
Optimizing the Trade-Off Between Batching and Waiting:
Subadditive Dispatching

Ignacio Erazo Alejandro Toriello
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332
ierazo@gatech.edu, atoriello@gatech.edu

November 21, 2023

Abstract

Motivated by applications in e-commerce logistics where orders or items arrive at different
times and must be dispatched or processed in batches, we propose the subadditive dispatch-
ing problem (SAD), a strongly NP-hard problem defined by a set of orders with release times
and a non-decreasing subadditive dispatch time function. A single uncapacitated vehicle must
dispatch orders in batches to minimize the makespan, the time at which all orders have been
dispatched. We propose a mixed-integer linear formulation for SAD; based on the linear relax-
ation’s optimal solution, we construct a two-dispatch solution with a 3/2 approximation ratio,
and a solution with at most three dispatches that has a 4/3 approximation ratio under an ad-
ditional assumption. The guarantees are respectively best possible for solutions using at most
two or three dispatches. Furthermore, we analyze FIFO solutions, discuss cases when they are
optimal, and provide a dynamic program to obtain them. Finally, we computationally test our
methods on applications inspired by same-day delivery and routing on restricted topologies.

1 Introduction

From 2012 to 2021, the share of retail sales in the U.S. stemming from e-commerce grew from 8.0%

to 19.1%, and year-over-year growth in online sales exceeded 12% every year (Digital Commerce

360, 2022). Business-to-business e-commerce sales are also expected to increase annually by 17.5%

from 2020 to 2027 (Caldwell, 2021). The rapid growth in e-commerce underscores the importance

of last-mile delivery, the last portion of the order fulfilment process, when items ordered are de-

livered to the end customer; research in this space is critical, as the last mile may incur up to 50%

of a supply chain’s total logistics costs (Vanelslander et al., 2013).

Last-mile delivery systems are increasingly complex; same-day delivery (SDD) systems are

particularly difficult to design and operate, because the order arrival and packaging process over-

laps significantly with the dispatching and delivery process, increasing the system’s dynamism

and reducing opportunities to consolidate orders and decrease routing costs (Klapp et al., 2020).

Operational aspects and day-to-day decisions in SDD systems, such as how to solve related under-

lying vehicle routing problems (VRP) to design delivery routes, have received significant attention

from the research community, e.g. Klapp et al. (2018b,a, 2020); Reyes et al. (2018); Shelbourne et al.

(2017); Sun et al. (2021); Voccia et al. (2019); Wölck and Meisel (2022). Recently, some studies have

focused on the design of SDD systems, e.g. Banerjee et al. (2022, 2023); Carlsson et al. (2021); Stroh

et al. (2022), focusing on fleet sizing, region partitioning and other tactical-level questions. The in-

herent tension between order arrival times and the economies of scale obtained by batching more

orders together for dispatching is the main motivation for our present work.

Submodular functions are set functions often used to model the economies of scale that arise

in these and other applications; they have been extensively studied in combinatorial optimiza-

tion (e.g. Krause and Golovin, 2014; Nemhauser and Wolsey, 1999; Schrijver, 2003). One way to

characterize submodular functions is by their “discrete concavity”: the marginal change in value

from adding an element to a subset decreases as the subset includes more elements. Formally, let

N := {1, 2, . . . , n} and f : 2N → R; f is submodular if

f (S ∪ S′) + f (S ∩ S′) ≤ f (S) + f (S′), S, S′ ⊆ N.

1

In many applications, submodular functions are also monotonically non-decreasing, f (S) ≤ f (S′)

for S ⊆ S′ ⊆ N. By translating if necessary to obtain f (∅) = 0, f becomes non-negative and

trivially satisfies subadditivity,

f (S ∪ S′) ≤ f (S) + f (S′), S, S′ ⊆ N, S ∩ S′ = ∅.

In fact, monotone submodular functions are a special case of fractionally subadditive functions, set

functions f with the following property: for any non-empty S ⊆ N and any α ∈ R2S

+ satisfying

∑
S′⊆S,S′∋i

αS′ ≥ 1, i ∈ S, we have ∑
∅ ̸=S′⊆S

αS′ f (S′) ≥ f (S).

By using a binary α above, we obtain (non-fractional) subadditivity. The fact that submodular

functions are fractionally subadditive follows from two facts. First, base polyhedra of submodu-

lar functions are non-empty, or equivalently, concave cost-sharing games have a non-empty core

(Edmonds, 1970; Shapley, 1971); second, the Bondareva-Shapley theorem (Bondareva, 1963; Shap-

ley, 1967) states that a game is balanced if and only if it has a non-empty core. A submodular

function defines a concave cost-sharing game; the fact that the core of the game and any sub-game

is non-empty means the game is totally balanced, and this property precisely corresponds to f being

fractionally subadditive.

1.1 Problem Definition and Applications

To study the trade-off between batching economies of scale and the idle time spent waiting for

orders, we propose the subadditive dispatching problem (SAD). The problem is characterized by a

finite set N to dispatch or serve, where each element i ∈ N has a release time, and a non-decreasing

subadditive set function f : 2N → R+ with f (∅) = 0. Depending on the context, e.g. delivery

or production, N and f may represent different things; for clarity of exposition we adopt delivery

terminology throughout the rest of the paper. Thus, N is a set of orders, a subset S ⊆ N is a batch

of orders, and f is the dispatch time function, f (S) representing the time required for a vehicle to

be dispatched from a depot to deliver the orders in batch S and return to the depot. A single

delivery vehicle (or more generally, a server) is available to execute dispatches. Informally, the

2

goal is a partition of the order set N into batches that the vehicle can dispatch while minimizing

the makespan, the end time of the last dispatch. We define SAD under the general case where f is

subadditive, but derive most results under stronger assumptions that are often met in important

applications:

(A1) f is subadditive.

(A2) f is fractionally subadditive.

(A3) f is submodular.

(B) minS⊆N{ f (S)− ∑i∈S γi} can be solved in

polynomial time for all γ ∈ RN under the

oracle model.

As we explain above, from (A1) to (A3) we progressively make a stronger assumption. More-

over, (A3) implies (B) because submodular minimization is solvable in polynomial time (Iwata

et al., 2001; Schrijver, 2000), but there are also important cases in which (B) is satisfied but (A3) is

not.

Several special cases of SAD define important applications, including the following:

• f (S) = g
(
∑i∈S τi

)
, where g : R → R is a non-decreasing concave function with g(0) = 0,

and τi > 0 for all i ∈ N; this function is submodular. In particular, when τi = 1 for all

i ∈ N, f is a function of the batch’s cardinality. A specific application is f (S) = a + b|S|+
c
√
|S| for S ̸= ∅, with a, b, c ≥ 0; this function is a continuous approximation of expected

routing and delivery time, used to model average-case SDD system behavior and to perform

tactical-level design of SDD systems (Banerjee et al., 2022, 2023; Stroh et al., 2022). The SAD

framework allows arbitrary, non-stationary (discretized) order arrivals, whereas previous

analysis requires additional assumptions on arrival rates.

• Consider a set of nodes V with N ⊆ V, a depot node 0 and an undirected network (V ∪ 0, E)

with non-negative edge lengths. For S ⊆ N, define f (S) as the optimal length of a Steiner

traveling salesman problem (TSP) through S ∪ 0; a Steiner TSP tour must visit nodes S ∪ 0

but may also visit other nodes in the graph. With this function, SAD captures operational

SDD models in which same-day deliveries must be made to locations N in the network,

where different orders are ready for delivery at different points in the operating day (Klapp

et al., 2018a). The function f is trivially subadditive in S, and is submodular for the class

3

of naturally submodular graphs (Herer and Penn, 1995), which includes paths (Klapp et al.,

2018b), trees and other similar topologies.

• Let F ⊆ 2N be a collection of subsets of N called families, and define for each family F ∈ F a

number τF > 0. Then

f (S) = ∑
F∈F ,F∩S ̸=∅

τF

is submodular and non-decreasing; with this function, SAD can model single-machine schedul-

ing problems with release times, batching and family setups (Schutten et al., 1996; Goemans

et al., 2002; Yuan et al., 2006), or the more general class of weighted coverage functions

(Karimi et al., 2017).

• Consider a set of p products that can be produced via m production modes, where a matrix

(akℓ) = A ∈ R
p×m
+ indicates production efficiency: akℓ units of product k are produced when

using mode ℓ for one unit of time. N represents a set of production orders, each given by a

vector bi ∈ R
p
+, where order i requests bi

k units of product k. The linear production function

f (S) = min
y≥0

{ m

∑
ℓ=1

yℓ : Ay ≥ ∑
i∈S

bi
}

describes the minimum time required to produce all products from orders in S ⊆ N when

fractional production is possible; this function is fractionally subadditive, and remains so for

any non-negative objective vector (Owen, 1975). Although f is not necessarily submodular,

condition (B) holds under additional assumptions; see Appendix D.4.

1.2 Contributions and Organization

We summarize our main contributions as follows:

1. We propose the subadditive dispatching problem (SAD) and show that it is strongly NP-

hard even in the case of routing on generalized star graphs, a special case in which f is

submodular. We present a mixed-integer linear programming (MILP) formulation for SAD

and show that under condition (B) its linear programming (LP) relaxation can be solved in

polynomial time.

4

2. We show that, even for modular functions f , a heuristic using at most d dispatches can-

not have a multiplicative approximation guarantee better than 1 + 1/d, and we provide

heuristics matching this best-possible guarantee for d = 1 when (A1) holds, for d = 2 when

(A2) holds, and for d = 3 when (A2) and an additional assumption hold. For d = 2, 3,

our heuristics construct a SAD solution in polynomial time using an optimal solution of

the LP relaxation. We also show that the LP relaxation can have a multiplicative gap of
√

3 − 1 ≈ 0.73 < 3/4 even when (A3) holds, implying that a solution based on the LP

relaxation cannot have an approximation guarantee of 4/3 for d = 3 without additional

assumptions.

3. We analyze the performance of First-In First-Out (FIFO) solutions, in which orders are dis-

patched according to release times. The best FIFO solution can be computed efficiently via

dynamic programming, and is a 2-approximation for SAD. We discuss FIFO-optimal func-

tions, which define SAD instances with an optimal FIFO solution; we also generalize the

concept to functions for which optimal solutions exhibit a partial FIFO structure, which we

denote Q-FIFO-optimality.

4. We perform a computational analysis for two applications: tactical design of SDD systems

under heterogeneous order arrival rates, and routing on tree topologies. The latter demon-

strates the empirical effectiveness of our heuristics, whereas the former shows an application

where optimal results can be obtained with our FIFO algorithm, and the practical insights

that can be derived from the solution.

The rest of the paper has the following organization. Section 2 presents a brief literature review,

while Section 3 defines SAD, formulates it as an MILP and discusses some preliminary complexity

results. Section 4 presents our two approximation algorithms based on an optimal solution of the

linear relaxation of the MILP formulation; furthermore, we also discuss a set of valid inequalities

that can strengthen the bound given by the relaxation. Section 5 discusses FIFO solutions, their

approximation guarantee, FIFO-optimality and its generalization. Section 6 summarizes our com-

putational studies, and Section 7 concludes and outlines future avenues of work. The appendix

includes proofs omitted from the main body of the paper.

5

2 Literature Review

2.1 Same-Day Delivery

Different operational problems that arise in SDD systems have received recent attention; in par-

ticular, models that study dispatching, routing and delivery of orders in SDD are a particular case

of vehicle routing problems (VRP) and have been studied under different conditions, including

deterministic or stochastic order arrivals, and single- or multi-vehicle fleets, and also with vary-

ing objectives, such as minimizing makespan, minimizing total routing distance or maximizing

the expected number of served orders. The common element in many models is the presence of

release times that prevent a route from including an order if its departure occurs before the order

is released. These models also usually have one common deadline for all deliveries (the end of

the service day) rather than order-specific deadlines more common in food delivery (Reyes et al.,

2018; Shelbourne et al., 2017). Because the literature on SDD models includes routing times in gen-

eral road networks, e.g. Klapp et al. (2018a, 2020); Sun et al. (2021); Voccia et al. (2019); Wölck and

Meisel (2022), they are generally not submodular nor fractionally subadditive except in special

cases such as paths (Klapp et al., 2018b).

Recently, SDD tactical design models have used continuous approximations to study the aver-

age behavior of an SDD system (Banerjee et al., 2022, 2023; Stroh et al., 2022). Whereas the routing

time for subsets of fixed locations is not necessarily submodular, under reasonably mild conditions

the expected routing time when locations are sampled randomly from a geographic distribution

exhibits economies of scale as the number of locations increases, growing in proportion to the

square root of the number of locations; see Beardwood et al. (1959) and its many extensions. This

translates to submodularity when discretizing arrivals, and is thus a suitable application for SAD.

For a recent survey on applications of continuous approximations in logistics, see Franceschetti

et al. (2017); other recent applications of these techniques in the last mile include Carlsson et al.

(2021); Carlsson and Song (2017); Liu et al. (2020).

This article contributes to the SDD literature by generalizing deterministic models when rout-

ing times are submodular or fractionally subadditive, such as in Klapp et al. (2018b). Moreover,

SAD generalizes SDD tactical design models by allowing arbitrary arrival rates, which was not

accommodated by previous works; this allows for a more accurate representation of the order

6

arrival pattern.

2.2 Submodular and Subadditive Optimization

Submodular functions have been extensively studied in combinatorial optimization (e.g. Krause

and Golovin, 2014; Nemhauser and Wolsey, 1999; Schrijver, 2003). Submodular minimization can

be performed in polynomial time in the oracle model (Iwata et al., 2001; Schrijver, 2000), but many

other submodular optimization problems are NP-hard, including submodular maximization and

extensions of the minimization objective. In particular, SAD seeks a partition of a ground set to

minimize the makespan, a scheduling objective. While we are not aware of similar models in the

submodular optimization literature, some related models require the ground set to be partitioned

while optimizing a different objective, usually the sum of the function values for sets in the par-

tition, often with additional side constraints; see Bogunovic et al. (2017); Chekuri and Ene (2011);

Hirayama et al. (2023); Wang et al. (2021); Wei et al. (2015) for recent examples of work in this area.

Subadditive and fractionally subadditive functions often appear in game theory and are used

to model utility valuation for items that cannot be divided among multiple agents. In particular,

the valuation class of fractionally subadditive functions, termed XOS functions, was defined in the

context of combinatorial auctions (Nisan, 2000). Subadditive functions have been widely used to

model multiple variants of welfare maximization problems (Barman and Sundaram, 2020; Barman

et al., 2020; Chaudhury et al., 2020; Feige, 2009) and multi-item multi-bidder games (Cai and Zhao,

2017, 2019). The space between subadditive and fractionally subadditive functions remains an

active area of study; see e.g. Bangachev and Weinberg (2023).

2.3 Machine Scheduling with Batching and Family Setups

Machine scheduling problems concern the assignment of jobs to one or several machines, with

typical objectives such as minimizing makespan, lateness, weighted completion times, etc. Within

the vast body of scheduling research, our current work is related most to scheduling models that

consider release times, batching, or both, starting with Hariri and Potts (1983), among the first

to consider release times. Batch setup times first appeared in Monma and Potts (1989), and then

Schutten et al. (1996) considered both release times and family setup times, a submodular gener-

7

alization of batch setup times. Related work includes Ahmadi et al. (1992); Brucker et al. (1998);

Dobson and Nambimadom (2001); Li et al. (2005); Yuan et al. (2006); the surveys Allahverdi (2015);

Webster and Baker (1995) cover relevant literature, the former particularly focusing on setup times

or costs, while the latter, older review covers batching. To the best of our knowledge, Yuan et al.

(2006) is one of the few relatively recent works to study family setup times, release times, and the

makespan objective for a single machine (vehicle in our terminology); the authors show that this

particular problem is strongly NP-hard, implying that SAD is as well.

SAD contributes to the machine scheduling literature by generalizing both sequential and par-

allel batching for single-machine scheduling with release times. We also specifically improve on

the 2-approximation algorithm proposed by Yuan et al. (2006) and give better approximation guar-

antees for a more general model.

3 Model Formulation and Preliminaries

The subadditive dispatching problem (SAD) is characterized by a finite set N := {1, 2, . . . , n} of

orders with release times r ∈ RN
+ satisfying 0 = r1 ≤ r2 ≤ · · · ≤ rn, and by a single delivery

vehicle that dispatches batches of orders according to a non-decreasing and subadditive dispatch

time set function f : 2N → R+ with f (∅) = 0. The goal is to find a partition of the order set N

into batches that the vehicle can dispatch while minimizing the makespan, i.e. the end time of the

last dispatch. The dispatches may not overlap in time, as they are performed by a single vehicle,

and if a batch contains an order i, its dispatch cannot begin before i’s release time ri. A solution

for SAD is thus comprised of a partition of N, and a feasible schedule for those dispatches.

The challenge stems from the trade-off between the economies of scale derived from batching

and the waiting for orders to be released; if either element is removed, the problem is much easier.

If all order release times are equal, subadditivity implies that it is optimal to dispatch the entire set

N in a single batch. Conversely, the following result shows that if the batches are given, finding

an optimal schedule is straightforward.

Proposition 1. For any partition of N, we can compute the optimal ordering of the batches, the correspond-

ing dispatch schedule, and the makespan in O(n) time.

Proof. We can map a batch S ⊆ N to its largest-indexed order, S 7→ max{j ∈ S}, and no two

8

batches in a partition are mapped to the same index; the mapping is one-to-one. Define the family

of batches with largest-indexed element i, Ni := {S ⊆ {1, . . . , i} : i ∈ S}; this results in a partition

of the power set, 2N \ {∅} =
⋃

i∈N Ni. Consider the following indexing procedure: for each

batch S in the partition, retrieve its largest-indexed order, and label S with this index; Si means

i = max{j ∈ Si}. This takes O(n) time, as we go over each order once. For each i ∈ N, check if

there is a batch associated with i; if not, define Si = ∅. This takes O(n) time as well.

