
A Brief Lecture on Submodular Functions
Alejandro Toriello

Definition 1. Let N = {1, . . . , n}. A set function is a function f : 2N →
R. Throughout this lecture, we assume f(∅) = 0. A set function f is
submodular if

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ),∀ S, T ⊆ N .

A function is supermodular if its negation is submodular, and it is modular
if it is both super- and submodular.

The submodular polyhedron associated with a submodular function f is
given by

P (f) = {x ∈ RN : x(S) ≤ f(S),∀ S ⊆ N},

where x(S) =
∑

i∈S xi, and the base polyhedron of f is

B(f) = {x ∈ P (f) : x(N) = f(N)}.

Why should we care about submodular functions? The next two exam-
ples give some ideas.

Example 1. A matroid on N is a collection I ⊆ 2N satisfying the following
three axioms:

i) ∅ ∈ I.

ii) If A ⊆ B and B ∈ I, then A ∈ I.

iii) For any S ⊆ N , all maximal subsets of S contained in I have the same
cardinality.

A member of I is called an independent set. Two textbook examples of
matroids are the collection of edge sets of sub-forests of a graph and the
collection of linearly independent sets of columns of a matrix.

By axiom (iii), we can define a function r : 2N → Z+ as

r(S) = max
{
|A| : A ⊆ S, A ∈ I

}
,∀ S ⊆ N .

The function r is known as the rank function of the matroid I, and it is
submodular. In fact, matroids can equivalently be defined in terms of rank
functions. Let r : 2N → Z+ be a submodular function that satisfies the
following additional conditions:
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• r(S) ≤ |S|,∀ S ⊆ N .

• If S ⊆ T , then r(S) ≤ r(T ).

Then r defines a matroid by setting I =
{
A ⊆ N : r(A) = |A|

}
.

Example 2. A cooperative game is a set N of players and a characteristic
function c : 2N → R. For any S ⊆ N , the function value c(S) represents the
cost that the player set S incurs when working together. In cooperative game
theory, we assume the entire set of players N , called the grand coalition,
decides to cooperate and incur cost c(N). The main question is how to
allocate this cost among the player set so that no subset of players has
incentive to leave the grand coalition. One such solution concept is the core
of the game, given by the set

core(N, c) = B(c).

Intuitively, a cost allocation in the core splits c(N) so that no subset S ⊆ N
of players pays more than c(S), which is the cost it would incur by leaving
the grand coalition.

When c is submodular, the game (N, c) is called convex, and it has
many nice properties. Among them, the core is always non-empty, and an
allocation in the core can be found in polynomial time using the greedy
algorithm.

Theorem 1. Let f : 2N → R be submodular. Then B(f) 6= ∅.

Proof. Let S0 = ∅, Si = {1, . . . , i},∀ i = 1, . . . , n, and define

xi = f(Si)− f(Si−1),∀ i = 1, . . . , n.

Clearly, x(N) = f(N). So let T ⊆ N ; we prove x(T ) ≤ f(T ) by induction
on |T |. The base case (T = ∅) is trivial, so let T 6= ∅ and let i ∈ N be the
minimal element that satisfies Si ⊇ T . Then

f(T ) ≥ f(T ∪ Si−1) + f(T ∩ Si−1)− f(Si−1)
= f(Si)− f(Si−1) + f(T \ {i})
= xi + f(T \ {i})
≥ xi + x(T \ {i}) = x(T ),

where the first inequality is a consequence of the submodularity of f , and
the second follows from the induction hypothesis. �
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Example 3. Let G = (V,E) be an undirected graph, and let c ∈ RE
+ be a

capacity vector. For any S ⊆ V , define

δ(S) = {e ∈ E : e ∩ S = 1}.

Then the function S 7→ c(δ(S)), known as the cut function, is submodular.
Note that the non-negativity of the capacity is necessary for the cut function
to be submodular.

Definition 2. Let f : 2N → R, z ∈ RN . Let {1, . . . , n} = N be an
ordering of the elements of N that satisfies z1 ≥ · · · ≥ zn, and define Si =
{1, . . . , i},∀ i ∈ N . The Lovász extension of f at z is defined by

f̂(z) =
n−1∑
i=1

(zi − zi+1)f(Si) + znf(Sn).

