaves the sys-

tem with some type-dependent probability at the end of each period; see Aouad and Saritaç (2022) for a

similar model in continuous time, where all agents have the same departure probability. Let d(τ) denote

this departure probability; we show that the results in Table 1 continue to hold for the batching policy if

d(τ) = O(τ−β ) for β > 1, and they continue to hold for the randomized greedy policy if d(τ) = o(1). In

other words, the batching policy is slightly more vulnerable to impatience, while the randomized greedy

policy requires less patience to remain asymptotically optimal.
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1.2 Related Literature

We briefly review the literature on dynamic matching, starting with the following two papers, which are

most closely related to our study. Aouad and Saritaç (2022) study a dynamic stochastic matching problem

in continuous time, where nodes arrive according to a Poisson process and their sojourn times are drawn

independently from type-specific exponential distributions. Ashlagi et al. (2022) study an online matching

problem in discrete time with adversarial arrivals, where vertices have a uniform and fixed sojourn time.

Both papers develop heuristic policies with multiplicative worst-case performance guarantees. Our research

focuses on an online stochastic matching problem in discrete time with a fixed and uniform sojourn time,

and we provide asymptotic performance guarantees for the policies we analyze.

Regarding the batching policy, Aouad and Saritaç (2022) show that it may perform arbitrarily bad in

their model by varying certain parameters but keeping the expected sojourn times fixed. Conversely, we

show the asymptotic optimality of the batching policy as the sojourn time grows.

Other than these two papers, there have been a few studies related to dynamic non-bipartite matching.

Collina et al. (2020) study a similar arrival model to Aouad and Saritaç (2022), and develop a linear pro-

gramming (LP)-based algorithm, which gives a weaker competitive ratio bound. Ezra et al. (2022) propose

prophet inequality algorithms for online weighted matching under vertex and edge arrival settings. Under

the edge arrival setting they consider, an edge weight is revealed on arrival and their algorithm decides

whether to include the arriving edge in the matching or not. Several research papers focus on the maximum

reward matching problem in a fully dynamic graph, in which edges appear and disappear over time (Bhat-

tacharya et al. 2016, 2022, Behnezhad et al. 2020, Neiman and Solomon 2015, Bernstein et al. 2021). Here,

the decision maker may change matching decisions as edge insertions and deletions occur. The goal is to

design an algorithm with a good approximation ratio and small “update time”, the time to process a sin-

gle edge-change to the graph. For example, Bhattacharya et al. (2022) propose randomized approximation

algorithms with poly-logarithmic update time and an approximation ratio strictly better than 2.

Dynamic non-bipartite matching models have also received attention in the queueing literature, where

nodes arrive sequentially and wait in queues until being matched; several research papers analyze the per-

formance of greedy policies. Kerimov et al. (2022) proved a greedy longest-queue policy with a minor

variation is hindsight-optimal. In finite-horizon multi-way matching, which is motivated by online resource

allocation, Gupta (2022) proved the efficacy of the greedy algorithm under certain conditions. Some papers
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focus on the trade-off between maximizing the total reward and keeping the queues stable. Nazari and Stol-

yar (2019) proposed an asymptotically optimal matching policy that keeps the queues stable. The models

considered in this queueing literature are different from ours in that there is no limit on node waiting time.

In our model, we need to decide whether to match a node or let it leave the system when its waiting time

reaches a given limit, the sojourn time.

Although we consider a non-bipartite graph, there is extensive literature regarding online bipartite

matching, which is also related to our research. The classical setting for online bipartite matching, in-

troduced by Karp et al. (1990), is a system where one side of the bipartition is fixed and known in advance,

while nodes from the other side appear sequentially and must immediately be matched or discarded. Karp

et al. (1990) studied an adversarial arrival setting, and subsequently Feldman et al. (2009) were the first to

consider an i.i.d. stochastic arrival model, in which arriving nodes are drawn repeatedly from a known uni-

form distribution. As we study stochastic matching in this paper, we restrict our attention to online bipartite

stochastic matching. Many papers design a heuristic policy with a performance guarantee relying on an LP

relaxation, often with network flow structure (Feldman et al. 2009, Bahmani and Kapralov 2010, Brubach

et al. 2016, Manshadi et al. 2012, Jaillet and Lu 2014). Others focus on the derivation of strong relaxations

(Torrico et al. 2018, Torrico and Toriello 2022). For additional results, we refer the reader to the survey by

Mehta (2013).

In a bipartite matching setting where both sides are dynamic, many studies propose simple policies

and analyze their asymptotic properties. When node arrivals follow independent Poisson processes and

sojourn times are exponentially distributed, Özkan and Ward (2020) propose a matching policy based on

a linear program and Blanchet et al. (2022) propose two types of one-parameter policies, population and

utility threshold policies. Aveklouris et al. (2021) consider a weaker assumption that node arrivals follow a

type-specific renewal process and sojourn periods follow a type-specific known distribution with bounded

supports. They propose discrete review matching and state-independent priority policies and prove their

asymptotic optimality under additional assumptions. Like the approaches used in these papers, we prove the

asymptotic optimality of the batching and greedy policies by relying on a fluid relaxation.
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2 Problem Description

We consider a discrete-time model with a finite set N representing different node types that may appear

each period. A node of type i ∈ N appears in each period following a type-specific independent distribution.

Let X t
i be the random variable for the number of arrivals of type i in period t. For each type i, X t

i for any

t ∈ N is independent and identically distributed, and for simplicity we denote by Xi the random variable for

the number of arrivals of type i in an arbitrary period; we assume all Xi have finite support unless otherwise

noted. Each type remains in the system for a sojourn period τ ∈N. That is, a node arriving in period t leaves

the system immediately before period t+τ if it is unmatched. If nodes of type i and j are matched, they yield

a reward wi j ≥ 0 and immediately leave the system; we assume wi j = 0 if types i and j are incompatible,

and thus we assume the edge set E is complete without loss of generality. In particular, we assume wii = 0

for any type, i.e. two nodes of the same type are incompatible. The objective is to maximize the long-run

average reward. Throughout the paper, we use the shorthand [n] := {1, . . . ,n} for every integer n ∈ N. For

convenience of notation, we use (i,r) to represent a node of type i with r remaining periods, for i ∈ N and

r ∈ [τ].

Recall that we evaluate the long-run average reward obtained from batching and greedy policies as a

function of the sojourn time τ . We denote the average reward of the batching, greedy and optimal policies

respectively as B, G and OPT . Theorem 1 gives our main results.

Theorem 1. Let H(τ) be the long-run average reward for policy H, given sojourn time τ . Assuming all X t
i

have bounded support,

B(τ)≥ OPT (τ)−O(1/
√

τ),

B(τ)≥ (1− ε)OPT (τ)−O(e−τε) for small ε > 0,

G(τ)≥ OPT (τ)−O(1/τ),

G(τ)≥ (1− ε)OPT (τ)−O((1+ ε)−τ) for small ε > 0.

In Sections 3 and 4, we provide the proofs for Theorem 1. They rely on the analysis for a single-pair

case and the conversion from the single-pair case to the general counterpart using an LP relaxation and

randomization. Before the proofs, we formally describe our problem in what follows.
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2.1 Markov Decision Process Formulation

We present an infinite-horizon average reward Markov decision process (MDP) formulation for the dynamic

matching problem. Let Sr
i be the number of nodes of type i with r remaining periods in the system. We

define state S by a sequence of Sr
i for i ∈ N and r ∈ [τ]. To ease notation, we use S = (Sτ , . . . ,S1), where

Sr is a subsequence {Sr
i }i∈N . We denote the state space by S , which is finite when all X t

i have bounded

support. A matching action x is an integer vector satisfying matching constraints, namely that an edge

incident to a node of type i with r remaining periods can be used up to Sr
i times. The action space at state S

is X (S) = {x ∈ ZE
+ : ∑e∈δ (i,r) xe ≤ Sr

i , i ∈ N,r ∈ [τ]}. We denote by Sr(x) the post-decision vector of nodes

that are not matched by x, i.e. Sr
i (x) = Sr

i −∑e∈δ (i,r) xe. At the end of each period, the number of remaining

periods of each unmatched node decreases by 1; if this becomes 0, the node immediately leaves the system.

Subsequently, nodes with τ remaining periods appear following the corresponding arrival distributions.

That is, for each S,U ∈ S and x ∈ X (S), the transition probability P(U |S,x) is φ(Uτ) = ∏
i∈N

P(Xi = Uτ
i )

if U r = Sr+1(x), r ∈ [τ − 1], and equals zero otherwise. The reward for action x at state S is the sum of its

matching rewards, ∑e∈E wexe.

Since this MDP is communicating and has a finite state space, the optimal expected average reward is

constant (Puterman 2014). We denote the expected average reward and bias respectively as η and v(S); the

LP formulation for the model is

{
min η : η + v(S)−∑φ(R)v(R,Sτ(x), . . . ,S2(x))≥ ∑

e∈E
wexe, S ∈ S ,x ∈ X (S)

}
, (1)

where R represents the vector of new arrivals. The dual of (1) is

max
z≥0

∑
S∈S ,x∈X (S)

z(S,x) ∑
e∈E

wexe

s.t. ∑
y∈X (U)

z(U,y)− ∑
S∈S ,x∈X (S): U r=Sr+1(x) ∀r∈[τ−1]

φ(Uτ)z(S,x) = 0, U ∈ S (2a)

∑
S∈S ,x∈X (S)

z(S,x) = 1, (2b)

where z(S,x) encodes the probability of arriving at state S and choosing action x in any given period.
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2.2 Linear Programming Relaxation

Next, we construct a fluid relaxation of the MDP, which we use as a benchmark. We begin by presenting a

property of this problem.

Proposition 2. There exists an optimal deterministic policy that matches nodes only if at least one of them

is about to leave the system, i.e. it only has one remaining period.

Proof. By standard results in Markov decision processes, the problem has an optimal deterministic policy

(Puterman 2014). Let π be an arbitrary deterministic optimal policy. Suppose there exists a state S such that

the optimal matching decision at S following π contains pairs with no expiring node. Denote such pairs by

M. For any sample path, whenever S appears, it is possible to modify the path by postponing each pair in M

until one of its nodes is about to leave. Since this does not change the average reward, the policy following

the modified sample path is optimal. This modification can be repeated as necessary until π satisfies the

claimed property.

By Proposition 2, we can assume that nodes are matched only if at least one of them is about to leave

the system. Based on this additional assumption, we can assume that E consists only of edges incident to

expiring nodes. By introducing aggregating variables and rewriting the constraints in (2), we construct an

LP formulation, which we utilize as a benchmark throughout this paper:

max
z≥0

{
∑

i, j∈N
wi jzi j : ∑

j∈N
zi j ≤ E[Xi], i ∈ N

}
. (3)

Proposition 3. The LP (3) is a relaxation of (2).

We defer the proof of the proposition to Appendix A.1.

3 Convergence Analysis for a Single Pair

Next, we show convergence results for a single node pair {i, j}.