With this procedure, we construct in linear time an ordered list of subsets S1, . . . , Sn that par-

tition N, where Si = ∅ or Si ∈ Ni. Denote the start time of Si’s dispatch as ti; if we dispatch the

batches in the ordering given by the indexes, the feasibility conditions for a schedule are

ti ≥ ri i ∈ N (1a)

ti+1 ≥ ti + f (Si) i ∈ N \ n. (1b)

Condition (1a) requires a batch containing i to be dispatched no earlier than ri. Condition (1b)

requires the vehicle to complete dispatch i before starting dispatch i + 1; the condition still applies

when Si = ∅, because f (∅) = 0. Intuitively, in this case the condition can be traced back to the

last non-empty batch, and ensures dispatch i + 1 does not start before this dispatch ends.

Consider the following recursion, which computes feasible dispatch times and requires O(n)

operations:

t1 = r1 = 0; ti+1 = max{ti + f (Si), ri}, i ∈ N \ n.

The makespan for this schedule is then tn + f (Sn). It is easy to see that if batches S1, . . . , Sn are

processed in this order, this makespan is the best possible.

We complete the proof by showing that no other sequencing of the batches can produce a

better makespan. Suppose the batches are dispatched in a different sequence; starting from index

1, consider the first time we dispatch a non-empty batch Si with a higher index before a non-

empty batch Si′ with a lower index, i.e. i > i′. If we swap the dispatch order of Si and Si′ , we

cannot increase the makespan because ri′ ≤ ri, and we may decrease it if ri′ < ri. Therefore, if the

batches are not dispatched in the ordering given by their indexes, we can perform pairwise swaps

9

until we dispatch then in this order, and the swaps can only improve the makespan.

Proposition 1 implies that SAD reduces to choosing the partition of N into batches. Using the

batch families Ni = {S ⊆ {1, . . . , i} : i ∈ S}, the proof verifies that we can map any partition of N

to a set of ordered tuples (ti, Si)i∈N , where Si = ∅ or Si ∈ Ni, and in the latter case ti represents

the start time of Si’s dispatch. Finally, the dispatch time vector t = (t1, . . . , tn) for this partition

can be computed in linear time. Using this representation, we can model SAD as a mixed-integer

linear program (MILP) with the following variables:

xS: Indicates if batch S ⊆ N is dispatched.

ti: Start time for dispatch i ∈ N.

z: Makespan.

Proposition 2. The following MILP solves SAD:

min
t,x,z≥0

z (2a)

s.t. ti ≥ ri i ∈ N (2b)

ti+1 ≥ ti + ∑
S∈Ni

xS f (S) i ∈ N \ n (2c)

z ≥ tn + ∑
S∈Nn

xS f (S) (2d)

∑
S⊆N,S∋i

xS = 1 i ∈ N (2e)

xS ∈ Z ∅ ̸= S ⊆ N. (2f)

The proof can be found in Appendix A.1. Next, we address the complexity of solving SAD.

Proposition 3. SAD is strongly NP-Hard, even in the special case where f is a Steiner TSP in a generalized

“star” graph, a tree where a depot node has arbitrary degree but all other nodes have degree one or two.

This result is in addition to Yuan et al. (2006), who show that SAD is strongly NP-Hard when

f represents a batch scheduling function with family setups. The proof can be found in Appendix

A.2, and relies on a reduction from the 3-partition problem. Nevertheless, SAD has a straightfor-

ward 2-approximation algorithm.

10

Proposition 4. A heuristic that groups all orders into a single batch, resulting in a solution with makespan

rn + f (N), is a 2-approximation for SAD. This approximation guarantee is tight.

Proof. Let z∗ be the optimal makespan; then rn ≤ tn ≤ z∗. Similarly, f (N) ≤ z∗, because f (N) is

the optimal makespan if all release times are zero. Thus, rn + f (N) ≤ 2z∗. It is simple to construct

an instance with n = 2 in which the heuristic solution has a makespan that is twice the optimum:

take a modular f with f ({1}) = 1, f ({2}) = 0 and r1 = 0, r2 = 1. The optimal solution has

makespan 1, whereas the heuristic has makespan 2.

This heuristic gives the simplest possible solution, as it uses only one dispatch. In general,

solutions with a small number of dispatches are appealing, as they may be easier to compute and

offer operational simplicity. The next proposition gives a lower bound on the approximation ratio

of such solutions.

Proposition 5. Consider a heuristic for SAD that, for any instance, generates a solution with at most

d < n dispatches. The heuristic’s multiplicative approximation guarantee cannot be smaller than 1 + 1/d,

even when constraining f to be a modular set function.

The family of instances proving this proposition is given in Appendix A.3. We next turn our

attention to solving the linear relaxation of (2).

Lemma 6. Consider the linear relaxation of (2), where we relax the integrality of each xS variable (2f)

to non-negativity. This relaxation can be solved in polynomial time if condition (B) holds, that is, if

minS⊆N{ f (S)−∑i∈S γi} can be solved in polynomial time for all γ ∈ Rn.

The proof can be found in Appendix A.4, and relies on linear programming duality and the

equivalence of separation and optimization. Condition (B) essentially translates to the separation

problem induced by variables xS in the LP’s dual.

4 Linear Relaxation-Based Analysis

4.1 Heuristics Based on an Optimal LP Solution

Lemma 6 states that the linear relaxation of (2) can be solved efficiently if condition (B) holds. We

leverage this to construct heuristic solutions that take as input an extreme point optimal solution

11

of the linear relaxation. These heuristics obtain guarantees that match the best possible limits

given by Proposition 5 for two and three dispatches. We begin with Algorithm 1, which creates

the fractional analogue of a schedule for a fractional solution by ordering batches with positive

weight and computing their start and end times.

Proposition 7. Let (tLP, xLP, zLP) be a feasible extreme point of the LP relaxation of (2). Using that

solution as input, Algorithm 1 returns an ordered list (by increasing maximum index, then decreasing

cardinality) of the fractional dispatches, batches S ⊆ N with xLP
S > 0, and returns their corresponding

schedule (start, end and idle times) in O(n log n) time.

Algorithm 1 Schedule for an extreme point of the LP relaxation of (2)
Notation: ηS: position of batch S in the schedule.
t̂η , êη : start and end time of dispatch for the batch in position η.
∆j: vehicle idle time before order j, for j ∈ N.

Input: Order set N, release time vector r, extreme point of the LP relaxation (tLP, xLP, zLP).
1: Let Bj ← ∅, j ∈ N [Bj will be an ordered list of batches]
2: for all subsets S ⊆ N with xS > 0 do
3: j← max{k ∈ S}
4: Insert S in Bj in the earliest position where subsequent batches have smaller or equal car-

dinality
5: end for
6: ℓ← 1, ê0 ← 0
7: for j = 1, 2, . . . , n do
8: ∆j ← 0
9: for S ∈ Bj, according to Bj’s ordering, do

10: ηS ← ℓ, t̂ℓ ← max{rj, êℓ−1}
11: if t̂ℓ − êℓ−1 > 0 then
12: ∆j ← t̂ℓ − êℓ−1
13: end if
14: êℓ ← t̂ℓ + xS f (S), ℓ← ℓ+ 1
15: end for
16: end for
Output: Vectors η, t̂, ê and ∆.

The proof is in Appendix B.1, and is illustrated in Figures 1a and 1b. Based on this schedule of

the solution, the next result slightly relaxes the instance to remove idle time; intuitively, removing

the idle time makes the heuristic analysis easier, and the performance guarantees then translate to

the original instance.

Proposition 8. Let (tLP, xLP, zLP) be an optimal extreme point solution of the LP relaxation of (2) for some

12

instance I0. Let η and ∆ respectively be the vectors of batch schedule positions and idle times computed by

Algorithm 1. Suppose ∑j∈N ∆j > 0; then Algorithm 2 creates an instance I1 in O(n) time for which xLP

induces an optimal solution and the schedule given by η has no idle time. Therefore, instance I1’s optimal

fractional makespan is zLP −∑j∈N ∆j.

Algorithm 2 Transformation of an instance to remove idle time
Notation: ηS: position of batch S in the schedule.
t̂η , êη : start and end time of the dispatch for batch in position η.
∆j: vehicle idle time before order j, for j ∈ N.
Input: Vectors ∆, η, t̂, ê, order set N and release time vector r.

1: ∆̂← 0
2: for j = 1, 2, . . . , n do
3: ∆̂← ∆̂ + ∆j, rj ← rj − ∆̂
4: for batches S with j = max{k ∈ S} do
5: t̂ηS ← t̂ηS − ∆̂, êηS ← êηS − ∆̂
6: end for
7: end for

Output: Modified vectors r, t̂, ê.

This proof is in Appendix B.2, and the algorithm is illustrated in Figure 1c. The outputs of Al-

gorithms 1 and 2 allow us to design two heuristics for SAD, leveraging the fact that the solution’s

schedule in the relaxed instance has no idle time.

The first heuristic uses two dispatches. Because the fractional solution’s schedule has no idle

time, some batch’s fractional dispatch starts before zLP/2, half of the fractional makespan, and

ends at or after zLP/2. Letting D be the union of orders included in any fractional dispatch up

to this point, the heuristic first dispatches D as soon as its last order is released (which must

be before zLP/2), and then dispatches the remaining orders in a second batch N \ D as soon as

possible thereafter; see Figure 1d for an example. Algorithm 3 formalizes the procedure.

The second heuristic uses at most three dispatches, following intuition similar to the two-

dispatch case, but with thirds of the fractional makespan rather than halves. Again relying on

the fact that there is no idle time, some batch must be fractionally dispatched before zLP/3 and

return at or after zLP/3; we let D1 be the union of orders in all batches fractionally dispatched

up to that point. Similarly, some batch is fractionally dispatched before 2zLP/3, and returns at or

after 2zLP/3; we let D2 be the set of orders fractionally served up to that point that are not present

in D1. Recalling that D is the set of orders used in the two-dispatch heuristic, the three-dispatch

13

0 r2 r3 r4 r5 r6 r7 zLPI0

{1} {1, 2}

{2}

{2, 3}

{3}

{4} {4, 5} {6}

{4, 5, 6}

{5, 6}

{7}

(a) Optimal fractional solution for some instance I0.

0 r2 r3 r4 r5 r6 r7 zLPI0

{1} {1, 2}{2}{2, 3}{3} ∆4 {4} {4, 5} {6} ∆7{4, 5, 6}{5, 6} {7}

(b) Schedule of the optimal fractional solution for I0, including idle times.

0 r2 r3 r4 r5 r6 r7 zLPI1 zLPI0

{1} {1, 2}{2}{2, 3}{3} {4} {4, 5} {6}{4, 5, 6}{5, 6} {7} ∆4 ∆7

(c) Modified instance I1 obtained from Algorithm 2, with the same fractional dispatch schedule as I0.

0 r2 r3 r4 r5 r7 zLPI1 zLPI0

|
zLPI1 /2

{1} {1, 2}{2}{2, 3}{3} {4} {4, 5} {6}{4, 5, 6}{5, 6} {7} ∆4 ∆7

(d) Batch starting before zLP
I1

/2 and ending at or after zLP
I1

/2. This is the batch used in Algorithm 3.

Figure 1: Illustration of Algorithms 1, 2 and 3.

14

heuristic picks the best among five solutions:

(i) {N} (one dispatch)

(ii) {D, N \ D} (two dispatches)

(iii) {D1, N \ D1} (two dispatches)

(iv) {D1 ∪ D2, N \ (D1 ∪ D2)} (two dispatches)

(v) {D1, D2, N \ (D1 ∪ D2)} (three dispatches)

Notice that solutions (iii)-(v) differ only if D2 ̸= ∅. Algorithm 4 formalizes this description, and

the next theorem gives the two heuristics’ performance guarantees.

Algorithm 3 Two-dispatch heuristic
Notation: ηS: position of batch S in the schedule.
t̂η , êη : start and end time of the dispatch for batch in position η.
∆j: vehicle idle time before order j, for j ∈ N.

Input: Optimal extreme point (tLP, xLP, zLP), order set N and release time vector r.
1: η, t̂, ê, ∆← Algorithm 1((tLP, xLP, zLP), N, r). ▷ [Values for original instance I0]
2: r,t̂, ê← Algorithm 2(∆, η, t̂, ê, N, r). ▷ [Values for modified instance I1]
3: z← maxη{êη} ▷ [Optimal fractional makespan of I1, equal to zLP −∑j ∆j]
4: ı̂← minη{êη ≥ z/2} ▷ [Implies t̂ı̂ < z/2 ≤ êı̂]
5: D ← ⋃{S : ηS ≤ ı̂}

Output: Solution with batches D, N \ D.

Algorithm 4 Three-dispatch heuristic
Notation: ηS: position of batch S in the schedule.
t̂η , êη : start and end time of the dispatch for batch in position η.
∆j: vehicle idle time before order j, for j ∈ N.

Input: Optimal extreme point (tLP, xLP, zLP), order set N and release time vector r
1: Perform Algorithm 3, retrieve D, t̂, and ê.
2: z← maxη{êη} ▷ [Optimal fractional makespan of I1, equal to zLP −∑j ∆j]
3: ı̂1 ← minη{êη ≥ z/3}, ı̂2 ← minη{êη ≥ 2z/3}
4: D1 ←

⋃{S : ηS ≤ ı̂1}, D2 ←
⋃{S : ηS ≤ ı̂2} \ D1

5: Compute the makespan for the following five solutions: (i) {N}, (ii) {D, N\D}, (iii) {D1,
N\D1}, (iv) {D1 ∪ D2, N\(D1 ∪ D2)}, (v) {D1, D2, N\(D1 ∪ D2)}.

Output: Return the best solution from the last step

Theorem 9. Let (tLP, xLP, zLP) be an extreme point optimal solution of the LP relaxation of (2), and define

δ := zLP − ∑S⊆N xLP
S f (S) = ∑j∈N ∆j ≥ 0. If f is fractionally subadditive – condition (A2) – the two-

dispatch solution obtained by Algorithm 3 has a tight 3/2− δ/(2zLP) approximation ratio. Furthermore,

15

let B = {i ∈ N : ri ≤ zLP−δ
3 }; if f (B) ≤ zLP−δ

3 , the solution obtained by Algorithm 4 has a tight

4/3− δ/(3zLP) approximation ratio. The algorithms run in O(n log n) time.

The proof is in Appendix B.3. When the LP relaxation has no idle time, δ = 0, the approx-

imation guarantees for Algorithms 3 and 4 (under the additional assumption) are 3/2 and 4/3,

respectively; when δ > 0, the slightly refined guarantees follow from the transformation of the

original instance I0 into a new instance I1 that has no idle time. The tightness of both approxima-

tion ratios follows from Proposition 5, which also verifies that these guarantees are best possible

for heuristics using at most two and three dispatches, respectively. Intuitively, the additional con-

dition required for Algorithm 4’s guarantee means that most of the workload cannot be released at

the beginning of the shift or workday. We may replace zLP − δ respectively with an upper bound

in the definition of B and with a lower bound in the inequality f (B) ≤ zLP−δ
3 to obtain a condition

we can check a priori.

Even if we expand Algorithm 4 to evaluate all three-dispatch solutions induced by the frac-

tional ordering given by Algorithm 1, it is impossible to guarantee a ratio better than 3/2 when the

additional assumption does not hold. Without the assumption, it is possible to create adversarial

instances that cause the heuristic to use at most two dispatches, where the first dispatch ends after

the last order arrives. In fact, building on this insight, we prove next that no heuristic that relies

on the LP relaxation of (2) can have an approximation ratio better than (
√

3− 1)−1 ≈ 1.37 > 4/3.

Proposition 10. Let z∗I be the optimal makespan of SAD for instance I, and zLP
I be the optimal (fractional)

makespan of the LP relaxation of (2) for instance I. There exists a family of instances I1, I2, . . . such

that limm→∞ z∗Im
/zLP

Im
= (
√

3 − 1)−1. Therefore, when ζ < (
√

3 − 1)−1 it is not possible to create a

ζ-approximation algorithm for SAD based solely on the optimal solution of the LP relaxation of (2).

Proof. Let Λ =
√

3− 2/n − 1 and consider the family of instances shown in Figure 2, where

r1 = 0, τ1 = 1, and ri = Λ i−1
n−1 , τi = Λ n−i+1

n−1 for i ≥ 2. Furthermore, let f (S) = maxi∈S{τi}. Since

DEPOT n n− 1 ... 2 1

Λ
n−1

Λ
n−1

Λ
n−1

Λ
n−1 1− Λ

Figure 2: Family of instances where zLP(
√

3− 1)−1 approaches z∗.

16

Λ <
√

3− 1 < 1 for any n ≥ 2, if the first dispatch includes the first order, this dispatch finishes

after rn, and therefore any such solution has at most two dispatches. In Section 5 we prove that

for this function f , an optimal solution includes the first order in the first dispatch; therefore, this

family of instances has an optimal solution with at most two dispatches. As we show in Appendix

B.4, all solutions with one or two dispatches are optimal, and the makespan is z∗ = 1 + Λ. On

the other hand, the optimal solution of the LP relaxation fractionally dispatches 2n− 1 different

batches, {1}, {1, 2}, . . . , N, N\{1}, . . . , {n}, and has a fractional makespan of zLP = 1 + n
2(n−1)Λ2.

When n→ ∞, zLP(
√

3− 1)−1 → z∗.

The family of instances used to prove Proposition 10 has optimal solutions where batches are

composed of intervals of consecutive indices. We discuss these solutions, how to compute them,

and when they are optimal in Section 5.

As a final remark on the analysis of the LP relaxation and the heuristics, we note that the

results in this section are independent of the complexity of solving the LP, i.e. they do not rely on

condition (B). In particular, if an optimal extreme point solution of the LP relaxation is available,

both algorithms can use it as input and provide solutions with the performance guarantees in

polynomial time.

4.2 Valid Inequalities

We now discuss improving the lower bound given by the linear relaxation of (2) using valid in-

equalities.