Note that f̂ is well-defined, positively homogeneous, and satisfies

f̂(eS) = f(S),∀ S ⊆ N ,

where eS ∈ {0, 1}N is the characteristic vector of S.

Theorem 2. Let f : 2N → R, and let f̂ be the Lovász extension of f . Then
f is submodular iff f̂ is convex.

Proof. (⇐) Let f̂ be convex, and let S, T ⊆ N . Then

1
2
f̂(eS) +

1
2
f̂(eT ) ≥ f̂

(
1
2
(eS + eT )

)
,

or equivalently,
f(S) + f(T ) ≥ f̂(eS + eT ).

Moreover, we have

(eS + eT )i =


2, i ∈ S ∩ T

1, i ∈ S \ T or i ∈ T \ S

0, otherwise,

which by the definition of f̂ implies f̂(eS + eT ) = f(S ∩ T ) + f(S ∪ T ).
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(⇒) We consider the dual pair of LP’s

max zTx

s.t. x(S) ≤ f(S),∀ S ( N (P1)
x(N) = f(N),

and

min
∑
S⊆N

ySf(S)

s.t.
∑
S⊆N

ySeS = z (D1)

yS ≥ 0,∀ S ( N .

Define Si,∀ i ∈ N as in Definition 2, let

x∗i = f(Si)− f(Si−1),∀ i ∈ N ,

and let

y∗S =


zi − zi+1, S = Si,∀ i = 1, . . . , n− 1
zn, S = N

0, otherwise.

By construction, x∗ is feasible for (P1) and y∗ is feasible for (D1). Moreover,
we have

zTx∗ =
∑
i∈N

zi

(
f(Si)− f(Si−1)

)
=

n−1∑
i=1

(zi − zi+1)f(Si) + znf(Sn)

=
∑
S⊆N

y∗Sf(S) = f̂(z).

Therefore, x∗ and y∗ are primal and dual optimal, respectively, and f̂(z) is
convex since it is the support function of the set B(f). �

Corollary 3. The greedy algorithm yields an optimal solution to max{zTx :
x ∈ B(f)}, for any submodular set function f and any z ∈ RN .

Corollary 4. For any submodular set function f , the system of inequalities
that defines B(f) is TDI.
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We next turn our attention to pairs of submodular functions. The fol-
lowing result is a generalization of Edmonds’ Matroid Intersection Theorem.

Theorem 5. Let f1, f2 : 2N → R be submodular. Then

max{x(N) : x ∈ P (f1) ∩ P (f2)} = min{f1(S) + f2(N \ S) : S ⊆ N}.

Proof. We consider the dual pair of LP’s

max zTx

s.t. x(S) ≤ f1(S),∀ S ⊆ N (P2)
x(S) ≤ f2(S),∀ S ⊆ N ,

and

min
∑
S⊆N

(
y1

Sf1(S) + y2
Sf2(S)

)
s.t.

∑
S⊆N

(y1
S + y2

S)eS = z (D2)

y ≥ 0.

Clearly, (P2) is always feasible, so choose z to make it finite.
Claim. (D2) has an optimal solution y∗ where Ci = {S ⊆ N : yi∗

S > 0} is a
chain, for i = 1, 2.

Proof of claim. Consider any feasible y with yi
S ≥ yi

T > 0 and S \ T 6= ∅,
T \ S 6= ∅. Then

yi
SeS + yi

T eT = (yi
S − yi

T )eS + yi
T (eS + eT )

= yi
T eS∩T + (yi

S − yi
T )eS + yi

T eS∪T ,

and, by the submodularity of fi,

yi
Sfi(S) + yi

T fi(T ) = (yi
S − yi

T )fi(S) + yi
T

(
fi(S) + fi(T )

)
≥ yi

T fi(S ∩ T ) + (yi
S − yi

T )fi(S) + yi
T fi(S ∪ T ).