3.1 Batching Policy

For a single node pair {i, j}, the batching policy has a long-term matching frequency of E[min{Ai,A j}]/τ ,

where Ai is the number of type i arrivals within the batching interval τ , Ai = ∑
τ
t=1 X t

i .
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Proposition 4. Let Ai and A j respectively be the sum of τ independent and identically distributed random

variables with finite variance, Ai = ∑
τ
t=1 X t

i ,A j = ∑
τ
t=1 X t

j . Then,

lim
τ→∞

E[min{Ai,A j}]
τ

= min{E[Xi],E[X j]}.

The gap between the left and right-hand side is O(1/
√

τ), and may be Θ(1/
√

τ), for example when Xi

and X j are both Bernoulli random variables with probability 1/2. When E[Xi] < E[X j] and both random

variables have finite support, the gap is O(e−τ(E[X j]−E[Xi])).

Proof. Without loss of generality, assume E[Xi]≤ E[X j]; then,

E[|Ai −A j|]≤ E[|Ai −A j −E[Ai −A j]|]+E[|E[Ai −A j]|]

≤
√
E[|Ai −A j −E[Ai −A j]|2]+ (E[A j]−E[Ai])

=
√

Var[Ai −A j]+ (E[A j]−E[Ai]).

The first inequality follows from the triangle inequality, and the second from Jensen’s inequality. We then

get

E[min{Ai,A j}] =
1
2
(E[Ai +A j]−E[|Ai −A j|])

≥ E[Ai]−
1
2

√
(Var[Ai −A j]) = τE[Xi]−

1
2

√
τ(Var[Xi]+Var[X j]).

We defer the proof for the existence of an instance where the convergence rate is tight to Appendix A.3.

Finally, we prove that the convergence rate is O(e−τ(E[X j]−E[Xi])) when E[Xi] < E[X j]. Since Xi and X j

have bounded supports, there exists a finite m ∈ N such that P(X j −Xi ≤ m) = 1. We first derive an upper

bound on the expectation of the positive components of Ai −A j,

E[(Ai −A j)1{A j−Ai<0}]≤ E[τm1{A j−Ai<0}] = τmP(A j −Ai < 0)

= τmP
(

A j −Ai − τ(E[X j]−E[Xi])<−τ(E[X j]−E[Xi])
)

≤ 2τmexp
(
− 2τ

m2 (E[X j]−E[Xi])
2
)
,

where the first inequality is by the definition of m and the second follows from Hoeffding’s inequality. Using

9



this, we get

E[|A j −Ai|] = E[(A j −Ai)−2(A j −Ai)1{A j−Ai<0}] = E[(A j −Ai)]+2E[(Ai −A j)1{A j−Ai<0}]

≤ E[(A j −Ai)]+4τmexp
(
− 2τ

m2 (E[X j]−E[Xi])
2
)
.

Finally, it follows that

E[min{Ai,A j}] =
1
2

(
E[Ai +A j]−E[|A j −Ai|]

)
≥ E[Ai]−2τmexp

(
− 2τ

m2 (E[X j]−E[Xi])
2
)
.

By Proposition 4, the long-run average matching frequency of a pair {i, j} following the batching policy

converges to the optimal solution of the LP (3) with an optimality gap of O(1/
√

τ). The convergence is

exponentially fast when E[Xi] < E[X j], which allows us to establish exponential convergence to (1− ε)-

optimality: if E[Xi] ≤ (1− ε)E[X j], then batching converges to optimality with O(e−τε) gap; otherwise,

we randomly discard every arrival of type i independently with probability ε before applying the batching

policy. This random discarding reduces the expected number of type i arrivals to no more than (1−ε)E[X j],

which ensures convergence with gap O(e−τε) to (1− ε)E[Xi] = (1− ε)min{E[Xi],E[X j]}.

In addition, there exist instances where this gap is tight. In the next section, we show that the long-run

average matching frequency of a pair {i, j} following the greedy policy converges to the optimum with an

optimality gap of O(1/τ). We conclude that there are instances where the batching policy converges to the

optimum with an optimality gap of Θ(1/
√

τ).

3.2 Greedy Policy

We will find a closed-form equation for the long-run average matching frequency of a pair {i, j} following

the greedy policy. In the case of a single pair, the greedy policy is simple: execute a match whenever

possible; if multiple nodes of one type are available to match, choose the node that has waited the longest.

We analyze a discrete-time Markov chain with state defined to be the sequence of the number of (node

type, remaining period) combinations in the system, a Markov reward process where we apply the greedy

policy. If this chain is ergodic and has a stationary distribution π , we can compute the long-run average

matching frequency of {i, j} as ∑S∈S π(S)α(S), where α(S) is the number of matches made in state S

following the greedy policy. We first present some properties of the chain, show its ergodicity and the
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existence of the stationary distribution. Next, we establish a transition diagram; based on the transition

diagram, we propose a weight function satisfying the detailed balance equations. By normalizing the weight

function, we obtain a stationary distribution, and compute the long-run average matching frequency for

{i, j}.

For this analysis, we first assume node type arrivals follow Bernoulli distributions, Xi ∼ Bernoulli(pi),

X j ∼ Bernoulli(p j) for pi, p j ∈ (0,1]. Under this assumption, we use a simplified state notation, S =

(Sτ
i , . . . ,S

1
i ,S

τ
j , . . . ,S

1
j), where Sr

i ,S
r
j ∈ {0,1} for r ∈ [τ]. We begin by presenting properties of the Markov

chain resulting from a Markov reward process with the greedy policy.

Lemma 5. For S ∈ S , if there exists r ∈ [τ −1] with Sr
i = 1, then St

j = 0 ∀t ∈ [τ −1], and vice versa.

Proof. Suppose not; then, there exist r, t ∈ [τ −1] such that Sr
i = 1,St

j = 1, implying the previous state had

an available pair Sr+1
i = 1 and St+1

j = 1 that was not matched, a contradiction.

We note that Lemma 5 does not say anything about period τ . That is, even if there exists r ∈ [τ − 1]

such that Sr
i = 1, Sτ

j can be 1 when there is a new node arrival of type j. This newly arrived node of type

j is matched with any existing node of type i (if one exists) and both leave the system at the end of the

period. Afterwards, the remaining period of each remaining node is decreased by 1. Lastly, new node

arrivals possibly occur. Figure 1 depicts an example of this process. Let f (S) be the post-state of S, the state

immediately before new arrivals occur. That is, f (S) = ( fi(S), f j(S)), where fi(S) is a sequence of length

(τ −1) for type i, and similarly for type j. At the beginning of a period, the policy matches available pairs,

colored in gray in the figure. Matched nodes leave the system, and the remaining period for each node still

in the system decreases by 1. The post-state is defined with these nodes, colored blue and green in the figure.

The next state is then defined by adding any newly arrived nodes.

Notice that f (S) is deterministic for a given state S, and the randomness of the next state arises from the

newly arrived node types. We formally describe this state transition in the following lemma.

Lemma 6. For each state S ∈ S , the next state is (a, fi(S),b, f j(S)) with probability P(Xi = a)P(X j = b)

for a,b ∈ {0,1}.

Proof. Since f (S) is deterministic, the state transition probability only depends on the probability of new

arrivals.
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period period

State 

1 1 0

1 0 0

Post-state 

The policy matches 

available pairs

State 

Remaining periods 

decrease by 1

Next state 

New node types 

arrive

0 1 0

1 0 0

1 1 0

1 0 0

1 0 0

0 0 0

2 1

1 0

0 0

Figure 1: An instance of a transition diagram when τ = 3.

Lemma 7. The Markov chain resulting from a Markov reward process following the greedy policy is irre-

ducible and aperiodic.

Proof. We show that any state in S is communicating with the empty state, which is a zero sequence of

length 2τ . Let S ∈ S be an arbitrary state. The transition probability from S to the empty state is greater

than or equal to
(
P(Xi = 0)P(X j = 0)

)τ , the probability that neither type i nor j arrive for τ periods. Since

this value is positive, the empty state is reachable from S.

The transition probability from the empty state to S is greater than or equal to ∏r∈[τ]P(Xi = Sr
i )P(X j =

Sr
j), the probability that nodes corresponding to S appear. This value is also positive, which implies S is

reachable from the empty state.

The period of the empty state is 1, because the probability of its self loop is greater than or equal to

P(Xi = 0)P(X j = 0), which is positive. Thus, this chain is aperiodic.

Since the state space S is finite and the chain is irreducible, there exists a unique stationary distribution.

In addition, by the aperodicity of the chain, the limiting distribution exists and converges to the stationary

distribution. Therefore, by solving detailed balance equations, we can find the stationary distribution. To do

so, we need to clearly identify the transitions among states. We draw a sample partial transition diagram in

Figure 2.

Recall that given state S, its next state depends on post-state f (S) and new arrivals. This implies that

a set of states with the same post-state follow the same transition. For example, in Figure 2 the transition

probabilities from the states drawn on the leftmost side to state (1,1,0,1,0,0) all equal pi p j. The states on
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Next state State 

(1)

(3)

(2)

w.p. 

w.p. 

w.p. 

w.p. 

Post-state 

2 1

1 0

0 0

1 1 0

1 0 0

1 1 0

0 0 0

0 1 0

1 0 0

0 1 0

0 0 0

1 0 0

0 0 0

1 1 0

1 0 0

1 0 1

1 0 0

1 0 1

0 0 0

Figure 2: Sample transition diagram when τ = 3.

the leftmost side consist of three groups: Group (1) is a singleton set with the state constructed by increasing

the remaining period of the nodes in the post-state by 1 and assuming no nodes with remaining period 1,

i.e. ( fi(S),0, f j(S),0). Group (2) is a set of states in which a match with a newly arrived node of type j

and a previously existing node of type i occurs; the nodes colored in gray represent matches. Group (3) is a

singleton set with the state constructed by increasing the remaining period of nodes in the post-state by 1 and

adding a node of type i with remaining period 1 which leaves the system unmatched, i.e. ( fi(S),1, f j(S),0);

the node colored in yellow leaves the system unmatched. We formally describe the transitions and propose

a function satisfying detailed balance equations in Proposition 8.

Proposition 8. Define a function h : S → R with

h(S) = P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j )×


(1− p j)

τ−r(Si)( pi
1−pi

)|T (Si)| if T (Si) ̸= /0,T (S j) = /0

(1− pi)
τ−r(S j)(

p j
1−p j

)|T (S j)| if T (Si) = /0,T (S j) ̸= /0

1 if T (Si) = /0,T (S j) = /0,

where r(Si) = min{t ∈ [τ − 1] : St
i = 1} is the smallest remaining period of a node of type i in S, T (Si) =

{t ∈ [τ −1] : St
i = 1} is the set of remaining periods of nodes of type i in S, and r(S j) and T (S j) are defined

analogously. This h satisfies the Markov chain’s balance equations.

Note that there is no state with T (Si) ̸= /0 and T (S j) ̸= /0, by Lemma 5.