Theorem 11. Inequalities (2b) in (2) can be strengthened to

ti ≥ ri + ∑
j<i

∑
S∈Nj

max{0, rj − ri + f (S)}xS, i = 2, 3, . . . , n. (3)

The proof can be found in Appendix B.5. Consider the strengthened linear relaxation of (2)

where we replace (2b) with (3). Let β ≥ 0 be the dual variables corresponding to (2c) and (2d),

and γ to (2e). Let α ≥ 0 be the dual variables corresponding to the strengthened inequalities (3).

17

The dual constraints corresponding to the (relaxed) x variables are

−βi f (S) + ∑
j∈S

γj −∑
j>i

max{0, ri − rj + f (S)}αj ≤ 0, i ∈ N, S ∈ Ni.

For each i ∈ N, the separation problem for these constraints is then

min
S∈Ni

{
βi f (S)−∑

j∈S
γj + ∑

j>i
max{0, ri − rj + f (S)}αj

}
. (4)

If (4) can be solved efficiently, the LP relaxation with strengthened inequalities can be solved ef-

ficiently. Unfortunately, even f being submodular does not guarantee that this can be solved

efficiently, because of the coefficient multiplying each αj. For generalized star graphs, we show in

Appendix D.3 that (4) remains solvable in polynomial time. More generally, the separation prob-

lem can be solved with integer programming, and its efficiency will depend on the structure of

the function f . We explore this computationally in Section 6.

5 First-In First-Out (FIFO) Algorithms and Functions

In the previous section, we study heuristics that produce a small number of dispatches. Next,

we consider a different approach that does not limit the number of dispatches, but constrains

their structure instead. A natural operating rule that arises in many applications is first-in, first-

out (FIFO), the idea that orders should be dispatched in the sequence in which they are released.

FIFO is appealing from an operational perspective, as it simplifies dispatching decisions, and may

also offer customer service benefits. When combined with batching, FIFO implies that an order j

cannot be dispatched before another order i < j; therefore, FIFO solutions only dispatch “interval”

batches of the form [i, j] := {i, i + 1, . . . , j} for i ≤ j.

5.1 FIFO Algorithm

We next propose a dynamic program to compute the best FIFO solution for SAD. Introduce the

notation fi,j := f ([i, j]), and compute zi,j for all i, j ∈ N with i ≤ j using the following recursion:

z1,j = rj + f1,j j ∈ N (5a)

18

zi,j = max
{

rj, min
k<i
{zk,i−1}

}
+ fi,j 2 ≤ i ≤ j ≤ n (5b)

zFIFO = min
i∈N
{zi,n}. (5c)

Intuitively, zi,j is the minimum makespan required to serve orders 1, . . . , j in FIFO sequence when

the last dispatched batch is [i, j].

Proposition 12. Let κ be the number of operations needed to compute all values fi,j, for 1 ≤ i ≤ j ≤ n.

For a SAD instance, the best makespan among FIFO solutions is given by zFIFO, and can be computed in

Θ(n2 + κ) time.

This proof is in Appendix C.1. As the result points out, for FIFO solutions the complexity bot-

tleneck is actually κ, the complexity of calculating the fi,j values, which is Ω(n2) (one computation

per value) and may be larger for some functions.

Although it may perform well in many practical settings, in the worst case the FIFO algo-

rithm cannot improve on the simple single-batch solution, which is itself FIFO; the next theorem

formalizes this result.

Theorem 13. The FIFO Algorithm is a 2-approximation for SAD, and this guarantee is tight.

The theorem’s proof is in Appendix C.2. Even though the theoretical guarantee of the FIFO

Algorithm does not improve on the single-batch solution, it is indeed an optimal procedure for

some functions, which we discuss in the next subsection.

5.2 FIFO-Optimal Functions and Generalizations

We say that f is FIFO-optimal if any instance of SAD with dispatch time function f has an optimal

FIFO solution. Knowing that a function is FIFO-optimal allows us to optimize SAD in polyno-

mial time, and also guarantees the optimal solution will have the simple FIFO structure. Several

important function classes turn out to be FIFO-optimal, as the next proposition explains.

Proposition 14. Let τ0 ≥ 0, τi > 0 for i ∈ N, and let g : R → R be a concave non-decreasing function

with g(0) = 0. The following functions are FIFO-optimal,

1. f (S) = τ0 + ∑i∈S τi,

19

2. f (S) = τ0 + maxi∈S{τi},

3. f (S) = τ0 + g(|S|),

where in each case the function is defined for S ̸= ∅, letting f (∅) = 0.

The proof is in Appendix C.3. All three function classes in the proposition are non-decreasing

and submodular; they include machine scheduling with batch setup times and either serial pro-

cessing (1) or parallel processing (2), routing times along a single path (2), and continuous approx-

imations of dispatch time (3), e.g. f (S) = a + b|S|+ c
√
|S|.

Unfortunately, FIFO-optimality is not necessarily preserved by addition. In fact, even adding

a modular function to a FIFO-optimal function may remove the FIFO-optimality property. To

name one example, Figure 12 in the Appendix shows that the worst-case family of instances for

the FIFO algorithm – in terms of approximation guarantee – has a dispatch time function f that

represents routing times on a generalized “star” graph, a union of paths with a common depot. At

the same time, f (S) = maxi∈S{τi} represents routing time on a single path, and thus routing time

on a generalized “star” graph is the sum of FIFO-optimal functions. Furthermore, Proposition

3 shows that SAD is strongly NP-Hard precisely for these dispatch time functions representing

routing times on a generalized “star” graph. However, this proof also relies on a number of paths

that grows with n. We next address the case in which the number of paths remains constant as n

grows, and its generalization.

As a motivating example, consider an SAD instance in which dispatch times are given by

routing on two disjoint paths with only a depot node in common. Even this function is not FIFO-

optimal, but each path is individually “FIFO-optimal,” i.e. should be dispatched in FIFO order,

and an optimal solution can restrict itself to only dispatching batches containing orders from one

path or the other. Intuitively, we can generalize the FIFO recursion (5) by tracking the last batch

dispatched on each path; this then leads to an optimal algorithm for the two-path instance with

running time Θ(n4 + κ), where κ now represents the time required to compute all values fi,j for

interval batches from each path.

Formally, suppose the order set N is partitioned into Q subsets, S1, . . . , SQ, and the dispatch

20

function is given by

f (S) =
Q

∑
q=1

fq(S ∩ Sq),

where each fq is a FIFO-optimal function; we call such a function Q-FIFO-optimal.

Theorem 15. Let Q be a fixed integer. For any Q-FIFO-optimal dispatch function, SAD can be optimized

in Θ(n2Q + κ) time, where κ is the time required to compute all interval dispatch times for each set Sq that

partitions N.

The proof can be found in Appendix C.4.

6 Computational Study

6.1 Routing on Restricted Topologies

In our first set of experiments, we study the computational performance of our proposed bounds

and heuristics on routing problems in restricted topologies; we consider instances where the un-

derlying graphs are generalized stars and trees with structure similar to generalized stars. To

describe instances we use the notation (n, P, v), where n denotes to the number of orders, P is the

number of paths, and v corresponds to the number of positions that can be visited on each path.

We generate order release times using a Poisson process with an arrival rate of two per time unit,

and order locations are sampled uniformly without replacement from the order positions in the

respective network.

We consider trees with a central path containing the depot and P secondary paths stemming

from the central one; we show an example in Figure 3, where P = 12 and v = 4. Black nodes

represent potential order positions, light blue nodes represent the start of a path and the red node

is the depot. Under this topology, paths are divided into two groups, with economies of scale

when dispatching to orders within a group. Figure 4 shows the analogous generalized star graph

when P = 12 and v = 4. For both types of graphs, the dispatch time to a single position vij is the

same; however, in generalized stars there are no economies of scale when dispatching to two or

more different paths. For the same triples (n, P, v) defining a tree and generalized star instance,

we use the same input vector of release times and the same order positions; the only difference

21

•Depot

• • •st7=
st8

•••st1
=
st2

•
•
•
•

v1,4

v1,3

v1,2

v1,1
Path 1

•
•
•
•

v2,4

v2,3

v2,2

v2,1

Path 2

•
•
•
•

Path 3

•
•
•
•

Path 4

•
•
•
•

v5,4

v5,3

v5,2

v5,1
Path 5

•
•
•
•

v6,4

v6,3

v6,2

v6,1

Path 6

st5

st6

•
•
•
•

v7,4

v7,3

v7,2

v7,1
Path 7

•
•
•
•

v8,4

v8,3

v8,2

v8,1

Path 8

•
•
•
•

Path 9

•
•
•
•

Path 10

•
•
•
•

v11,4

v11,3

v11,2

v11,1
Path 11

•
•
•
•

v12,4

v12,3

v12,2

v12,1

Path 12

st11

st12

Figure 3: Tree topology used for our experiments when (P, v) = (12, 4).

is in f . Between any black node and its neighbors there is a round-trip distance of one time unit;

there is a round-trip distance of two units between any two blue nodes, and between the depot

and its neighbors.

We generate 25 instances for each parameter combination of (n, P, v), and use Python 3.11,

Gurobi 10.0.1 and a Windows machine with 16 GB of RAM and an Intel Core i7-12650H processor

for our experiments. We use the following notation to refer to the different bounds and solutions

we evaluate:

• IP: MILP formulation (2).

• LPW: LP relaxation of (2), solved without column generation.

• CG: Column generation for the linear relaxation of (2).

• CGS: Column generation for the linear relaxation of (2) strengthened with (3).

• 3-DISP: Solution with at most three dispatches, based on Algorithm 4, but evaluating all

22

•
Depot •

•
•
st7 • • • •v7,4

v7,2
v7,3

v7,1

Path 7
•

•
•
•
•
•Path 9

•
•
•
•
•Path 11

•
•
•
•
•Path 5

•

•
•

•
•

•Path 3

•
•

•
st1•••• v1,4

v1,2
v1,3

v1,1

Path 1

•
•

•
st8
• • • •v8,4 v8,2 v8,3 v8,1

Path 8
•

•
•
•
•
•

Path 10

•
•
•
•
•

Path 12

•
•
•
•
•

Path 6

•

•
•

•
•

•
Path 4

•
•

•
st2

•••• v2,4v2,2v2,3v2,1

Path 2

Figure 4: Generalized star topology used for our experiments when (P, v) = (12, 4).

two- and three-dispatch solutions consistent with the fractional ordering obtained from Al-

gorithm 1. This enhancement of Algorithm 4 evaluates quadratically many solutions and

can be carried out in polynomial time.

• CG IP: Heuristic solution of (2) restricted to columns generated by CG plus the columns

corresponding to batches from Algorithm 4.

• FIFO: Best FIFO solution computed via the dynamic program (5).

For column generation methods, we use the acceleration technique from Ben-Ameur and Neto

(2007), as explained in Appendix D.1. The pricing problems in CG and CGS for generalized star

graphs and trees are detailed in Appendix D.2 and D.3, respectively. We do not present separate

results for the two-dispatch heuristic, since these solutions are included in 3-DISP.

As detailed in Section 5, while generalized star instances are not FIFO-optimal, there are no

economies of scale obtained by batching orders from different paths, and therefore we only need

to consider interval batches within paths; this implies we can consider only a quadratic number

of variables without loss of optimality. Therefore, the MILP formulation (2) and its relaxation can

be directly optimized for relatively large values of n. Table 1 summarizes the relative performance

23

of the tested methods for different generalized star instances, as compared to the optimal value

given by (2). One set of instances considers a total of 400 orders and either 12, 20, 40 or 80 paths.

The second set of instances considers 700 orders.

For all methods, the performance diminishes when the instance density n/P increases; how-

ever, the decrease is larger for CG compared to CGS, and for the 3-DISP and FIFO heuristics com-

pared to CG IP. In particular, CG has optimality gaps between 99.81% and 97.05%, whereas CGS

always has optimality gaps of at least 99.81%, which indicates that the valid inequalities signifi-

cantly improve the optimality gap in high-density instances. On the heuristic side, CG IP obtains

the optimal solution over 80% of the time in each of the instance classes. Furthermore, the worst

optimality gap (over all instances) is within 0.3%, and the geometric means of this gap are always

within 0.05%. On the other hand, 3-DISP and FIFO are significantly affected by the increase in

density, reaching optimality gaps of up to 12.2%, and geometric means of around 10% and 11%,

respectively.

With respect to running time, solving the MILP formulation becomes significantly more dif-

ficult when the density of the instances increases. For instances with low density, solving the

MILP is faster than CG or the FIFO Heuristic; as density increases, the MILP solve time grows

dramatically. For large values of n, FIFO is also slow compared to the LP relaxation methods.

In tree instances, there are economies of scale when batching orders in different paths, and

therefore we must consider an exponential number of variables. This makes it impractical to

solve the MILP (2) and even its LP relaxation directly even for very small instances. Also, in

tree instances we do not have an efficient pricing problem for the strengthened bound CGS, and

must use an integer program. Therefore, we first use smaller instances to compare methods with

CGS as baseline; Table 2 summarizes results for tree instances with 150 orders, and 80, 20 and

12 paths. With respect to performance, just as in the previous table, we see that the CG bound

deteriorates somewhat when the density increases, and at a similar rate as for generalized stars.

The three heuristics have slightly larger gaps, but not by more than around 1%; surprisingly, CG

IP reaches optimality a higher proportion of the time when the density increases. Furthermore, 3-

DISP is at least as good as FIFO in all instances. With respect to running time, we see a significant

increase for CGS compared to generalized stars, given that the pricing problem requires solving

integer programs. Both CGS and CG decrease their running time when density increases, and this

24

Baseline Lower bounds Heuristics
(n, P, v) IP CG (LPW) CGS 3-DISP CG IP FIFO

(400, 80, 100)

Gap geometric mean (%) 100 99.81 100.00 101.47 100.00 101.82
Worst gap (%) 100 99.62 100.00 101.93 100.00 102.37
Best gap (%) 100 100.00 100.00 100.68 100.00 101.30

Same Obj. as IP (%) - 4 100 0 100 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 0.13 2.47 (0.07) 15.14 0.36 2.10 16.92

(400, 40, 100)

Gap geometric mean (%) 100 99.34 99.94 102.42 100.01 102.75
Worst gap (%) 100 99.14 99.80 103.40 100.27 103.56
Best gap (%) 100 99.84 100.00 100.89 100.00 101.79

Same Obj. as IP (%) - 0 36 0 88 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 0.57 3.33 (0.12) 26.25 0.11 1.61 11.49

(400, 20, 100)

Gap geometric mean (%) 100 98.42 99.89 104.03 100.01 104.41
Worst gap (%) 100 98.09 99.74 105.67 100.09 105.67
Best gap (%) 100 98.83 100.00 100.94 100.00 103.46

Same Obj. as IP (%) - 0 8 0 92 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 3.34 4.82 (0.17) 48.93 0.08 2.20 9.25

(400, 12, 100)

Gap geometric mean (%) 100 97.13 99.86 105.72 100.03 105.87
Worst gap (%) 100 96.63 99.52 107.12 100.26 107.12
Best gap (%) 100 97.82 100.00 103.80 100.00 103.80

Same Obj. as IP (%) - 0 4 0 80 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 28.90 6.57 (0.27) 80.84 0.10 3.46 8.52

(700, 80, 100)

Gap geometric mean (%) 100 99.68 99.95 102.16 100.00 102.70
Worst gap (%) 100 99.57 99.86 103.14 100.10 103.25
Best gap (%) 100 99.80 100.00 100.76 100.00 102.28

Same Obj. as IP (%) - 0 20 0 96 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 0.43 7.83 (0.22) 83.86 0.61 7.90 108.10

(700, 40, 100)

Gap geometric mean (%) 100 99.18 99.85 104.04 100.01 104.55
Worst gap (%) 100 99.03 99.70 104.99 100.08 105.34
Best gap (%) 100 99.37 99.95 102.06 100.00 103.81

Same Obj. as IP (%) - 0 0 0 84 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 1.87 11.08 (0.31) 175.69 0.25 3.78 84.93

(700, 20, 100)

Gap geometric mean (%) 100 98.25 99.82 106.77 100.00 107.70
Worst gap (%) 100 98.06 99.47 108.61 100.00 108.61
Best gap (%) 100 98.66 99.95 104.34 100.00 106.89

Same Obj. as IP (%) - 0 0 0 100 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 42.40 16.27 (0.61) 358.37 0.24 5.40 75.73

(700, 12, 100)

Gap geometric mean (%) 100 97.05 99.81 109.90 100.02 110.94
Worst gap (%) 100 96.73 99.64 112.10 100.28 112.16
Best gap (%) 100 97.34 99.98 106.03 100.00 109.80

Same Obj. as IP (%) - 0 0 0 88 0
Beats (≤) FIFO (%) - - - 100 100 -

Time per instance (s) 619.87 24.74 (1.12) 586.12 0.47 32.69 73.27

Table 1: Results for generalized star graph instances, compared to the optimal value.

25

Baseline Lower Bound Heuristics
(n, P, v) CGS CG 3-DISP CG IP FIFO

(150, 80, 100)

Gap geometric mean (%) 100 99.85 100.74 100.02 100.77
Worst gap (%) 100 99.61 101.32 100.06 101.32
Best gap (%) 100 99.96 100.01 100.00 100.14

Same Obj. as Baseline (%) - 0 0 44 0
Beats (≤) FIFO (%) - - 100 100 -

Time per instance (s) 834.01 9.54 0.02 0.29 0.34

(150, 40, 100)

Gap geometric mean (%) 100 99.55 101.37 100.03 101.37
Worst gap (%) 100 99.31 101.95 100.20 101.95
Best gap (%) 100 99.73 100.72 100.00 100.72

Same Obj. as Baseline (%) - 0 0 64 0
Beats (≤) FIFO (%) - - 100 100 -

Time per instance (s) 526.88 4.98 0.02 0.22 0.32

(150, 12, 100)

Gap geometric mean (%) 100 97.59 101.76 100.03 101.77
Worst gap (%) 100 97.00 103.43 100.25 103.43
Best gap (%) 100 98.32 100.78 100.00 100.78

Same Obj. as Baseline (%) - 0 0 76 0
Beats (≤) FIFO (%) - - 100 100 -

Time per instance (s) 484.75 4.23 0.03 0.45 0.30

Table 2: Results for smaller tree instances, compared to the CGS lower bound as baseline.

indicates that CG and CG IP may be particularly useful in this case.