Therefore, we can define a new solution ỹi as

ỹi
U =


yi

U + yi
T , U = S ∩ T, S ∪ T

yi
S − yi

T , U = S

0, U = T

yi
U , otherwise.
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The new solution is feasible and has an objective value equal or better than
the original solution. In particular, we can apply this procedure repeatedly
to an optimal solution to obtain an optimal solution of the required form. �

Let y∗ be an optimal solution satisfying the claim’s condition. It can be
shown that the restriction of the constraint matrix of (D2) to the columns
indexed by C1, C2 is totally unimodular. Therefore, for z ∈ ZN , y∗ is an
integral vector. In particular, if z = eN , then y∗ is {0, 1}-valued, implying
that C1 = {S} and C2 = {N \ S}, for some S ⊆ N . �

Corollary 6. Let f1, f2 : 2N → R be submodular. The system of inequalities
defined by P (f1) ∩ P (f2) is TDI.

Corollary 7 (Frank’s Discrete Separation Theorem). Let f, g : 2N → R be
sub- and supermodular, respectively, and suppose they satisfy

f(S) ≥ g(S),∀ S ⊆ N .

Then ∃ x ∈ RN satisfying

f(S) ≥ x(S) ≥ g(S),∀ S ⊆ N .

Moreover, if f and g are integer-valued, the separating vector x can be chosen
from ZN .

Proof. Take

f1(S) = f(S),∀ S ⊆ N

f2(S) = g(N)− g(N \ S),∀ S ⊆ N .

Then

max{x(N) : x ∈ P (f1) ∩ P (f2)} = min{f1(S) + f2(N \ S) : S ⊆ N}
= min{f(S) + g(N)− g(S) : S ⊆ N}
= g(N) + min{f(S)− g(S) : S ⊆ N}
= g(N),

where we can take S = ∅ as a minimizer on the right-hand side. Any
maximizer x of the left-hand side above satisfies x(S) ≤ f(S),∀ S ⊆ N and

x(S) ≤ g(N)− g(N \ S) = x(N)− g(N \ S),∀ S ⊆ N ,

which we can rewrite as x(S) ≥ g(S),∀ S ⊆ N . If f and g are integer-valued,
then by Corollary 6 we know that P (f1) ∩ P (f2) is integral, implying that
x can be chosen integral as well. �
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Notes

For anyone interested in learning more about submodular functions, Nemhauser
and Wolsey’s text [NW99, Chapter III.3] is a good place to start. Unlike
other texts that cover matroids, this book emphasizes the role of submodular
rank functions, and many of the proofs use submodularity. With the excep-
tion of the Lovász extension and Frank’s separation theorem, everything in
this lecture is proved there. The ultimate authority on submodular functions
is probably Fujishige, and his book on them [Fuj05] has everything, includ-
ing the two combinatorial algorithms for submodular minimization (in the
second edition only.) The second volume of Schrijver’s set on combinatorial
optimization [Sch03] is a great reference both for matroids and submodular
functions, and includes Schrijver’s own submodular minimization algorithm.
Finally, anyone looking for an additional level of abstraction from submodu-
lar functions should look at Murota’s monograph on discrete convex analysis
[Mur03]. This book introduces the notion of L-convexity and M-convexity,
and every result in this lecture can be generalized in this paradigm. This
was also my main source for the proofs in this lecture.

Although matroids have been studied as far back as the 1930’s, the poly-
hedral results and their extensions to general submodular functions in this
lecture come mainly from the work of Edmonds (see, for example, [Edm70].)

Shapley was the first to consider convex cooperative games in [Sha71],
although he considered value games, which have a supermodular character-
istic function v : 2N → R that represents the value that a set of players can
obtain by working together. (In fact, Shapley actually called these functions
convex set functions, which unfortunately has led to some confusion.) The
core is then defined with the inequalities reversed. However, cost and value
games are in a sense equivalent, because we can define a submodular cost
function c(S) = v(N)−v(N \S) that has the same core as the original value
function v.

The Lovász extension was introduced by Lovász in [Lov83], who used it
to characterize submodular functions. However, the term Lovász extension
was coined by Fujishige, I think.

As you might expect, Frank’s separation theorem was originally proved
by Frank in [Fra82].
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