Proof. Let S be an arbitrary state in S . Let g(S) be the subsequence of S consisting of node types with

13



remaining period less than τ . That is, g(S) = (gi(S),g j(S)) where gi(S) = (Sτ−1
i , . . . ,S1

i ). Following from

Lemma 6, the transition probability from U to S is P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j ) if f (U) = g(S), and zero other-

wise. In addition, by Lemma 5, gi(S) or g j(S) is a zero sequence.

We first consider the case when both gi(S) and g j(S) are zero sequences. The list of states U such that

f (U) = g(S) is

1. Ui = (0,0, . . . ,0), U j = (0,0, . . . ,0)

2. Ui = (0,0, . . . ,0) + et , U j = (1,0, . . . ,0) for t ∈ [τ]

3. Ui = (1,0, . . . ,0), U j = (0,0, . . . ,0) + et for t ∈ [τ −1]

4. Ui = (0,0, . . . ,1), U j = (0,0, . . . ,0)

5. Ui = (0,0, . . . ,0), U j = (0,0, . . . ,1) ,

where et is the t-th standard vector, e.g. e1 = (0,0, . . . ,1). In case (2), a node of type i with remaining period

t is matched with a newly arrived node of type j. Case (3) is the reverse; we exclude t = τ in case (3)

because it is already included in case (2). In case (4), a node of type i with remaining period 1 leaves the

system unmatched, and case (5) is the reverse. Plugging in function h, the in-flow amount to S is

P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j )
[
(1− pi)(1− p j)+(1− pi)p j ∑

t∈[τ]
(1− p j)

τ−t
( pi

1− pi

)
+

pi(1− p j) ∑
t∈[τ−1]

(1− pi)
τ−t

( p j

1− p j

)
+(1− pi)(1− p j)(1− p j)

τ−1
( pi

1− pi

)
+

(1− pi)(1− p j)(1− pi)
τ−1

( p j

1− p j

)]
.

We show that the summation in the square brackets is equal to 1 in Appendix A.5. Then, it follows that the

in-flow amount to S is P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j ). Since we are considering the case when gi(S) and g j(S) are

zero sequences, h(S) = P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j ). Thus, we conclude that the in-flow amount to S is h(S).

We next assume that gi(S) is not a zero sequence. The list of states U such that f (U) = g(S) is

1. Ui = (gi(S),0), U j = (0,0, . . . ,0)

2. Ui = (gi(S),0) + et , U j = (1,0, . . . ,0) for t ∈ [r(Si)]

3. Ui = (gi(S),1), U j = (0,0, . . . ,0) .
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In case (2), a node of type i with remaining period t is matched with a newly arriving node of type j. In case

(3), a node of type i leaves the system unmatched. Plugging in function h, we can verify that the in-flow

amount to S is equal to h(S) following steps similar to the previous argument. The same reasoning applies

when g j(S) is not a zero sequence.

We obtain the stationary distribution π by normalizing h, since S is finite. Using π , we can compute

the long-run average matching frequency of pair {i, j}.

Proposition 9. The long-run average matching frequency of pair {i, j} under the greedy policy is


p− p(1−p)

1+2(τ−1)p if pi = p j = p

pi −
(p j−pi)pi(1−pi)

p j(1−p j)q−2τ−pi(1−pi)
if pi < p j,q =

1−p j
1−pi

< 1.

Proof. Let S = (Si,S j) be an arbitrary state in S . By Lemma 5, there are three possible cases:

1. Si : T (Si) ̸= /0,T (S j) = /0

2. S j : T (Si) = /0,T (S j) ̸= /0

3. S0 : T (Si) = /0,T (S j) = /0.

In case (1) (case (2)), the decision maker executes one match if Sτ
j = 1 (Sτ

i = 1). In case (3), the decision

maker executes one match if Sτ
j = 1 and Sτ

i = 1. Thus, the long-run average matching frequency is

P(Sτ
j = 1) ∑

S∈Si

π(S)+P(Sτ
i = 1) ∑

S∈S j

π(S)+P(Sτ
i = 1)P(Sτ

j = 1) ∑
S∈S0

π(S),

which is equivalent to

1
∑S∈S h(S)

[
p j ∑

S∈Si

h(S)+ pi ∑
S∈S j

h(S)+ pi p j ∑
S∈S0

h(S)
]
.

By plugging in h and rearranging the terms, we obtain the equations in the proposition. We present the

details in Appendix A.6.

As a result, the long-run average matching frequency is pi−O(1/τ) when pi = p j, and pi−O((
1−p j
1−pi

)τ)

when pi < p j. The latter result allows us to establish the exponential convergence to (1− ε)-optimality, in

a similar fashion to the batching policy.
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We generalize the convergence result for Bernoulli distributions to general discrete distributions with

bounded support by using randomization of Markov chains. Let m be the maximum number of type arrivals

per period, i.e. P(Xi ≤m) = P(X j ≤m) = 1. Roughly speaking, we generate m copies of a Bernoulli Markov

“sub-chain” and randomly distribute a type’s arrivals among the m chains. Let Sk be the state of chain k for

k ∈ [m]. By defining state S as {Sk}k∈[m], which is the sequence of states of the m chains, we can convert

the original Markov chain into a new chain with larger state space; we call this chain the converted chain.

Once new types arrive, we assume each sub-chain operates independently. That is, we do not match types

in different sub-chains.

Let Xi,k be the random variable for the number of new arrivals of type i to chain k for any k ∈ [m]. By

construction, P(Xi,1 = n1,Xi,2 = n2, . . . ,Xi,m = nm|Xi = n) =
(m

n

)−1 if ∑
m
k=1 nk = n and nk ∈ {0,1} for k ∈ [m];

the probability is zero otherwise. This implies P(Xi,k = 1|Xi = n) =
(m−1

n−1

)
/
(m

n

)
= n/m, and the marginal

probability is then P(Xi,k = 1) = ∑
m
n=1P(Xi = n)n/m = E[Xi]/m ≤ 1. This yields a Markov chain with

Bernoulli random arrivals, where type i and j arrive with probability E[Xi]/m and E[X j]/m, respectively,

and we denote it the Bernoulli chain. In the next proposition, we prove that the long-run average matching

frequency of the converted chain equals m times the long-run average matching frequency of the Bernoulli

chain, and provides a lower bound for the original long-run average matching frequency.

Proposition 10. Let z∗,zc, and zB be the long-run average matching frequency of the original, converted,

and Bernoulli chains, respectively. Then, z∗ ≥ zc = mzB.

Proof. The inequality is trivial because our assumption that types in different sub-chains cannot be matched

means the converted chain only misses potential matches. To show the equality, we first define the stationary

distributions of the given chains. Let πc and πB be the stationary distributions of the converted and Bernoulli

chains, respectively. We claim that it suffices to show that ∑k∈[m]\{ℓ} ∑Sk
πc(S1, . . . ,Sm) = πB(Sℓ) for any

ℓ ∈ [m]. Suppose so; let αB(S) and αc(S) be the number of matches that the decision maker executes in

state S of the Bernoulli and converted chains, respectively, where S is defined corresponding to each chain.

Similarly, we define αc
k (S) to be the number of matches in state S of sub-chain k for k ∈ [m]. Since sub-chain

k and the Bernoulli chain have the same probability distribution of new type arrivals and the same transition
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mechanism, αB(S) = αc
k (S) for any state S and k ∈ [m]. Therefore,

zc = ∑
k∈[m]

∑
Sk

π
c(S1, . . . ,Sm)α

c(S1, . . . ,Sm)

= ∑
k∈[m]

∑
Sk

π
c(S1, . . . ,Sm)

(
α

c
1(S1)+ · · ·+α

c
m(Sm)

)
= ∑

ℓ∈[m]

α
c
ℓ (Sℓ) ∑

k∈[m]\{ℓ}
π

c(S1, . . . ,Sm)

= ∑
ℓ∈[m]

α
c
ℓ (Sℓ)π

B(Sℓ) = ∑
ℓ∈[m]

zB = mzB,

where the second equality follows from the assumption that we do not match types in different sub-chains.

We defer the proof of the claim to Appendix A.7.

4 Convergence Analysis for the General Case

For the general case, we convert the original problem into separate single-pair instances by introducing the

concept of a sub-type. We first present the conversion logic based on randomization and verify that random-

ized policies are asymptotically optimal. We then show that the batching policy dominates its randomized

counterpart. In addition, we describe a modified greedy policy that is more practical than the randomized

greedy policy while inheriting its performance guarantee.

4.1 Randomization

Recall the fluid relaxation (3), where zi j is the long-run matching frequency for {i, j}. We denote the

optimal solution by z∗i j, and for any z∗i j > 0 we define z̄∗i j := z∗i j/∑k∈N\i z∗ik as the normalized value, which is

asymmetric. We randomly assign arriving nodes of type i to sub-type (i, j) with probability z̄∗i j. Since the

sub-type assignment and type arrivals are independent, the random variable for the number of arrivals of type

i with sub-type (i, j), denoted by X j
i , is a random variable with E[X j

i ] = z̄∗i jE[Xi]. From the single-pair results,

the long-run matching frequency for {i, j} under either policy converges to min{E[Xi]z̄∗i j,E[X j]z̄∗ji} ≥ z∗i j.

Using the optimality of z∗ for the relaxation, it follows that the randomized policies are asymptotically

optimal.
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4.2 Policy Comparison

The batching policy dominates its randomized counterpart as defined above; in any batch, the randomized

policy’s matching is a feasible solution for that batch’s max-reward matching problem.

In contrast, it is not straightforward to show that a greedy policy without randomization dominates its

randomized counterpart. Consider the following example with three node types i, j,k. Let wi j = wik = δ

for small δ > 0, w jk = 1, pi = 1, p j = pk = p < 1. By Proposition 9, the policy that matches types j and k

whenever possible and ignores type i has a long-run average reward that converges to p as τ grows. On the

other hand, a straightforward greedy policy has a matching frequency for this pair of p2, because if a node

of type j or k appears without the other, the policy will match it to a node of type i.

With this motivation, we propose a modified delayed greedy policy that dominates the randomized greedy

policy and thus inherits its performance guarantees. In each period, we begin with a matching inherited from

the end of the previous period; recall that we can delay our decisions as late as possible by Proposition 2,

meaning we only execute matches when one of the nodes is about to leave the system, and thus any other

potential matches are not executed and stay in the system. If any newly arriving nodes can form new matches

according to their sub-types, we add these to the matching. For each matched pair {(i,r),( j, t)}, if there

exists an unmatched node of type i or j with a smaller remaining period in the system, we swap that node

with the current node. When we perform such a swap, we swap not only the match but also the sub-type.

That is, if there is a node of type i with remaining period r′ < r, we now match {(i,r′),( j, t)} instead of

{(i,r),( j, t)}, and set the sub-type of (i,r) as the original sub-type of (i,r′). We repeat this procedure until

there are no possible swaps. Let M be the matching after this procedure. Considering only nodes covered by

M and nodes that are unmatched and about to leave the system, we solve a max-reward matching problem.