In larger tree instances, we use CG as baseline; Table 3 summarizes results for instances with

n = 400 and n = 700. Just as in the previous tables, an increase in density decreases the heuristics’

performance. Nonetheless, the previous experiments indicate that CG itself may be farther from

optimality when density increases, and the 4% gap exhibited by CG IP against CG is in line with its

gap in previous experiments. This suggests CG IP remains very close to optimal for tree instances.

Furthermore, all the tested methods (excluding CGS) are scalable to these larger instances; in all

classes, we can run CG and then CG IP on average in under 30 minutes.

In our final set of experiments in this section, we examine whether a smaller arrival rate may

impact the heuristics’ performance. Specifically, we modify the (400, 80, 100) and (400, 12, 100)

tree instances by reducing the average arrival rate from 2 per time unit to 1, 1/2 and 1/4, keeping

all other parameters constant, which translates to multiplying the original arrival times by 2, 4

and 8. These modified instances can equivalently be interpreted as having sparser arrivals over

time or a faster dispatch time function. Table 4 summarizes the results and includes the average

number of dispatches generated by each heuristic. The results demonstrate the adaptability of

CG IP, which maintains good performance and low gaps – under 4% on average in all cases. For

3-DISP and FIFO, gaps increase significantly as the arrival rate drops, but only until a point, after

26

Baseline Heuristics
(n, P, v) CG 3-DISP CG IP FIFO

(400, 80, 100)

Gap geometric mean (%) 100 102.07 100.37 102.35
Worst gap (%) 100 102.60 100.86 102.75
Best gap (%) 100 101.17 100.08 101.85

Beats (≤) FIFO (%) - 100 100 -
Time per instance (s) 80.28 0.10 1.85 5.71

(400, 40, 100)

Gap geometric mean (%) 100 103.43 100.85 103.68
Worst gap (%) 100 104.24 101.23 104.85
Best gap (%) 100 101.23 100.29 102.89

Beats (≤) FIFO (%) - 96 100 -
Time per instance (s) 65.18 0.12 1.84 5.46

(400, 12, 100)

Gap geometric mean (%) 100 109.12 103.30 109.24
Worst gap (%) 100 110.38 104.05 110.38
Best gap (%) 100 107.62 102.30 107.62

Beats (≤) FIFO (%) - 100 100 -
Time per instance (s) 49.77 0.36 6.46 5.24

(700, 80, 100)

Gap geometric mean (%) 100 103.01 100.59 103.53
Worst gap (%) 100 104.23 100.85 104.23
Best gap (%) 100 101.35 100.24 102.98

Beats (≤) FIFO (%) - 100 100 -
Time per instance (s) 444.64 0.4 9.29 29.21

(700, 40, 100)

Gap geometric mean (%) 100 105.36 101.20 105.90
Worst gap (%) 100 106.56 101.64 106.63
Best gap (%) 100 103.12 100.85 104.86

Beats (≤) FIFO (%) - 100 100 -
Time per instance (s) 588.33 0.51 14.84 28.19

(700, 12, 100)

Gap geometric mean (%) 100 113.79 103.65 114.70
Worst gap (%) 100 116.07 104.30 116.07
Best gap (%) 100 109.40 103.16 113.15

Beats (≤) FIFO (%) - 100 100 -
Time per instance (s) 260.37 2.23 84.30 28.07

Table 3: Results for larger tree instances, compared to the CG lower bound as baseline.

which the problem becomes easier. For 3-DISP, the gap increase likely stems from limiting the

number of dispatches, whereas the increase for FIFO may be explained because it becomes more

desirable to violate FIFO under a lower arrival density in order to create more efficient batches.

We also see that 3-DISP outperforms FIFO by a significant amount until the sparsity of arrivals

becomes too large.

6.2 SDD System with Non-Homogeneous Arrival Rates

In this experiment, we assess how time-varying order arrival rates affect planned dispatches in an

SDD system when the decision maker seeks to minimize the makespan, which here corresponds

to the delivery time guarantee that can be quoted to customers. From Proposition 14, the instance

27

Baseline Heuristics
(n, P, v) Arrival Rate CG 3-DISP CG IP FIFO

(400, 80, 100)

2
Gap geometric mean (%) 100 102.07 100.37 102.35
Average dispatch count 79.68 2.36 4.76 2.28

Beats (≤) FIFO (%) - 100 100 -

1
Gap geometric mean (%) 100 103.12 100.50 104.43
Average dispatch count 87.40 2.48 6.40 2.44

Beats (≤) FIFO (%) - 100 100 -

1/2
Gap geometric mean (%) 100 104.00 100.86 108.35
Average dispatch count 108.00 2.96 9.24 2.32

Beats (≤) FIFO (%) - 100 100 -

1/4
Gap geometric mean (%) 100 105.97 101.51 115.15
Average dispatch count 138.00 3.00 13.96 2.88

Beats (≤) FIFO (%) - 100 100 -

1/8
Gap geometric mean (%) 100 111.49 102.25 125.91
Average dispatch count 179.00 3.00 19.92 3.92

Beats (≤) FIFO (%) - 100 100 -

(400, 12, 100)

2
Gap geometric mean (%) 100 109.12 103.30 109.24
Average dispatch count 113.80 2.12 4.32 2.12

Beats (≤) FIFO (%) - 100 100 -

1
Gap geometric mean (%) 100 114.83 103.46 117.02
Average dispatch count 127.56 2.40 6.36 2.56

Beats (≤) FIFO (%) - 100 100 -

1/2
Gap geometric mean (%) 100 119.83 103.55 128.71
Average dispatch count 145.84 2.84 10.44 2.84

Beats (≤) FIFO (%) - 100 100 -

1/4
Gap geometric mean (%) 100 125.18 103.27 130.43
Average dispatch count 193.12 3.00 18.92 3.88

Beats (≤) FIFO (%) - 100 100 -

1/8
Gap geometric mean (%) 100 110.34 100.72 107.25
Average dispatch count 180.32 3.00 36.56 6.08

Beats (≤) FIFO (%) - 4 100 -

Table 4: Impact of arrival rate on heuristic performance for (400, 80, 100) and (400, 12, 100) tree
instances.

is FIFO-optimal, so we use the DP formulation (5).

Our case study uses an instance from Stroh et al. (2022), an SDD system with service area

of around 26 square miles in northeastern metro Atlanta, including 22 census tracts and with a

population of 92,198 as measured by the U.S. Census Bureau. The SDD system accepts orders

between 9 AM and 2 PM; assuming 5% of the population in the region uses the SDD service

once every two months, 50 people place orders each day on average. For this instance, Stroh

et al. (2022) computed the continuous-time approximation of the dispatch-time function as f (S) =

10 + 1.5|S|+ 24
√
|S|minutes.

Fixing r1 = 9 AM and r50 = 2 PM, we tested the following seven scenarios, illustrated in

28

Figure 5: SDD tactical design results for uniform arrivals every six minutes.

Figures 5 and 6a-6f: (i) constant order arrival rate, every six minutes; (ii) the first 30 orders arrive

every four minutes, the next 20 orders arrive every nine minutes; (iii) the first 30 orders arrive

every two minutes, the next 20 orders arrive every 12 minutes; (iv) the first 20 orders arrive every

nine minutes, the last 30 orders arrive every four minutes; (v) the first 20 orders arrive every

12 minutes, the last 30 orders arrive every two minutes; (vi) the first 15 orders arrive every four

minutes, the next 20 orders arrive every nine minutes, the last 15 orders arrive every four minutes;

and (vii) the first 15 orders arrive every two minutes, the next 20 orders arrive every 12 minutes,

the last 15 orders arrive every two minutes.

Assuming constant order arrivals from 9 AM until 2 PM (Figure 5), the solution has four

planned dispatches with increasing quantities, and the last dispatch returns at roughly 4:30; this

time corresponds to the delivery time guarantee that the SDD provider can quote to its customers.

We next explore how varying arrival rates impact these conclusions. Figures 6a and 6b show that

when more orders are expected at the start of the day, we can quote an earlier delivery guarantee

and may see fewer dispatches; this suggests incentivizing SDD orders early in the day, perhaps

via discounts or promotions. Conversely, if the system expects a surge in orders at the end of the

window (Figures 6c and 6d), the delivery guarantee must be delayed and the vehicle may even

make additional, inefficient dispatches; this suggests more conservative planning is merited if

many SDD customers make last-minute orders at the end of the service window. Finally, Figures

29

(a) (b)

(c) (d)

(e) (f)

Figure 6: Dispatches for different order arrival patterns.

30

6e and 6f depict mixed scenarios with two order peaks at the start and end of the window. In

this case, the two peaks somewhat cancel out and the final return time and number of dispatches

are both similar to the case with constant arrivals. However, we do observe non-monotone order

quantities in the dispatches when the peaks are pronounced (Figure 6f).

7 Conclusions

We introduced the subadditive dispatching problem (SAD), studied its complexity and devised

different heuristic methods to obtain efficient solutions. SAD includes several important mod-

els as special cases, such as models for SDD system design, routing in restricted topologies and

single-machine scheduling models with family setups and release times. We leveraged the LP

relaxation of our MILP formulation to provide a polynomial-time 3/2-approximation algorithm

with two dispatches for SAD with fractionally subadditive dispatch times, and a polynomial-time

4/3-approximation algorithm with at most three dispatches, under additional assumptions. Both

approximation guarantees are best possible for heuristics with their respective number of dis-

patches; furthermore, we proved that without additional assumptions it is impossible to have an

algorithm based on the LP relaxation with a guarantee below (
√

3− 1)−1 ≈ 1.37 > 4/3. We also

discussed FIFO solutions, their approximation guarantee, and the special cases in which FIFO

solutions are optimal. A computational study on routing in restricted topologies shows that the

linear relaxation bound and our various heuristic solutions have reasonable gaps, and that they

can be obtained in reasonable computational time even for large instances with up to 700 orders.

We used our FIFO algorithm to computationally study SDD tactical design problems with non-

stationary order arrival rates, which could not be accommodated by previous work.

Our results motivate several avenues for future research, as SAD can be naturally generalized

in several ways. We are currently studying the multi-vehicle version of SAD, which has many of

the same applications as single-vehicle SAD. Even for modular dispatch times, the two-vehicle

version of SAD is already NP-hard without release dates, as it generalizes the partition problem,

and therefore presents significant additional challenges. Another interesting variant is a capaci-

tated SAD, where batches are limited by cardinality, or more generally by a knapsack constraint.

This variant is also already NP-hard even in very simple cases (Poon and Zhang, 2004). Other

31

generalizations could include order deadlines, different objectives, or dispatch time functions that

are not fractionally subadditive but have other appealing structural features. In general, the study

of integrated logistics processes in the presence of varying order arrivals and economies of scale

in dispatching or processing have significant application potential in e-commerce, and pose many

interesting challenges for the research community.

Acknowledgments

The authors thank the area editor, associate editor and referees for their prompt feedback and

constructive comments, which motivated significant extensions to the results and helped improve

the exposition of the paper. The authors’ work was partially supported by the U.S. Office of Naval

Research, grant N00014-18-1-2075.

References

J. H. Ahmadi, R. H. Ahmadi, S. Dasu, and C. S. Tang. Batching and Scheduling Jobs on Batch and Discrete
Processors. Operations Research, 40:750–763, 1992.

A. Allahverdi. The third comprehensive survey on scheduling problems with setup times/costs. European
Journal of Operational Research, 246(2):345–378, 2015. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.
2015.04.004. URL https://www.sciencedirect.com/science/article/pii/S0377221715002763.

D. Banerjee, A. Erera, and A. Toriello. Fleet Sizing and Service Region Partitioning for Same-Day Delivery
Systems. Transportation Science, 56:1327–1347, 2022.

D. Banerjee, A. Erera, A. Stroh, and A. Toriello. Who has access to e-commerce and when? Time-varying
service regions in same-day delivery. Transportation Research Part B: Methodological, 170:148–168, 2023.

K. Bangachev and S. M. Weinberg. q-partitioning valuations: Exploring the space between subadditive and
fractionally subadditive valuations. arxiv.org/abs/2304.01451, 2023.

S. Barman and R. G. Sundaram. Uniform welfare guarantees under identical subadditive valuations. In
C. Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI-20, pages 46–52. International Joint Conferences on Artificial Intelligence Organization, 7 2020.
doi: 10.24963/ijcai.2020/7. URL https://doi.org/10.24963/ijcai.2020/7. Main track.

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram. Tight approximation algorithms for p-mean
welfare under subadditive valuations. arxiv.org/abs/2005.07370, 2020.

J. Beardwood, J. Halton, and J. Hammersley. The shortest path through many points. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 55(4):299–327, 1959.

W. Ben-Ameur and J. Neto. Acceleration of cutting-plane and column generation algorithms: Applications
to network design. Networks, 49:3–17, 01 2007. doi: 10.1002/net.20137.

I. Bogunovic, S. Mitrović, J. Scarlett, and V. Cevher. Robust submodular maximization: A non-uniform
partitioning approach. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, page 508–516. JMLR.org, 2017.

32

https://www.sciencedirect.com/science/article/pii/S0377221715002763
https://doi.org/10.24963/ijcai.2020/7

O. Bondareva. Some applications of linear programming methods to the theory of cooperative games (in
Russian). Problemy Kybernetiki, 10:119–139, 1963.

P. Brucker, A. Gladky, H. Hoogeveen, M. Y. Kovalyov, C. N. Potts, T. Tautenhahn, and S. L. van de Velde.
Scheduling a batching machine. Journal of Scheduling, 1(1):31–54, 1998.

Y. Cai and M. Zhao. Simple mechanisms for subadditive buyers via duality. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 170–183, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450345286. doi: 10.1145/3055399.3055465. URL
https://doi.org/10.1145/3055399.3055465.

Y. Cai and M. Zhao. Simple mechanisms for subadditive buyers via duality. SIGecom Exch., 17(1):39–53,
may 2019. doi: 10.1145/3331033.3331037. URL https://doi.org/10.1145/3331033.3331037.

A. Caldwell. 67 e-commerce stats and facts to know in 2021, 2021. URL https://www.netsuite.com/

portal/resource/articles/ecommerce/ecommerce-statistics.shtml.

J. G. Carlsson and S. Song. Coordinated logistics with a truck and a drone. Management Science, 64(9):1–31,
2017.

J. G. Carlsson, S. Liu, N. Salari, and H. Yu. Provably good region partitioning for on-time last-mile delivery.
In review, URL https://ssrn.com/abstract=3915544., 2021.

B. R. Chaudhury, J. Garg, and R. Mehta. Fair and efficient allocations under subadditive valuations. In
AAAI Conference on Artificial Intelligence, 2020. URL https://api.semanticscholar.org/CorpusID:

218628851.

C. Chekuri and A. Ene. Approximation algorithms for submodular multiway partition. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 807–816, 2011. doi: 10.1109/FOCS.2011.34.

Digital Commerce 360. E-commerce growth, 2022. URL https://www.digitalcommerce360.com/article/

us-ecommerce-sales/.

G. Dobson and R. S. Nambimadom. The Batch Loading and Scheduling Problem. Operations Research, 49:
52–65, 2001.

J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Structures and their
Applications, Proceedings Calgary International Conference, pages 69–87, 1970.

U. Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on Computing, 39(1):
122–142, 2009. doi: 10.1137/070680977. URL https://doi.org/10.1137/070680977.

A. Franceschetti, O. Jabali, and G. Laporte. Continuous approximation models in freight distribution man-
agement. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 25(3):413–
433, October 2017. doi: 10.1007/s11750-017-0456-1. URL https://ideas.repec.org/a/spr/topjnl/

v25y2017i3d10.1007_s11750-017-0456-1.html.

M. Garey and D. Johnson. “Strong” NP-Completeness Results: Motivation, Examples, and Implications.
Journal of the ACM, 25(3):499–508, jul 1978. ISSN 0004-5411. doi: 10.1145/322077.322090. URL https:

//doi.org/10.1145/322077.322090.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., USA, 1979. ISBN 0716710447.

M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang. Single machine scheduling
with release dates. SIAM J. Discret. Math., 15(2):165–192, Feb. 2002. ISSN 0895-4801. doi: 10.1137/
S089548019936223X. URL https://doi.org/10.1137/S089548019936223X.

33

https://doi.org/10.1145/3055399.3055465
https://doi.org/10.1145/3331033.3331037
https://www.netsuite.com/portal/resource/articles/ecommerce/ecommerce-statistics.shtml
https://www.netsuite.com/portal/resource/articles/ecommerce/ecommerce-statistics.shtml
https://ssrn.com/abstract=3915544
https://api.semanticscholar.org/CorpusID:218628851
https://api.semanticscholar.org/CorpusID:218628851
https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://doi.org/10.1137/070680977
https://ideas.repec.org/a/spr/topjnl/v25y2017i3d10.1007_s11750-017-0456-1.html
https://ideas.repec.org/a/spr/topjnl/v25y2017i3d10.1007_s11750-017-0456-1.html
https://doi.org/10.1145/322077.322090
https://doi.org/10.1145/322077.322090
https://doi.org/10.1137/S089548019936223X

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer-
Verlag, Berlin, 1993.

A. Hariri and C. Potts. An algorithm for single machine sequencing with release dates to minimize total
weighted completion time. Discrete Applied Mathematics, 5(1):99 – 109, 1983. ISSN 0166-218X. doi: https://
doi.org/10.1016/0166-218X(83)90019-7. URL http://www.sciencedirect.com/science/article/pii/

0166218X83900197.

Y. Herer and M. Penn. Characterizations of naturally submodular graphs: A polynomially solvable
class of the TSP. Proceedings of the American Mathematical Society, 123:673–679, 1995. doi: 10.1090/
S0002-9939-1995-1260169-4.

T. Hirayama, Y. Liu, K. Makino, K. Shi, and C. Xu. A Polynomial Time Algorithm for Finding a Minimum
4-Partition of a Submodular Function, pages 1680–1691. 2023. doi: 10.1137/1.9781611977554.ch64. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch64.

S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing
submodular functions. Journal of the Association for Computing Machinery, 48:761–777, 2001.

M. R. Karimi, M. Lucic, H. Hassani, and A. Krause. Stochastic submodular maximization: The case of cov-
erage functions. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 6856–6866, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

M. A. Klapp, A. L. Erera, and A. Toriello. The Dynamic Dispatch Waves Problem for same-day delivery.
European Journal of Operational Research, 271(2):519–534, 2018a. doi: 10.1016/j.ejor.2018.05.03. URL https:

//ideas.repec.org/a/eee/ejores/v271y2018i2p519-534.html.

M. A. Klapp, A. L. Erera, and A. Toriello. The one-dimensional dynamic dispatch waves problem.
Transportation Science, 52(2):402–415, Mar. 2018b. ISSN 1526-5447. doi: 10.1287/trsc.2016.0682. URL
https://doi.org/10.1287/trsc.2016.0682.

M. A. Klapp, A. L. Erera, and A. Toriello. Request acceptance in same-day delivery. Transportation Research
Part E: Logistics and Transportation Review, 143:102083, 2020.

A. Krause and D. Golovin. Submodular Function Maximization. In L. Bordeaux, Y. Hamadi, and P. Kohli,
editors, Tractability: Practical Approaches to Hard Problems, pages 71–104. Cambridge University Press,
2014. doi: 10.1017/CBO9781139177801.004.

S. Li, G. Li, X. Wang, and Q. Liu. Minimizing makespan on a single batching machine with release times
and non-identical job sizes. Operations Research Letters, 33:157–164, 03 2005. doi: 10.1016/j.orl.2004.04.009.

S. Liu, L. He, and Z.-J. M. Shen. On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predic-
tors. Management Science, 67:4095–4119, 2020.

C. L. Monma and C. N. Potts. On the complexity of scheduling with batch setup times. Operations Research,
37(5):798–804, Oct. 1989. ISSN 0030-364X. doi: 10.1287/opre.37.5.798. URL https://doi.org/10.1287/

opre.37.5.798.

G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons, Inc., 1999.

N. Nisan. Bidding and allocation in combinatorial auctions. In Proceedings of the 2nd ACM Conference on
Electronic Commerce, EC ’00, page 1–12, New York, NY, USA, 2000. Association for Computing Machinery.
ISBN 1581132727. doi: 10.1145/352871.352872. URL https://doi.org/10.1145/352871.352872.

G. Owen. On the core of linear production games. Mathematical Programming, 9:358–370, 12 1975. doi:
10.1007/BF01681356.

34

http://www.sciencedirect.com/science/article/pii/0166218X83900197
http://www.sciencedirect.com/science/article/pii/0166218X83900197
https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch64
https://ideas.repec.org/a/eee/ejores/v271y2018i2p519-534.html
https://ideas.repec.org/a/eee/ejores/v271y2018i2p519-534.html
https://doi.org/10.1287/trsc.2016.0682
https://doi.org/10.1287/opre.37.5.798
https://doi.org/10.1287/opre.37.5.798
https://doi.org/10.1145/352871.352872

C. K. Poon and P. Zhang. Minimizing makespan in batch machine scheduling. Algorithmica, 39(2):
155–174, feb 2004. ISSN 0178-4617. doi: 10.1007/s00453-004-1083-4. URL https://doi.org/10.1007/

s00453-004-1083-4.

D. Reyes, A. L. Erera, and M. W. Savelsbergh. Complexity of routing problems with release dates and
deadlines. European Journal of Operational Research, 266(1):29–34, 2018. ISSN 0377-2217. doi: https:
//doi.org/10.1016/j.ejor.2017.09.020. URL https://www.sciencedirect.com/science/article/pii/

S037722171730841X.

A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time.
Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000. ISSN 0095-8956. doi: https://doi.org/10.
1006/jctb.2000.1989.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin, 2003.

M. Schutten, S. Van De Velde, and W. Zijm. Single-machine scheduling with release dates, due dates and
family setup times. Management Science, 42:1165–1174, 11 1996. doi: 10.1287/mnsc.42.8.1165.

L. Shapley. On balanced sets and cores. Naval Research Logistics Quarterly, 14(4):453–460, 1967. doi: https:
//doi.org/10.1002/nav.3800140404. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.

3800140404.

L. Shapley. Cores of convex games. International Journal of Game Theory, 1:11–26, 1971.

B. C. Shelbourne, M. Battarra, and C. N. Potts. The vehicle routing problem with release and due dates.
INFORMS Journal on Computing, 29(4):705–723, 2017. doi: 10.1287/ijoc.2017.0756. URL https://doi.

org/10.1287/ijoc.2017.0756.

A. Stroh, A. Erera, and A. Toriello. Tactical design of same-day delivery systems. Management Science, 68:
3444–3463, 2022.

X. Sun, K. Li, and W. Li. The vehicle routing problem with release dates and flexible time windows. Engi-
neering Optimization, 2021. doi: 10.1080/0305215X.2021.1974853. Forthcoming.

T. Vanelslander, L. Deketele, and D. Hove. Commonly used e-commerce supply chains for fast moving
consumer goods: comparison and suggestions for improvement. International Journal of Logistics, 16:
243–256, 06 2013. doi: 10.1080/13675567.2013.813444.

S. Voccia, A. Campbell, and B. Thomas. The same-day delivery problem for online purchases. Transportation
Science, 53(1):167–184, 2019.

S. Wang, T. Zhou, C. Lavania, and J. A. Bilmes. Constrained robust submodular partitioning. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Process-
ing Systems, volume 34, pages 2721–2732. Curran Associates, Inc., 2021. URL https://proceedings.

neurips.cc/paper_files/paper/2021/file/161882dd2d19c716819081aee2c08b98-Paper.pdf.

S. Webster and K. R. Baker. Scheduling Groups of Jobs on a Single Machine. Operations Research, 43:692–703,
1995.

K. Wei, R. Iyer, S. Wang, W. Bai, and J. Bilmes. Mixed robust/average submodular partitioning: Fast algo-
rithms, guarantees, and applications. NIPS’15, page 2233–2241, Cambridge, MA, USA, 2015. MIT Press.

M. Wölck and S. Meisel. Branch-and-Price Approaches for Real-Time Vehicle Routing with Picking, Load-
ing, and Soft Time Windows. INFORMS Journal on Computing, 2022. doi: 10.1287/ijoc.2021.1151. Forth-
coming.

J. Yuan, Z. Liu, C.-T. Ng, and T. Cheng. Single machine batch scheduling problem with family setup
times and release dates to minimize makespan. Journal of Scheduling, 9:499–513, 12 2006. doi: 10.1007/
s10951-006-8776-2.

35

https://doi.org/10.1007/s00453-004-1083-4
https://doi.org/10.1007/s00453-004-1083-4
https://www.sciencedirect.com/science/article/pii/S037722171730841X
https://www.sciencedirect.com/science/article/pii/S037722171730841X
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800140404
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800140404
https://doi.org/10.1287/ijoc.2017.0756
https://doi.org/10.1287/ijoc.2017.0756
https://proceedings.neurips.cc/paper_files/paper/2021/file/161882dd2d19c716819081aee2c08b98-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/161882dd2d19c716819081aee2c08b98-Paper.pdf

A Proofs from Section 3

A.1 MILP solves SAD

Proposition 2. The following MILP solves SAD:

min
t,x,z≥0

z (2a)

s.t. ti ≥ ri i ∈ N (2b)

ti+1 ≥ ti + ∑
S∈Ni

xS f (S) i ∈ N \ n (2c)

z ≥ tn + ∑
S∈Nn

xS f (S) (2d)

∑
S⊆N,S∋i

xS = 1 i ∈ N (2e)

xS ∈ Z ∅ ̸= S ⊆ N. (2f)

Proof. We show the equivalence between feasible solutions for the MILP and feasible solutions
for SAD. First, we start from a solution for the MILP, and construct a solution for SAD. For each
i ∈ N, there can be at most one subset Si ∈ Ni such that xSi = 1, otherwise constraint (2e) would
be violated. Construct a solution for SAD as follows: for i ∈ N, define the i-th dispatch as (ti, Si) if
there exists some Si ∈ Ni with xSi = 1, and as (ti, ∅) otherwise. This ordered set of dispatches is a
feasible solution for SAD since (2e) ensures the batches partition N, and (2b) and (2c) correspond
exactly to the feasibility constraints for SAD in the proof of Proposition 1. Finally, constraint (2d)
ensures the makespan is also feasible. Therefore, the MILP solution and the solution for SAD have
the same makespan.

Now assume we have feasible solution for SAD, (ti, Si) for i ∈ N. By Proposition 1, we may
assume without loss of optimality that the batches are dispatched following their indexing, and
thus t1 ≤ · · · ≤ tn. We construct a solution for the MILP by keeping the same values ti, initializing
vector x to be zero, and then setting xSi = 1 for Si ̸= ∅. Because the original solution for SAD is
feasible, the vector x satisfies (2e) and (2b) is satisfied by t. There is at most one non-zero xS in any
of the constraints (2c) and (2d), implying those constraints reduce to the feasibility constraints of
SAD, and so they are also satisfied by t. Finally, by setting z as the value that achieves equality
at constraint (2d), we get a feasible solution for the MILP with the same makespan as the SAD
solution.

A.2 Strong NP-Hardness Proof

Proposition 3. SAD is strongly NP-Hard, even in the special case where f is a Steiner TSP in a generalized
“star” graph, a tree where a depot node has arbitrary degree but all other nodes have degree one or two.

36

Proof. Consider the 3-partition problem (3-PP), which is known to be strongly NP-hard (Garey
and Johnson, 1979). An instance of 3-PP is described by two positive integers a and h and a subset
S = {a1, a2, . . . , a3h}, where each ai is a positive integer with a/4 < ai < a/2 for all i = 1, . . . , 3h.
The question is whether it is possible to find a partition S1, S2, . . . , Sh such that ∑i∈Sℓ

ai = a, for all
ℓ = 1 . . . , h.

Following Garey and Johnson (1978), a problem is strongly NP-Hard if there is a pseudo-
polynomial transformation to it from another strongly NP-hard problem. In our case, we prove
that SAD on generalized “star” graphs is strongly NP-Hard by exhibiting a pseudo-polynomial
transformation from 3-PP. Specifically, Definition 4 and Observation 5 in Garey and Johnson (1978)
require the four following conditions:

(a) For all instances of 3-PP, the 3-PP instance has a “Yes” answer if and only if the corresponding
transformed instance in SAD has a “Yes” answer.

(b) The transformation can be computed in time bounded by a polynomial of the instance input
length, 3h + 1, and the largest number found in the instance, a.

(c) There exists a polynomial function p(·) such that for all instances of 3-PP, the length of the
input in 3-PP is smaller or equal to the function p(·) applied to the length of the input in the
corresponding SAD instance.

(d) There exists a polynomial function q(·) such that the maximum number found in the SAD
instance is smaller or equal to function q(·) applied to the tuple that describes the size and the
maximum number of the 3-PP instance.

We reduce 3-PP to the decision version of SAD with dispatch times given by a generalized
“star” graph using the following transformation. Consider an arbitrary 3-PP instance; for each
number ai, create a path in the SAD instance with exactly h nodes, which we denote as vi,j for
j = 1, . . . , h. The second index j represents the position of the node in the path i: vi,h is the farthest
node from the depot in path i and vi,1 is the closest node to the depot. Each node vi,h has a release
time of 0 and a round-trip from the depot takes ai time units; node vi,j has a release time (h− j)a
and the round-trip from the depot takes jai/h time. Intuitively, every a units of time a new order
appears in each path and that order is closer to the depot than the previous one. At time (h− 1)a,
the last set of 3h orders are released (nodes vi,1). The dispatch time to a set of nodes in different
paths is just the sum of the times incurred by visiting each path individually, and therefore the
dispatch time function is the routing time in a generalized “star” graph.

We prove now that this is a valid pseudo-polynomial transformation from 3-PP to SAD on
generalized “star” graphs. We start by showing that a 3-PP instance has a “Yes” answer if and only
if the corresponding generalized “star” SAD instance has makespan smaller or equal to a(h+ h−1

2).
First, consider a solution for the 3-PP problem, given by the partition S1, . . . , Sh. We construct

a solution for SAD as follows. The first dispatch leaves the depot at time 0 and includes nodes vi,h

from the three paths corresponding to i ∈ S1. The dispatch time to those three nodes is ∑S1
ai = a,

37

and this first dispatch ends at time a. The second dispatch includes all available nodes from paths
i ∈ S2, vi,h and vi,h−1. This dispatch also takes a time because visiting vi,h in each path takes ai time
units, and ∑S2

ai = a. We keep selecting paths in S3, . . . , Sh for the third through h-th dispatch,
respectively, and each of those dispatches takes a time and ends at time 3a, . . . , ah, respectively,
covering all paths since the sets Sj are a partition of S. When the h-th dispatch ends, all remaining
uncovered nodes are available; in paths i ∈ S1 this means we need to dispatch up to the three
nodes vi,h−1, for i ∈ S2 to the three nodes vi,h−2, and so on, ending in paths i ∈ Sh−1 with the three
nodes vi,1. A dispatch that includes all these nodes has a dispatch time equal to ∑h−1

j=1
h−j

h a, because

the farthest remaining node in path i ∈ Sj is the node whose round-trip takes (h−j)
h ai time units.

Thus, the solution’s makespan is ah + ∑h−1
j=1

h−j
h a = a(h + h(h−1)

2h) = a(h + h−1
2). It follows that if

the 3-PP problem is feasible, there exists a solution with the desired makespan for SAD.
Consider now a solution for SAD with makespan less than or equal to a(h + h−1

2). We claim
that this makespan can only be achieved by instances corresponding to feasible 3-PP instances,
and that it is actually the minimum makespan for such instances. Notice that it is always feasible
to wait until time a(h − 1) and then include all nodes in each path in a single dispatch, with
a total dispatch time of ∑3h

i=1 = ah, inducing a makespan of a(h − 1) + ah. Any solution with
a makespan of a(h + h−1

2) must therefore “save” a h−1
2 dispatch time between time 0 and a(h −

1), because starting at time a(h − 1) we can dispatch all orders that have been not dispatched
yet. Furthermore, any dispatch starting during interval [0, a) contains only nodes vi,h, the only
nodes released before time a; therefore, after any such dispatch is finished, paths i visited by that
dispatch have vi,h−1 as the farthest uncovered node, requiring a round-trip of h−1

h ai time. Hence,
the total time saved by that dispatch with respect to the solution that serves all orders together
is its dispatch time multiplied by 1/h. Similarly, any dispatch starting during interval [a, 2a) can
save at most its dispatch time multiplied by 2/h, which occurs only when the new dispatch does
not repeat a path from the previous dispatch. In general, any dispatch starting in the interval
[ai, a(i + 1)) can save at most its dispatch time multiplied by (i + 1)/h, for i = 0, . . . , (h− 2), and
that saving is obtained only if the paths visited by that dispatch are visited for the first time.

The maximum total time saved by these possible dispatches is obtained by saving the maxi-
mum possible time in each interval, which is exactly a ∑h−1

i=1
i
h = a h−1

2 . This implies that a solu-
tion with makespan a(h + h−1

2) must precisely save the maximum possible time in each interval
[ai, a(i + 1)]: it must have no idle time (no time can be saved while the vehicle idles); it must have
a dispatch finishing exactly at each of the respective times ai, for i = 1, . . . , h− 1; and each of these
dispatches must include paths that have not been visited before. We can thus describe each inter-
val [ai, a(i + 1)] by the paths the dispatch visits during this time, and as these paths have not been
visited previously, the total dispatch time equals the sum of the round-trip times to the farthest
unvisited node in each of those paths; since this time equals a, the sum of the ai values for these
paths must be exactly a. As each path is visited only once during the interval [0, a(h− 1)], we can
describe the paths served during interval [a(i− 1), ai] for i = 1, . . . h− 1 as subsets Si, and by de-
noting the unserved paths as Sh, we form a partition for S. Furthermore, because a/4 < aj < a/2

38

for all j = 1, . . . , 3h, each those subsets Si has exactly three elements, and so the partition Si is a
solution for 3-PP. Therefore, if there exists a solution for SAD with makespan equal to a(h + h−1

2),
the 3-PP instance has a partition meeting the desired requirements.

This concludes the proof of condition (a) for a pseudo-polynomial transformation. For con-
dition (b), the transformation requires 3h2 nodes, each with two associated numbers (round-trip
time from depot and release time), the condition is satisfied. For (c), the length of input in the
SAD instance is larger than the length of the input in 3-PP for any h ≥ 1, so the condition is
trivially satisfied. Finally, in the SAD instance all release times are bounded by (h − 1)a and all
round-trip times are bounded by a, verifying that (d) holds. We conclude that the transformation
is pseudo-polynomial.

For illustration, we present an example where the 3-PP instance has h = 2. Figure 7 presents
the graph used for the SAD instance, where all nodes in the outer layer have their orders released
at time 0 and the orders corresponding to the nodes in the inner layer are released at time a. The
goal is a set of order batches with corresponding makespan equal to 2.5a. The makespan when
batching all orders together is equal to 3a, with the dispatch leaving at time a; to get the desired
solution at least one dispatch must start earlier, and during the time interval [0, a), a/2 units of
time must be “saved” compared to the one-dispatch solution.

v6,2 v1,2

v6,1 v1,1

v5,2 v5,1 DEPOT v2,1 v2,2

v4,1 v3,1

v4,2 v3,2

a6

2

a6

2
a1

2

a1

2

a2

2
a2

2

a3

2

a3

2

a4

2

a4

2

a5

2
a5

2

Figure 7: Example of SAD instance derived from 3-PP with h = 2.

39

A.3 Approximation Guarantee with Limited Dispatches

Proposition 5. Consider a heuristic for SAD that, for any instance, generates a solution with at most
d < n dispatches. The heuristic’s multiplicative approximation guarantee cannot be smaller than 1 + 1/d,
even when constraining f to be a modular set function.