We execute matches where the matched pair contains a node that is about to leave the system; the remaining

matching edges remain in the system for the next period, and the process repeats. This modified delayed

greedy policy dominates the randomized greedy policy because swapping nodes does not change the total

reward and reoptimizing only increases the total reward; thus the modified policy inherits the performance

guarantees of its randomized counterpart.
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5 Impatience

In this section, we extend our results to the setting in which unmatched nodes may leave the system before

the sojourn time elapses. Each unmatched node of type i ∈ N abandons the system with probability di(τ) in

each period; we explicitly consider the departure probability as a function of τ . Intuitively, we can interpret

this condition as indicating that the system manager guarantees arriving agents a waiting time no longer than

τ , but agents are impatient and may leave the system before being matched; however, the knowledge of τ

influences the agents’ patience. The departure probabilities di(τ) may differ by type, but we assume they

change with the same rate with respect to τ . In Theorems 11 and 12, we characterize how much impatience

the batching and greedy policies can accommodate while remaining asymptotically optimal with respect

to τ . Specifically, under these conditions the policies’ long-run average rewards converge to the optimal

objective value of the relaxation (3) with the same rate as when there is no impatience.

Theorem 11. Assume all X t
i have bounded support. If di(τ) = O(τ−β ) for all i ∈ N and some β > 1, the

batching policy achieves the same convergence results as in Theorem 1. If β ≤ 1, there exist instances where

the batching policy is not asymptotically optimal.

In particular, this theorem extends a negative result in Aouad and Saritaç (2022) for the continuous time

case, which shows that the batching policy is sub-optimal when the departure probabilities are constant.

Proof. The proof follows the same arguments from Theorem 1. We provide a sketch here and present

the detailed proof in Appendix A.8. Without loss of generality, we assume a single type pair {i, j} with

E[Xi]≤ E[X j]. For the batching policy, we define Y t
i as the number of type i nodes that remain in the system

for t periods. The number of remaining type i nodes within the batching interval τ , say Ai, is then ∑
τ−1
t=1 Y t

i .

The long-run average matching frequency following the batching policy is E[min{Ai,A j}]/τ . By using the

proof of Proposition 4 and the definition of Y t
i , the lower and upper bounds of the long-run average matching

frequency following the batching policy are

E[Xi]
1− (1−di(τ))

τ

τdi(τ)
−O(1/

√
τ) and E[Xi]

1− (1−di(τ))
τ

τdi(τ)
,

respectively. If di(τ) = O(τ−β ) for β > 1, both bounds converge to E[Xi], which implies the long-run

average matching frequency following the batching policy converges to E[Xi].
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We next show that if di(τ) =O(τ−β ) for β ≤ 1, there exists an instance where the batching policy is not

optimal. Suppose di(τ) = Θ(τ−1) and node type arrivals follow Bernoulli distributions. Recall the lower

and upper bounds of the long-run average matching frequency of the batching policy: these converge to a

value smaller than pi, e.g. (1− 1/e)pi if di(τ) = τ−1. On the other hand, under the same settings we can

show that the greedy policy converges to pi.

Theorem 12. Assume all X t
i have bounded support. If di(τ) = o(1) for all i ∈ N, the randomized greedy

policy achieves the same convergence results as in Theorem 1. If di(τ) = Ω(1) for some i ∈ N, there exist

instances where the randomized greedy policy’s average reward does not converge to the optimal objective

value of (3).

While the randomized greedy policy may not achieve the relaxation’s average reward when departure

probabilities do not decay, it could still be asymptotically optimal. Showing this would presumably require

a stronger relaxation, perhaps using techniques similar to Aouad and Saritaç (2022).

Proof. Following Proposition 10, it suffices to show that the result is true for Bernoulli random arrivals.

We assume node type arrivals follow Bernoulli distributions, Xi ∼ Bernoulli(pi), X j ∼ Bernoulli(p j) for

pi, p j ∈ (0,1]. We verify the following function h : S → R satisfies the Markov chain’s balance equations

in the presence of impatience:

h(S) = P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j )×



(1− p j)
τ−r(Si) ∏

t∈T (Si)

(1−di(τ))
τ−t pi

1−(1−di(τ))τ−t pi
if T (Si) ̸= /0,T (S j) = /0

(1− pi)
τ−r(S j) ∏

t∈T (S j)

(1−d j(τ))
τ−t p j

1−(1−d j(τ))τ−t p j
if T (Si) = /0,T (S j) ̸= /0

1 if T (Si) = /0,T (S j) = /0.

By normalizing h, we can compute the stationary distribution and then the long-run average matching fre-

quency following the greedy policy. By using Fatou’s lemma, we show that the long-run average matching

frequency following the greedy policy converges to min{pi, p j} if di(τ) = d j(τ) = o(1). We provide the

detailed proof in Appendix A.9.

Now suppose pi = p j = p ∈ (0,1), and di(τ) = d j(τ) = 1−ε for a small ε > 0. Then the average reward

converges to p2 as ε → 0, because the greedy policy can only execute matches when nodes from both types

appear simultaneously. We present a rigorous proof of this argument in Appendix A.9.
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6 Experimental Study

Our theoretical results show that batching and greedy policies converge to optimality as the sojourn time

increases. In this section, we use empirical simulations to show that these policies perform well in prac-

tice with reasonably small sojourn periods. We designed two experiments, one representing a ride-sharing

marketplace in Manhattan (Figure 3), and a freight marketplace operating in the 50 largest cities in the

southeastern U.S. (Figure 4). We pair trip requests to reduce detour miles in the ride-sharing instance, and

pair transportation requests to reduce empty driving miles in the freight marketplace instance.

Figure 3: Taxi zones in Manhattan, New York City, accessed from NYC Taxi and Limousine Commission
(2023)

6.1 Ride-Sharing

We design a ride-sharing instance based on the New York City Open Data platform, and following a similar

instance construction to Lobel and Martin (2020). We construct a network of Manhattan’s 69 taxi zones, and

estimate the travel times between nodes in the network using OpenStreetMap data. We estimate the expected

arrival rates of ride requests using the historical record of for-hire vehicles from New York City Open Data.

The data includes the origin and destination taxi zones and pick-up and drop-off times for all the trips of
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Figure 4: 50 largest cities in the southeastern US, used in freight marketplace experiment.

the major ride-sharing taxi platforms in New York City. For time homogeneity, we consider a one-month

dataset (February 2020) during morning commute trips (6am to 10am, Monday to Friday except holidays),

with origin and destination both located within Manhattan. We generate precise origins and destinations

by sampling uniformly from within each taxi zone. Trip requests from an origin zone to a destination zone

constitute a type, and we assume type arrivals follow independent Poisson distributions. The matching

reward for a request pair is the travel distance saved following the optimal route among four possible routes,

i.e. the distance saved if a driver performs two requests as a shared ride, calculated as the difference between

the sum of distances required to fulfill both requests without ridesharing and the distance for a shared ride.

There are four possible routes for a shared ride with two ride requests (Oi,Di) and (O j,D j) (Lobel and

Martin 2020):

1. Oi → O j → Di → D j 2. Oi → O j → D j → Di

3. O j → Oi → Di → D j 4. O j → Oi → D j → Di.

We assume the driver travels along the optimal route. Each trip request waits to be paired for the given

sojourn period. If it reaches the end of the sojourn without being matched, we assume a driver serves it

as a stand-alone ride; otherwise, a driver serves the two matched ride requests as a shared ride. Note that

matching two nodes of the same type yields a positive reward in this case, which violates our assumption

that wii = 0 for i ∈ N. However, same-type matches are extremely unlikely given the arrival rates implied

22



by the data in our instance construction; we allowed same-type matches but did not observe a single one in

any of our experiments.

For different sojourn periods, we compare the performance of four policies: myopic, greedy, batching,

and offline. The myopic policy solves a maximum-reward matching every period and immediately executes

the entire solution. Batching follows the procedures previously described. Greedy solves a maximum-

reward matching problem every period, but only executes matches where the matched pair contains a node

that is about to leave the system; it is a delayed greedy policy, which makes decisions as late as possible.

Recall that a straightforward implementation of the delayed greedy policy may not be optimal, so in our

theoretical analysis we modify it by slightly restricting the set of nodes the policy can match (cf. Section

4.2); however, our empirical results suggest that this modification is not usually necessary in practice. The

offline solution solves the deterministic matching problem for the entire time horizon using realized values,

and serves as an additional benchmark to the fluid relaxation. We set the time horizon length to one hour and

collect requests and make matching decisions every 10 seconds. We test for five different sojourn periods of

60, 90, 120, 150, and 180 seconds. That is, we test for 6, 9, 12, 15, and 18 sojourn periods when the time

horizon length is 360 periods. We simulate the horizon 200 times.
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Figure 5: Empirical average rewards achieved by the tested policies in the ride-sharing instance.

Figure 5 shows the average reward achieved by each policy when the sojourn time is 60 and 180 seconds.

The red line represents the LP relaxation bound, and µ and σ represent the empirical mean and standard

deviation of each policy, respectively. The percentage values for each policy represent the ratio of the

average reward obtained by the policy to the offline average value (left) and to the LP relaxation bound
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Figure 6: Empirical average waiting times achieved by the tested policies in the ride-sharing instance.
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Figure 7: Empirical average rewards and waiting times achieved by the tested policies in the five different
sojourn periods in the ride-sharing instance.

(right), respectively. We compute the LP relaxation bound by solving LP (3) with the expected rewards

of taxi zone trip pairs instead of considering the precise origin and destination nodes in the network. The

greedy and batching policies are both already within 90% of optimal for a sojourn period of 6, and achieve

95% or better with a sojourn period of 18; the myopic policy achieves less than 70% in all cases.

In our model, the rewards do not depend on when the corresponding matches are made and how long

a node waits to be matched. Although the average waiting time is not considered in the objective function,

it is an important secondary evaluation factor. Figure 6 shows the average waiting time achieved by each

policy. As expected, the average waiting time increases from the myopic policy to the batching policy to the

greedy policy; recall that the greedy policy waits until at least one node in a pair is about to expire before

executing the match.

Figure 7 depicts the average reward and waiting time achieved by each policy in the five different sojourn

period settings; we present more detailed results in Table 2 in Appendix B. As can be seen in Figure 7 and
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Table 2, the average rewards of the greedy and batching policies get closer to the LP relaxation bound

as the sojourn period increases, and the LP bound approaches and then becomes smaller than the offline

reward starting at sojourn period 12. Somewhat surprisingly, the batching policy starts to beat the greedy

policy at sojourn period 15. Note that the delayed greedy policy implemented in this experiment is slightly

different from the modified delayed greedy policy proposed in Section 4.2. In addition, the average waiting

time achieved by each policy appears close to linear with respect to the sojourn period in Figure 7. For the

batching policy, agents wait in the system on average for half of the sojourn period, so the linear relationship

is clear; the intuition is not as direct for the greedy policy, but is related to waiting until one node is about to

expire to execute a match.