Proof. Consider an instance with n orders, modular dispatch time function f (S) = |S| and release
times ri = i− 1 for i = 1, . . . , n. We may assume without loss of generality that the solution has
no idle time after the first dispatch leaves the depot. Because of this fact and the modular dispatch
time function, the best solution with d < n dispatches is equivalent to finding the minimum time
t such that we can do d consecutive dispatches that cover all orders.

At any time t before the first dispatch, the number of released orders is ⌊t + 1⌋. Furthermore,
after dispatching |S| orders, the number of orders that were released during the dispatch is exactly
|S|, as long as the dispatch returns by time n− 1. It follows that we can get a lower bound on the
solution’s makespan by assuming that for any t before the first dispatch, the number of orders that
have been released is t + 1 instead of ⌊t + 1⌋, and by then precisely arranging the d dispatches so
that they incur no idle time: the departure time of each dispatch is equal to the release time of the
last order that has been released up to that point. This translates to the equation t + (d− 1)(t +
1) = n− 1, where t is the start time of the first dispatch, then d− 1 dispatches each with dispatch
time (t + 1) are executed (as that is the number of orders released between dispatches), and the
last dispatch starts when the last order is released. This yields t = n/d− 1, and the lower bound
on the makespan is n + n/d− 1 because n is the total dispatch time of all dispatches.

The optimal solution uses n consecutive dispatches, starting at time zero and with no idle time
between dispatches, giving an optimal makespan of n. Therefore, the approximation ratio of a
heuristic that executes at most d dispatches cannot be better than 1 + 1/d − 1/n, which goes to
1 + 1/d as n goes to infinity.

A.4 Solving the LP relaxation

Lemma 6. Consider the linear relaxation of (2), where we relax the integrality of each xS variable (2f)
to non-negativity. This relaxation can be solved in polynomial time if condition (B) holds, that is, if
minS⊆N{ f (S)−∑i∈S γi} can be solved in polynomial time for all γ ∈ Rn.

Proof. The dual of the LP relaxation of (2) is

max
α,β,γ

∑
i∈N

(αiri + γi) (6a)

s.t. α1 − β1 ≤ 0 (6b)

αi + βi−1 − βi ≤ 0 i = 2, . . . , n (6c)

βn ≤ 1 (6d)

− βi f (S) + ∑
j∈S

γj ≤ 0 i ∈ N, S ∈ Ni (6e)

40

α, β, γ ∈ RN , α, β ≥ 0. (6f)

Here, α are the dual variables for constraints (2b), β for (2c) and (2d), and γ for (2e). Because
the number of variables xS in the primal is exponential, the dual has an exponential number of
constraints (6e).

The separation problem for (6e) is

min
i∈N

{
min
S∈Ni

{
βi f (S)−∑

j∈S
γj

}}
.

From the equivalence of separation and optimization (Grötschel et al., 1993), it follows that the LP
relaxation of (2) is solvable in polynomial time if and only if this separation problem is solvable
in polynomial time for any β, γ ∈ RN with β ≥ 0. We conclude the proof by showing that if
condition (B) holds, the separation problem is polynomially solvable.

It suffices to show that the inner minimization, minS∈Ni

{
βi f (S)−∑j∈S γj

}
for a given i ∈ N, is

polynomially solvable under condition (B), as we can enumerate over all i ∈ N. We may assume
βi > 0, as otherwise the problem is trivial, and thus we may divide by βi to obtain the equivalent
problem minS∈Ni

{
f (S)−∑j∈S γ̂j

}
, where γ̂j = γj/βi for j ≤ i.

In the problem described in condition (B), the monotonicity of f implies that if γj < 0, j is not
in the minimizing set. Similarly, if γj = M > 0 is large enough, we ensure j is in the minimizing
set; one such value is M = f (N) + 1. Define γ̂j = −1 for j > i and redefine γ̂i = M; we then have

argmin
S∈Ni

{
βi f (S)−∑

j∈S
γj

}
= argmin

S⊆N

{
f (S)−∑

j∈S
γ̂j

}
.

B Proofs from Section 4

B.1 Proof of Proposition 7

Proposition 7. Let (tLP, xLP, zLP) be a feasible extreme point of the LP relaxation of (2). Using that
solution as input, Algorithm 1 returns an ordered list (by increasing maximum index, then decreasing
cardinality) of the fractional dispatches, batches S ⊆ N with xLP

S > 0, and returns their corresponding
schedule (start, end and idle times) in O(n log n) time.

Proof. Because (tLP, xLP, zLP) is an extreme point, there are at most 2n variables xLP
S with non-zero

value. We can group the corresponding batches according to their highest index in O(n) time,
obtaining a (possibly empty) list of batches Bj for each j ∈ N; each batch S ∈ Bj corresponds to
a non-zero xLP

S variable with j = max{k ∈ S}. See Figure 1a for an example. Furthermore, for
each j ∈ N we can sort the batches in Bj according to their cardinality in non-increasing fashion,
leading to an ordering (and indexing) of the fractional dispatches; this requires O(n log(n)) time
(lines 1 to 5 in Algorithm 1).

41

With this ordering of the batches, we can determine the start and end time of each “fractional
dispatch” by using the dispatch times f (S) and the values xLP

S , which takes O(n) time (lines 7-
16 of Algorithm 1). This leads to a schedule for the associated solution, including the idle time
∆j before the release time of order j (line 12); idle time can only occur once per order j ∈ N, if
t̂ℓ = rj > êℓ−1. Figure 1b shows an example of the ordering of the fractional dispatches and the
respective idle times.

B.2 Proof of Proposition 8

Proposition 8. Let (tLP, xLP, zLP) be an optimal extreme point solution of the LP relaxation of (2) for some
instance I0. Let η and ∆ respectively be the vectors of batch schedule positions and idle times computed by
Algorithm 1. Suppose ∑j∈N ∆j > 0; then Algorithm 2 creates an instance I1 in O(n) time for which xLP

induces an optimal solution and the schedule given by η has no idle time. Therefore, instance I1’s optimal
fractional makespan is zLP −∑j∈N ∆j.

Proof. Algorithm 2 creates a new instance I1 by keeping the same order set N, but modifying the
vector r, and as it iterates once for each subset S with xLP

S > 0, the overall complexity is O(n).
Let k be the last index such that ∆k > 0. From monotonicity and the definition of ∆k, all orders

1, . . . , k − 1 must be completely dispatched by rk, otherwise the solution is not optimal, as we
could use the idle time to add or increase a fractional dispatch. Therefore, in the original instance
I0, all fractional dispatches starting at or after rk must constitute an optimal fractional solution for
the sub-instance defined by orders k, . . . , n; otherwise, the makespan for I0 could be decreased, a
contradiction.

When creating the new instance I1 we make sure that:

1. All orders k, . . . , n have their release time decreased exactly by ∑j ∆j; combined with the
optimality of xLP starting at time rk, this implies that the makespan cannot be reduced by
more than ∑j∈N ∆j, i.e. the new instance’s makespan cannot be less than zLP −∑j∈N ∆j.

2. The vector xLP and the ordering of fractional dispatches η remain feasible for the new in-
stance, as the release times were not increased, and the sequence of order arrivals was pre-
served (order i in I0 remains order i in I1).

3. The modified vectors t̂, ê define a fractional schedule for xLP with the updated release time
vector r. In this schedule, dispatches including orders 1, . . . , k − 1 end precisely at the up-
dated release time rk, and the schedule has no idle time.

The solution xLP and updated schedule are feasible for I1 and the fractional makespan is precisely
zLP −∑j∈N ∆j.

42

B.3 Proof of Theorem 9

Theorem 9. Let (tLP, xLP, zLP) be an extreme point optimal solution of the LP relaxation of (2), and define
δ := zLP − ∑S⊆N xLP

S f (S) = ∑j∈N ∆j ≥ 0. If f is fractionally subadditive – condition (A2) – the two-
dispatch solution obtained by Algorithm 3 has a tight 3/2− δ/(2zLP) approximation ratio. Furthermore,
let B = {i ∈ N : ri ≤ zLP−δ

3 }; if f (B) ≤ zLP−δ
3 , the solution obtained by Algorithm 4 has a tight

4/3− δ/(3zLP) approximation ratio. The algorithms run in O(n log n) time.

Appendix B.3.1 establishes the approximation ratio for Algorithm 3, and Appendix B.3.2 for
Algorithm 4.

B.3.1 Approximation Ratio of Algorithm 3

Proof. Consider an arbitrary instance of SAD, and let (tLP, xLP, zLP) be an extreme point optimal
solution for the linear relaxation of (2). We focus first on the case where the solution has no idle
time, δ = 0, and afterwards extend the result to δ > 0.

By using Algorithm 1 we can get an ordered (fractional) schedule for the dispatches performed
in the solution in O(n log n) time. Figure 8 shows the ordered fractional schedule for the dis-
patches after the indexing, where the length of the arrow is the interval where the fractional dis-
patch is executed, and the set on top is the batch being dispatched. For the rest of the proof, we
refer to the first batch according to this sequence as S1, the second batch is S2, and so on. Be-
cause we assume the solution has no idle time, we can define the fractional starting time of each
batch as ξ j, where ξ1 = 0 and ξ j = ∑k<j xLP

Sk
f (Sk). Furthermore, there is some batch Sh satisfying

ξh < zLP/2 ≤ ξh+1; in Figure 8 it is the blue dispatch.

0 r2 r3 r4 r5 r7 zLP
|

0.5zLP

{1}

ξ1

{1, 2}

ξ2

{2}

ξ3

{3}

ξ4

{3, 4}

ξ5

{2, 4, 6}

ξ7

{2, 3, 4, 6}

ξ6

{4, 6}

ξ8

{5, 6, 7}

ξ9

{5, 7}

ξ10

Figure 8: Sequenced fractional dispatches; the blue dispatch corresponds to batch Sh.

We define D =
⋃h

k=1 Sk, and claim that the two-dispatch solution defined by batches D and
N \ D has makespan bounded above by 3zLP/2. Let rD = maxi∈D{ri} be the release time of the
latest order in batch D; from the feasibility of the LP’s solution we get rD ≤ ξh. To prove the
claim, we use the non-negativity, monotonicity and fractional subadditivity of f ; we consider two
separate cases:

1. Suppose rD + f (D) ≤ zLP. By construction, all orders in N \ D have not been fractionally
dispatched before zLP/2. From the fractional subadditivity and monotonicity of f , we obtain
f (N \D) ≤ ∑k>h xLP

Sk
f (Sk) ≤ zLP/2, and thus the solution’s makespan is bounded above by

3zLP/2.

43

2. Now assume rD + f (D) > zLP, so the solution defined by batches D and N \D has makespan
of rD + f (D) + f (N \ D). For contradiction purposes, suppose rD + f (D) + f (N \ D) >

3zLP/2, which implies

f (D) >
3
2

zLP − rD − f (N\D) ≥ 3
2

zLP − rD −
(

zLP − ∑
k≤h

xLP
Sk

f (Sk)

)
=

1
2

zLP + ∑
k≤h

xLP
Sk

f (Sk)− rD > ∑
k≤h

xLP
Sk

f (Sk) = ξh+1.

The second inequality is a consequence of fractional subadditivity, monotonicity, and the
fact that δ = 0. The last inequality follows from the fact that rD ≤ ξh < zLP/2. We
claim that a solution that fractionally dispatches batch D from time 0 up to time ξh+1 (with
xD = ξh+1/ f (D) < 1), then fractionally dispatches all orders with xN = 1− xD and finally
fractionally dispatches N \ D with xN\D = xD yields a lower bound for zLP. To prove the
claim, let I2 be the instance where orders not included in D with release time earlier than ξh

have their release time delayed to ξh+1. Compared to the original instance I0 = I1 (recall that
the solution has no idle time), I2 cannot have a lower makespan because its release times are
equal or later than those in I1, and so the dispatches from the original instance are also an
optimal solution for this new modified instance. We depict an example in Figures 9a, 9b and
9c. Now consider instance I3, where the release times for orders in D are set to 0, and release
times for orders in N \D are set to ξh+1, as shown in Figure 9d. All the release times in I3 are
smaller or equal to the ones in instance I2, which means an optimal solution for I3 provides
a lower bound for I2 (and thus also I1). Furthermore, fractional subadditivity implies that
our proposed solution is optimal for I3; Figure 9e shows this for our example. Therefore,

zLP ≥ ξh+1

f (D)
(f (D) + f (N \ D)) +

(
1− ξh+1

f (D)

)
f (N)

≥ ξh+1

f (D)
(f (D) + f (N \ D)) +

f (D)− ξh+1

f (D)
f (D) = f (D) +

ξh+1

f (D)
f (N \ D), (7)

where the second inequality follows from monotonicity. For fixed f (N \ D) and ξh+1, the
right-hand side of (7) is minimized at f (D) =

√
ξh+1 f (N\D); however, recalling our as-

sumption that f (D) > ξh+1 > f (N\D), we can actually lower-bound the right-hand side
by assuming f (D) = ξh+1, and thus zLP ≥ f (D) + f (N \ D). Finally, as rD ≤ ξh < 1

2 zLP,
rD + f (D) + f (N \ D) ≤ 3zLP/2, which is our desired contradiction.

The argument above shows that when δ = 0, the two-dispatch solution given by D and N \ D
has makespan bounded above by 3zLP/2. Proposition 5 verifies that this approximation ratio is
tight, as we cannot do better with a two-dispatch solution. We now extend the result to when
δ > 0. From the original instance I0, Algorithm 2 constructs an instance I1 for which the optimal
solution xLP has no idle time, with makespan zLP − δ. By using the procedure described above to
get DI1 , we can now obtain a solution with makespan 3/2(zLP− δ) for instance I1. By construction,

44

for all orders i ∈ N the release times have the following property: rI0
i ≤ rI1

i + δ, and so the solution
given by dispatching DI1 and N\DI1 is feasible for I0 if the first dispatch starts δ units of time
later, and has a makespan of at most 3/2(zLP − δ) + δ in I0, which is 3/2zLP − δ/2 and gives the
desired result. Finally, Algorithm 1 requires O(n log n) time, Algorithm 2 requires O(n) time, and
finding batch Sh and then finding subset D requires O(n) time; therefore the overall complexity is
O(n log n).

0 r2 r3 r4 r5 r7 zLP
|

0.5zLP

{1} {1, 2}{2} {3} {3, 4} {2, 4, 6}{2, 3, 4, 6} {4, 6}{5, 6, 7} {5, 7}

(a) Optimal fractional solution for instance I1.

0 r2 r3 r4 r5r6 r7 zLP
|

{1} {1, 2}{2} {3} {3, 4} {2, 4, 6}{2, 3, 4, 6} {4, 6}{5, 6, 7} {5, 7}

(b) Moving the arrival of order 5 to ξh+1.

0 r′2 r′3 r′4 r′6r′5 r′7 zLP
|

{1′} {1′, 2′}{2′} {3′} {3′, 4′} {2′, 4′, 5′}{2′, 3′, 4′, 5′} {4′, 5′} {5′, 6′, 7′} {6′, 7′}

(c) Optimal solution for instance I2 (after adjusting the indices).

0 = r′2 = r′3 = r′4 = r′5 r′6 = r′7 zLP
|

{1′} {1′, 2′}{2′} {3′} {3′, 4′} {2′, 4′, 5′}{2′, 3′, 4′, 5′} {4′, 5′} {5′, 6′, 7′} {6′, 7′}

(d) Instance I3 with the original fractional solution remaining feasible.

0 = r′2 = r′3 = r′4 = r′5 r′6 = r′7 zLP
|

{1′, 2′, 3′, 4′, 5′} {1′, 2′, 3′, 4′, 5′, 6′, 7′} {6′, 7′}

(e) Optimal solution for instance I3.

Figure 9: Visual representation of the lower bound for zLP.

45

B.3.2 Approximation Ratio of Algorithm 4

Proof. Consider an arbitrary instance I0 of SAD, and let (tLP, xLP, zLP) be an extreme point optimal
solution for the linear relaxation of (2). By executing Algorithms 1 and 2, we transform I0 to a
modified instance I1, and get as output an ordered schedule of (fractional) dispatches without idle
time described by xLP, with makespan zLP

I1
= zLP − δ.

For the rest of the proof we refer to vector r as the vector describing instance I1, and we refer
to the first batch (of the fractional schedule) as S1, the second batch is S2, and so on. As in the
previous proof, because this solution has no idle time we can define the fractional starting time
of each batch as ξ j, where ξ1 = 0 and ξ j = ∑k<j xLP

Sk
f (Sk). Furthermore, there is some batch Sh1

satisfying ξh1 < zLP
I1

/3 ≤ ξh1+1, and also some batch Sh2 satisfying ξh2 < 2zLP
I1

/3 ≤ ξh2+1; Figure
10a shows a fractional schedule for instance I1 and Figure 10b highlights batches Sh1 and Sh2 in
blue and violet, respectively.

We again use the order subset D defined in the previous proof, and also define D1 =
⋃h1

k=1 Sk,
D2 =

(⋃h2
k=1 Sk

)
\ D1. We consider the five following solutions:

(i) The one-dispatch solution of all orders, N.

(ii) The two-dispatch solution with batches D and N \ D from Algorithm 3.

(iii) The two-dispatch solution with D1 and N \ D1.

(iv) The two-dispatch solution with D1 ∪ D2 and N \ (D1 ∪ D2).

(v) The three-dispatch solution with D1, D2 and N \ (D1 ∪ D2).

We claim that the solution with the smallest makespan among the five choices has a 4/3
approximation ratio. We assume solution (i) has a makespan greater than (4/3)zLP

I1
, implying

rn > zLP
I1

/3 > ξh1 , so solutions (iii) and (i) are different. We also assume solution (ii) has a
makespan greater than (4/3)zLP

I1
, otherwise the proof is finished. Note that solutions (iii), (iv)

and (v) only differ if D2 ̸= ∅.
Let rD1 = maxi∈D1{ri}, rD2 = maxi∈D2{ri} ≥ rD1 ; we complete the proof by considering the

following cases:

46

0 r2 r3 r4 r5 r6 r7 zLPI1

{1} {1, 2}{2} {3} {3, 4} {2, 4, 6}{2, 3, 4, 6} {4, 6}{5, 6, 7} {5, 7}

(a) Optimal fractional solution for instance I1.