Since the performance of batching and greedy policies in terms of average reward is similar in this

instance, a system manager might prefer to use the batching policy, because it makes arriving nodes wait

significantly less on average.

6.2 Freight Marketplace

We estimate the number of daily requests in the marketplace using the statistics of freight flows by state

in 2020, provided by the United States Department of Transportation (Bureau of Transportation Statistics

2023a); we use the average volume of freight flows per day with both origin and destination in Southeastern

states. 64.6% of the volume is shipped by trucks on average (Bureau of Transportation Statistics 2023b), and

the maximum capacity of a standard truck is 40 tons; this yields an estimate of the number of daily truckload

shipment requests in the Southeastern region. Given an expected number of daily requests, we split these

by state proportional to each state’s average originating flow weight, then split the expected departures from

state k into transport requests (k, ℓ) proportional to the average flow weight from state k to state ℓ. In each

state k, we randomly choose a city k′ with probability proportional to each city’s population. Requests (k′, ℓ′)

from city k′ to ℓ′ constitute a type. We assume daily requests for each type follow a Poisson distribution.

The matching reward for a request pair is the deadhead distance saved, i.e. the distance saved if the same

vehicle performs the requests sequentially instead of having each request served by a single vehicle that

must deadhead back to the origin.

As in the experiment for the ride-sharing marketplace, we compare the performance of the same four

policies. We test for sojourn periods of one through five days. We set the time horizon length to 200 days,

and we simulate the horizon 200 times.
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Figures 8 and 9 respectively show the average reward and the average waiting time achieved by each

policy when the sojourn time is two and five days. Figure 10 depicts the average reward and waiting time

achieved by each policy in the five different sojourn period settings. The formats for Figures 8, 9, and 10

are the same as in Figures 5, 6, and 7, respectively. We present detailed results in Table 3 in Appendix B.

As can be seen in Figure 10 and Table 3, the average rewards of the greedy and batching policies get

closer to the LP relaxation bound as the sojourn period increases. In addition, greedy converges to the

LP relaxation bound faster than batching, although their performance is very close for the largest sojourn

periods. Based on our results, if the system manager wants to provide a maximum waiting time guarantee

of two days, they might prefer the greedy policy because it performs better than batching and there is no

significant difference in average waiting times.

7 Conclusions

This work analyzes the asymptotic performance of two widely used policies, batching and greedy, for a

dynamic, stochastic non-bipartite matching problem with a uniform sojourn time. The batching policy and

a greedy policy with a randomized restriction on possible matches are both asymptotically optimal as the

sojourn time grows; perhaps more importantly, both converge exponentially fast to approximate optimality.

These results also extend to an impatient setting in which unmatched nodes leave the system with a cer-

tain probability, provided nodes are “patient enough.” Our experiments show that the batching and greedy

policies perform well in practice with reasonably small sojourn periods.

These results motivate studying a model in which a match’s reward may depend on its nodes’ waiting

times, and an evaluation of how batching, greedy and other policies perform in this case. Similarly, our

results also indicate that different management policies may be necessary in the presence of significant node

impatience, which also motivates potential avenues for future research.
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A Appendix A: Additional Proofs

A.1 Proof of Proposition 3

Proof. We construct the fluid relaxation of (2) by introducing aggregating variables, αe = ∑
S∈S

∑
x∈X (S)

xez(S,x)

for e ∈ E and βi,r = ∑
S∈S

∑
x∈X (S)

(Sr
i −∑e∈δ (i,r) xe)z(S,x) for i ∈ N,r ∈ [τ]. The relaxation is

max
α≥0,β≥0

∑
e∈E

weαe

∑
e∈δ (i,τ)

αe +βi,τ = E[Xi], i ∈ N (4a)

∑
e∈δ (i,r)

αe +βi,r = βi,r+1, i ∈ N,r ∈ [τ −1]. (4b)

Variable αe represents the average match rate of edge e and βi,r represents the average number of unmatched

nodes of type i with r remaining periods. Constraints (4a) and (4b) are flow balance equations: each node

in the system is matched with another node or remains unmatched. If it is unmatched, its remaining period

decreases by 1.

Lemma 13. The LP (4) is a relaxation of (2).

We present its proof in Appendix A.2. We simplify the LP (4) by using its dual,

min ∑
i∈N

E[Xi]ρi,τ

ρi,r +ρ j,1 ≥ wi j, i, j ∈ N,r ∈ [τ] (5a)

ρi,r+1 ≥ ρi,r, i ∈ N,r ∈ [τ −1] (5b)

ρi,1 ≥ 0, i ∈ N, (5c)

where ρi,τ and ρi,r are dual variables for constraint (4a) and (4b), respectively. Constraints (5a) are derived

from the α variables, and constraints (5b) and (5c) from the β variables. Since the objective function

depends only on the ρi,τ variables, we can rewrite (5) as

min
ρ≥0

{
∑
i∈N

E[Xi]ρi,τ : ρi,τ +ρ j,τ ≥ wi j, i, j ∈ N

}
, (6)

and this LP’s dual is

max
z≥0

{
∑

i, j∈N
wi jzi j : ∑

j∈N
zi j ≤ E[Xi], i ∈ N

}
. (3)

Thus, the LP (3) is equivalent to (4) and gives an upper bound on the original problem.

30



A.2 Proof of Lemma 13

Proof. We first show that constraints (4a) are consequences of constraints (2a) and (2b). We can rewrite

constraints (2a) as

∑
y∈X (Uτ ,...,U1)

z((Uτ , . . . ,U1),y) = φ(Uτ) ∑
S∈S

∑
x∈X (S)

: U r=Sr+1(x) ∀r∈[τ−1]

z(S,x), ∀ Uτ , . . . ,U1.

By summing over Uτ−1, . . . ,U1, we have for all Uτ ,

∑
Uτ−1,...,U1

∑
y∈X (Uτ ,...,U1)

z((Uτ , . . . ,U1),y) = φ(Uτ) ∑
Uτ−1,...,U1

∑
S∈S

∑
x∈X (S)

: U r=Sr+1(x) ∀r∈[τ−1]

z(S,x)

= φ(Uτ) ∑
S∈S ,x∈X (S)

z(S,x) = φ(Uτ),

where the last equality follows from constraints (2b). Recall that Uτ is a sequence {Uτ
i }i∈N . Fix type i and

take summation over Uτ with weight Uτ
i . That is, for i ∈ N,

∑
Uτ

Uτ
i ∑

Uτ−1,...,U1
∑

y∈X (Uτ ,...,U1)

z((Uτ , . . . ,U1),y) = ∑
Uτ

Uτ
i φ(Uτ).

The left-hand-side is

∑
Uτ

Uτ
i ∑

Uτ−1,...,U1
∑

y∈X (Uτ ,...,U1)

z((Uτ , . . . ,U1),y)

= ∑
U∈S ,y∈X (U)

Uτ
i z(U,y) = ∑

U∈S ,y∈X (U)

(
∑

e∈δ (i,τ)
ye +(Uτ

i − ∑
e∈δ (i,τ)

ye)
)

z(U,y) = ∑
e∈δ (i,τ)

αe +βi,τ ,

and the right-hand-side is

∑
Uτ

Uτ
i φ(Uτ) = ∑

Uτ
j ∀ j∈N

Uτ
i ∏

j∈N
φ(Uτ

j ) = ∑
Uτ

i

Uτ
i φ(Uτ

i ) = E[Xi],

which yields constraints (4a). In a similar fashion, we show that constraints (4b) are consequences of

constraints in model (2). Recall that Sr
i = Sr+1

i −∑e∈δ (i,r+1) xe for i ∈ N,r ∈ [τ − 1],x ∈ X (S) given U

because nodes with remaining period greater than 1 are matched only with expiring nodes. For i ∈ N and

r ∈ [τ −1],

βi,r+1 = ∑
S∈S ,x∈X (S)

(Sr+1
i − ∑

e∈δ (i,r+1)
xe)z(S,x)

= ∑
S∈S ,x∈X (S)

Sr
i z(S,x)

= ∑
S∈S ,x∈X (S)

(
∑

e∈δ (i,r)
xe +(Sr

i − ∑
e∈δ (i,r)

xe)
)

z(S,x) = ∑
e∈δ (i,r)

αe +βi,r.
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A.3 Omitted proof of Proposition 4

Proof. We prove that there exists an instance where the convergence rate is tight. Consider the case when Xi

and X j are Bernoulli random variables, both with probability 1/2, in which case Ai and A j are i.i.d. binomial;

we show that min{E[Xi],E[X j]}−E[min{Ai,A j}]/τ = Ω(1/
√

τ). We first compute this value as follows:

min{E[Xi],E[X j]}−
E[min{Ai,A j}]

τ
=

E[Ai]

τ
− 1

τ

τ

∑
k=1

P(min{Ai,A j} ≥ k)

=
1
τ

τ

∑
k=1

P(Ai ≥ k)− 1
τ

τ

∑
k=1

P(Ai ≥ k)P(A j ≥ k) =
1
τ

τ

∑
k=1

P(Ai ≥ k)P(A j ≤ k−1)

=
1
τ

τ

∑
k=1

τ

∑
ℓ=k

k−1

∑
s=0

(1
2

)2τ
(

τ

ℓ

)(
τ

s

)
=

1
τ

(1
2

)2τ τ

∑
ℓ=1

ℓ−1

∑
s=0

(ℓ− s)
(

τ

ℓ

)(
τ

s

)
=

1
τ

(1
2

)2τ 2τ−1

∑
k=1

τ

∑
ℓ=1

ℓ−1

∑
s=0

(ℓ− s)
(

τ

ℓ

)(
τ

s

)
1{ℓ+s=k}.

The fourth equality is from the binomial probability mass function, and the last two are rearranging terms. To

simplify the right-hand-side of the last equality, we use the following lemma. Define d(k) := 1
τ

∑
τ
ℓ=1 ∑

ℓ−1
s=0(ℓ−

s)
(

τ

ℓ

)(
τ

s

)
1{ℓ+s=k} for k ∈ [2τ −1].

Lemma 14. d(k) =


(

τ−1
ℓ

)2
if k = 2ℓ+1(

τ−1
ℓ−1

)(
τ−1
ℓ

)
if k = 2ℓ.