0
|

zLPI1 /3 zLPI1

|
2zLPI1 /3

{1} {1, 2}{2} {3} {3, 4} {2, 4, 6}{2, 3, 4, 6} {4, 6}{5, 6, 7} {5, 7}

(b) Batch Sh1 highlighted in blue and batch Sh2 in violet. In this example D1 = {1, 2, 3, 4} and D2 = {6}.

0 r2 r3 r4 r5r6 r7 zLPI1

{1} {1, 2}{2} {3} {3, 4} {2, 4, 6}{2, 3, 4, 6} {4, 6}{5, 6, 7} {5, 7}

(c) Instance I3 with same optimal solution as I1. Instances I1 and I2 are identical in this case; I3 increases the
release time of order 5.

0 r′2 r′3 r′4 r′6r′5 r′7 zLPI1

{1′} {1′, 2′}{2′} {3′} {3′, 4′} {2′, 4′, 5′}{2′, 3′, 4′, 5′} {4′, 5′}{5′, 6′, 7′} {6′, 7′}

(d) Instance I3 with relabeled order indices.

0 = r′2 = r′3 = r′4 r′6 = r′7r′5 zLPI1

{1′} {1′, 2′}{2′} {3′} {3′, 4′} {2′, 4′, 5′}{2′, 3′, 4′, 5′} {4′, 5′}{5′, 6′, 7′} {6′, 7′}

(e) Relaxed instance I4 for which the original solution is feasible.

Figure 10: Visual representation of batches Sh1 and Sh2 (blue and violet, respectively), then con-
struction of relaxed instance I4 based on those batches.

(a) rn ≤ zLP
I1

/3 + ξh1+1.

(b) rD2 + f (D1 ∪ D2) ≤ zLP
I1

/3 + ξh2+1.

(c) rD2 + f (D1 ∪ D2) > zLP
I1

/3 + ξh2+1 and rn > zLP
I1

/3 + ξh1+1. We divide this case into multiple
sub-cases, with the following conditions:

(c1) rD1 + f (D1) + f (D2) ≤ zLP
I1

/3 + ξh2+1 and rD1 + f (D1) ≥ rD2 .

47

(c2) rD1 + f (D1) + f (D2) ≤ zLP
I1

/3 + ξh2+1, rD1 + f (D1) < rD2 and rD2 + f (D2) ≤ zLP
I1

/3 +

ξh2+1.

(c3) rD1 + f (D1) + f (D2) ≤ zLP
I1

/3 + ξh2+1, rD1 + f (D1) < rD2 and rD2 + f (D2) > zLP
I1

/3 +

ξh2+1.

(c4) rD1 + f (D1) + f (D2) > zLP
I1

/3 + ξh2+1.

We use the following facts in our proof. First, our assumption that f (B) ≤ (zLP
I0
− δ)/3 im-

plies f (D1) ≤ zLP
I1

/3. Second, using fractional subadditivity and the definition of D1 and D2,
f (N\D1) ≤ zLP

I1
− ξh1+1 and f (N\(D1 ∪ D2)) ≤ zLP

I1
− ξh2+1.

For case (a), the makespan of solution (iii) is

max{rD1 + f (D1), rn}+ f (N \ D1) ≤ (zLP
I1

/3 + ξh1+1) + (zLP
I1
− ξh1+1) = (4/3)zLP

I1
,

where we use rD1 ≤ ξh1+1.
For case (b), we have zLP

I1
< zLP

I1
/3+ ξh2+1 by the definition of ξh2+1; it follows that solution (iv)

has a makespan of

max{rD2 + f (D1 ∪ D2), rn}+ f (N \ (D1 ∪ D2)) ≤ (zLP
I1

/3 + ξh2+1) + (zLP
I1
− ξh2+1) = (4/3)zLP

I1
,

where we also use rn ≤ zLP
I1

.
For case (c1), the makespan of solution (v) is

max{rD1 + f (D1) + f (D2), rn}+ f (N \ (D1 ∪D2)) ≤ (zLP
I1

/3 + ξh2+1) + (zLP
I1
− ξh2+1) = (4/3)zLP

I1
.

Similarly, for case (c2) the makespan of solution (v) is

rD2 + f (D2) + f (N \ (D1 ∪ D2)) ≤ (zLP
I1

/3 + ξh2+1) + (zLP
I1
− ξh2+1) = (4/3)zLP

I1
.

For case (c3), rD2 + f (D1 ∪ D2) > zLP
I1

/3 + ξh2+1 implies D2 ̸= ∅, because otherwise D1 =

D1 ∪ D2. Solution (v) has makespan rD2 + f (D2) + f (N\(D1 ∪ D2)); to derive a contradiction, we
assume this makespan exceeds (4/3)zLP

I1
. Similarly to the previous proof, we construct a modified

instance based on I1. In instance I2, orders with release time earlier than ξh1+1 and not in D1 have
their release time delayed to ξh1+1; I2 has the same optimal LP solution as I1. Then, in instance
I3 orders that have a release time in I2 between ξh1+1 (inclusive) and min{ξh1+1 + zLP

I1
/3, ξh2+1}

(exclusive) and are not in D2 have their release time delayed to min{ξh1+1 + zLP
I1

/3, ξh2+1}; see
Figures 10c and 10d to continue with the example of Figure 10. I3 also has the same optimal
LP solution as I1. To obtain instance I4, we relax I3 by reducing the release time of all orders
in D1 to time 0, all the orders in D2 to time ξh1+1, and all remaining orders to time min{ξh1+1 +

zLP
I1

/3, ξh2+1}; see Figure 10e. As I4 is a relaxation of I3, the optimal LP solution of I4 has a fractional
makespan smaller or equal to zLP

I1
. For this new instance, f (D1) ≤ zLP

I1
/3 ≤ ξh1+1 implies the first

dispatch is finished before D2 is released. Furthermore, f (D2) > zLP
I1

/3+ ξh2+1− rD2 , and therefore

48

f (D2) > min{ξh1+1 + zLP
I1

/3, ξh2+1}− ξh1+1. The optimal LP solution for I4 has D1 dispatched first,
then D2 is fractionally dispatched, then N \ D1, and finally N \ (D1 ∪ D2), as depicted in Figure
11.

Let xD2 =
min{ξh1+1+zLP

I1
/3,ξh2+1}−ξh1+1

f (D2)
; then

zLP
I1
≥ zLP

I4
= ξh1+1 + xD2 f (D2) + (1− xD2) f (N\D1) + xD2 f (N\(D1 ∪ D2))

≥ ξh1+1 + f (D2) +
min{ξh1+1 + zLP

I1
/3, ξh2+1} − ξh1+1

f (D2)
f (N\(D1 ∪ D2)).

The inequality follows from monotonicity and the definition of xD2 . For fixed f (N \ (D1 ∪ D2)),
ξh1+1, ξh2+1, zLP

I1
/3, and by considering the right hand side as a function of f (D2), the expression

is convex and minimized when f (D2) equals√(
min{ξh1+1 + zLP

I1
/3, ξh2+1} − ξh1+1

)
f (N \ (D1 ∪ D2));

however, f (D2) > min{ξh1+1 + zLP
I1

/3, ξh2+1} − ξh1+1 ≥ f (N \ (D1 ∪ D2)), so by substituting
f (D2) = min{ξh1+1 + zLP

I1
/3, ξh2+1} − ξh1+1, we obtain

zLP
I1
≥ zLP

I4
≥ ξh1+1 + f (D2) + f (N\(D1 ∪ D2)).

This would imply (4/3)zLP
I1
≥ zLP

I4
+ zLP

I1
/3 ≥ zLP

I1
/3 + ξh1+1 + f (D2) + f (N \ (D1 ∪ D2)), and as

zLP
I1

/3 + ξh1+1 > rD2 , we arrive at our desired contradiction.
For case (c4), we again must have D2 ̸= ∅. As f (D1) ≤ zLP

I1
/3, f (D2) > ξh2+1 − rD1 and hence

also f (D2) > min{ξh1+1 + zLP
I1

/3, ξh2+1} − ξh1+1. Therefore, we can use the same construction and
argument from case (c3).

0 = r′2 = r′3 = r′4 r′6 = r′7r′5 zLPI1

{1′, 2′, 3′, 4′} {5′} {5′, 6′, 7′} {6′, 7′}

Figure 11: Visual representation of the structure of the optimal solution of I4

Cases (a), (b) and (c) together cover all possible scenarios in which f (D1) ≤ zLP
I1

/3, and show
that at least one of the solutions from Algorithm (4) meets the desired approximation ratio. It
follows that when f (D1) ≤ (zLP − δ)/3, the algorithm returns a solution that has a makespan of
at most (4/3)(zLP − δ) in I1. By Proposition 8, if we delay the start of such a solution by δ, it is
feasible for the original instance I0 and has a makespan of (4/3)(zLP − δ) + δ = (4/3)zLP − δ/3,
which completes the proof of the approximation ratio.

Finally, running Algorithm 3 has complexity O(n log n), finding batches Sh1 and Sh2 and com-
puting D1 and D2 has complexity O(n), and computing the makespan of the five possible solutions
has complexity O(1), yielding a total complexity of O(n log n).

49

B.4 Gap between LP relaxation and MILP

Proposition 10. Let z∗I be the optimal makespan of SAD for instance I, and zLP
I be the optimal (fractional)

makespan of the LP relaxation of (2) for instance I. There exists a family of instances I1, I2, . . . such
that limm→∞ z∗Im

/zLP
Im

= (
√

3 − 1)−1. Therefore, when ζ < (
√

3 − 1)−1 it is not possible to create a
ζ-approximation algorithm for SAD based solely on the optimal solution of the LP relaxation of (2).

Proof. As a reminder, the family of instances is characterized by: Λ =
√

3− 2/n− 1, r1 = 0, τ1 =

1, and ri = Λ i−1
n−1 , τi = Λ n−i+1

n−1 for i ≥ 2, with f (S) = maxi∈S{τi}.
Because τ1 > rn, any batch containing the first order returns to the depot after rn. Furthermore,

f is FIFO-optimal, so we may assume the first batch includes the first order; therefore, an optimal
solution consists of at most two batches. All such solutions have makespan ri + τ1 + τi+1 = 1 +

Λ i−1
n−1 + Λ n−(i+1)+1

n−1 = Λ + 1 if the first batch is {1, . . . , i} for i < n, or rn + τ1 = Λ + 1 if i = n and
the solution consists of a single batch; hence all such solutions are optimal and z∗ = 1 + Λ.

Since τ1 > rn, the optimal solution of the LP relaxation fractionally dispatches batch {1} in the
interval [0, r2], {1, 2} in the interval [r2, r3] and so forth, until it dispatches N in interval [rn, 1], and
then it dispatches {2, 3, . . . , n} in interval [1, 1 + r2τ2], {3, . . . , n} in interval [1 + r2τ2, 1 + r2τ2 +

(r3 − r2)τ3], and so forth until {n}. By grouping terms, it follows that the makespan of the LP
relaxation is

zLP = 1 + r2(τ2 − τ3) + · · ·+ rn−1(τn−1 − τn) + rnτn

= 1 +
n−1

∑
i=2

i− 1
n− 1

Λ2
[

n− i + 1
n− 1

− n− (i + 1) + 1
n− 1

]
+

Λ2

n− 1

= 1 +
Λ2

(n− 1)2

n−1

∑
i=2

(i− 1) +
Λ2

n− 1
= 1 +

(n− 1)(n− 2)Λ2

2(n− 1)2 +
Λ2

n− 1
= 1 +

nΛ2

2(n− 1)
.

The second equality comes from definition of vectors r, τ. It follows that z∗/zLP = 1+Λ
1+ nΛ2

2(n−1)

, and

when substituting for the value of Λ and letting n→ ∞, we get the desired (
√

3− 1)−1 ratio.

B.5 Strengthened Inequalities

Theorem 11. Inequalities (2b) in (2) can be strengthened to

ti ≥ ri + ∑
j<i

∑
S∈Nj

max{0, rj − ri + f (S)}xS, i = 2, 3, . . . , n. (3)

Proof. We prove the theorem by induction on i. Recall the notation Ni = {S ⊆ {1, . . . , i} : i ∈ S},
and let (t, x, z) be any feasible solution to (2). When i = 2, we have

t2 ≥ max{r2, r1 + x{1} f ({1})} = r2 + x{1}max{0, r1 − r2 + f ({1})}.

50

Now suppose i ≥ 3. If no dispatch occurs before i is released, the inequality is valid triv-
ially. Similarly, if the coefficient in the inequality evaluates to zero for all previous dispatches,
the inequality is again trivially valid. Assume this is not the case, and let k = max

{
j < i :

∑S∈Nj
xS max{0, rj − ri + f (S)} > 0

}
be the largest index before i for which there is a dispatch

with positive coefficient in the inequality. By feasibility, we have

ti ≥ tk + ∑
S∈Nk

xS f (S) = ri +

(
−ri + tk + ∑

S∈Nk

xS f (S)
)

.

The term inside the parenthesis can be further expanded and bounded below as follows:

−ri + tk + ∑
S∈Nk

xS f (S) ≥ −ri + rk + ∑
S∈Nk

xS f (S) + ∑
j<k

∑
S∈Nj

xS max{0, rj − rk + f (S)}

≥ −ri + rk + ∑
S∈Nk

xS f (S) + ∑
j<k

∑
S∈Nj

xS max{0, rj − ri + f (S)}

= −ri + rk + ∑
S∈Nk

xS f (S) + ∑
j<i, j ̸=k

∑
S∈Nj

xS max{0, rj − ri + f (S)}

= ∑
j<i

∑
S∈Nj

xS max{0, rj − ri + f (S)}.

The first inequality follows from induction, the second because ri ≥ rk, while the first equation
follows from the assumption that any dispatch between k and i has a zero coefficient; the last
equation simply groups terms.

C Proofs from Section 5

C.1 FIFO Algorithm

Proposition 12. Let κ be the number of operations needed to compute all values fi,j, for 1 ≤ i ≤ j ≤ n.
For a SAD instance, the best makespan among FIFO solutions is given by zFIFO, and can be computed in
Θ(n2 + κ) time.

Proof. First, we claim that zi,j is the minimum makespan required to dispatch orders in Nj in FIFO
fashion when the last batch dispatched is [i, j]. We prove the claim by induction, and the base case
is straightforward as all z1,j are the optimal makespan of dispatching orders {1, 2 . . . , j} in one
batch. As induction hypothesis, suppose there exists some i0 ∈ N such that for all i ≤ i0 and all
j ≥ i, zi,j represents the minimum makespan to dispatch orders in [1, j] in FIFO fashion when the
last batch dispatched is [i, j].

Now we consider the values zi0+1,j for j ≥ i0 + 1. The dispatch time of the batch [i0 + 1, j]
is given by fi0+1,j, and the dispatch cannot leave the depot earlier than both rj and the optimal
makespan needed to dispatch orders in [1, i0]; the latter is mink≤i0{zk,i0} because of the induc-

51

tion hypothesis and the fact that orders need to be dispatched in FIFO fashion. Thus zi0+1,j =

max
{

rj, mink≤i0{zk,i0}
}
+ fi0+1,j is the makespan to dispatch orders in [1, j] in FIFO fashion when

the last batch is [i0 + 1, j]. It follows that zi,n represents the minimum makespan to dispatch all n
orders in a FIFO manner when the last batch dispatched is [i, n], and then the makespan for the
best FIFO solution is given by mini≤n{zi,n}.

Assuming we perform κ operations to compute, the fi,j values, the recursion’s complexity is
dominated by equations (5b), which take quadratic time (for each i ≥ 2 there are roughly i − 1
operations), yielding the complexity.

C.2 Approximation ratio of the FIFO Algorithm

Theorem 13. The FIFO Algorithm is a 2-approximation for SAD, and this guarantee is tight.

2n n− 1

...
...

DEPOT n+ 3 2

n+ 2 1

n+ 1 n

n− ε

ε

ε

3− ε ε

2− ε

ε1− ε

ε

Figure 12: Family of instances in which the best FIFO makespan approaches twice the optimum.
In the instance, r1 = r2 = . . . = rn = rn+1 = 0, and rn+i = ∑i−1

j=1 j = i(i−1)
2 for i = 2, 3, . . . , n.