The proof for Lemma 14 is presented in Appendix A.4. Using this lemma, we get

min{E[Xi],E[X j]}−
E[min{Ai,A j}]

τ
=

2τ−1

∑
k=1

(1
2

)2τ

d(k)≥
2τ−1

∑
k=1,k is odd

(1
2

)2τ

d(k)

(a)
=

(1
2

)2τ τ−1

∑
ℓ=0

(
τ −1
ℓ

)2
(b)
=

(1
2

)2τ
(

2(τ −1)
τ −1

)
(c)
≥ 4−τ 4(τ−1)√

π(τ −0.5)
≥ 1

4
√

πτ
,

where equalities (a) and (b) follow from Lemma 14 and the Chu-Vandermonde identity, respectively, and

(c) is from Stirling’s formula.
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A.4 Proof of Lemma 14

Proof. It is known that ℓ
(

τ

ℓ

)
= τ

(
τ−1
ℓ−1

)
and

(
τ

ℓ

)
=
(

τ−1
ℓ

)
+
(

τ−1
ℓ−1

)
. Plugging in it, we get

d(k) =
1
τ

τ

∑
ℓ=1

ℓ−1

∑
s=0

(ℓ− s)
(

τ

ℓ

)(
τ

s

)
1{ℓ+s=k}

=
1
τ

τ

∑
ℓ=1

ℓ−1

∑
s=0

[
τ

(
τ −1
ℓ−1

)(
τ

s

)
− τ

(
τ

ℓ

)(
τ −1
s−1

)]
1{ℓ+s=k}

=
τ

∑
ℓ=1

ℓ−1

∑
s=0

[(
τ −1
ℓ−1

)(
τ −1

s

)
+

(
τ −1
ℓ−1

)(
τ −1
s−1

)
−
(

τ −1
ℓ

)(
τ −1
s−1

)
−
(

τ −1
ℓ−1

)(
τ −1
s−1

)]
1{ℓ+s=k}

=
τ

∑
ℓ=1

ℓ−1

∑
s=0

[(
τ −1
ℓ−1

)(
τ −1

s

)
−
(

τ −1
ℓ

)(
τ −1
s−1

)]
1{ℓ+s=k}

Let k = 2ℓ+1 for some ℓ. Then,

d(k) =

[(
τ −1

2ℓ

)(
τ −1

0

)
−
(

τ −1
2ℓ+1

)(
τ −1
−1

)]

+

[(
τ −1
2ℓ−1

)(
τ −1

1

)
−
(

τ −1
2ℓ

)(
τ −1

0

)]

+

[(
τ −1
2ℓ−2

)(
τ −1

2

)
−
(

τ −1
2ℓ−1

)(
τ −1

1

)]
+ . . .

+

[(
τ −1
ℓ

)(
τ −1
ℓ

)
−
(

τ −1
ℓ+1

)(
τ −1
ℓ−1

)]

=

(
τ −1
ℓ

)(
τ −1
ℓ

)
.

In a similar way, we can verify the case for k = 2ℓ.

A.5 Omitted proof of Proposition 8

Proof. We need to prove[
(1− pi)(1− p j)+(1− pi)p j ∑

t∈[τ]
(1− p j)

τ−t
( pi

1− pi

)
+ pi(1− p j) ∑

t∈[τ−1]
(1− pi)

τ−t(
p j

1− p j
)+

(1− pi)(1− p j)(1− p j)
τ−1

( pi

1− pi

)
+(1− pi)(1− p j)(1− pi)

τ−1
( p j

1− p j

)]
= 1.

By canceling out and rearranging terms, we can rewrite the left-hand-side as

(1− pi)(1− p j)+ pi p j ∑
t∈[τ]

(1− p j)
τ−t + pi p j ∑

t∈[τ−1]
(1− pi)

τ−t + pi(1− p j)
τ + p j(1− pi)

τ .
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Using the geometric series, we get

(1− pi)(1− p j)+ pi p j
1− (1− p j)

τ

p j
+ pi p j

1− pi − (1− pi)
τ

pi
+ pi(1− p j)

τ + p j(1− pi)
τ

=(1− pi)(1− p j)+ pi − pi(1− p j)
τ + p j(1− pi)− p j(1− pi)

τ + pi(1− p j)
τ + p j(1− pi)

τ

=(1− pi)(1− p j)+ pi + p j(1− pi) = 1.

A.6 Proof of Proposition 9

Proof. Let S = (Si,S j) be an arbitrary state in S . By Lemma 5, there are three possible cases:

1. Si : T (Si) ̸= /0,T (S j) = /0

2. S j : T (Si) = /0,T (S j) ̸= /0

3. S0 : T (Si) = /0,T (S j) = /0.

In case (1) (case (2)), the decision maker executes one match if Sτ
j = 1 (Sτ

i = 1). In case (3), the decision

maker executes one match if Sτ
j = 1 and Sτ

i = 1. Thus, the long-run average matching frequency is

P(Sτ
j = 1) ∑

S∈Si

π(S)+P(Sτ
i = 1) ∑

S∈S j

π(S)+P(Sτ
i = 1)P(Sτ

j = 1) ∑
S∈S0

π(S),

which is equivalent to

1
∑S∈S h(S)

[
p j ∑

S∈Si

h(S)+ pi ∑
S∈S j

h(S)+ pi p j ∑
S∈S0

h(S)
]
.

We compute the sum of weights for states in Si,S j, and S0, respectively. Case 1: pi < p j. Consider

∑S∈Si h(S). For state S ∈ Si, h(S) depends on the smallest remaining period r = r(Si) and the total number

m = |T (Si)| of nodes of type i in the system. By calculating the summation with respect to r and m, we get

∑
S∈Si

h(S) = ∑
r∈[τ−1]

∑
m∈[τ−1]

∑
S∈Si

h(S)1{∑t∈[τ−1] St
i=m,∑t∈[r−1] St

i=0,Sr
i=1}

= ∑
r∈[τ−1]

∑
m∈[τ−1]

∑
S∈Si

(1− p j)
τ−r

( pi

1− pi

)m
1{∑t∈[τ−1] St

i=m,∑t∈[r−1] St
i=0,Sr

i=1}

= ∑
r∈[τ−1]

∑
m∈[τ−1]

(1− p j)
τ−r

( pi

1− pi

)m
(

τ −1− r
m−1

)
= ∑

r∈[τ−1]
(1− p j)

τ−r
∑

m∈[τ−r]

( pi

1− pi

)m
(

τ −1− r
m−1

)

= ∑
r∈[τ−1]

(1− p j)
τ−r

( pi

1− pi

)(
1+

pi

1− pi

)τ−1−r
= ∑

r∈[τ−1]

(1− p j

1− pi

)τ−r
pi = piq

1−qτ−1

1−q
.
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Similarly, we can calculate ∑S∈S j h(S) as

∑
S∈S j

h(S) =
p j

q
1−q−τ+1

1−q−1 .

Using the definition of S0 and h, we can similarly calculate ∑S∈S0 h(S) as

∑
S∈S0

h(S) = ∑
Sτ

i ,S
τ
j∈{0,1}

P(Xi = Sτ
i )P(X j = Sτ

j ) = 1.

Combining all of these results, we get the total sum of weights as

∑
S∈Si

h(S)+ ∑
S∈S j

h(S)+ ∑
S∈S0

h(S) = piq
1−qτ−1

1−q
+

p j

q
1−q−τ+1

1−q−1 +1,

and the long-run average matching frequency is

1

piq
1−qτ−1

1−q + p j
1
q

1−q−τ+1

1−q−1 +1

[
p j piq

1−qτ−1

1−q
+ pi p j

1
q

1−q−τ+1

1−q−1 + pi p j

]

= pi −
pi(1− p j)− pi(p j − pi)q

1−qτ−1

1−q

piq
1−qτ−1

1−q + p j
1
q

1−q−τ+1

1−q−1 +1

= pi −
pi(1− p j)− pi(1− p j)(1−qτ−1)

pi
1−p j
p j−pi

(1−qτ−1)− p j
1−pi
p j−pi

(1−q−τ+1)+1

= pi −
pi(1− p j)qτ−1

p j(1−pi)q−τ+1−pi(1−p j)qτ−1

p j−pi

= pi −
(p j − pi)pi(1− pi)

p j(1− p j)q−2τ − pi(1− pi)
.

Case 2: pi = p j = p. Using the same logic from Case 1, we obtain

∑
S∈Si

h(S) = (τ −1)p, ∑
S∈S j

h(S) = (τ −1)p, ∑
S∈S0

h(S) = 1, ∑
S∈S

h(S) = 2(τ −1)p+1.

The long-run average matching frequency is

1
1+2(τ −1)p

[
p ∑

S∈Si

h(S)+ p ∑
S∈S j

h(S)+ p2
∑

S∈S0

h(S)
]

=
1

1+2(τ −1)p

[
p(τ −1)p+ p(τ −1)p+ p2

]
=

(2τ −1)p2

1+2(τ −1)p
= p− p(1− p)

1+2(τ −1)p
.

A.7 Omitted proof of Proposition 10

Proof. Fix ℓ ∈ [m]. We need to show that ∑Sk,k∈[m]\{ℓ} πc(S1, . . . ,Sm) = πB(Sℓ) for any Sℓ. Define π̄(Sℓ) :=

∑Sk,k∈[m]\{ℓ} πc(S1, . . . ,Sm). We show that π̄ is the stationary distribution of the Bernoulli chain. Fix Uℓ,

and let Pc
S,U and PB

S,U be the transition probability from state S to U in the converted and Bernoulli chains,
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respectively, where S and U are defined corresponding to each chain:

π̄(Uℓ) = ∑
Uk,k∈[m]\{ℓ}

π
c(U1, . . . ,Um)

(a)
= ∑

Uk,k∈[m]\{ℓ}
∑

(S1,...,Sm)

π
c(S1, . . . ,Sm)Pc

(S1,...,Sm),(U1,...,Um)

(b)
= ∑

Uk,k∈[m]\{ℓ}
∑

S1: f (S1)=g(U1),
...,

Sm: f (Sm)=g(Um)

π
c(S1, . . . ,Sm)P(Xi,1 =Uτ

i,1,X j,1 =Uτ
j,1, . . . ,Xi,m =Uτ

i,m,X j,m =Uτ
j,m)

= ∑
Uk,k∈[m]\{ℓ}

P(Xi,1 =Uτ
i,1,X j,1 =Uτ

j,1, . . . ,Xi,m =Uτ
i,m,X j,m =Uτ

j,m) ∑
S1: f (S1)=g(U1),

...,
Sm: f (Sm)=g(Um)

π
c(S1, . . . ,Sm)

= ∑
Uτ

k ,g(Uk),k∈[m]\{ℓ}
P(Xi,1 =Uτ

i,1,X j,1 =Uτ
j,1, . . . ,Xi,m =Uτ

i,m,X j,m =Uτ
j,m) ∑

S1: f (S1)=g(U1),
...,

Sm: f (Sm)=g(Um)

π
c(S1, . . . ,Sm)

= ∑
g(Uk),k∈[m]\{ℓ}

P(Xi,ℓ =Uτ
i,ℓ,X j,ℓ =Uτ

j,ℓ) ∑
S1: f (S1)=g(U1),

...,
Sm: f (Sm)=g(Um)

π
c(S1, . . . ,Sm)

=P(Xi,ℓ =Uτ
i,ℓ,X j,ℓ =Uτ

j,ℓ) ∑
g(Uk),k∈[m]\{ℓ}

∑
S1: f (S1)=g(U1),

...,
Sm: f (Sm)=g(Um)

π
c(S1, . . . ,Sm)

=P(Xi,ℓ =Uτ
i,ℓ,X j,ℓ =Uτ

j,ℓ) ∑
Sℓ: f (Sℓ)=g(Uℓ)

∑
g(Uk),k∈[m]\{ℓ}
Sk: f (Sk)=g(Uk)

π
c(S1, . . . ,Sm)

=P(Xi,ℓ =Uτ
i,ℓ,X j,ℓ =Uτ

j,ℓ) ∑
Sℓ: f (Sℓ)=g(Uℓ)

∑
Sk,k∈[m]\{ℓ}

π
c(S1, . . . ,Sm)

=P(Xi,ℓ =Uτ
i,ℓ,X j,ℓ =Uτ

j,ℓ) ∑
Sℓ: f (Sℓ)=g(Uℓ)

π̄(Sℓ)
(c)
= ∑

Sℓ

π̄(Sℓ)PB
Sℓ,Uℓ

.