Proof. The single-batch solution is a FIFO solution, so the FIFO algorithm inherits the guaran-
tee from Proposition 4. To show that the approximation ratio is tight, we construct a family of
instances as depicted in Figure 12. In the figure, the nodes represent orders, the dispatch times
correspond to Steiner TSP routing times in the graph and orders have the following release times:
r1 = r2 = . . . = rn = rn+1 = 0 and rn+i = ∑i−1

j=1 j = i(i−1)
2 for i = 2, 3, . . . , n. We define path

1 as nodes {n, n + 1} and for i ≥ 2 path i is the set of nodes {i − 1, n + i}. It is clear that
the optimal solution dispatches to each path only once and so the optimal solution is given by

52

batches {n, n + 1}, {1, n + 2}, . . . , {n − 1, 2n}, dispatched consecutively with no idle times, and
has a makespan of ∑n

i=1 i = (n+1)n
2 = n2+n

2 .
When constructing a FIFO solution, only one dispatch is needed for path i if and only if the

dispatch for both orders in the path leaves the depot at least at time rn+i and includes all orders
in between i− 1 and n + i. Because all orders in between are included, FIFO solutions may only
have one batch that has both nodes of a path being dispatched together (resulting in only one visit
to that respective path). Therefore, to find an optimal FIFO solution we must select the subset
of paths that will be visited only once in that solution, and clearly path 1 is always included, as
nodes n and n + 1 would always be between the nodes of other paths. For illustration purposes,
consider the solution where only path 1 is served once, which dispatches the batches [1, n + 1]
and [n + 2, 2n] and has a makespan that is only (1− ϵ) units of time less than the single-batch
makespan. We claim that the optimal FIFO solution is described by waiting until time 1, then
consecutively dispatching batches [1, n− 2] and [n− 1, 2n] (with no idle time in between), with
a makespan of 1 + ∑n−1

i=2 i + ∑n
i=1 i− ϵ(n− 2) = n(n−1)

2 + (n+1)n
2 − ϵ(n− 2) = n2 − ϵ(n− 2). Note

that this solution visits paths n and 1 only once and all other paths twice.
To prove the claim, consider adding path 1 < i < n to the set of paths visited only once. In

order to accommodate that requirement there are two options:

i) Path n continues to be visited only once: Under this scenario the departure time of the last dis-
patch (that must include all paths served only once) is still n(n + 1)/2, and now as path i is
visited only once, then the batches that are previously dispatched cannot include the node
i − 1 (the node farthest away in path i), so the vehicle will incur extra idle time to leave at
the required time for the last dispatch, and as the dispatch time of the last batch will have its
value increased by ϵ, the makespan increases.

ii) Path n is now visited twice in the solution: By letting i ≥ 2 be the largest index of a path that
is visited only once, then paths 2, . . . , i− 1 are the only other paths that may be visited only
once. Note that the batch that includes all paths that are visited only once must leave the
depot at least at time ri, but for that to happen the vehicle will have an idle time of at least
one unit even if all the orders 1, . . . , i − 2 are previously dispatched to (recalling that node
i − 1 is in the batch that includes path i). This implies that for each path 2, . . . , i − 1 we can
actually reduce the makespan by ϵ if we decide to visit that path twice. It follows that in
this case the best solution is the one that only has 1 and i as the subset of paths visited once,
and is given by the vehicle departing at time 1 and consecutively dispatching the batches
[1, i− 2], [i− 1, n + i], [n + i + 1, 2n], with a cost of ri + ∑n

j=1 j− ϵ(n− 2) + ∑n
j=i+1 j− ϵ(n−

i) = (n+1)n
2 + (n+1)n

2 − i− ϵ(2n− 2− i) = n2 + n− i− ϵ(2n− 2− i), which is minimized at
i = n.

Therefore, the makespan of the best FIFO solution is n2 − ϵ(n − 2), whereas the makespan of
the optimal solution is (n2 + n)/2, which gives the tight 2-approximation ratio when n goes to
infinity.

53

C.3 FIFO-Optimal Functions

Proposition 14. Let τ0 ≥ 0, τi > 0 for i ∈ N, and let g : R → R be a concave non-decreasing function
with g(0) = 0. The following functions are FIFO-optimal,

1. f (S) = τ0 + ∑i∈S τi,

2. f (S) = τ0 + maxi∈S{τi},

3. f (S) = τ0 + g(|S|),

where in each case the function is defined for S ̸= ∅, letting f (∅) = 0.

Proof. We prove the claim for each of the functions separately:

1. Consider a non-FIFO optimal solution having batches Sk = {i1, . . . , ih} and Sk+1 = {j1, . . . , jk}
with a pair (a, b) such that ia > jb. Move all such orders from batch k + 1 to k. Notice
that batch k continues to start at the same time as in the previous solution, while requiring
a larger dispatching time, implying that any idle time before batch k + 1 cannot increase.
Also, the sum of the dispatch times of both batches is equal, and so the makespan cannot be
increased by performing this transformation. By executing this procedure sequentially for
all such pairs of batches, starting with the smallest indices, we obtain a FIFO solution, and
as it cannot have a greater makespan than the optimal solution, it is also optimal.

2. We prove f (S) = maxi∈N{τi} is FIFO-optimal, which implies the claim, as we can add the
constant τ0 to all terms τi to put the function in this form.

First, we may assume without loss of optimality that the first dispatched batch includes the
order i = max

{
argmaxj∈N{τi}

}
. Suppose this order appears instead in batch k > 1; then

simply add all orders from preceding batches to this batch. The change cannot increase k’s
dispatch time, and it can still be dispatched at the same time or earlier.

Now construct a subset N′ ⊆ N as follows. Initialize N′ = ∅, and auxiliary set C = N.
While C is not empty, add order i = max

{
argmaxj∈C{τj}

}
to N′, then redefine C ← [i+ 1, n];

N′ always includes n. By applying the preceding argument inductively, it follows that we
can construct an optimal solution for N by solving SAD for N′. Specifically, suppose N′ =
{i1, . . . , ih}, with indexes following the ordering in N; then if a batch in a solution for set N′

contains ia, the corresponding batch in the solution for N contains [ia−1 + 1, ia], or [1, ia] if
a = 1.

It follows that we may focus on optimizing SAD for the set N′, where orders i in this set
are indexed in non-decreasing order of ri and decreasing order of τi. Suppose we have an
optimal non-FIFO solution; then in two consecutive batches Sk and Sk+1 we have j ∈ Sk and
i ∈ Sk+1 with i < j. As before, we can move j to Sk+1 without changing the start time of
either dispatch or increasing either dispatch time; by applying this operation as many times
as necessary, we can convert the solution into a FIFO solution with an equal makespan.

54

3. Suppose we have a non-FIFO optimal solution, with batches Sk, Sk+1 including orders j ∈ Sk

and i ∈ Sk+1, where i < j. By swapping these orders, placing i in the k-th batch and
vice versa, we maintain the cardinality of both batches and thus their dispatch times. Fur-
thermore, the starting times of the dispatches are still feasible, because ri ≤ rj ≤ tk and
tk+1 ≥ tk ≥ rj. Applying this operation as many times as necessary, we obtain a FIFO
optimal solution.

C.4 Q-FIFO-Optimal Algorithm

Theorem 15. Let Q be a fixed integer. For any Q-FIFO-optimal dispatch function, SAD can be optimized
in Θ(n2Q + κ) time, where κ is the time required to compute all interval dispatch times for each set Sq that
partitions N.

Proof. We denote the Q non-intersecting sets of orders defining the Q-FIFO-optimal function as
S1, S2, . . . , SQ, with respective release time vectors r1, r2, . . . , rQ. Furthermore, we let n1, n2, . . . , nQ

be the number of orders in each of the Q sets, and we denote the pre-computed dispatch times
within the Q sets as f 1, . . . , f Q, with f q

i,j being the dispatch time of batch [i, j] from set Sq, where
1 ≤ i ≤ j ≤ nq. To solve this problem, we use an array z with 2Q + 1 dimensions, where the
first index indicates the last set Sq that had a dispatch, whereas the other index pairs represent the
order intervals dispatched last for each of the sets; as an example, z(2, i1, j1, i2, j2, i3, j3) represents
the minimum makespan when the last dispatch corresponding to set Sq was [iq, jq] for q = 1, 2, 3,
and the very last dispatch was [i2, j2]. We also use zeroes to indicate no dispatch for that set has
yet occurred. The recursion defining z is then

z
(

σ, (iq, jq)
Q
q=1

)
= f σ

iσ ,jσ + max

rσ
jσ ,

min
{

z
(
σ′, (iq, jq)q ̸=σ ∪ (kσ, iσ − 1)

)
: kσ ∈ [1, iσ − 1]; σ′ ∈ {q : iq ≥ 1}

}
,

(8a)

if iσ ≥ 2;

z
(

σ, (iq, jq)
Q
q=1

)
= f σ

iσ ,jσ + max
{

rσ
jσ , min

{
z
(
σ′, (iq, jq)q ̸=σ ∪ (0, 0)

)
: σ′ ∈ {q : iq ≥ 1} \ {σ}

}}
, if iσ = 1.

(8b)

The boundary condition is simply z(0, . . . , 0) = 0. The notation (iq, jq)q ̸=σ ∪ (kσ, iσ − 1) means the
index pair (kσ, iσ − 1) is appended to the previous vector in the σ-th position. Intuitively, the cur-
rent state identifies that the last dispatch had orders from set Sσ, and thus the recursion minimizes
over which previous set had the next-to-last dispatch, and what the previous dispatch to Sσ con-
tained. If the dispatch to Sσ was the first one, in which case iσ = 1, there is no previous dispatch
to this set, indicated by the previous state having the zero indexes. The optimal makespan of SAD
is then

min
{

z
(

σ, (iq, nq)
Q
q=1

)
: iq = 1, . . . , nq, q = 1, . . . Q; σ = 1, . . . , Q

}
. (8c)

Generalizing the argument from the proof of Proposition 12, the array z tracks the optimal makespan

55

for each partial state. There are O(n2Q) states, each with O(n) terms in its recursion, yielding a
running time of O(n2Q+1).

We can reduce the running time by an order of magnitude by noting that the minimization in
(8a) can be computed beforehand. Specifically, for σ ∈ {1, . . . , Q}, iσ ≥ 2 and (iq, jq)q ̸=σ, define

ž
(
σ, iσ, (iq, jq)q ̸=σ

)
= min

{
z
(
σ′, (iq, jq)q ̸=σ ∪ (kσ, iσ − 1)

)
: kσ ∈ [1, iσ − 1], σ′ ∈ {q : iq ≥ 1}

}
. (8d)

We can then replace the minimization in (8a) with the appropriate term from the auxiliary array
ž. This reduces the number of terms in the original recursions to a constant number (either two or
Q), and adds O(n2Q−1) auxiliary states with O(n) terms in each minimization, yielding the desired
complexity.

D Details for Column Generation and Pricing Problems

D.1 Column Generation Acceleration

We implement the acceleration procedure from Ben-Ameur and Neto (2007) when solving the
linear relaxations of (2) and its strengthening with (3). At every iteration, this procedure uses an
incumbent feasible dual solution, denoted δ f here for convenience, which can be initialized with
any feasible solution, such as δ f = 0, and the infeasible dual solution obtained by the master solve,
denoted δm. Instead of attempting to separate δm, we solve the dual separation problem for the
convex combination δ̂ = λδ f + (1− λ)δm. Intuitively, this solution is likelier to be feasible or at
least closer to the dual feasible region. If δ̂ is dual feasible, it necessarily has a larger objective value
than δ f , so it becomes the new feasible incumbent. Otherwise, it is dual infeasible, so we add dual
cutting planes (i.e. columns in the primal) and perform another master solve. After preliminary
calibration, we used λ = 0.8 in our experiments.

D.2 Pricing for the LP Relaxation in Experiments

To price the linear relaxation of (2), we need to solve the following problem for each i ∈ N:

min
S∈Ni

{
f (S)−∑

j∈S
γj

}
.

We first describe the pricing problem for generalized stars, then extend this to the tree instances
described in Section 6.

D.2.1 Generalized Stars

As discussed in Sections 5 and 6, for generalized stars it suffices to consider only batches contained
in a single path. The pricing problem thus focuses on the path containing order i, and on other

56

orders j ∈ Ni with γj > 0 contained in the same path; we denote this set Pi ⊆ Ni here. Orders
j ∈ Pi are each associated with a number τj > 0, such that f (S) = maxj∈S{τj} for S ⊆ Pi. We
can order the elements of Pi as j1, . . . , jℓ with τj1 < · · · < τjℓ , where i = jk for some k ≤ ℓ. It
follows from the structure of f and the assumption that γj > 0 for j ∈ Pi \ i that the optimal set
is an interval, S = [j1, jm], where m ≥ k because i must be included in S. By evaluating the sets
sequentially, the minimizer can be computed in time proportional to ℓ = |Pi|.

D.2.2 Trees from Section 6

Recall that the tree topology we use in the experiments consists of a primary paths, and secondary
paths with order positions connected to nodes in the primary path; see Figure 3. Similarly to the
generalized star case, for the pricing problem it suffices to focus on the sub-tree rooted at the depot
that contains i, and on orders j ∈ Ni with γj > 0 contained in the same sub-tree. Following the
notation in Figure 3, we denote the non-depot nodes in the primary path as st (for “path start”).

The pricing for this topology consists of recursive applications of the algorithm we use for
a single path above. For the secondary path Pi in the sub-tree that contains i, we compute its
reduced cost ρi as above and record the minimizing interval Si ⊆ Pi. For every other secondary
path Pk, we use the same algorithm but consider all intervals including the empty one (equivalent
to not visiting the path at all), and again record the minimizing interval Sk ⊆ Pk and reduced
cost ρk ≤ 0. Each node stk is the start of two secondary paths, say Pk1 and Pk2 ; we assign stk a
value γ̃k = −ρk1 − ρk2 , the negated sum of reduced costs for the two corresponding paths. We
also note which node is the start of path Pi; call this node sti. Finally, we apply the path algorithm
again on the primary path, using the values γ̃k, and requiring that the solution contain node sti.
Suppose the subset of nodes st in this solution is denoted T; the batch that minimizes the reduced
cost corresponds to

⋃
k∈T Sk. This algorithm requires a number of operations proportional to the

number of nodes considered in the sub-tree.

D.3 Pricing for the Strengthened LP Relaxation in Experiments

For the linear relaxation of (2) strengthened with (3), the pricing problem is equivalent to

min
S∈Ni

{
f (S) + ∑

j>i
max{0, ri − rj + f (S)}αj −∑

j∈S
γi

}
,

for each i ∈ N, where αj ≥ 0 for all j. Because of the terms multiplying the αj values, this
minimization is no longer submodular, and is not guaranteed to be solvable in polynomial time.

D.3.1 Generalized Stars

The simpler pricing algorithm still applies, with a modification. As before, it suffices to focus
on the path containing i, and on orders j ∈ Ni in this path with γj > 0. We again call this set
Pi = {j1, . . . , jℓ}, where τj1 < · · · < τjℓ . Once we fix the farthest order visited in the path, this

57

fixes f (S), and in this case also fixes the sum that includes the α terms. Thus, given a farthest
included order, we choose to include all closer orders, and therefore consider only intervals [j1, jm]
that include i, for some m. We evaluate all such intervals and choose the minimizer.

D.3.2 Trees from Section 6

We again consider the sub-tree rooted at the depot that contains i, and all orders j ∈ Ni in the same
sub-tree with γj > 0. The sub-tree consists of secondary paths P1, . . . , Pℓ, where each Pk starts at
node stk in the primary path. We solve this pricing problem with an MILP:

min
d,D,F,v,y,θ

F + ∑
j>i

θj −
i

∑
j=1

yjγj

s.t. yi = 1

vP ≥ yj j ∈ Ni ∩ P

D ≥ vPk f ({stPk}) k = 1, . . . , ℓ

dP ≥ yj
(

f ({j})− f ({stP})
)

j ∈ Ni ∩ P

F = D +
ℓ

∑
k=1

dPk

θj ≥ (ri − rj + F)αj j > i

θ ≥ 0, v ∈ {0, 1}, y ∈ {0, 1}.

Variable yj indicates whether order j is selected to be in the optimal subset. Variable vP indicates
if path P is visited. Variable D accounts for the routing time in the primary path, and variables
dP account for the routing time in each path P. Variable F represents the total routing time, and
finally variables θ account for the non-linear term in the pricing objective multiplying the α values.

D.4 Pricing of the LP Relaxation for Linear Production Functions

Recall the linear production function,

f (S) = min
y≥0

{ m

∑
ℓ=1

yℓ : Ay ≥ ∑
i∈S

bi
}

.

Condition (B) requires us to solve minS⊆N
{

f (S)−∑i∈S γi
}

in polynomial time. Assume without
loss of generality that each bi is integral, and let Bk = ∑i∈N bi

k denote the total amount of product k
when including the full set of orders N. We claim (B) holds when m and each Bk is polynomial in n,
and p is constant. This follows from a dynamic programming formulation that has polynomially
many states and actions under these conditions; the dynamic program is characterized by:

58

• Stages 0, 1, . . . , n, where in stage i− 1 we consider adding order i, and in stage n we simply
compute the time for the selected batch. Stages have states of type (i, ψ1, ψ2, . . . , ψp), with ψk

denoting the amount of product k required so far, for k = 1, . . . , p and ψk = 0, . . . , Bk.

• Actions (i − 1, ψ1, ψ2, . . . , ψp) → (i, ψ1, ψ2, . . . , ψp) with cost 0 represent the decision to not
include i in the batch, for i ∈ N and all corresponding states.

• Actions (i− 1, ψ1, ψ2, . . . , ψp)→ (i, ψ1 + bi
1, ψ2 + bi

2, . . . , ψp + bi
p) with cost −γi represent the

decision to include i in the batch, for all i ∈ N and corresponding states.

• There is a dummy terminal sink node T; actions (n, ψ1, ψ2, . . . , ψp)→ T with cost

min
y≥0

{ m

∑
ℓ=1

yℓ : Ay ≥ ψ

}
compute the dispatch time for the selected batch. The initial state is the zero vector.

Under our assumptions, the number of states and actions is polynomial. Computing the costs
in the last stage requires solving a polynomial number of linear programs of polynomial size. It
follows that condition (B) holds.

59

	Introduction
	Problem Definition and Applications
	Contributions and Organization

	Literature Review
	Same-Day Delivery
	Submodular and Subadditive Optimization
	Machine Scheduling with Batching and Family Setups

	Model Formulation and Preliminaries
	Linear Relaxation-Based Analysis
	Heuristics Based on an Optimal LP Solution
	Valid Inequalities

	First-In First-Out (FIFO) Algorithms and Functions
	FIFO Algorithm
	FIFO-Optimal Functions and Generalizations

	Computational Study
	Routing on Restricted Topologies
	SDD System with Non-Homogeneous Arrival Rates

	Conclusions
	Proofs from Section 3
	MILP solves SAD
	Strong NP-Hardness Proof
	Approximation Guarantee with Limited Dispatches
	Solving the LP relaxation

	Proofs from Section 4
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Theorem 9
	Approximation Ratio of Algorithm 3
	Approximation Ratio of Algorithm 4

	Gap between LP relaxation and MILP
	Strengthened Inequalities

	Proofs from Section 5
	FIFO Algorithm
	Approximation ratio of the FIFO Algorithm
	FIFO-Optimal Functions
	Q-FIFO-Optimal Algorithm

	Details for Column Generation and Pricing Problems
	Column Generation Acceleration
	Pricing for the LP Relaxation in Experiments
	Generalized Stars
	Trees from Section 6

	Pricing for the Strengthened LP Relaxation in Experiments
	Generalized Stars
	Trees from Section 6

	Pricing of the LP Relaxation for Linear Production Functions