The equality (a) follows because πc is a stationary distribution. By rewriting the transition probability with

functions f and g, we derive the equalities (b) and (c). Recall that f (S) is the post-state of S and g(U) is the

sub-state of U except the newly arrived types. Other equalities are from rearranging the terms.

A.8 Proof of Theorem 11

Proof. Let Y t
i be the number of type i agents that remain in the system for t periods. With a slight abuse

of notation, let Ai be the number of remaining type i arrivals within the batching interval τ , Ai = ∑
τ−1
t=1 Y t

i .

The long-run average matching frequency following the batching policy is E[min{Ai,A j}]/τ . In the proof

of Proposition 4, we proved the following inequalities:

E[min{Ai,A j}]≥ E[Ai]−
1
2

√
Var[Ai]+Var[A j], (7)

E[min{Ai,A j}]≥ E[Ai]−2τmexp
(
− 2

τm2 (E[A j]−E[Ai])
2
)
, (8)
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where m is the maximum number of type arrivals that can occur in a period.

To ease notation, we use d instead of di(τ). By the definition of Y t
i , we can simply compute E[Ai] and

get an upper bound of Var[Ai] as

E[Ai] =
τ

∑
t=1

E[Y t
i ] =

τ

∑
t=1

m

∑
n=1

P(Y t
i ≥ n) =

τ

∑
t=1

m

∑
n=1

P(X t
i ≥ n)(1−d)t−1 = E[Xi]

1− (1−d)τ

d
,

Var[Ai] =
τ

∑
t=1

Var[Y t
i ] =

τ

∑
t=1

(
E[(Y t

i )
2]−E[Y t

i ]
2
)
≤

τ

∑
t=1

E[(Y t
i )

2] =
τ

∑
t=1

m

∑
n=1

n2P(Y t
i = n)

=
τ

∑
t=1

m

∑
n=1

n2
m

∑
n′=n

P(X t
i = n′)

(
n′

n

)
(1−d)n(t−1)(1− (1−d)t−1)n′−n

=
τ

∑
t=1

m

∑
n′=1

P(X t
i = n′)

n′

∑
n=1

n2
(

n′

n

)
(1−d)n(t−1)(1− (1−d)t−1)n′−n

=
τ

∑
t=1

m

∑
n′=1

P(X t
i = n′)

(
n′(1−d)t−1 +n′(n′−1)(1−d)2(t−1)

)
≤

τ

∑
t=1

E[Xi](1−d)t−1 +
τ

∑
t=1

E[X2
i ](1−d)2(t−1)

= E[Xi]
1− (1−d)τ

d
+E[X2

i ]
1− (1−d)2τ

1− (1−d)2 .

By plugging in E[Ai] and the upper bound of Var[Ai] to (7), we get

E[min{Ai,A j}]
τ

≥ E[Xi]
1− (1−d)τ

τd
− 1

2

√
(E[Xi +X j])

1− (1−d)τ

τ2d
+E[X2

i +X2
j ]

1− (1−d)2τ

τ2(1− (1−d)2)
.

If d =O(τ−β ) where β > 1, lim
τ→∞

1−(1−d)τ

τd = 1. Thus, the first term of the right-hand-side converges to E[Xi]

as τ → ∞, and the second term is O(1/
√

τ). If E[Xi]< E[X j], we can use the stronger inequality (8), which

results in

E[min{Ai,A j}]
τ

≥ E[Xi]
1− (1−d)τ

τd
−2mexp

(
− 2

τm2 (E[X j]−E[Xi])
2
(1− (1−d)τ

d

)2)
.

If d =O(τ−β ) where β > 1, the first term of the right-hand-side converges to E[Xi] as τ →∞, and the second

term is O(e−τ), because exp( 2
m2 (E[X j]−E[Xi])

2τ) times the second term converges to a constant as τ → ∞.

A.9 Proof of Theorem 12

Proof. From Proposition 10, it suffices to show that the result is true for Bernoulli random arrivals. We

assume node type arrivals follow Bernoulli distributions, Xi ∼ Bernoulli(pi),X j ∼ Bernoulli(p j) for pi, p j ∈
(0,1]. We claim that the following function satisfies the Markov chain’s balance equations under the impa-
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tient node assumption. Define a function h : S → R with

h(S) = P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j )×


(1− p j)

τ−r(Si) ∏
t∈T (Si)

(1−di(τ))
τ−t pi

1−(1−di(τ))τ−t pi
if T (Si) ̸= /0,T (S j) = /0

(1− pi)
τ−r(S j) ∏

t∈T (S j)

(1−d j(τ))
τ−t p j

1−(1−d j(τ))τ−t p j
if T (Si) = /0,T (S j) ̸= /0

1 if T (Si) = /0,T (S j) = /0,

.

Recall r(Si) = min{t ∈ [τ − 1] : St
i = 1} is the smallest remaining period of a node of type i in S, T (Si) =

{t ∈ [τ −1] : St
i = 1} is the set of periods where a node of type i exists in S, and r(S j) and T (S j) are defined

analogously.

Let S be an arbitrary state in S . Consider the subsequence of S, g(S) = (gi(S),g j(S)), as defined in

the proof of Proposition 8. Recall that at least one of gi(S) and g j(S) is a zero sequence by Lemma 5.

Without impatience, the transition probability from U to S is P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j ) if f (U) = g(S), and

zero otherwise. In contrast, when there are impatient nodes, the transition probability from U to S is

P(Xτ
i = Sτ

i )P(Xτ
j = Sτ

j )×

(1−di(τ))
|T (Si)|di(τ)

|L(Si)| if T (Si) ̸= /0,T (S j) = /0, fi(U) = gi(S)+∑t∈L(Si) et , f j(U) = g j(S)

(1−d j(τ))
|T (S j)|d j(τ)

|L(S j)| if T (Si) = /0,T (S j) ̸= /0, fi(U) = gi(S), f j(U) = g j(S)+∑t∈L(S j) et

di(τ)
|L(Si)| if T (Si) = /0,T (S j) = /0, fi(U) = gi(S)+∑t∈L(Si) et , f j(U) = g j(S)

d j(τ)
|L(S j)| if T (Si) = /0,T (S j) = /0, fi(U) = gi(S), f j(U) = g j(S)+∑t∈L(S j) et

for some L(Si)⊆ [τ −1]\T (Si),L(S j)⊆ [τ −1]\T (S j).

We first consider the case when gi(S) is not a zero sequence, i.e. T (Si) ̸= /0,T (S j) = /0. To simplify

the notation, we use d instead of di(τ) and denote (1−d)τ−t

1−(1−d)τ−t pi
by α(t) for t ∈ [τ −1]. It is straightforward

to verify that α(t)(1+ dα(t + 1)) = (1− d)α(t + 1) for t ∈ [τ − 2]. We need to show that ∑
U

h(U)PU,S =

P(Xτ
i −Sτ

i )P(Xτ
j = Sτ

j )(1− p j)
τ−r(Si) ∏

t∈T (Si)
α(t). We classify the list of states U with PU,S > 0 according to

r(Ui):

1. U1 : r(Ui)≥ r(Si)+1

2. U2 : 2 ≤ r(Ui)≤ r(Si)

3. U3 : r(Ui) = 1

Case (1) represents the situation when nodes of type i with remaining period t for t ∈ L(Si) leave the system

being impatient. It occurs only when Sτ
j = 0. Thus,

∑
U∈U1

h(U)PU,S = (1−d)|T (Si)|×P(Xi = gτ−1
i (S))× h̄(g′i(S),0)× (1− p j)× ∏

t∈L(Si)

(1+dα(t +1)),

where g′i(S) is a subsequence of gi(S) excluding the first element, i.e. g′i(S) = (gτ−2
i (S), . . . ,g1

i (S)). The

first term (1− d)|T (Si)| represents the probability of nodes corresponding to T (Si) not leaving the system.
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The last term ∏t∈L(Si)(1+dα(t +1)) represents the sum of total probabilities having impatient nodes with

remaining periods in L(Si). Note that an impatient node with remaining period t implies that its previous

remaining period was t +1, which gives α(t +1). The other terms represent the transition from U to S, as

described in the proof of Proposition 8.

Case (2) represents two situations. The first is when a node of type i with remaining period t for some

t < r(Si)+1 is matched with a newly arrived node of type j (Sτ
j = 1) and other nodes of type i with remaining

periods greater than t and in {t ′+1 : t ′ ∈ L(Si)} abandon the system at the next period. The second situation

is when Sτ
j = 0 and nodes of type i with remaining periods in {t ′+1 : t ′ ∈ L(Si)} abandon the system at the

next period. Thus, we can derive

∑
U∈U2

h(U)PU,S = (1−d)|T (Si)|×P(Xi = gτ−1
i (S))× h̄(g′i(S),0)×

r(Si)

∑
t ′=2

(1− p j)
r(Si)+1−t ′ ×α(t ′)×

(
p j +d(1− p j)

)
× ∏

t∈L(Si)∪{t ′,...,r(Si)}
(1+dα(t +1)).

Case (3) is similar to case (2), but a node of type i with remaining period 1 leaves the system regardless

of the existence of newly arrived node of type j. Thus, we have

∑
U∈U3

h(U)PU,S = (1−d)|T (Si)|×P(Xi = gτ−1
i (S))× h̄(g′i(S),0)×

(1− p j)
r(Si)×α(1)× ∏

t∈L(Si)∪{1,...,r(Si)}
(1+dα(t +1)).

Combining all the equalities, we get

∑
U

h(U)PU,S

=(1−d)|T (Si)|(1− p j)×P(Xi = gτ−1
i (S))× h̄(g′i(S),0)×[

∏
t∈L(Si)

(1+dα(t +1))+
r(Si)

∑
t ′=2

(1− p j)
r(Si)+1−t ′ ×α(t ′)×

(
p j +d(1− p j)

)
× ∏

t∈L(Si)∪{t ′,...,r(Si)}
(1+dα(t +1))

+(1− p j)
r(Si)×α(1)× ∏

t∈L(Si)∪{1,...,r(Si)}
(1+dα(t +1))

]
=(1−d)|T (Si)|(1− p j)×P(Xi = gτ−1

i (S))× h̄(g′i(S),0)× ∏
t∈L(Si)

(1+dα(t +1))

[
1+α(Si)

(
p j +d(1− p j)

) r(Si)−2

∑
k=0

(
(1− p j)(1−d)

)k
+(1− p j)

r(Si)(1−d)r(Si)−1
α(r(Si))

]
=(1−d)|T (Si)|(1− p j)×P(Xi = gτ−1

i (S))× h̄(g′i(S),0)× ∏
t∈L(Si)

(1+dα(t +1))× (1+α(r(Si)))

=(1− p j)
τ−r(Si) ∏

t∈T (Si)

α(t),
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where the last equality follows from

P(Xi = gτ−1
i (S))× h̄(g′i(S),0)× ∏

t∈L(Si)

(1+dα(t +1))

=P(Xi = gτ−1
i (S))(1− p j)

τ−r(Si)−1
∏

t∈T (Si)\{τ−1}
α(t +1) ∏

t∈L(Si)

(1+dα(t +1))

=P(Xi = gτ−1
i (S))(1− p j)

τ−r(Si)−1
∏

t∈T (Si)\{τ−1}
α(t +1)

∏t∈{r(Si),...,τ−1}(1+dα(t +1))

∏t∈T (Si)(1+dα(t +1))

=(1− p j)
τ−r(Si)−1 (1−d)τ−r(Si)

α(r(Si))
∏

t∈T (Si)

α(t +1)
1+dα(t +1)

=(1− p j)
τ−r(Si)−1 (1−d)τ−r(Si)−|T (Si)|

α(r(Si))
∏

t∈T (Si)

α(t).

We can verify the case when both gi(S) and g j(S) are zero sequences in an analogous way. We obtain

the stationary distribution π by normalizing h, since S is finite. Using π , we compute the long-run average

matching frequency of pair {i, j} as

p jh(Si)+ pih(S j)+ pi p j

h(Si)+h(S j)+1
(9)

where Si = {S : ∑t∈[τ−1] St
i > 0,∑t∈[τ−1] St

j = 0} and h(Si) = ∑S∈Si h(S), and S j and h(S j) are defined

analogously for node type j.

We next prove the long-run average matching frequency of pair {i, j} in (9) converges to min{pi, p j} if

di(τ) = d j(τ) = o(1). Without loss of generality, we assume that pi ≤ p j. We can rewrite (9) as

p jh(Si)+ pih(S j)+ pi p j

h(Si)+h(S j)+1
= pi −

pi(1− p j)− (p j − pi)h(Si)

h(Si)+h(S j)+1
, (10)

and it suffices to show the fractional term in (10) converges to 0 as τ → ∞. Following from the definition of

function h, Si, and S j, we can obtain

h(Si) = pi

τ−1

∑
r=1

(
(1−di(τ))(1− p j)

)r r

∏
k=1

1
1− (1−di(τ))k pi

,

h(S j) = p j

τ−1

∑
r=1

(
(1−d j(τ))(1− pi)

)r r

∏
k=1

1
1− (1−d j(τ))k p j

.

We consider the following two cases: (1) pi = p j = p, (2) pi < p j.

Case 1. pi = p j = p.

The fractional term in (10) is then p(1−p)
2h(Si)+1 . Note that h(Si) = h(S j) by symmetry. We show h(Si) goes

to ∞ as τ increases by using Fatou’s lemma. Let a(r,τ) =
(
(1− di(τ))(1− p)

)r r
∏

k=1

1
1−(1−di(τ))k p for any
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positive integers r and τ . We can rewrite h(Si) as

1
p

h(Si) =
τ−1

∑
r=1

(
(1−di(τ))(1− p)

)r r

∏
k=1

1
1− (1−di(τ))k p

=
τ−1

∑
r=1

a(r,τ) =
∞

∑
r=1

a(r,τ)1{r≤τ−1}.

By taking the limit inferior on both sides,

liminf
τ→∞

1
pi

h(Si) = liminf
τ→∞

∞

∑
r=1

a(r,τ)1{r≤τ−1}

≥
∞

∑
r=1

liminf
τ→∞

(
a(r,τ)1{r≤τ−1}

)
(by Fatou’s lemma)

(a)
=

∞

∑
r=1

1 = ∞

where equality (a) follows from

liminf
τ→∞

(
a(r,τ)1{r≤τ−1}

)
= liminf

τ→∞
a(r,τ)

= liminf
τ→∞

(
(1−di(τ))(1− p)

)r r

∏
k=1

1
1− (1−di(τ))k p

= (1− p)r 1
(1− p)r = 1

if di(τ) = o(1).

Case 2. pi < p j.

The fractional term in (10) is upper bounded by pi(1−p j)
h(Si)+h(S j)+1 . We show h(S j) goes to ∞ as τ increases by

using Fatou’s lemma again. Since h(S j) is nonnegative, it then implies the fractional term in (10) converges

to 0. Let b(r,τ) be (1−d j(τ))(1− pi)
)r r

∏
k=1

1
1−(1−d j(τ))k p j

for any positive integers r and τ . We can rewrite

h(S j) as

1
p j

h(S j) =
τ−1

∑
r=1

(
(1−d j(τ))(1− pi)

)r r

∏
k=1

1
1− (1−d j(τ))k p j

=
τ−1

∑
r=1

b(r,τ) =
∞

∑
r=1

b(r,τ)1{r≤τ−1}.

By taking the limit inferior on both sides,

liminf
τ→∞

1
p j

h(S j) = liminf
τ→∞

∞

∑
r=1

b(r,τ)1{r≤τ−1}

≥
∞

∑
r=1

liminf
τ→∞

(
b(r,τ)1{r≤τ−1}

)
(by Fatou’s lemma)

(b)
>

∞

∑
r=1

1 = ∞.
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where equality (b) follows from

liminf
τ→∞

(
b(r,τ)1{r≤τ−1}

)
= liminf

τ→∞
b(r,τ)

= liminf
τ→∞

(
(1−d j(τ))(1− pi)

)r r

∏
k=1

1
1− (1−d j(τ))k p j

= (1− pi)
r 1
(1− p j)r > 1

if d j(τ) = o(1).

We next show that if di(τ) is a constant for all i∈N, there exists an instance where the greedy policy does

not converge to the optimal objective value of (3). Suppose di(τ) = 1− ε for some ε > 0 and pi = p j = p.

Recall the definition of h(Si),

1
p

h(Si) =
τ−1

∑
r=1

(
(1−di(τ))(1− p)

)r r

∏
k=1

1
1− (1−di(τ))k p

=
τ−1

∑
r=1

(
ε(1− p)

)r r

∏
k=1

1
1− εk p

≤
τ−1

∑
r=1

(
ε(1− p)

)r( 1
1− ετ p

)r
=

τ−1

∑
r=1

(
ε(1− p)
1− ετ p

)r
=

ε(1− p)
1− ετ p

1−
(

ε(1−p)
1−ετ p

)τ

1−
(

ε(1−p)
1−ετ p

)
≤ ε(1− p)

1− ετ p
1

1−
(

ε(1−p)
1−ετ p

) .
By taking limits on both sides,

lim
τ→∞

1
p

h(Si)≤ lim
τ→∞

ε(1− p)
1− ετ p

1

1−
(

ε(1−p)
1−ετ p

) =
ε(1− p)

1− ε(1− p)
,

which implies h(Si) converges to a constant as τ increases. It follows that the long-run average matching

frequency, which is the right-hand-side in (10), converges to a value smaller than p.

B Appendix B: Experimental Study Results

Tables 2 and 3 show the exact average reward and waiting time values in the ride-sharing instance and the

freight marketplace instance, respectively. The reward row consists of two sub-rows; the first row represents

the 95% confidence interval of the average reward value, and the second represents the ratio of the average

reward to the offline value and LP relaxation bound. The value written in the parentheses is the ratio to the

LP relaxation bound.
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Sojourn
Result Myopic Greedy Batching Offline

period

6 Reward
24230.52 ± 53.50 33224.62 ± 68.18 32441.94 ± 67.71 35563.96 ± 69.97
68.13% (62.07%) 93.42% (85.10%) 91.22% (83.10%) -

Waiting time 0.70 3.89 2.93 -

9 Reward
24322.27 ± 53.15 35086.75 ± 68.59 34583.92 ± 69.37 37563.31 ± 72.05
64.75% (62.30%) 93.41% (89.87%) 92.07% (88.59%) -

Waiting time 0.81 6.16 4.49 -

12 Reward
24349.39 ± 53.70 36191.17 ± 69.31 35995.65 ± 70.80 38835.83 ± 73.09
62.70% (62.37%) 93.19% (92.70%) 92.69% (92.20%) -

Waiting time 0.89 8.45 6.05 -

15 Reward
24357.53 ± 53.25 36922.11 ± 71.46 37030.52 ± 71.73 39746.28 ± 73.99
61.28% (62.39%) 92.89% (94.57%) 93.17% (94.85%) -

Waiting time 0.96 10.76 7.59 -

18 Reward
24359.07 ± 53.21 37431.07 ± 71.70 37834.21 ± 72.46 40451.28 ± 74.46
60.22% (62.39%) 92.53% (95.88%) 93.53% (96.91%) -

Waiting time 1.01 13.07 9.14 -

Table 2: Empirical average rewards and waiting times achieved by the tested policies in the ride-sharing
instance.

Sojourn
Result Myopic Greedy Batching Offline

period

1 Reward (×107)
2.64 ± 0.0039 2.64 ± 0.0039 2.64 ± 0.0039 2.64 ± 0.0039

73.43% (100%) 73.43% (100%) 73.43% (100%) -
Waiting time 0.36 0.36 0.36 -

2 Reward (×107)
2.79 ±0.0039 3.01 ±0.0042 2.94 ±0.0041 3.18 ±0.0043

77.66% (87.73%) 83.69% (94.54%) 81.85% (92.47%) -
Waiting time 0.65 1.07 1.00 -

3 Reward (×107)
2.82 ±0.0039 3.14 ±0.0044 3.05 ±0.0043 3.32 ±0.0045

78.58% (83.37%) 89.10% (94.53%) 88.07% (93.44%) -
Waiting time 0.94 1.86 1.65 -

4 Reward (×107)
2.83 ±0.0039 3.20 ±0.0045 3.16 ±0.0045 3.39 ±0.0047

78.67% (82.54%) 90.10% (94.53%) 89.65% (94.06%) -
Waiting time 1.23 2.65 2.28 -

5 Reward (×107)
2.83 ±0.0039 3.24 ±0.0045 3.22 ±0.0045 3.43 ±0.0048

78.67% (82.54%) 90.10% (94.53%) 89.65% (94.06%) -
Waiting time 1.51 3.44 2.92 -

Table 3: Empirical average rewards and waiting times achieved by the tested policies in the freight market-
place instance.
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